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Preface - Class Organization

Foreword

Tile project chosen/or the winter semester Aero 483 class was the design of a next
generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus
concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster
capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of

payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the
Gryphon. The class was led by ProJect Manager Brad King and Assistant Manager Mike
Fisher. The class of forty senior aerospace engineering students was broken down into
eight interdependent groups. Each group was assigned a subsystem or responsibility
which then became their field of ,,pecialization.

Spacecraft Integration was responsible for ensuring compatibility between
subsystems. This group kept up to date on subsystem redesigns and informed those
parties affected by the changes, monitored the vehicle's overall weight and dimensions, and
calculated the mass properties of the booster. This group also performed the

cost/profitability analysis of the Gryphon and obtained cost data for competing launch

systems.

The Mission Analysis Group was assigned the task of determining proper orbits,
calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic
characteristics of the vehicle.

The Propulsion Group chose the engines that were best suited to the mission. This
group also set the staging configurations for those engines and designed the tanks and fuel

feed system.

The commercial satellite market, dimensions and weights of typical satellites, and

method of deploying satellites was determined by the Payloads Group. In addition,
Payloads identified possible resupply packages for Space Station Freedom and identified

those packages that were compatible with the Gryphon.

The guidance, navigation, and control subsystems were designed by the Mission
Control Group. This group identified required tracking hardware, communications
hardware, telemetry systems, and ground sites for the location of the Gryphon's mission
control center.

The Structures group was responsible for ensuring the structural integrity of the
vehicle. Their designs included the payload shroud, payload support structure, exterior

hull, and engine support struts.

The Gryphon's power requirements were determined by the
Power/Thermal/Attitude Control Group. This group then selected suitable batteries and

other components to meet these requirements. The group also designed heat shielding and
cooling systems to ensure subsystem performance. In addition to these responsibilities this
group designed the attitude control methods and RCS components for the vehicle.

The Aircraft Integration Group was responsible for all aspects of the booster-
aircraft connection. This included the design of the connection structure and the drop

mechanism. This group also designed the vehicle assembly facility and identified possible

ground bases for the plane.
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University of Michigan Aerospace Project Gryphon

The following lists each member's area of technical expertise within the University of

Michigan's Aerospace Space System Design Project Gryphon.

Project Manager

Brad King Daily Agenda

Assistant Project Manager

Mike Fisher Administration

Spacecraft Integration

Leader - Elizabeth Hilbert
Tim Ballew

David Cortright
Todd Mueller
Dan Potter

Overall Configuration
Cost and Financing
Saftey
Cost and Financing
Axis System

Mission Analysis

Leader - Alan Ristow

Rick Draper
Sean Fifield
Scott Mullison
Vince Wiltse

Trajectory
Mission Timeline
Orbits

Spin Rates
Aerodynamics

Propulsion

Leader - Krista Campbell
Chad Hoggard
Adam Nagaj
Bilal Rathur

John Vandenberg

Solid Fuel Engines
Cryogenic Fuels
Tank/Staging Design
LR91 s/Storable Fuels

Stage Optimization

Payloads

Leader - Kari Jacobson
Chris Bernard
James Dice
Kevin Whalen

Craig Litherland

Space Station Options
Weights and Sizing
Market

Payload Limitations
Structural Aspects

Mission Control

Leader - Scott Egbert
Kah-Wai Aw
Brian Smith
Chris Yee

GPS/Air Support
On-board Computer
Inertial Guidance
Communications

vii
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Structures

Leader- Joe Ruddy

Scott Huggins
Wolfgang Schubert
Ron Shin>hock

Phil Wojcik

Shroud Design
lnterstage Design
Dynamic Analysis

Fairing Analysis
Payload Interface

Power/Thermal/Attitude

Leader- Joc Rcgner
Josh Baron
Tom Godfrov
Kcvin Kilburn

Romy Shaneff

Release Analysis

Power Systems
Venting System
Thermal Control
Attitude Control

Aircraft Integration

Leader- Mike Hindley
Jon Albert
Adam Koziel

Chris Vegter

Aircraft Interface

Auxiliary Connections
Attachment Design
Production Site

Wind Tunnel Model

Leader - Chad Hoggard
Tom Godfroy
Chris Yee

Mike Hindley

Flow Visualization
Model Construction
Technical Presentation

Data Recording

CAD

Leader- Mike Fisher
Kevin Whalen
Adam Koziel

Joe Ruddy
Adam Nagaj

System Coordination
Integration
Attachment Structure

Shroud & Fairings
Propulsion System

Display Model

Leader - Mike Fisher
Lee Ann Bird
Elizabeth Hilbert

Component Integration
Detailing
Technical Support

Final Report Publication

Leader- Mike Fisher

Krista Campbell
Elizabeth Hilbert

Scott Egbert
Vince Wiitse

Editor in Chief

Technical Integration
Technical Editing
Processing Support
Technical Editing
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Symbol List
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CD
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CM
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dB
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E
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Dollar
Area

,Angle of attack
Speed of sound
41lernating Current
Area of clean room

Apogee Kick Motor
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Aft Nozzle Co,,cr

Orbit semi-ma/or axis
,Area of stage assembly room
Area of Stage Integration room

Yaw angle
Bit Rate Error

Speed of light

Computer Aided Design
Cost of clean room

Coefficient of drag
Zero lift coefficient of drag
Center of gravity
Coefficient of lift
Center of Mass

Coefficient of pitching moment
Coefficient of yaw moment
Center of pressure
Coefficient of sideforce

Central Processing Unit
Coefficient of rolling moment
Cost of stage room
Drag
Diameter
Distance of lever arm
Decible
Direct Current

Drag at cruise launch
Distance of connectors on lever arm

Digital Data Acquisition System
Diameter of Fireball
Fuel tank diameter

Change in velocity
Modulus of elasticity

Emissivity
Orbit eccentricity
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Frequency of signal

ix



Preface - Symbol List

FCC
FCS

Fhydraulic

Fpin
fs

FT
ft
FTS

Fx
Fv
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GEO
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GPS
GTO
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IMU
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k
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L

X
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LEO
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M

g
m

MA
Mc
Mf
MI
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Federal Communications Commision

