
1993
9 4- 2 4 4,_o

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

INTEGRATION AND EVALUATION OF A SIMULATOR DESIGNED TO BE USED

WITHIN A DYNAMIC PROTOTYPING ENVIRONMENT

Prepared by:

Academic Rank:

Institution and

Department:

MSFC Colleague:

NASA/MSFC:

Laboratory:
Division:

Branch:

Loretta A. Moore

Assistant Professor

Auburn University

Department of Computer Science and Engineering

Joseph P. Hale

Mission Operations

Operations Engineering

Crew Systems Engineering

XXXI





Introduction

The Human Computer Interface (HCF) prototyping environment is designed to allow

developers to rapidly prototype systems so that the interface and functionality of a system

can be evaluated and iteratively refined early in the development process. This keeps

development costs down by modifying the interface during the requirements definition phase,

thus minimizing changes that need to be made during and after flight code development.

Problems occur within a system when the user interface is not adequately developed and

when designers and developers have an incomplete understanding of the system requirements.

A process has been developed for prototyping on-board payload displays for Space

Station Freedom (Moore, 1992). This prototyping process consists of five phases:

identification of known requirements, analysis of the requirements, development of a formal

design representation and specification, development of the prototype, and evaluation of the

prototype. The actual development of the prototype involves prototyping the displays,

developing a low fidelity simulator, building of an interface (or communication) between the

displays and the simulator, integration of these components, and testing to ensure that the

interface does what the developer expects.

This research integrates and evaluates a software tool which has been developed to

serve as a simulator within the prototyping environment. The tool is being evaluated to

determine whether or not it meets the basic requirements which are needed for a low fidelity

simulator within this environment. In order to evaluate the architecture and its components, a

human computer interface for and a simulator of an automobile have been developed as a

prototype. The individual components (i.e., the interface and simulator) have been developed

(Moore, 1993), and the current research was designed to integrate and test the complete

working system within the prototyping environment. The following sections will describe

the architecture and components of the rapid prototyping environment, the development of a

system to assess the environment, and the integration and evaluation of PERCNET.

Architecture of the Environment

The architecture for building prototypes of systems consist of four major

components: a interface development tool, a test and evaluation simulator development tool,

a dynamic, interactive interface which links the interface and the simulator, and an embedded

evaluation capability. The interface development tool allows the designer to dynamically

develop graphical displays. The test and evaluation simulator development tool will allow

the functionality of the system to be implemented and will act as driver for the displays. The

dynamic, interactive interface will handle communication between the HCI prototyping tool

and the simulation environment. This component consists of a server which sends and

receives messages between the other components. The embedded evaluation capability will

collect data while the user is interacting with the system and will evaluate the adequacy of an

HCI based on a user's performance.

Human Computer Interface Development Tool. Sammi by Kinesix has been

chosen as the Human Computer Interface (HCI) development tool. Sammi is a graphical user

XXZ I- 1



environment which allows user interfaces to be built which can manage networked

information graphically. Sammi combines the functions of a graphical user interface with full

network communication support. Within Sarnmi the user interface and the networked data

access can be defined independently of the actual data source or application. This will allow

an interface developed under Sammi and communicating with the low fidelity simulator, to

later be connected to a high fidelity simulator such as those in the Payload Crew Training

Complex (FCTC), and later to the actual on-board flight software. Sammi has a distributed

architecture which means that the user interface and the application code are separate, that is,

the user interface is no longer embedded within the application code. With this separation

users can easily create and modify the human computer interface without affecting the

datasource, and vice versa. This will allow concurrent development of the application and

the interface. Sammi developed applications can use remote procedure calls to access

information from a variety of nodes and servers on an Ethernet network.

Simulator Development Tool. A simulator is a computer program that models a

system or process in order to enable people to study it. The simulator development tool

should provide the capability to develop a low fidelity simulation of a system or process.

The development of a simulator has two important functions. First, the simulator helps the

developer to identify and define basic system requirements. Second, potential users can

evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of

operations and actions which need to be performed) of a system. During the requirements

definition phase, a high-fidelity simulation of the system will not yet have been developed, so

it is important to build a low fidelity simulator, so that the iterative cycle of refining the

human computer interface based upon a user's interactions can proceed.

For a piece of software to function as a simulator within this environment there are

several requirements which must be met in addition to it just being a simulation tool. These

requirements include the ability of the process to communicate with UNIX processes using

the TCP/IP protocol; real-time simulation execution, the execution engine must be tied to a

real time clock to assure that simulation timing and data collection are accurate; an option for

a variable communications mode during execution (i.e., with and without external

communication); real time communication with Sammi on a separate platform, via Ethernet;

the ability to receive data from Sammi to dynamically control scenario events, modify

blackboard variables, trigger scenario events, and track operator actions for post-hoe analysis;

the ability to specify and send commands and data to Sammi; and the ability to receive data

and commands from multiple Sammi applications/stations. The multiple Sammi stations may

include one or more display prototype stations and a monitoring station. A Simulator

Director should be able to send commands to this software from a monitoring station (e.g.,

start simulation, trigger scenario event). Sammi subroutines must be provided that have been

developed for the Simulator-Sammi communication and the software must be tested and

validated with documentation provided. PERCN'ET is designed to be used as a knowledge-

based graphical simulation environment for modeling and analyzing human-machine tasks.

