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Remotely sensing and classifying military vehicles in a battlefield environment have

been the source of much research over the past 20 years. The ability to know where threat

vehicles are located is an obvious advantage to military personnel. In the past active methods

of ground vehicle detection such as radar have been used, but with the advancement of

technology to locate these active sensors, passive sensors are preferred. Passive sensors

detect acoustic emissions, seismic movement, electromagnetic radiation, etc., produced by the

target and use this information to describe it. Deriving the mathematical models to classify

vehicles in this manner has been, and is, quite complex and not always reliable. However,

with the resurgence of artificial neural network (ANN) research in the past few years,

developing models for this work may be a thing of the past. The purpose of this paper is to

present preliminary results from an ANN analysis to the tank signatures recorded at the Joint

Acoustic Propagation Experiment (/APE) at the US Army White Sands Missile Range, NM,

in July 1991.

BACKGROUND

Neural Networks

An ANN can be trained to find generalized patterns in data. The ANN is trained by

analyzing a series of training examples for which the appropriate response is known. Once

the ANN has been sufficiently trained, it can process unknown data and indicate which

category or pattern the data most closely fits. The advantages of an ANN over an analytic

model are twofold. First, an ANN is a general algorithm. It can be used in countless

applications and its basic structure never changes, while a model must be modified for each

investigation. The second advantage is speed. Given a sufficient training set and moderate

computing power, an ANN can be developed to classify data in a fraction of the time it

would take to produce a model to perform the same function.
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Acoustic Data Acquisition

The acoustic data were acquired during the IAPE by placing microphones at several

distances from the test track. The data used in this paper were measured by a microphone

located 10 m from the center of the track. The track was approximately 3.5 km long and

was relatively fiat and straight. The microphones were placed 1 km from the south end of

the track near the south tower. The tank started at either end of the track and passed at a

constant velocity, generally about 20 kph. A total of ten runs were acquired for each tank,

five in the early morning (0000 to 0600 hours) and five in the late morning (0900- 1100).

Tank Descriptions

The tanks used at/APE were an M1 and M60, both US vehicles. Both of these

tanks were used to train the ANN. The M60 was the United States' main battle tank during

the 1960's. It's powered by a 750 hp diesel engine and weighs 52.6 tonnes. The M1 is the

current US main battle tank. It uses a 1500 hp gas turbine engine and weighs 57.1 tonnes.

The turbine engine in the M1 gives it a unique acoustic signature that is different from most
tanks.

PROCEDURE

Neural Network Configuration

An ANN consists of a network of neurons. Each neuron is a crude mathematical

equivalent of a biological neuron. It receives multiple inputs, sums them, passes this sum

through a transfer function (usually a sigmoid formula), and outputs the result. These

neurons are generally placed in layers. The outputs from the neurons in the previous layer

neurons are fed into the input of the neurons in the current layer. Each input to a neuron is

weighted, and it is these weights th_atare altered when the ANN undergoes the iterative _ _:_

training process. The greater the weight the greater the influence that input has on the_: _

output. By changing these weights, the ANN selects which features in the training set We

important for classification.

The ANN program=used was freeware obtained over the Internet network and was

written in the C programming language. It was tested extensively withslmpie-pattern ::

recognition problems and pr0y_ tobe robus). The software was compiled to run under DOS

using the Intel 32-bit C compiler, as well as on the Cray Y'M_ under_U_ :- ! _ __:

Three basic .ANN configurations were tested. The first two had one hidden layer with

20 and 50 neurons, respectively. The last had two hidden layers with 50 neurons in the first

layer and 20 in the second. The output layer consisted of two neurons. The first yielded a
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one for an M1 and a zero for an M60, while the second produced a zero for an M1 and a one

for an M60. All neurons implemented the sigmoid transfer function and were fully

connected. All networks were trained by the backpropagation technique.

Training Set

Selection

The primary training set consisted of two complete early morning runs, one of an M60

and one of an M1. Both travelled 1 km south of the closest point of approach (CPA) to the

microphones to 2.5 km north of CPA. The first set was selected to determine if this

minimum number of runs would be sufficient to train an ANN to recognize tank signatures

from other runs. In addition, a second set of four runs was briefly used to determine if one

pass in each direction was sufficient for each vehicle. It consisted of the two passes used in

the first set plus two passes of the vehicles travelling from north to south.

Processing

The recorded acoustic data were digitized by an 80486 Personal Computer (PC) based

16-bit Analog to Digital (A/D) board at 2048 samples per second. Fast Fourier transforms

(FFT's) were performed on each second of this data with only 1 through 100 Hz retained for

the training set. Only FFT magnitude information was used. Each FFT was normalized to

the largest frequency component within it. Table 1 shows the training sets used.

Training Procedure

The one second FFTs were ordered randomly in the training set without regard to run

or time into the run. The ANN program took this random training set and trained itself by

sequentially passing through the set. So while the training set was random, the randomness

was the same for every iteration. One iteration was defined to be one complete pass through

the training set. Several combinations of ANN configurations and training parameters were

used (Table 2).