Flight Control System
Hydraulic force

Forces on a pin

Sample rate
Thrust
Foot

Flight Tcrmination Sv ,,tern
Aerodynamic force on hc,o,,ler in horizontal direction
Aerodynamic lorcc on booster in vertical direction
Acceleration duc to ,.:r:_vitv

Flight path :tn,.:lc

Gryphorl A,,,,crnhl,. Building
Gcosvnchrunou,, _arth ()rhil

Guidance. N a', igat io n. and Control
Acceleration duc to gravity evaluated at sea level
Global Positioning System
Geostationarv Transfer Orbit

Gryphon Transportaion Trailer
Altitude
Hertz
Current
Orbit inclination
Area moment of inertia about roll axis

Area moment of inertial about pitch axis
Area moment of inertia about yaw axis

Inertial Instrument Control and Sensing
Inertial Measurement Unit
Mass moment of inertia of booster about roll axis

Mass moment of inertia of booster about pitch axis

Mass moment of inertia of booster about yaw axis
Inch

Specific impulse
Thermal conductivity
Factor of safety
Kilo Instruction Per Second
Lift force

Wavelength of signal
Liquid Crystal Display
Low Earth Orbit

Latitude

Launch Panel Console

Launch Panel Operator
Mach number

Earth's gravita; ,nal constant
Mass

Moment applied by aeodynamic loads during freefall about pitch axis
Moment applied by control mechanisms during freefall about pitch axis
Static coefficient of friciton for steel on steel
Moments of inertia

Mega Instruction Per Second
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MW
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Friction coefficient of steel
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Orbital Sciences Corporation
Power
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Fuel tank pressure
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Roll Control System
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Temperature
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Burn time
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Vw

Vx

W-h

Vv-h/kg
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XB
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Unpressurized Logistics Carrier
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Cruise velocity at launch
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Wind velocity
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Specific energy tlcnsitv
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Speed in y-inertial direction
Speed in y-body direction
Booster's vertical postition with respect to drop point
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Uni.versity of Michigan Aerospace Project Gryphon

1.1 HISTORY OF SATELLITE LAUNCH VEHICLES

Man's quest for total access to the universe will one day be realized. Although the
distances to cover are vast, they have been greatly reduced since the beginning of the
space race on October 4, 1957 with the launch of Sputnik 1.

Manned space missions attract more interest and appeal than their unmanned
counterparts. However, automatic probes have contributed immeasurably in the areas of
communications, planet exploration, and scientific research. Without the proliferation of
satellites orbiting the Earth, life would be drastically different.

1.1.1 The Evolution of Launch Vehicles

The Gryphon Project is a study in the advancement of current space booster technology.
This booster is a deviation from conventional booster design; it is a combination of a
standard vertical rocket design and a laterally, air launched missile design. Its objective
is to minimize the effects of gravity and the lower atmosphere to allow larger payloads to
be injected into orbit. The following paragraphs describe the evolution of launch vehicles
and how the air launched boosters have capitalized on the evolving technology.

On January 31, 1958 the United States Army Ballistic Missile Agency launched the
Explorer 1 satellite aboard a Jupiter C launch vehicle. The Jupiter C was a 4 stage
vehicle with 3 solid-fuel stages. Its 69,997 lb of thrust was capable of placing its 30.7 lb
satellite into an orbit of 224 nautical miles. Unfortunately, the Jupiter C was not reliable,
with two of its five launches resulting in failure.

After the United States entered the satellite business with the Jupiter C, many

technological improvements and discoveries were made which enabled enormous and
rapid improvement in the ensuing launch vehicles. In 1966, the first operational
meteorological satellite for environmental studies was deployed by a Thor-Delta E. It
had the capacity to launch 450 lb into a transfer orbit and 1 206 lb into a 230 nautical
mile orbit. This 3 stage booster used Castor lS's in its six year and 26 mission history.

Throughout the 1960's and 70's, launch vehicles became much larger, with an ever
increasing payload capacity. The basic configuration of a long, cylindrical vehicle,
launched vertically from the ground was the rule for civilian satellite boosters. In 1990,
the Orbital Sciences Corporation (OSC) changed that rule.

2
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I. 1.2 Pegasus

The Pegasus project was ,,farted in 198g;. The goal was to develop an air launched orbital
transporlation svstem capable of deploying small satellites. The first launch took place
on ,April 16. 10_)0. and was carried undcrneath tile wing of a B-52. ,An updated version

was dropped bv a LI()I 1 in March 1093.

The hypothesis ,_tatcd thal My dropping the Pegasus in tile tipper atmosphere, tile
total cost could bedramaticall', rcd{kccd. However. the original versions of the Pegasus
are around 40.()0() lb and ha,,c _,nlv hccn able to carry payloads of approximately Ot)() lb.

making the feasibility ,_t the :_r()icct _luestionablc. When all of the research and
dAveh_pmcnl co,,t,, arc con,,idcrc_i, pr,_litabilitv become,, difficult especially _ince one
cannot charge a large price !,_r ,m,,i{ ,,,LIcllilcs.

1.2 DESIGN OF THE GRYPHON

The goal of the Gyphon Design Team was to develop a 500,000 lb air launched space
booster with the capability of delivering 7.900 to Geosynchronous Earth Orbit (GEO) and
17,000 Ib to Low Earth Orbit iLEO). These payload goals were determined in order to

beat the competition's cost by 5t)% to insure investor's of a 15% return. The task of
designing the Gryphon was daunting. No project of its size and nature had been
undertaken. OSC has begun an initial study of a similar sized Pegasus III version, but
they have vet to decide whether they will continue. An additional challenge stemmed
from the 'real world' application of the Gryphon. Unlike many design projects, there is
current commercial interest. This restriction has not allowed for design of components

and systems to be developed in the 'future', or no cost restraint. With the added
dimension of time limitations, the Gryphon has been designed as efficiently as possible,

above and beyond all of the limitations imposed.

1.2.1 Reason for the Configuration

Robert Lovell of OSC presented the idea of a large air launched space booster based on

his department's belief in a market opportunity between the Space Station Freedom
resupply needs and the commercial communications industry. The 500,000 lb weight
suggestion was based on his intuitive knowledge of available engines and their

capabilities. Other than his initial weight recommendation and stipulation of a 15%
return, the entire project's development was left to the design team.

