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Abstract

We have devised a technique that makes it possible to obtain energy estimates for

initial-boundary value problems for nonlinear conservation laws. The two major tools to

achieve the energy estimates are a certain splitting of the flux vector derivative f(u)x, and

a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These

hypotheses are fulfilled for many equations that occur in practice, such as the Euler

equations of gas dynamics. It should be noted that the energy estimates are obtained

without any assumptions on the gradient of the solution u. The results extend to weak

solutions that are obtained as pointwise limits of vanishing viscosity solutions. As a by-

product we obtain explicit expressions for the entropy function and the entropy flux of

symmetrizable systems of conservation laws. Under certain circumstances the proposed

technique can be applied repeatedly so as to yield estimates in the maximum norm.





1 Introduction

Most of the existing theory for nonlinear conservation laws is concerned with the initial

value problem. The basic tenet of this paper is to devise a technique that makes it possible

to obtain energy estimates for the initial-boundary value problem. The key to obtaining

an energy estimate lies in a certain splitting of the flux vector derivative f(u)_. Based

on this splitting one can obtain energy estimates without assumptions on the gradient

u,, provided the flux vector f satisfies certain structural hypotheses. It should be noted

that these hypotheses are fulfilled for many equations that occur in practice, such as the

Euler equations of gas dynamics. In certain cases the proposed technique can be applied

repeatedly so as to yield estimates in the maximum norm.

We now give a brief presentation of the contents of this paper. Section (2) deals

with the scalar problem in one space dimension. First, we consider flux functions of

the form f(u) = u j, for which it is very easy to derive an energy estimate. Next we

assume that f(u) can be expanded in a convergent Taylor series and apply the technique

to each individual monomial u j. This procedure leads to a certain differential equation.

Conversely, the solution to this differential equation will achieve the correct splitting of

f(u)_, even if f is non-analytic. To obtain an energy estimate, the "dangerous" boundary

terms must be eliminated by means of the characteristic boundary conditions. This can

not be done in general, however. We therefore propose a so called cone condition to single

out the relevant fluxes. In section (3) we repeatedly apply the ideas developed in the

previous section. The main result is a maximum norm estimate for the scalar initial-

boundary value problem. The principles of section (2) can be generalized to systems in a

straightforward manner. This is the major issue of section (4). To begin with, we confine

ourselves to symmetric hyperbolic systems, i. e., systems where the Jacobian satisfies

f,T = f,. The cone condition is generalized to systems, and we are thus able to derive an

energy estimate. Next, we require that the system be symmetrizable by means of a change

of variables u = u(v). The Euler equations belong to this latter category. Applying the

splitting to the time derivative as well, we are able conclude that v satisfies a generalized

energy estimate. We use the term generalized energy estimate, because the norm will,

in general, depend on u(v) (but not on the gradient of u). As a by-product we get an

explicit expression of an entropy function U(u) and the corresponding entropy flux F(u).

Section (5) is concerned with generalizations of the preceding sections to several space

dimensions. Finally, in section (6) we prove energy estimates for weak solutions that can

be obtained as limits of vanishing viscosity solutions.



2 Scalar Conservation Laws in One Space Dimen-
sion

Consider the conservation law

ut + f_ = 0, x E (0,1)t>O (1)
u(x,0)= _(x).

At the boundaries x = 0, 1 we prescribe data _b(t) for the ingoing characteristics, which

are determined by the sign of ff(u(i,t)), i = 0,1. The flux f(u) E R is assumed to be

a continuously differentiable function of u E R. It is well known that eq. (1) allows an

energy estimate when f(u) = u 2. One way to see this is to make use of the splitting

2 uux]+
which is valid for smooth functions u. If we use this splitting in eq. (1) and apply the

energy method we obtain

d 4 fo I [u (u2)_ + u2u:_ l dx 4 f01 4 (u(0, t)3 - u(1,t)a) 'll ll =- =-5 =5
where lI" IIdenotes the usual norm associated with the scalar product

1(U, V) = uvdx.

If u(O,t) > O, then we prescribe u(O,t) = _b0(t). Similarly, if u(1,t) < O, then we set

u(1,t) = _bl(t). We then obtain an energy estimate.

More generally, any monomial f(u) = u j satisfies the identity

(uJ) - j__l

Suppose for the moment that f(u) is analytic. Then there exists a convergent Taylor
series such that

oo

f(_) = _ c,u3.
j=O

Since the convergence is uniform we get

f _ = cj +- cj . 3--:_,u j u_ (3)

'= x u j=0 J-I-I ]

using eq. (2). Some simple calculations show that

oo j 1 ["
cJY-+-TuJ = f - - Jo f(v)dv. (4)

j=O It
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Define

/o JoF(u) = _1 f(v)dv = 'f(Ou)dO. (5)
It

Eqs. (3), (4), (5)imply that

1
f_=(f -F)_+-(f -F)u_. (6)

U

From definition (5) it follows immediately that F satisfies the following differential equa-

tion

F'u = -F + f (7)
F(0) = f(0).

It will henceforth be assumed that f(0) = 0. This is no restriction, since we can always

replace f(u) by f(u)- f(O) without affecting eq. (1). Furthermore, most examples that

occur in practice satisfy f(0) = 0. Combining eqs. (6) and (7) gives

L = (F'u)= + Z%, (8)

which we will refer to as the canonical splitting.

Conversely, let F(u) be the solution to eq. (7), where it is no longer required that f(u)

be an analytic function. It is clear that F(u) is given by eq. (5). Hence,

L = (f- F)_ -4-F_ = (F'u)_ + F'u,,

where the second equality follows from eq. (7) and the chain rule. We have thus established

the canonical splitting for all f such that eq. (7) has a Cl-solution. We shall henceforth

assume that f is differentiable. We point out that if f is a linear function of u, i. e.,

f(u) = au, then F(u) = (1/2)au and thus F'(u) = (1/2)a. Consequently,

1f_ = (au), + -_au_:,

which is the usual skew-symmetric form of a linear hyperbolic PDE.