Within PERCNET task models are developed using modified petri nets, a combination of

petri nets, frames, and rules. This research evaluated PERCNET to determine whether or not

it met the basic requirements which were listed above.

XXXI-2



Dynamic, Interactive Interface. This interface will handle communication between

the HCI prototyping tool and the simulation environment during execution. This interface is

a server which has been developed using the Sammi Application Programmer's Interface

(API). It will be a peer-to-peer or asynchronous server which means that messages and

commands can be sent and received both ways between Sammi and the application. Once the

embedded evaluation tool has been developed, the server can also service requests from this

process providing information as to which functions the user has used, errors which have

been made, and so forth.

Embedded Evaluation Capability. The embedded evaluation capability will include

a capture/playback component and an analysis component. The Capture feature will capture

a user's session and save this information to a log. This log can later be "played" back or

analyzed. The analysis component will analyze the user's session and provide guidelines for

the redesign of the system. Some of the measures will include: frequency of use of specified

features, task completion time, error counts, requests for help, amount of work/errors per

unit time, and response time to different activities and events.

Development of a prototype within the Architecture

In order to assess the individual components of the architecture a system was chosen

and developed (Moore, 1993). The system chosen for patld'mding and initial empirical

evaluation of the project was an automobile. An automobile has sufficient complexity and

subsystems' interdependencies to provide a moderate level of operational workload. Further,

potential subjects in the empirical studies would have a working understanding of an

automobile's functionality, thus minimizing pre-experiment training requirements. There

were four basic tasks which were completed: (1) requirements were developed for the

automobile simulator, (2) the automobile simulator was developed using PERCNET, (3) a

human computer interface for operating the automobile simulator was developed using

Sammi, and (4) evaluation criteria for the operation of the automobile simulator were

developed (Moore, 1993).

Integration and Evaluation of PERCNET

The initial design provided by Perceptronics presented a potential problem. The

dynamic, interactive interface component was designed to be embedded within the

PERCNET process. This would allow Sammi and PERCNET to communicate, however,

there would be no way for other processes to communicate with Sammi and PERCNET.

This was a real problem within our environment because the embedded evaluation capability

would be a separate process that needed to send messages and receive information from this

process during the execution. Once this problem was identified and the importance of this

function was understood, the developers from Perceptronics changed the architecture.

PERCNET provides the basic functionality of a tool which can act as a simulator with

the changes made in its architecture. However, there are some remaining issues which need to

be addressed and major problems with the current system which need to be fixed. One

problem concerns the system running out of swap space and exiting because it can no longer

XXXI-3



allocate memory. A minimal configuration of this tool needs to be presented and the the

system should be able to run with this configuration without the system exiting. A second

problem involves the tendency of the system to core dump, sometimes in response to

specific features (such as trying to use an option from the menu which has not been

implemented or is not currently working) and sometimes randomly. A third problem, is that

the screen and the keyboard lock up and the system has to be rebooted. It is not clear

whether the problem can be attributed to PERCNET or the second screen (a Plasma display)

which is attached to the SunSPARC station on which we are running PERCNET. This item

needs further investigation. There have been other problems with several features of the

system and most of these have been fixed by the developers at Perceptronics. However,

there are several functions of the system which have not yet been evaluated yet, such as,

communication across the network, having multiple Sammi displays communicate with a

single PERCNET model, and being able to start and stop the simulation from the second
Sammi window.

Conclusions and Future Work

PERCNET has been integrated within the human computer interface prototyping

environment; however, it is recommended that further testing and evaluation be conducted

using the automobile interface and simulator to resolve the issues previously discussed.

Most requirements have been met but there needs to be a more thorough evaluation of the
simulator tool and the architecture of the environment.

Following the automobile prototype development, a second system, based on a

Spacelab/Space Station payload should be developed for further evaluation of the

environment. This should involve development of the payload simulator requirements from

existing experiment simulator requirement documents, development of the payload simulator

using PERCNET, development of an interface for the payload using Sammi, and integration
and testing of the payload simulator and interface.

References

Moore, L. A. (1993). Assessment of a Human Computer Interface Prototyping Environment

(Contract No. NAS8-39131). MSFC, AL: NASA, George C. Marshall Space Flight Center.

Moore, L.A. (1992). A Process for Prototyping Onboard Payload Displays for Space

Station Freedom. In M. Freeman, R. Chappell, F. Six, & G. Karr (Eds.), Research R_orts -

1992 NASA/ASEE Summer Faculty Fellowship Pro m-_ (Report No. NASA-CR-184505,

pp. XXXVI. 1 - XXXVI.4). MSFC, AL: NASA, George C. Marshall Space Flight Center.

Perceptr0nics User'_ Manual. (1992). Woodland Hills, California: Perceptronics, Inc.

Sammi User's (_uide. (1992). Houston, Texas: Kinesix Corporation.

XXXI-4