Unlike the Pegasus, which is carried underneath a LI011, the Gryphon's weight
caused an entirely new aircraft to be developed in order to carry it into the upper
atmosphere. The Eclipse Design Team, which designed the carrier airplane, specified a
drop at approximately 40,000 ft at a speed of 500 mph. With this knowledge, the
technical groups proceeded in their research and design. At the start, the Pegasus was
used as a baseline and many aspects were designed as larger upgraded versions of those

found on the Pegasus. However, it was quickly realized that extrapolating components
from a -I.0,000 Ib vehicle to a 500,000 lb vehicle was not always possible. Even though

many aspects from the Pegasus could not be used, the Gryphon still resembles current
launch vehicles. All the systems and components are currently available. Its final

configuration results from a combination of cost, simplicity, and available technology.

Of_GEq,¢:t _ A,.._E IS
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1.2.2 Design Considerations

The design process was a Phase I analysis which combined the efforts of the following
technical groups:

• Spacecraft Integration
• Mission Analysis

• Propulsion
• Payloads
• Mission Control
• Structures
• Power/Thermal, Auimde Control

• Aircraft Integration

Each of these groups were responsible for individual aspects of the Gryphon.
However. many aspects were developed through inter-group cooperation. All of the
groups did share a common aspect: keeping costs down. In order to have a successful

project, all groups had to adhere to a strict budget. Even though the groups complied
with this requirement, some areas did adversely affect the overall cost. These include:

Eclipse research, development, testing, and operations cost
Cryogenic fuels and accompanying systems
Assembly building
Rocket engines

Honeycomb aluminum structural shell

Outside of cost considerations, safety precautions were very carefully

investigated. Since the Gryphon is carried underneath the Eclipse, which holds four
personnel, extra care is necessary. The use of cryogenic and liquid fuels only added to
this concern. These fuels also caused increased attention to the fueling and handling of

the attachment procedure. Although it would be preferable to use an entirely solid rocket
vehicle for additional safety, the design process dictated the use of alternate fuels (See

Chapter 4).

Another aspect which arose was the difficulty in controlling the Gryphon after
release from the Eclipse. Many different combinations of a Delta wing, canards, and
winglets were considered (See Chapter 3). However, the additional weights from these
components were too significant. Instead, a vertical tail was used for yaw control. Over
the course of the design, it was found that the Gryphon's geometry would orient it in the

proper angle for ignition.; therefore, the problem of control was primarily worked out by
further investigation, rather than using unnecessary systems.

Finally, the Gryphon must compete with traditional style launch vehicles which
are currently on the market. The primary competition is Ariane 441, Titan 3, and Atlas
Centaur. These vehic!es have similar capabilities as the Gryphon (See Chapter 2, Table

2.1). Consequently, locus was placed on beating the competition by 50% to insure the
15% return on investment.

The design process included many factors, some of which have been detailed
here. For a much more detailed explanation of the technical groups, please consult the

specific chapters.
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1.3 OVERVIEW OF THE GRYPHON

The final Phase 1 design of lhe Gryphon points to success. It has a cost per pound of

approximately $6200. which heats the competition by tile required 50% (See Chapter 2).
Tile major co_lponents can ne ,,een in Table 1.1. and general infomlation from all aspects

of lhc Gryph_n i', in Farflc,, 1.2 - i.24. The next pagcs show a ,,olid model transparent
view ol thc major components :tmi a view of the Guphon and Eclipse while attached.

"Fable 1.1 Major Components

LR_I -¢.l-I 1 St_rablc Liquid Rocket Motor

;r\_hon-Eclipse Rings 1 & 2

Engine Mount
Plane Attach Rin_ 1

Interstate Rin_
.\ft Nozzle Cover

Fairin_ Attach Rin_s

Sta_e 2

2 LRgI-AJ-11 Storable Liquid Rocket Motor
Gryphon-Ecli 3 - 8

Plane Attach Rin_s 2 & 3
External Skin

Strut Su

Eng, ine Mount

Interstate Rin_

Sta_,e 3

1 RL10A-4 C_o_enic Liquid Fuel Rocket Motor

Pa_'load Interface
External Skin

Engine Attach
Power/Avionics Rin_,

Cablin_

H_cdrazine/Oxidizer & Tanks
Control Thrusters

Ventin_ S_,stem
Thermal Control

Batteries

CPU

Radar Transponder

Telemet_ Transmitters
GPS

Inertial Guidance (IMU)
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Table 1.2

Airplane Cost
Pro ect Costs

Vehicle Cost

Airplane Operations Cost
Total Mission Cost

Total Length v,/ANC (GTO)

Total Length w/ANC (LEO)

Total Length (GTO)
Total Length (LEO)

Total _lei_ht

Total Weight (GTO)

Total Weisht (LEO)
Center of Mass (GTO)

Center of Mass (LEO)

Overall Data

$1 billion

$1.062 billion

$27.94 million

$2 million

$48.3 million

124 ft- 3 in

104 ft- 5 in
106 ft - 3 in

86 ft - 5 in

30 ft

479,056 lb

476,368 lb
27.0 ft

26.2 ft

Pro_sion,: :!

Engine

Table 1.3

Stage ISP

Castor 120 1 292

LR91 1 316

LR91 2 316

RL10 3 449

Individual En ne Data as Confi wed for the Gr ,hon

Bum Time TStal Propellant Length fit) Width (f-t) Thrust (lb)

(s) Weillht (lb) Weight (lb)

78 117,687 108,159 30 7.5 403,759

78 1,298 8,365 9.2 5.3 105,000

239 2,596 29389 9.2 5.3 210,000
181 370 9,057 8 4 20,800

Table 1.4

Sta[le

Gross Weit hts

Wei [ht (lb)

1 2673,501

2 173,235

3 12,748

6
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_tage

Table 1.5

Dry' Weight (Ib)

Break Down of Gross Weights by Stage

Propellant (lb] Total _lb_

. "3

• q .235

_-1. _ ,977 "37],51)1

164,()()1) 173,235

8__46 12,748

Table 1.6 ()xidizer and Fuel Weights

Sta_e ()xidizcr _lbl Fuel (Ib)

1 ['_ 048 8 574
_ '_] 2. )'_7 fl().246

_.5-_7 1.5 I()