The energy method applied to eq. (1) yields

_t ]lull2 = -2(u, f_)= -2(u,(F'u).)- 2( u, F'u_ ) _ 2u g_ _ _

where the second equality follows from the canonical splitting (8). To obtain the actual

estimate we must analyze

Jo fo"uF'u = uf - f(v)dv = f'(v)vdv.

From the last expression it is clear that, in general, knowledge about the sign of if(u),

upon which the characteristic boundary conditions are based, has no bearing on the sign
of uF'u. We must thus limit ourselves to flux functions f such that the sign of if(u) will

determine the sign of

fo" f'(v)vdv = uF'u, (9)

if we are to obtain an energy estimate.



Definition 2.1 A function f: f_ ---, R, _ C R, is said to satisfy a cone condition if

(/: )sgn(f'(u)) = sgn f'(v)vdv u E f_.

This cone condition is satisfied if

sgn(f'(u)) = sgn(u), u E 1"_. (10)

Suppose that f'(u) > 0 at the lower boundary x = 0. We then have an ingoing character-

istic, which implies a boundary condition at x = 0. Now, eq. (10) implies u > 0, whence

0 < v < u. But then (10) implies that f'(v) > 0, that is, f'(v)v > 0. Consequently,

uF'u= f'(v)vdv > O,

which shows that the boundary energy has the needed sign. Similarly, if f'(u) < O, i. e.,

there is an outgoing characteristic, then u < 0 from (10), which again leads to f'(v)v > O.

But the upper limit of the integral in eq. (9) is negative, and so the entire expression is

negative. Below we show the graph of f'(u) for a function f satisfying the condition (10).
5
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It should be noted that the condition (10) holds for all monomials of even order; in

particular, it is true for Burgers' equation. Furthermore, it is also true for the non-convex

Buckley-Leverett equation for u E [0, 1], which is a natural restriction since u describes

the saturation of water in a two phase flow.

Another sufficient condition for the cone condition to be true is furnished by

sgn(f'(u)) > 0 (or sgn(f'(u)) < 0) u E f_. (11)

For, if f'(u) > O, then the integrand of eq. (9) satisfies sgn(f'(v)v) -- sgn(v). Hence,

(fo "f() ) (_0")sgn ' v vdv =sgn vdv = 1,

4



i.e.,

which shows that f satisfies a cone condition. Monomials of u of odd order, linear fluxes

in particular, belong to this second category.

Before proceeding we note that the boundary data _b(t) may be restricted; for example,

the cone condition (2.1) requires that f' and uF'u have the same sign. This is the case

for Burger's equation (if(u) = u, uF'u = (1/3)u 3) in which case the condition (10) holds.

If we have an ingoing characteristic at x = 0, then clearly u > 0 and we may thus only

prescribe data g,(t) > 0. From now on it will always be assumed that the boundary data

is compatible with the cone condition.

Proposition 2.1 Let u be a smooth solution of the initial-boundary value problem (I),

where it is assumed that f is differentiable and satisfies a cone condition (2.1). Then u

satisfies an energy estimate.

Proof:

By means of the canonical splitting we get

d

d-711ull= -2uF'ul_,

where

fuF'u = f'(v)vdv.

Since f satisfies a cone condition it follows that the sign of uF'u is uniquely determined

by that of if(u). For convenience, we assume that there is an ingoing characteristic at

x = 0 and an outgoing one at x = 1, i. e., f'(u(O,t)),f'(u(1,t)) > 0. Hence,

d- llu I < 2 J0 f'(v)vdv,

where the data ¢(t) at x = 0 is such that the integral in the right member is nonnegative

(because of compatibility with the cone condition). Integration with respect to time yields

_o t ¢(r)[lu(-,t)ll 2 < I1_,112+ 2 [ f'(v)vdvdr,
dO

which proves the proposition. []

Remark: If there are no ingoing characteristics we get an energy estimate in terms of the

initial data alone. Also, if there were an ingoing characteristic at x = 1 (f(u(1,t)) < 0),

then there would be a second boundary term in the energy estimate. In the case of a

linear equation (f = au) we get uFtu = (1/2)au _, and we thus recover the familiar form

of the energy estimate. It should be emphasized that no gradients appear in the estimate;

if f'(v) cx v p-2, then there is an energy estimate for all time if tb(t) E Lv(O, oc). o



3 Sequences of Conservation Laws

The canonical splitting (8) implies that the original conservation law (1) can be formulated
as

ut + (F'u)_ + F'u_ = 0,

where F satisfies eq. (7). Multiplication by u and the product rule yield

t

where

Jo 1_
fl = uF'u = f'(v)vdv.

This is a new conservation law for (1/2)u 2 associated with the flux fl = uF'u. But then

we can split this new flux in canonical form

where F1 satisfies

(IlL '= (F;uL + F;u_

F;u = -1:1 + fl
F_(0)=0.

Hence, multiplication of ((1/2)u2)t + (fl)_ = 0 by u implies

where

But

3 /, +(AL =°'

f2 = uF;u = fo" fi(v)vdv.

f_ = (uF'u)' = (uf - uF)' = f- F- F'u + f'u = f'u,

whence

£f2 = f'(v)v2dv.

The process can be repeated. A simple induction argument shows that

1 up+l _ +(fp)_=0, p=0,1,..., (12)

where

£IF = f'(v)vPdv, p = 0,1, ....