Testing Set

Selection

Two test sets were used. The first consisted of two runs, one each of the M60 and

M1. One north to south pass was chosen at random from the early morning passes for each

vehicle. The second set also contained two runs, but both were south to north passes. As
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with the first set, one run was chosen from the early morning passes.

used because it matched the vehicle direction of the first gaining set.
information.

This second set was

See Table 3 for more

Processing

The processing of the testing sets was identical to the training sets, with the exception

that both testing sets contained 700 examples.

Testing Procedure

Since randomness in the testing set is not important, the examples were placed in

temporal order by run number. The ANN processed this data using the neural weights it

calculated during its training phase. Table 2 shows which test sets were tested with each

ANN configuration.

RESULTS

The percentages of correct classifications for ANN with 0.9 momentum, 0.7 training

rate, and training set 1 are shown in Figure 1. Most of the percentages hovered around 60

percent, with the 50 neuron case classifying the best on test set 1 with an average of 63

percent correct. The two layer ANN (50 and 20 neurons) performed the best on the second

test set at 63 percent as well. The same tests using a momentum of 0.7 produced the results

illustrated in Figure 2. This decrease in momentum rate improved the performance of the 20

and 50 neuron cases to over 60 percent for the second test set, but slightly decreased the two

layer performance.

The responses from the individual vehicle passes in the test sets for the 0.9 momentum

and 0.7 training rate configuration are shown in Figure 3. The M1 pass performed better

than the M60 pass for test set 1, with the opposite being true for the second set. For the 0.7

momentum ease in Figure 4 the ANN predicted the M1 better than the M60 for all cases

except for the 20 neuron ease using the second test set.

ANN configuration three (Table 2) was trained using the second training set (Table 1).

It correctly identified the vehicle 63 percent of the time, an improvement of 5 percent over

using the first training set.
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CONCLUSIONS

From the training andtestingsetsused,theaveragecorrect prediction ratewas
between60 and 70percent. This prediction accuracyis remarkableconsideringthe small
amountof analysisperformed. Altering the numberof iterationsand numberof neurons
seemedto havelittle effect on this percentage.However, this percentagecanprobably be
improvedsignificantly by improving the training set. The frequencyrangeused(1 to 100
Hz) wasprobably too narrow in bandwidthand too low in frequency. Also, the numberof
passesusedin the training setwasprobably too few.

RECOMMENDATIONS

To improve the prediction accuracyof the ANN severalimprovementsaresuggested
below.

1. Improve the training set - This includesincreasingand shifting the frequency
rangeof the FFT and increasingits frequencybin widths. Also, training the ANN only on
acousticdatawhen thetank is relatively closeto the microphonemay improve the response,
becauseof thecapability of an ANN to generalizeinformation.

2. More training examples - The one ANN trained on four vehicle passes showed

some improvement over the two vehicle pass case. More examples could be obtained by

using data gathered from several neighboring microphones and geophones.

3. Optimize the ANN configuration - Adjusting the momentum, training rates,

hidden layers, and neurons per layer would significantly improve the accuracy. Additional

adjustments include changing the neural transfer function and connection configuration.
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Table 1. Vehicle runs used in the training set.

Training JAPE
Set Run

Number Number
l °'' ' 078

090
2 078

079

090

091

Vehicle
M1

M60
M1

M1

M60

M60

Number of

Examples
"]75

375

350
350

350

350

Total

Examples

750,

1400

Note: Even numbered runs are south to north

Odd numbered runs are north to south

Table 2. ANN training combinations.

Combination
1

2

3
4

5

6

7

8
9

10

11

12

Momentum
0.9

0.9

0.9

0.9

0.9
0.9

0.7

0.7

0.7
0.7

0.7

0.7

Learning
Rate

0.7

0.7

0.7

0.7
0.7

0.7

0.7

0.7

0.7
0.7

0.7

0.7

Number of

Layers
I

1

2
1

1

2

1

1
2 !

I

Neurons in

Layer I
20

50
50

20

50

50

20

50
50

20

50

50

Neurons in

Layer 2
N/A

N/A

20
N/A

NIA

20

N/A

N/A
20

N/A

N/A

20

Evaluated Using
Iterations Test Set 1

500 YES

500 YES
500 YES

1000 YES

1000 YES

1000 YES

250 NO

250 NO
250 NO

500 YES

500 YES

500 YES

Test Set 2
YES

YES

YES

YES
YES

YES

YES

YES
YES

YES

YES

YES

Table 3. Vehicle runs used in the test set

Test

Set

Number

JAPE [ I
Run [ Number of [ Total

Number Vehicle Exam ies Exam les

3501 700
T

0761 M11 350[
0861 M601 3501 700

Note: Odd numbered runs are north to south

Even numbered runs are south to north
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Figure 1. ANN Configuration Comparison
0.9 Momentum, 0.7 Training Rate, Training Set 1
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Figure 2. ANN Configuration Comparison
0.7 Momentum, 0.7 Training Rate, Training Set 1
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Figure 3. Individual Run Responses
0.9 Momentum, 0.7 Training Rate, 500 Iterations
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Figure 4. Individual Run Responses

0.7 Momentum, 017 Training Rate, 500 Iterations
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