Table 1.7

Stage

Volume of Pro

Oxidizer(ft3)

188 161

1318 1130

110 357

)eilant Tanks

Fuel (ft3)

Table 1.8

gtage

Thickness and Weight of Propellant Tanks
Thickness (in) Weight (lb)

1 0.0486 395

2 0.0486 2,500

3- Fuel 0.022 350

3- Oxidixer 0.02 260

Payload

Table 1.9 Payload Weight for Differnt Orbits
Orbit Weight (lb)

LEO 17.000

GTO 7.900
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Table 1.10 Payload Dimensions
Dimension

Total Height

Height at top of Rectangular Area

Width at Bottom of Rectangular Area
\Vidlh tit Top

Length (ft)

35

25

15.5

3.95

Mission Control

Table 1.11

Component Version

IMU Littion - 81

GPS Receiver Trimble Quadrex

On-Board

Computer

32 Bit 6800 Motorolla

Versa Module Europ Bus

Major Components Characteristics
Cost ($) Size (in)

100,000 6.3 x 2.5 x 3.0

14,000 7 x 7 x 7

2,000,000 4 x 8 x 8

Weil_ht (lb/

12.8
3

10

Structures

Table 1.12

Component

Sta[[e 1
Interstal_e

Stase 2
Stage 3

Cross Sectional Areas and Weights
Area (in2) Weight (lb)

36,8 550

57.8 485
57.8 1630

36.8 865

Table 1.13 Payload Shroud Characteristics
Thickness 0.948 in

Material 5056 Aluminum Hone_,comb
18 Piles of IM7-8551-7 Carbon EpoxyComposition

Table 1.14 Payload Interface Characteristics

Height 16 ft
Diameter 10 - 14 ft

Total Support Weight 10,000 lb
Material 1/64 in Aluminum Skin

Weight 636 lb
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Table 1.15

Stase

Engine Mounts Weight and Material

Weight (lb) Material

1 _,4t) A333 Sled

? 234 Tubular ,-_luminum

Table 1.16 lnterstage Ring Characteristics
Outer Di:mlctcr 15.5 tt

Irmcr Diamclcr 15.44 ft
()._) ftf lcight ' -

]-!_i,.k no,,,, 3,8 in

\\cl_lll NIllh

Power

Table 1.17 Power Requirements of the On-Board Systems

Component Power (W)

FI _ht Computer
GPS

2 Telemetry Transmitters

Radar Transponder
Communications

Thrusters

Inertial Receiver

Miscellaneous
Total

250

305

98

31

323

20O

25O

25O

1356

Table 1.18 Principal Power Sub-System Characteristics

Main Component 4 Li/SOCI2 8 Cell Modules

Len_
Width

Height
Cost

Weisht
Power

2 1.5 in

I 1.8 in

9.8 in

$3000

250 Ib

28 V

Table 1.19 Venting System Characteristics
Number of Units 8

Size 1.33 ft3

Weight 12 lb
Cost %00

O_'iNAL PAQ_
OF POOR QUALITY
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Aircraft lnter_9"ation

Table 1.20 Gryphon Assembly Timeline

Step

Stage Build Up & Pre-lnte_ration Te',tin_

Sta_c Integration ,_V.Vehicle Testin7
Pavioad [nte_ralion

r

Final Sv,.,tcms 1"c,,ts
'T,_tzd

Time ,weeks)

4
4

Table i .21 (; ryphon Assembly Building _G AB} Characteristics

Length 41)0 ft
\Vidth 1N) ft

50 ftHci_zht

Perimeter Length
A re a

Total Cost

1120 fl

64,000 ft2
$3,420,000

Table 1.22 GAB Class 10,000 Clean Room Characteristics

Length 125 ft
Width 160 ft

Height 50 ft
Area 20.000 ft2

Cost $10,000,000

Table 1.23

Size
Crane Requirements

Cost ($)

2 80 Ton St) ft Span Overhead

2 20 Ton _0 ft Span Overhead

360,000
120,000

Table 1.24 Aircraft Interface ,Mechanism Characteristics

Number of Pins

Area of each Pin 10.54 in2

Material ASTM-A242 Steel Alloy
Hook Area 16 in2

27 inMax Pin Len_tth

Total System Weight
Total Cost

1328 lb

$472,163

10
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Figure 1.1 Transparent View of the Gryphon
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Figure 1.2 Gryphon and Eclipse while attached
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2.1 INTRODUCTION

The Spacecraft Integration Goup had three major tasks during the design process. These
wt2re_

to complete a budget for the Gryphon and determine the feasibility

of this project through cost analysis
to design the overall layout of the Gryphon and determine the
mass, dimensions, moments of inertia, and centers of mass for the

Gryphon during all stages of flight
to determine the air-safety precautions

This group was primarily responsible for compiling the data from the other groups
into the final design specifications presented here. The group ensured that all information
was kept consistent throughout the project's development. All of the information

presented here is in its most general form. Please refer to the other chapters for a more
detailed description.

2.2 THE BOTTOM LINE: COST

The most important aspect of this project is to give investors a fifteen percent return on
their investments. To achieve this, the cost (per pound of payload) of the Gryphon was
determined in order to beat the launch prices (also per pound of payload) of chief

competitors by at least fifty percent. This leaves the other fifty percent for financing,
insurance, and profits while still having a competitive price.

Gryphon's main competitors in the satellite launch market are the Ariane 4, Atlas
Centaur, and Titan 3. The Chinese Long March and the Russian Proton were not
considered fair competition because their prices do not reflect real costs. The price data
for these and other launchers are listed below in Table 2.1. Note that Ariane prices are in

1990 dollars, Atlas and Titan prices are in 1991 dollars, and numeric figures are averages.

14
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Table 2.1

-Launch Vehicle Payload Size lib)
I

Launch Prices of the Com
Launch Price

Ariane 40 4,1g0

Ariane 42P 5,730

Arianc 44P 6,6 ll)

,\rianc 42L '._ t51)

Ariane 44LP S. 161)

Ariane 44L _).26()

Atlas Centaur _.i48

Titan

$ 65 million

$ 67 million

$ 70 nullion

$ 91)million

$ 9S million
$ 115 million

S 60 million

$lli) million

Jetition

Pnce per Pound

$ 15,513

S 11.692

$ 1{),59()

<512,766

$ 11,642
<512.419

5 11,655

$ 1{1.020

Usine the market axcra,.zc price per pound of the competition derived from Table
2.1 and an inllation factor ol 4.5'7 per year. a project goal cost per pound of $ 6.200 was
determined. This cost per pound translates into a payload of 7,900 lbs to Geosynchronous
Transfer Orbit (GTO) and a per mission cost of $49 million.