We have thus established a sequence of conservation laws. In the following we shall restrict

ourselves to the subsequence where p is odd, i. e.,

u 2' +(f2,-,)_=O, f2p-, = f'(v)vZ_'-'dv. (13)
t

6



The conditions (10) and (11) guaranteethat

sgn(f2p-,) = sgn(f'), p = 1,2, ....

Consequently, integration of eq. (13) over (0, 1) x (0, t) yields

jo t f¢(_)Ilu(.,t)ll_ _<It_11_+ 2p f'(v)v2p-ldvdT, p = 1,2,...,
.tO

(14)

where we have assumed f'(u(O,t)),f'(u(1,t)) > 0 for convenience.

equality

(x + y)_ < z-'-+ y-_, z, y _>o,

implies

The elementary in-

1

/__ ( _otf'P(_)f'(v)v2p-advd'r 2p , (15)II_(.,t)ll2p< 11_l12p+ 2p .10

where the last term of the right hand member is nonnegative since we have required that

the boundary data be compatible with the cone condition. But

<_ 2p If'(v)lv2P-'dvdT ,
2p a0 J0

and

( Jo'r'"' )+2p Jo [f'(v)lv2P-ldvdr <
max

o5_51¢(_)1

O<_'<t

1

Define the maximum norm of the boundary data _b E L°°(0, 0o) as follows

i1¢11_= sup I_(_)1.
O<_r<o¢

(16)

Then

(/o'l°'",'l_/v_"_)_<11_11___o
I maxo_<,,<1¢(,-)1

O<%<t

Let t be fixed and let p ---* 0o. We get

1

/-( /o'r"' _Plim sup 2p f'(v)v2p-ldvdr
p---* oo dO

If'(v)lt) _

7



Similarly, it canbe shownthat

limsuPl@ll2v = [koll_
p-.-*oo

for initial data c; E L°°(O, 1). From eq. (15) it then follows that

llu(.,t)ll_ <_I1_11o_+ Ilelloo.

This estimate is valid for all t > 0, and we have thus arrived at a maximum principle for

conservation laws. The result is summarized in the following

Proposition 3.1 Suppose that there is a smooth solution u(x, t) to the initial-boundary

value problem (I) for t > 0 and that f satisfies either of the conditions (It)), (11) Then

u(x, t) satisfies the maximum norm estimate

Ilu(.,t)lloo_ I1_11oo+ I1011oo.

Remark: Lax has shown in [5] that any weak solution with compact support of the

initial value problem (1) satisfies Ilu(',h)ll_ ___Ilu(-,t0)lloo for t, > to, i. e., Ilu(',t)llo_ is

a nonincreasing function of time. C:l

4 Systems of Conservation Laws

We now proceed to the case where u E R d is a vector of unknowns and where f = f(u) E

R e is a vector valued function of u; each component ui is a function of x,t E R. We
consider

ut+fx=O, x E (0,1) t>O

u(x,0) = v(x) (:7)
wt(i,t)= Slwo(i,t)+_pi(t) i=0,1,

where a_ and wo are the ingoing and outgoing characteristic variables. To begin with, it

will be assumed that eq. (1) is symmetric hyperbolic, i. e., f,T = f,, where

f_., ... A,,)
f'(u)= : :

fd., ... fd.,

is the Jacobian matrix of f. Thus, there exists an orthogonal matrix Q(u) such that

Qr(u)f'(u)Q(u) = A(u)

is diagonal. The characteristic variables are defined as

_=Qr(u)u. (18)



Let
Q(u) = (Ql(u) Qo(u)),

where Qt contains the eigenvectors corresponding to ingoing characteristics; Qo contains

the remaining eigenvectors, i. e., those corresponding to outgoing characteristics and those

whose eigenvalue is zero. We now define _ot = Q_u and wo = Q_)u. In general, the rank

d_ of QI _ R d×d' and the rank d: of Qo E R axe2, dl + d2 -- d, will depend upon the

solution u.

The key to obtaining an energy estimate for the scalar conservation law lies in the

canonical splitting (8), which in turn relies upon eq. (7). For systems of conservation laws
we thus consider

F' u = - F + f F 'T = F'
F(0) = f(0) ' (19)

where u, f(u), F(u) are vectors; F' is the Jacobian matrix of F. As in the scalar case, we

require that f(0) = 0. Equation (19) is the inhomogeneous Euler's differential equation

(not to be confused with the Euler equations of gas dynamics). Suppose that there is

a solution to (19). The symmetry condition F 'T = F' implies that Euler's differential

equation can be written as f = (uTF) ', i. e.,

f'=(urF) '',

which in turn shows that f,r = f,. Hence, it is necessary that the Jacobian matrix f' be

symmetric. Conversely, suppose that f,r = f,, then it is easy to verify that

/o'F(u) = f(Ou)dO (20)

solves Euler's differential equation (19). Furthermore, f,T = f, clearly implies F 'T = F'.

Thus, eq. (19), subject to the constraint F 'T = F', has a solution (20) iff f,r = f,. For

details on how to solve (19) we refer to [4]. Note the complete similarity between eqs. (5)

and (20). With F given by (20) we achieve the canonical splitting

L = (f- F)x + Fx = (F'u)_ + F'u_.

Consequently, the solution u of eq. (17) satisfies

d

 llull = -2(u, f_) = -2(u,(F'u)_)- 2(u,F'u_).

Partial integration and F 'T = F' imply that

 llull = = F'ul_o, (21)_2u r

which, formally, is an energy estimate. To get a true energy estimate we must make sure

that the boundary terms

/o'ur F'u = ur f'(Ou)OudO



have the correct sign by applying the characteristic boundary conditions. As was seen

in the scalar case, this will not be true for arbitrary flux functions. This remark also

pertains to the vector valued case. Some kind of cone condition is needed. We generalize

definition (2.1) to

Definition 4.1 A vector valued function f : f_ _ Rd, f_ C R a is said to satisfy a cone

condition if

fo'urf'(Ou)OudO >__(<_)0 u M,

where M C fl is a submanifold such that

uT f'u > (<)0.