2.2.1 Cost Analysis

The cost analysis was a combination of research, teamwork, and to a large extent
educated guesswork. Cost data in the launch vehicle business is extremely difficult to
obtain. Nevertheless, a detailed expense report has been assembled and all cost goals

have been met.

The final cost analysis is given below on Table 2.2. The costs given are high
estimates and include a fifty million dollar development cost (which is what OSC used

for their Pegasus program).

Table 2.2 Cost Analysis

Airplane Cost $1,000 million
Project Costs $ 106 million
Vehicle Cost $ 28 million

Airplane Operating Costs $ 2 million

The total mission cost was calculated by dividing the one-time costs (the airplane

and project costs) by sixty launches and adding the per launch costs for the vehicle and

plane operation. Sixty launches was chosen as a realistic estimate for the number of
launches that would be performed over ten years. This estimate is based on the recent
satellite market. Table 2.3 shows the final mission cost of the Gryphon. It should be
noted that this cost estimate meets the project goal of $49 million per launch.

Table 2.3 Cost of Gryphon

[ Total Mission Cost (60 launches) [ $ 48.3 million

Insurance and financing are not included in the above result.

15
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2.22 Financial ,Analysis

The financial analysis of the Gryphon Project includes the determination of the profit

margin per launch and it financial loan schedule. The data used for this is the high
e_titnates to provide a conservative evaluation of the project performance.

The Eclipse is the airplane that carries the Gryphon during each launch. Its financing is
presented separately by the Eclip,,c dc,,ign team. The cost of the airplane does affect the
profit margin _+t the Gryptl_m. rhc tixcd cost of the Eclipse including financing costs is
$1 billion. l-he lixed c_>,l rcn_ain_ _hc ,,_tnle regardless of the number of launches over the

duration of the pmicct. Fhc ?or lattncia cost of the Eclipse is 52 million which occurs
with each launch onlv.

Insurance

In addition, payload launch insurance must be taken into account. Premium rates are
currently 16-18% for comrnunication satellite launches to GEO A figure of 18% is used

for the Gryphon's analysis.

The per launch cost of the Gryphon is $27.9 million, while the per launch cost of the
Eclipse is $2 million. Also the 51 billion fixed cost of the Eclipse must be evenly spread
over each launch. For a projected duration of 60 launches, this calculates to a total

average cost per launch of $46.6 million. The minimum price that can be charged per
launch and still turn a profit in the last year is $65.2 million. This includes the additional
18% for insurance. Disregarding the amount per launch towards insurance premiums, the

Gryphon grosses $55.2 million per launch. The net profit is the amount grossed per
launch minus the total expenses per launch resulting in a net profit margin of $8.6 million

per launch.

Over a projected lifetime of ten years, the conservative estimate of the total
number of launches is 60. To allow for complications in the first two years, the

assumption was made that only 2 launches occur in the first year of operation, 4 launches
in the second, 6 launches in the third and fourth, and an average of 7 launches per year for

the remainder of the project.

Facilities and Certification

Two years are initially allowed for facility construction and another one year for space
certification prior to the first years of operation. With regard to budget scheduling, the
first and second years are assumed to deal with facility construction with the expenses

evenly split while the third year consists of obtaining space certification. The industry
standard is to allow for two complete launches to obtain space certification. Considering

the highly experimental nature of this project, it is assumed that three launches are needed
in order to become space certified.

Since Orbital Sciences Corporation (OSC) has specified that its investors want a
15% rate of return on their investment, this is the interest rate that is used in the financial
schedule. In addition the standard business venture tax rate is 36% which is what this

analysis uses.

16
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Figure 2.4. depicts the projected financial figures for the Gry'phon. I1 assumes a three ,ve:tr

st<t-rt-up period, a ten ,,'ear operational lifetime, and a total of 6(} launches over tile tcn ',ear

period. It accounts [or it>urancc premiums, a :6 7: tax rate. and a 15% rate of return
ccm_puundcd continuall,, tur lhc invc,,tors. The minimum cu,,lorner price relates to
$,v,,25() per pound. This bcat_, the a_,cta,.ze competitor _, price bv 33.5q. The data used in

Figure 2.4 is provided in Appendix A..;.
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Figure 2.1 Financial Projections
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2.2.3 Cost and Financial Conclusion

All of the financial goals set at the beginning of the project were met or even exceeded.

The total cost per launch including the fixed costs and per launch costs of the Gryphon
and the Eclipse is estimated at $48.3 million. The maximum limit goal set at $6,200 per
pound translates to $49.0 million per launch with a 7,900 pound payload. Even after
accounting for insurance premiums, government taxes, and a 15% investors rate of return,
the Gryphon is still capable of beating the competition by over 33%. In addition, this
entire financial analysis is based on a "worst case scenario" using only the most

conservative estimates.

OF P.u_R QI.,,t,,'_TY
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Due to the possible financial advantages, this business venture appears to be a

worthwhile investment.

2.3 VEHICLE CONFIGURATION

The design project was initiated by dctcrmining the major goals of the Gryphon. Of these

goals, those applicable to the vehicle c_mfiguration are:

A maximum hoo_lcr wcigi_t _I 511().(/111)lb

Approximately S.()(II} Ib ol r_a', load to GTO
Approximateli l" ! )() ih _,i p_tvload to Low Earth Orbit (LEO)
Two independcnt pa,,, load-, during one launch to GTO
A payload envelope diameter o( at least 15 ft to accommodate Space
Station Freedom modules

Using this as a starting point, each group proceeded to research their designated
area. The information that they obtained was then submitted to Spacecraft Integration in

order to compile it into the final design. This section highlights the prominent features of
the design and layout of the Gryphon. The final vehicle configuration can be seen in

Figures 2.2 and 2.3.

2.3.1 Propulsion

The Gryphon consists of three stages for the GTO configuration. For the LEO

configuration, the third stage engine and propellant tanks are removed and replaced with

pure payload.