We note that the cone condition is fulfilled if there are constants Co > 0 and C 1 > 0
such that

c,f' < F' < Cof'. (22)

Assuming that this condition is true, then, by eq. (21) and the definition (18), we obtain

But

d

d_llull 2 < 2Cow TAw(O, t) - 2c, w TAw(l, t).

wTa (0, t) = t) + Joho.,o(O,t)

where A+, A0, A_ contain the positive, zero, and negative eigenvalues of f' for a given value

of u. At x = 0 the positive eigenvalues correspond to ingoing characteristics; the remaining

ones are treated as outgoing characteristics. With At - A+, Ao -- diag(A0 -A_),

wi = w+, and wo - (Wow_) it follows that

wTAw(O, t) = wTA,w,(O, t) --wToAowo(O,t ) .

Similarly, at x = 1 we have

_wTAw(1, t) = wTAl,_,(1, t) --wToAo_o(1,t),

where AI - -A_, Ao = diag(A0 A+), wt --- w_, and wo - (w0 w+). It should be noted

that AI > 0 whereas Ao > 0. The characteristic boundary conditions (17) yield

wTA,w,-affoAo_oo < 2_ (STA,S- Ao) wo + 2CrAte.

The first term of the right hand member is non-positive if IS(u)] is small enough. In order

to control the second term a bound on At(u) is needed. The characteristic boundary

conditions can be expressed in terms of u as

u = Pu + Q,¢, (23)
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wherethe projection P(u) is given by

P(u) = Q1(u)S(u)Qo(u) v + Qo(u)Qo(u) T • (24)

Hence,

Al(u) = Ai(Pu + QI_').

We, therefore, make the following

Assumption 4.1 There exists a function At : f_ -_ R d' xd,, f_ C R di , such that

AI(Pu + Qtg,(t)) <_ At(g(t))

holds at x = 0 and x = 1 for some vector g(t) C R d_, which is independent of u.

The results can now be summarized in

Proposition 4.1 Let u be a smooth solution of the initial-boundary value problem (17),

where it is assumed that f is differentiable and that condition (22) holds. If assumption

(4.1) is true, then u satisfies an energy estimate.

Remark:

(i) Assumption (4.1) states that the signal speed of the ingoing characteristics can be

estimated at the boundary independently of u.

(ii) Assumption (4.1) is superfluous in the case of homogeneous boundary data (4' -= 0),

since we obviously have g.,TAI¢ -- O.

(iii) If all of the characteristics are ingoing, then AI = A, QI = Q, Qo = 0, which implies

P = 0. Hence,

AI(Pu + Q1¢(t)) = i(Q_b(t)).

Furthermore, since Q is orthogonal, there exists a vector g(t) such that _b(t) =

QTg(t), i. e., Q_b(t) = g(t), which shows that

At(Pu + QiV(t)) = A(g(t)).

Thus, assumption (4.1) is true.
rq

We point out that, in general, the boundary data must be given in characteristic form,

even if assumption (4.1) holds, if we are to obtain an energy estimate. This is true since

_bTAr(u)_ _< Cr A1(g)_b <_ p( ;kl(g) )_br_b ,

ll



where_b= QTg for some data vector g E R d since QI has full rank. Consequently,

CTAI(u)¢ <_ p(_,1(g))gTQiQT g.

Clearly, the right hand member will depend on u through QIQ T. An exception to this

is when QI = Q, in which case we have QIQ_ = QQT = I because of orthogonality.

If, however, Q is independent of u, then of course we get an energy estimate in terms

of the non-characteristic data g. In this context it should be noted that the coefficient

matrices of the primitive Euler equations can be symmetrized such that the resulting Q

is independent of u [1, 8].

Condition (22) can be strengthened in certain cases. Suppose that the flux vector f

satisfies Euler's differential equation

f'u = pf , (25)

the solution of which can be written as [4]

We then have

,.° .5

1 1 _o 1F = f(Ou)dO = P

Integration by parts yields

f'(Ou)OudO= l follo- OdO.
P

i. e.,

F= l f _ l _lf(Ou)d O = l f _ l F
P P P P '

which strengthens condition (22) to

1
F- f,

p+l

1
F' - ' (26)

p+l f"

The flux vector of the conservative Euler equations of gas dynamics satisfies eq. (25) with

p = 1. Unfortunately, the Euler equations are not symmetric, i. e., f,T # f,.

Example: We consider eq. (17) where

Hence,

U

2ulu2
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Obviously, f,T = f, and f'u = 2f. Thus, the cone condition is fulfilled. The energy

method yields

d 12 2 T-, ,a (27)d-71tul :-_u Jilt0,

where we have used the canonical splitting. The eigenvalues and eigenvectors of f'(u) are

given by

) 1(1 1)/_l(u) -_- _1 -- 112 O = ( ql q2 --
A2(u)=u1+112 ' -_ -1 1

Here we have an example where Q is independent of u. Consequently, the characteristic

variables are

1 (u1-112)= Q% = _ 11,+ 112 "

Next, we verify that assumption (4.1) holds. For brevity we confine ourselves to the lower

boundary x = 0; the upper boundary x = 1 is treated in a similar fashion. Assume that

A,(u) < 0 and A2(11) > 0. Hence,

A,(u) = A2(_)= v_._2 = v_s_, + v% = s_, + v_¢ _<v%

if S >_ 0. This implies an energy estimate provided S > 0 is small enough.