The first stage engines include a LR91-AJ-I 1 mounted in the middle of the main
body and two Castor 120 solid rocket boosters attached symmetrically to the sides. The

ellil_tical propellant tanks, containing nitrogen tetroxide for oxidizer and Aerozine-50 for
fuel. are mounted just ahead of the LR91. Control of the booster is provided by a vertical

tail and gimbaled nozzles on all three engines.

After the Stage One engines and structure have jettisoned and a coast phase is

completed, two LR91-AJ-I I's ignite for the second stage. The propellants are the same
for the first stage LRgl but are contained in two large, nearly cylindrical tanks.

Gimbaled nozzles again provide stability.

For a GTO mission, these engines are released and after another coast phase, a

RL 10A-4 engine ignites and burns cryogenic propellant. Liquid oxygen is supplied from
a nearly cylindrical tank just ahead of the engine and liquid hydrogen is supplied from a

spherical tank attached in front of the oxidizer tank. The RL10's vectorable nozzle
provides control along with RCS thrusters. For a LEO configuration, this stage is not
needed and orbit can be established after the second stage. Refer to Figure 2.2 to see the

overall configuration.

18
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2.3.2 Avionics

Most of the navigation and power/thermal components are located in and around the
avionics bay. The avionics bay is located just below the power.'avionics ring and ju'd

above the pavl(_ad interface attach. It is 14 feet in diameter at the base and 1() feet in
diamclcr at the t_ t) _ith a height (H'2 feel. The components located in the avionics bay
are a_, folh_w,,:

• Hvdrazinc Tank
• Oxidizer Tank

• Central Procc',',in! 2 Unit (CPU)
• Global Positioning Sv,,icrn _GPS_
• Inertial Guidance S;,_tems (Sen_ors. Electronics. Navigation.

Tclcmet_ Trat>tmtter. and Radar Transmitter)

• Cables and Tubing

The hvdrazine and oxidizer tanks are located at the base of the avionics bay. See

Figure 2.4. "f'he length of the oxidizer tank is 6 feet and the length of the fuel tank is 8
feet. Both tanks are 1 foot in diameter and together weigh about 700 pounds. These

tanks supply the propellant necessary for the Roll Control System thrusters needed for a
launch to GTO. There are six RCS thrusters spaced evenly about the bottom of the

payload interface ring.

14' [31A --_
\

10' D_

\ X/!l [] "'-.'M
HYDRAZ I NE _ \ _ _. _/

TFtANSid I TTER

GPS _%_v _ _CPU

_NAMI GATIONRADAR
TRAN._d l TTER PFIOCESSOR

Figure 2.4 Avionics Bay

All of the mission control components (i.e. the CPU, GPS, and Inertial Guidance

Systems) are bolted to the top of the avionics bay. They are positioned with their
smallest dimension oriented in the x-direction. There are four battery modules located

around the payload interface ring and below the RCS thrusters. They are evenly spaced
around the ring in order to ensure that enough power will be continuously supplied in
case one is disabled during the mission. See Figure 2.5.

21
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All components located in and around the avionics bay must be cooled through
out the duration of Gryphon's flight. These components are cooled with helium from a
tank located next to the third stage propellant tanks. After the third stage drops, all

components, such as the computer, are cooled by a radiator system.

BATTERIES (41---_ /---RCS THRUSTERS (81

N
\

._ /' VENT I NG SYSTEM ( 8 I

AVIONICS BAY -_-, "\ ,/ //---

HYORO_BEN TANK _,. .\. --_ ......... _ ............ ".\\

I

/
/

RL-IO O r-I __A ....... """"""

I CS IRI YLOAD AREA

,NTE ^ E

Figure 2.5 Payload Bay

Cables are located in the avionics bay to link the mission control components.

Propellant tanks in the avionics bay supply fuel and oxidizer to the RCS thrusters via
propellant tubing. Tubes also connect the helium tanks to all of the components that need
to be cooled. ,,uch as the navigation equipment and the batteries.

2.3.3 Structures

The structural system consists of components that connect and/or support the various

subsystems of the Gryphon. These include internal supports, external skin, and

aerodynamic surfaces. In general, each stage has the following structures:

• Engine mounts
• Propellant tank supports
• Interstage connections
• External skin with reinforcements
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Additionally, the payload and avionics are supported by dedicated support
structures. Please see Figures 2.2 and 2.3 for a graphical representation of the structures.

For a more complete descripuon of this area, refer to Chapter 7.

In the first stage, each Castor 120 has two sets of two attach struts which connect
it to the main body of the Gryphon. Each Castor 120 al,',o has a conical fairing mounted

on its top to rcduce drag. The LR91 is held in place bran engine mount, and the LR91

and its propellant tanks are encased by a reinforced external skin..An interface ring links
the skin with the interstage connector. The interstage connector',heaths the nozzlc_ of

the second stage engines. A. n_ht triangular vertical tail attached to the skin ot this ,,tage

provides stability during thc drop from the Eclipse. While the Gryphon is being canned
by the aircraft, the aft noLLlc c_\cr IANC) envelopes the first ,,Iage engine nozzles to

reduce drag.

The second stage c_m,_i,,t', _1 lwo LR91 's affixed to the Gryphon bv means of the
second stage engine mount. Fhc cngine mount then transfers the thrust produced bv the
engines to the total vehicle The reinforced external skin covers the propellant tanks and

support structure for this stage. An interface ring connects the skins of the second and
third stage.

The third and final stage has an engine attach which unites the RLI0 with the

propellant tanks. A structure mount supports the engine and fuel tanks which are
designed to carry the thrust load while a payload interface attach connects the third stage

with the payload area.

The volume between the power/avionics ring and the payload interface attach

comprises the avionics bay. Navigational modules are attached to the power/avionics
ring via an adapter plate. In the dual-satellite configuration, the first payload is mounted
directly to the power/avionics ring, and the second payload is mounted to the payload
interface which surrounds the first satellite. A payload shroud encloses the entire

payload/avionics area. As with the Castor 120 fairing, the payload shroud conically

tapers to a point to reduce drag.

For a LEO launch, the third stage is removed and the second stage interface ring

is attached directly to the payload interface attach. All other structures remain the same

as tor a GTO launch.

2.3.4 Vehicle Configuration Final Results

Figure 2.6 displays the axis systems for the Gryphon for various configurations.

In Table 2.4 below, these axis systems are used for the moments of inertia. The

weights, centers of mass (CM) and mass moments of inertia are broken down for the
GTO and LEO configurations for full, half full, and empty propellant tanks. This data

shows the progression of these values from one configuration to the next as the Gryphon
burns propellant and drops stages in flight. The first configuration is for the Gryphon
with the aft nozzle cover (ANC) the moment after it is dropped from the Eclip

lmxx = mass moment of inertia about the roll axis
lmyy = mass moment of inertia about the pitch axis
Imzz = mass moment of inertia about the yaw axis

Note: Mass moment of inertia given in millions in Table 2.4
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Figure 2.6 Gryphon Axis Systems
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Table 2.4

Stages

1.2.3 and ANC

Weight _lbJ
CM {lt)

ImxK {Ib tt2)

Ira,, ' {lb 112/

lmzz {lb fI2)

Weight, Center of Mass and Inertia for Various Configurations .
Full Propellant Tanks Half Full

GTO LEO

4"9 .{)56 476,368

2v .t}{}

43.54

lt}2.S

26.10

43.66

2{17.5

PropellantTanks
GTO LEO

Empty Propellant
Tanks

GTO LEO

._8 .(_

Sla_es 1.2,3

Weight lib1
CM Ift)

lmxx (lb ft2)

lmvv (lb ft2)

lmzz lib ft2)

473.25(_ a711.56_4 .;52.294 340.606 ' _ 1.,,,,, __8,644
• 3 L •27.52 26.70 ., 1.05 ,9. }7 .,8.39

' " _6.3, 264._ .37 4., .49 " "_ .44

186.2 165.3 191.4 170.3

36.83

8.658 8.781

207.6

2"_'} 0 201.1 _ 10.5 189.4 210.0

186.l
188.6

Stages 2.3
Weight {lb) 200,467 197,779 116,416 113,678 32,366 29,678
CM fit) 23.44 22.29 24.04 22.19 37.25 31.34

Imxx (lb ft2) 5.080 5.204 3.324 3.448 0.9616 1.085

Imy,¢ (lb ft2) 188.6 179.6 138.8 128.4 97.67 85.18
I,nzz (lb ft2) 188.6 179.6 138.8 128.4 97.68 85.19

Stage 3
Weight (lb) 22,129 19,441 17,601 19,441 13,072 19,441
CM fit) 19.56 12.08 21.61 12.08 26.12 12.08

Imxx (lb ft2) {).5943 0.7180 0.5714 0.6952 0.5486 0.6723

Imvv (lb ft2) 50.27 43.47 40.40 43.44 29.85 43.42

l,nz z I'lb ft2} 50.28 43.48 40.41 43.44 29.86 43.43

The weight values above for Sages 1,2,3 and the ANC do not include extra weight
that is carried by the aircraft for computers, an operator and Gryphon - Eclipse
attachments. Even though these weights are not included in the Gryphon after it is

launched, they are technically Gryphon weights that are considered payload to the
aircraft. These components add an additional 10,435 pounds. Table 2.5 displays the

Gryphon's total weight along with the total length for the GTO and LEO configurations
with and without the ANC. It also lists the height including the vertical tail and the body
width measured from the outside surfaces of the Castor engines. The Castor nozzles

actually extend beyond this length by 2 ft - 2 in.

These total weights are under the 500,000 lb limit. Appendix A.2 lists the

individual weights and centers of mass for each component on the Gryphon and describes
the method used to calculate centers of mass and moments of inertia. Extra weight is

anticipated from rivets, fasteners, etc. However, weight is expected to be trimmed from
other components to keep the total weight under the maximum allowable 500,000 lb.

25



Universityof MichiganAerospaceProject Gryphon

Table 2.5 Overall Gryphon Weights and Dimensions
GTO LEO

Sta_e 1.2.3 and ANC (lb}

Component:_ on Eclipse I lh)

Total Or?phon Weight lib)

Total Length with ANC
Total Length without ANC
Width

Height

4791156 476.368

10.435 I{I.435

489.491 486.803

124 ' - 3"

106'- 3"

30'-0"

It)4' - 5"
s6 - 5"

_ m - .,,,

?IT' - I1"

2.4 AIR SAFETY PRECAUTIONS

In order to ensure the safety of the Eclipse, the Gryphon must drop about 2,000 feet
before the ignition of its first stage engines. The safe drop distance of 2,000 feet was
determined by the Fireball Diameter of Gryphon times a factor of safety of 2.67.

The fireball diameter was determined from the following equation:

Dt = 10(W) 'z (Eq 2.1)

Df = diameter of fireball

W = total propellant weight

With a 420,000 lb total propellant weight, the diameter of the fireball is 750 ft.
This assumes that all of the propellant being used in the Gryphon is cryogenic to
determine a worst case scenario.

In addition to the above equation, NASA produced a graph that relates fireball
diameter vs. total propellant weight in pounds. The fireball diameter taken from this

graph is approximately the same.

2.5 CONCLUSION

From the data presented here, it can be concluded that all design goals have been met
with the final Gryphon specifications. A summary of the design goals and how they were

achieved is provided below. These include:

Maximum mission cost of $ 48.4 million which is less than the

projected 50% undercut cost of $49.0 million per launch
15% return to investors. This would result in a cost per launch of

$75 million to the customer
Total booster weight of 489,491 lb which is less than the 500,000
lb maximum
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Payload weight of 7,900 lb GTO which is on the order of the initial

8,000 lb goal
Payload weight of 17,000 Ib to LEO which is the same as the
initial 17,000 lb coal

Two independent payloads delivered during one launch to GTO
Payload envelope diameter of 15 ft which is capable of
accommodating Space Station Freedom modules

Since all project have been met, this project seems to be a worthwhile venture.
The recommendation of this design team is that Project Gryphon be implemented.
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3.1 INTRODUCTION

Vehicle aerodynamics, mission planning, the ascent trajectory, and orbital maneuvers fall
under the mantle of the Mission Analysis Group. These responsibilities included working
with the Power/Thermal/Attitude Control Group to analyze the drop of Gryphon from the

Eclipse, and with the Propulsion Group to ensure adequate vehicle sizing.