Remark: It is not necessary that S >_ 0 in the previous example since

[]

uT ftu

l[(u,-112)3+(u,+u2)3]< 3]_= _-2[(I/'l112)3+(S0(?dl-112)-Jcx/_))<V]21/33
for ISI small enough. []

We now consider eq. (17) when we no longer require that f,T = f,. Before proceeding

we recall the definition of an entropy function.

Definition 4.2 A convex scalar function U(u)

eq. (17) if U(u) satisfies
u'T f' -- F rr

for some scalar function F(u) called the entropy flux.

with respect to 11.

is said to be an entropy function for

(28)

The prime denotes differentiation

Introducing a new dependent variable v and setting u = u(v), ](v) = f(u(v)), we get

ut+ f_: = ut+ ]_: =u'vt+ f'vx =0. (29)

Equation (17) is called symmetrizable if u' = u,, and f' = ], of eq. (29) are symmetric

matrices, and if u' is positive definite. In [3, 2] it is shown that eq. (17) is symmetrizable

iff there exists an entropy function U(u). Using the new variable v we can thus apply

13



the technique used for the symmetric hyperbolic case. The only difference is that vt is

preceded by a symmetric positive definite coefficient matrix u', which implies that the

change of variables u = u(v) is well defined. It is therefore natural to apply the canonical

splitting to the time derivative as well. Thus, let/J(v), F(v) E R _ be the solutions to

8'v = -(7 + u 8 'r = 8'
p,,, =_p+/ p,r= p, (30)

where U'=/-Jr, /_'---- ]Tv. Hence,

_018(v) = u(Ov)dO P(v) = _o1](o,,)dO. (31)

Applying the canonical splitting to ut + ]. in time and space yields

which after scalar multiplication by v implies

(32)

(33)

Integration of eq. (33) with respect to x yields

where

d

d--7Ilvl I_ = --vTFvt_,

_0 lII,,Ig= vTO',dx

defines a norm since it follows from eq. (31) that/)" is positive definite. In general,/5" will

depend on v. Assume that ](v) satisfies ]% = pf for some p > 0. Then/7' = (1/(p+ 1))]_,
w hen ce

d--/llvll_= - vrI'vl_.

Let A denote the eigenvalues of f'. Arguing exactly as in the symmetric hyperbolic case
one obtains

d 2

_llvll_ < _ (¢TA,W0(0,t)-4-CTA/_b, (1, t)) (34)-p+l

This is not an energy estimate in the usual sense because U' and A., depend on v. However,

since U', At are both positive definite we shall call inequality (34) a generalized energy
estimate. We have thus shown

Proposition 4.2 Suppose that eq. (17) can be symmetrized by a change of variables u =

u(v) such that ](v) = f(u(v)) satisfies ]'v = p]. Then any smooth solution v satisfies a

generalized energy estimate (34).
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Remark: Harten [3] has shown that the Euler equations of gas dynamics can be sym-

metrized by a change of variables u = u(v) such that ]'v = pf. Thus, according to

proposition (4.2) a generalized energy estimate is obtained. []

Equation (33) shows that eq. (17) provides an additional conservation law. It is

therefore tempting to regard vW(j_v and vr[-'_v as entropy and entropy flux. Indeed, we

will show that vW(J'v and vrF"v fulfill the conditions of definition (4.2). To this end we

define the scalar functions

u(_) = v_l)'v = vr_ _ ._t?
F(u) = vr fi'v = vr f -- vr fi '

(35)

where the last equality is a consequence of eq. (30). The Jacobians U'(v) and P(v) are

symmetric by construction. Furthermore, v' = v_ is symmetric positive definite since it is

the inverse of the symmetric positive definite matrix u r _ uv. These symmetry relations

and eq. (30) imply that

U'(u) = v, FrT(u) = vTf'(u).

Also, U"(u) = v'(u) >_ O, i. e., U(u) is a convex function satisfying

uIT ff = F IT '

whence U(u) defined by eq. (35) is an entropy function associated with the entropy flux

F(u). We have thus arrived at an explicit expression for the entropy/entropy flux. We

summarize the results in

Proposition 4.3 Let eq. (17) be a symmetrizable system of conservation laws. Then an

entropy function U(u) and the corresponding entropy flux F(u) are given by

/o /og(u) = vr_'(Ov)OvdO F(u) = vr f'(Ov)OvdO, (36)

where v = v(u) is the change of variables that symmetrizes eq. (17).

Remark: In the symmetric hyperbolic case we have u = v, whence/J = (1/2)v. This in

turn implies U(u) = (1/2)lul 2 in agreement with our previous results. []

In the scalar case we obtained a sequence of conservation laws (13). Define the scalar

functions

Up(u) = lu2p p = 1, ....
2p '

Hence, U¢ = u _p-1. From eq. (13) it follows that f;p-1 = f 'u2p-_ and thus

U£f'= f_p_, , p = 1, ....

15



Consequently, {Uv, f2p-x} is a an entropy/entropy flux sequence. This sequence allowed

us to derive an estimate in the maximum norm. Assume that there exists a corresponding

sequence in the vector valued case (17), i. e.,

(up),+ (F_). 0 ,_ , ,r= , U_ f =F_ , p=l,...,

where the entropies satisfy %lul=p___up(y) _<CplUl_pfor some constants %, Cp such that

1

limsup Cp 2p = 1.
p---* o(:_

We note that these hypotheses hold in the scalar case. Also, in the symmetric hyperbolic

case we have Ul(u) = U(u) = (1/2)1ul2. Integration over (-c_, e_) x (0, t) yields

f]_ u,( ( ))d f2_ u,( ( ))dU X,t X = _9 X X,
(x) oo

where we have assumed that u has compact support. The hypotheses on Up imply
1

2p

Ilu(.,t)ll_p _< 11_ll2p.

Finally, taking the limsup of both sides of this inequality leads to the maximum norm
estimate

Ilu(.,t)ll_ _<II_lloo.

Thus, the existence of an entropy sequence implies a maximum norm estimate for the

initial value problem (17), provided the entropies satisfy cplul_p_<up(u) _<C,,lul2p.

Remark: Lax [5, 6] has constructed a sequence of entropy functions satisfying certain

growth conditions for 2 × 2-systems. This sequence is then used to prove that the maximum

norm of the Riemann invariants is a nonincreaing function of time. t3

5 Conservation Laws in Several Space Dimensions

We begin by considering scalar conservation laws

n

ut+_-_(f,)_ =0 xef/cR" t>0
(37)

u(z,0)= _(x).

At the boundary F = Ol_ we prescribe the ingoing characteristics using data ¢(x, t). It will

be assumed that the boundary F is almost regular as defined in [7]. Thus, the divergence

theorem can be applied to fL Let u(x) denote the outward unit normal at x E F. The

characteristic is said to be ingoing at x E F if

n

uT(x)f'(u(x,t)) -- _ u_(x)f'(u(x,t)) < O. (38)
i=1

The cone condition (2.1) is replaced by

16



Definition 5.1

tion if

A function f • f_ _ R, f_ C R, satisfies an n-dimensional cone condi-

u E ft,,sgn(uT f'(u)) = sgn (fo'uT f'(v)vdv)

for all unit vectors v E R '_.

This cone condition is fulfilled if we require

sgn(v Tf'(u)) = sgn(v Tf'(v)), 0 < v < u or u _< v < 0. (39)

Remark: It should be noted that the generalization of condition (10) to

sgn(f/(u))=sgn(u), i= 1,...,n, uEi2,, (40)

would, in general, be insufficient to ensure the cone condition (5.1), except for the special

case of n = 1 when condition (40) implies (39). Similarly, the generalization of (11) to

sgn(f'(u))> (<)0, i= 1,...,n, u•f_,, (41)

will, in general, fail to imply cone condition (5.1). In the special case where

f,(u) = cig(u), i = 1,...,n

condition (39) follows if g(u) satisfies either condition (10) or (11). o

Partition the boundary as F = FI O Fo, where

r, = {x • r: < o} (42)
Fo = F \ 1"1,

i. e., FI corresponds to ingoing characteristics and Fo to outgoing ones.

Proposition 5.1 Suppose that there is a smooth solution u(x, t) of the initial-boundary

value problem (37) for t > 0 and that the flux functions f_ satisfy condition (39). Then

u(x, t) satisfies the maximum norm estimate

Ilu(',t)lloo -< II_'lloo + IlOllr,,oo,

whereII011r,,o = supt,xer, 10(z,t)l.

Proof:

As in the one-dimensional case, the canonical splitting can be applied repeatedly to each

separate flux vector (fi)x, to yield

--u 0
2p )t + i=, (f}2v-'))x' = '

17



where

/:f}210-1)= f,(v)v210_1dv.

Due to condition (39) it follows that

sgn(urf'(u))=sgn(fo'_vTf'(v)v_10-1dv)

for all unit vectors v C R '_ and p = 1, .... Consequently, the cone condition holds for each

p. Integration over f_ implies

d ldt [u] 121021o u= -2p fr fo vTf'(v)v2p-'dvds

by the divergence theorem. Hence,

d210 frfod-711ul1210___-2p ,,,rf,(v)v210-Xdvds
I

since the cone condition holds for each p. Along rt boundary data ¢(x, t) is given, i. e.,

d

fr I: f'(v)l v210-1dvds.dSilul1210210< 2p /1¢1
iJO

Let t be fixed. Define

= max ' "'"lvTj'(V)l .M

0<v<lq,(_,r)l

O<'r

xEFI

Integration with respect to time results in

 )llli:li  +,,
I

Thus

1_12Vdadr.

Ilu(',t)ll]; ___I1:11_;+ Ir,IMtll_ 210IIr,,oo,

where IFt[ denotes the surface measure of Ft. Taking the 2pth root of this inequality

yields

Ilu(.,t)ll=10___11:11210+ (IrzlMt)_, II¢llr,,oo•

Letting p _ oo proves the proposition. 12

Next, we consider (37) where u,fi(u) E R d. It will be assumed that the flux vectors can

be symmetrized by a change of variables u = u(v), i. e., u'(v) is symmetric positive definite,

and ][(v), i = 1,...,n, are symmetric (]i(v) = fi(u(v))). The boundary conditions are

defined in terms of the new variable v by eqs. (23), (24) (with u replaced by v = v(x, t))

18



at every boundary boundary point x E P. The inflow and outflow boundaries Ft and Fo

are defined as

FI= {xEF:Aj(u(v(x,t)))<0forsomej, 1 <j <d} (43)
Fo = F\FI

where the Aj are the eigenvalues of

f(v,u) =_ __, u,f[(v), (44)
i=1

i. e., A = QTf, Q; Q is composed of the (orthogonal) eigenvectors of f'.

Proposition 5.2 Suppose the initial-boundary value problem (37) can be symmetrized by

a change of variables u = u(v) such that the flux vectors f(u(v))i = fi(v) satisfy fir = pfi

for some p > O. Then any smooth solution v(x, t) satisfies a generalized energy estimate

2forIIv(.,t)ll_ < I1_11_+-- It_(',')II_,,A,dT
-- p+l

where

Ilr,,A, _
I

Proof:

Let Lr(v),/g'i(v) C R d be solutions of

O'v = -t) + u
u(0) = 0

By means of the canonical splitting we get

n

(v U v)_ + =
i=1

Since fi satisfies fir = pfi it follows that

p+l

and thus

(vr_'_), + --

The divergence theorem yields

_ldIvll_ - p-t-ll fF vT]'(v

n

T~t1 __,(v f_v)_, = O.
P+I i=1

,u)vds-1 fr (w_AlWl-
p+l

aJoAowo ) ds .
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According to the definition of FI and Fo it follows that AI = 0, Ao = A > 0 on Fo. Thus

d _ 1
 ll tf0<-p+l

The boundary conditions on FI imply

2 fr CTA_.
p+l

Integration with respect to time yields the desired estimate. [3

6 Weak Solutions

In all of the previous sections we have assumed the solutions to be smooth. This as-

sumption allowed us to introduce the canonical splitting, which is a crucial step in the

derivation of the energy estimate. Suppose now that u is a weak solution of

u,+_(f,)= = 0 xeacR"
i=1

v = Pv + QI¢ x E Ft

u(x,o) = _(z),

t>O

(45)

where v = v(u) E R d is a change of variables that symmetrizes eq. (45); Ft is defined

by eq. (43), and the projection P is given by eq. (24). In general, one cannot hope for

an energy estimate to hold since the canonical splitting no longer exists. We therefore

assume that eq. (45) can be regularized in the following sense. Let u" = u(v,) be a smooth
solution of

n _2

ut+__.(fi)_,=tt__,u_,_, xeaCR" t>O

i=1 i=l (46)
lau,, + (I - P)v = QI¢ x E F

u(x,0) = _(x),

where # > O; u. denotes the normal derivative of u at F.

Definition 6.1 A weak solution of the symmetrizable system (45) is called a viscous limit
if

lim uU(x,t) = u(x,t) (dx)-a. e., x E f_,t > 0
_---*0

limu"(x,t) = u(x,t) (ds x dt)-a, e., (x,t) E F x (0,_),
I_--*O

and if these limits are bounded on f_ and r × (0, t) for each fixed t; dx is the n-dimensional

Lebesgue measure, and ds is the (n - 1)-dimensional surface measure on F induced by dx;
dt is the 1-dimensional Lebesgue measure.
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Proposition 6.1 Let u be a weak solution of the symmetrizable system of conservation

If u is the viscous limit of solutions of (46), then u satisfies the entropylaws (45)
condition

n

U(u), + F_,Z,(u)x,< o
i=1

in the integral sense; U(u) and Fi(u) are given by

_01U(u) = vru'(Ov)OvdO _01
F,(u) = vr][(Ov)OvdO.

Proof:

We mimic the proof of Theorem 5.6 in [6]. The regularized solution u u satisfies

nf,u_+ ( ,)_, #_= Uxix,

i=1 i=1

where u u = u(vu), v u = v(uU), ff = fi(u u) = ]i(vu). Since u u is a smooth solution we

can split the hyperbolic part canonically, which after scalar multiplication by v u leads to

n

T-, T ~, T

(v_,U(v.)vu)t+]__.(vuF,(vu)v.):_, #_.,-- Vl. t Ux, x,

i=l i=1

where

_r(U.) = _01

Define the scalar functions

fOu(O_,,)dO, P,(_,,)= ],(ov,,)dO.

r ~!u(u,') - v u (v,>,, r ~!F,(u,')- _,Fi(v,)v,,.

Hence, U'(u") = v u, F'r(u _') _ vr_f'(uU), i. e., u'T(uu)f'(u _') = F[T(uu), where U(u u) is

a convex function. We thus get

/=1 /=1 /=1

_ uTtr,,l. ,,_. u > O, that is,Since U is convex it follows that u,_, v tu )%, _

n n

u(u,), + _ F,(u,)_,<_# _ U(u").,.,.
i=1 i=1

Integration over fl × (0, t) and the divergence theorem imply

(47)
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whereU, denotes the outward normal derivative, and

n

_Tp(u.) = _,,r,(u.).
i=l

But

= U (u)u_dsdr.

The normal derivative u_ can be eliminated by means of the boundary conditions. Thus

# U,(u")dsdr = vT(Q_¢- (I - P")v,)dsdr.

Using definition (6.1) we can apply the Lebesgue dominated convergence theorem as
/_ ---* 0

lim/_ U_(u")dsdr = vT(Q,¢- (I- P)v)dsdr
i_ ._ 0

At the outflow boundary Fo we have QI = 0, P = I, i. e.,

On Ft, however, the boundary conditions v = Pv + Ql@ are satisfied (dt x ds)-a, e.
Consequently,

jim tt U_,(u")dsdr = O.

The left hand side of eq. (47) can be handled analogously. We have thus arrived at

L U(u)dx- f U(_p)dx + fot fr uT F(u)dsdr < O,

which concludes the proof. El

As a consequence of proposition (6.1) we have

Proposition 6.2 Let u be a weak solution of the symmetrizable system of conservation

laws (45) where the flux vectors satisfy ]'v = pfi for some p > O, i= 1,..., n. If u is the

viscous limit of solutions of (46), then v = v(u) satisfies a generalized energy estimate

II.(.,t)ll/, < I1_'11_,+2 for- _ Ir,.^,dr.p+ 1 II¢(.,T)I

Proof:

From proposition (6.1) it follows that
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where

o/01u(_) = v%'(ov)ovao = vrtr'v, t/(v) = fo1u(ov)eo

and

= =f:.,/o1vv:tovtov.o
i=l i=l

~ ~

Using f[v = Pfi, the identity

_o' vT f_(Ov)OvdO -- 1 vT f_(v)v
p+l

follows easily by integration by parts. Thus

1 vTfi,(V,U)v "uT F(u) _ 1 vTL,ifi_V =
p;li= 1 p;1

The entropy condition can then be expressed as

p+l

The remainder of the proof is identical to that of proposition (5.2). []

The essential step in the proof of proposition (6.1) was the establishment of scalar

functions U(u), Fi(u) (U(u) convex) satisfying u'Tf[ = F[T. In the scalar case we know

that there is a sequence {Up, Fi(V)}, p = 1,... such that U£f[ = F[Iv); Up and Fi (p) are

given by

1 2v fo '_Up(u) = --u , F!V)(u) = f:(v)v2V-_dv. (48)
2p

For each pair {Up, FiIp)} proposition (6.1) is true, i. e.,

7l

Up(u)t + _ Fi(')(u),, <_ 0 (49)
i----1

holds for all weak solutions u of eq. (37) that are viscous limits of the regularized problem.

If condition (39) is met, it follows that the cone condition (5.1) is valid for all p. Equations

(48), (49) thus imply an energy estimate for each p. Taking the limit as p --. oc yields

Proposition 6.3 Let u E R be a weak solution of the scalar conservation law (37), where

the flux functions fi satisfy condition (39). If u is the viscous limit of the regularized

problem, then u(x,t) satisfies the maximum norm estimate

II_(.,t)lloo_ I1_,11oo+ IlOIIr,,oo.
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Thus far, it has been tacitly assumed that the sign of the eigenvalues Aj(u(x,t)) is

independent of t for each x E P. This implies that for a given boundary point the rank

of QI (Qo) is constant in time, which means that the rank of P also is constant in time

(recall that the coupling operator S has to be "small"). As a consequence, the inflow

boundary Pl is time independent.

The estimates obtained in the previous sections have been derived from an extra con-

servation iaw (or possibly a sequence of conservation laws) subject to the same boundary

conditions as the original one. To study the impact of piecewise rank constant boundary

conditions it suffices to consider eq. (45). Assume that the rank of P is constant on [0, tl)
and It1, cx_). According to proposition (6.2) we have

2 f0'IIv(.,t)ll_ < II_llg+ I1_(°)(-, r)l 2-- _ Ir.(o) ^(o)dr 0 < t < t 1
p 4- 1 -I ,.-, ' - '

and

[Iv(-,t)ll_ < Ilv(.,t_)ll_+ II¢,o)(.,T) 2- _ Ilr(, ^o) dr tl < t < oo
p4-1 1 1,i ' - "

Now, since v = v(u) is the viscous limit of a regularized problem it follows immediately
that

which yields

Define

lim II_(',t)llo = IIv(. t,)llo
t_._t I ' ,

2 fo"p 4-1 I1_(°)("

F_°) O<t<tl

r_ 1) tl < t

Jr(o) ^(o)dr.
I ' 1

with similar definitions of tb and At. Thus

2 f0tIIv(.,t)ll_ _ I1_11_+_ II_,(.,r)ll_,,^,dT, t _ 0,

which is identical to the estimate of proposition (6.2). The maximum norm estimates

follow from a sequence of inequalities of the above type. Consequently, all energy estimates

and maximum norm estimates hold when the boundary conditions have piecewise constant
rank in time.

7 Discussion

Our aim has been to derive energy estimates for the initial-boundary value problem for

nonlinear conservation laws by means of a few basic principles: the canonical splitting

and the cone condition. These principles apply to scalar conservation laws and systems,
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to one or more spacedimensions(even the time dimension), to smooth solutions and
weaksolutions that areviscouslimits of vanishingviscosity solutions. For symmetrizable
systemsthe canonicalsplitting gaverise to a new scalar conservationlaw

u(u), + = (<) o (50)
i=l

where the convex function U(u) and Fi(u) are related via u'T£ = F'T; fi(u) is the flux of

the original conservation law. Thus, the canonical splitting implies an entropy condition.

Furthermore, we have obtained an explicit expression for the entropy function U(u) and

the entropy flux Fi(u).

For the initial value problem a generalized energy estimate follows immediately by

integration of eq. (50), since
u(u) = vrfl'(v)v,

where U'(v) is symmetric positive definite; v = v(u) is the change of variables that

symmetrizes the original conservation law. If we want an energy estimate for the initial-

boundary problem, then we need to impose a cone condition on the flux vectors f_(u).

The cone condition ensures that potentially dangerous boundary terms will be eliminated

by enforcing the boundary conditions. The cone conditions will, in general, impose rather

stringent conditions on fi(u), even in the scalar case. Convexity, however, is not needed.

This contrasts with the initial value problem, in which case one can prove existence and

maximum norm estimates for single conservation laws under very general hypotheses (f(u)

differentiable, initial data _(x) E LI(R'_)NL°_(R'_)NBV(R'_))[2] • Albeit a restrictive con-

dition, the cone condition is fulfilled for many scalar equations that occur in practice,

such as the Burger's equation and the Buckley-Leverett equation. For systems a partic-

ularly important class of flux vectors is given by those that are positively homogeneous

functions of v, i. e., f'v = pf for some p > 0. The Euler equations belong to this category.

Summing up, if a cone condition holds, then a generalized energy estimate follows from

eq. (50) and the characteristic boundary conditions. Thus, the energy estimate appears

as a special case of the entropy condition (50). In particular, there exists a generalized

energy estimate iff the system is symmetrizable and a cone condition holds.

We saw for a single conservation law that it was possible to generate a sequence

of entropy conditions from which we could deduce a maximum norm estimate. It is

an intriguing question whether systems of conservation laws that originate from physics

possess a sequence of entropy conditions such that a maximum norm estimate would

follow. As mentioned earlier, Lax [5] has constructed such a sequence for 2 x 2-systems.

Harten [3] has introduced a family of entropies for the Euler equations such that symmetry

and homogeneity are preserved. It remains to be shown if a family can be found that

satisfies the necessary growth conditions. Finally, we conclude this discussion by noting

that many of the energy estimates carry over to the semi-discrete case by extending the

technique in [9] to the nonlinear case. This is the topic of a forthcoming paper.
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