3.2 MISSION DEFINITION

The primary mission of the Gryphon is delivery of a commercial payload to a
Geosynchronous Transfer orbit (GTO), allowing the payload to reach Geosynchronous
Earth Orbit (GEO) under its own power. Secondary missions include delivery of scientific

payloads to a Low Earth Orbit (LEO) and resupply of Space Station Freedom in LEO.

Each of the missions has several common phases. In all missions, the Gryphon is

mounted to the underside of the Eclipse and carried to its launch position. When the correct
launch coordinates are reached the Gryphon is dropped from the Eclipse, falling until the
vehicles are far enough apart to ignite the rocket engines without endangering the airplane.

The aerodynamic design of the Gryphon is such that it will pitch up during the drop phase.
The final phase begins when the first stage engines ignite and the Gryphon pulls out of its
free fall. It then follows a predetermined ascent trajectory into orbit.

In a mission to GTO, the low earth orbit will be a circular parking orbit

approximately 100 nm in altitude. The Eclipse cartier aircraft will typically take off from
Vandenburg Air Force Base, allowing the Gryphon to enter an orbit with relatively low
inclination of about 12.5 ° . When the vehicle reaches the correct position relative to the

target position in GEO, the third stage will boost the vehicle to GTO. Near the apogee of
GTO, the third stage will fire again to establish a zero-inclination, or equatorial, orbit. The

payload will then be released from the vehicle and its apogee kick motors will boost it into
GEO. If multiple payloads are being delivered to GEO, the Gryphon and the remaining

payloads will continue to orbit in GTO until GEO is reached again and the next payload can

be deployed.

Missions to LEO depend on the final orbit desired. Scientific missions have a wide
variety of target orbits and thus the required orbital maneuvers are mission dependent. A
mission to resupply Space Station Freedom is a specific example of a LEO mission.
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Currently, the planned orbit strategy for Space Station Freedom is 180 to 150, 2 sigma.
This means that its orbit must not decay to an altitude less than 150 nm in 180 days time.
Therefore, its nominal orbital altitude will be between 200 nm and 240 nm. For missions

to rendezvous with Space Station Freedom, the Gryphon will first reach a parking orbit
slightly lower than the station's orbit. This lower position will orbit the Earth more

quickly, allowing the Gryphon to chase the station until it reaches the proper position for a
final maneuver that will transfer it to the ,,pace station's orbit for rendezvous.

3.3 ASCENT TRAJECTORY

The first step in calculating the trajectory is to define the mission the Gryphon will fly.
Next. the rocket's ideal AV must be calculated, and the losses associated with the ascent to

orbit must be estimated. The trajectory is defined and made to fit all of the conditions

stipulated by this data. Finally, the trajectory is optimized in order to maximize the weight
of the payload carried into orbit.

The initial parameters required to compute an ascent trajectory are shown in Table

3.1. The parameters required for second stage analysis follow in Table 3.2.

Table 3.1 First Stal_e Parameters
T

Thrust-to-weight ratio

Initial weight

Specific impulse

Maximum dra_ coefficient

Burn time

WO

W 9

Isp

Cdmax

tb

WO

r-

Who

1.93

473,353 lb

295 s

0.6 (at Mach 2.0)

78 s

2.144Weight ratio

Reference area A 278 ft2

Thrnst-to-weight ratio

Specific impulse

Burn time

Weie;,ht ratio

Inverse weight ratio

Table 3.2 Second Stage Parameters
T

W
o

[sp

t_,

r

1
Pf = -

r

1.047

316s

240 s

6.1782

0.1619

The ideal velocity the first stage can attain is:

AV = goI_p In r

Thus, the first stage ideal AV, AV,_, is 7,246 ft/s.

(Eq 3.1)
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In order to estimate losses, the trajectory for the first stage must be determined.

The first stage bums entirely within the atmosphere, hence there are losses due to drag and
thrust atmospheric effects in addition to gravity. Trajectory analysis for the first stage was

completed using theory (or ;'erticallv launched rockets: however, the Gryphon is not a
vertically launched rocket. In order to make up/or this discrepancy, the first 8 seconds of
the Iirst _,taec burn are devoted to establishing an initial pitch up angle which coincides with

the kick angle of a vertically launched rocket. The rocket must pitch up at a rate of 6.25

degrees per second once the first _,lage engines ignite.

Once the Gryphon has reached the maximum pitch angle of 10 degrees from
vertical, it enters a gravity turn , thereby minimizing gravitational losses. The gravity turn
trajectory slowly pitche,,, down as the Gryphon approaches the first stage burnout angle
[3ho. This angle was determined _ia a burnout angle homograph from Reference 109, See
Figure B.I.

Using the technique outlined by this reference, a burnout angle, [3bo, of 70 degrees
was determined. With the first stage burnout angle determined, losses for the first stage
could be estimated.

3.3.1 Gravitational Losses

The gravitational loss, AVLg, is given by the following equation:

AV_g. =(gt b-K_s)[l-Kg(l-l/(13b°/2]r}\90]
(Eq 3.2)

where Kg is an empirical constant which accounts for changes in Earth's gravity as altitude
increases, and Kgg is an empirical constant accounting for differences in thrust atmospheric
effects as altitude increases. Since the Gryphon is launched at an altitude of 43,000 feet, the

thrust is very close to vacuum thrust; therefore, Kgg is negligible. Kg is found using the

nomograph in Figure B.2 and a mass ratio correction factor from Figure B.3.

Figure B.I yields a Kg of 0.9 while Figure B.2 shows a mass ratio correction
factor of 1.2. Thus, Kg is 1.08. Substitution into (Eq 3.2) yields a AVLg of 1,740 ft/s.

3.3.2 Aerodynamic Drag Losses

The drag losses incurred during first stage operation can be estimated using the drag
coefficient for the maximum drag force encountered during the flight. This can be

determined by finding the Mach number for peak drag, Mpd, from first stage parameters
and the first stage burnout angle (Figure B.3). The value of Cd at this Mach number, Cdpd
can then be found from the vehicles supersonic aerodynamics. Next, the empirical constant
Kd is found using the game manner used to find Mpd (Figure B.4). The AV losses due to

aerodynamic drag, AVLd, are calculated as follows:

AV,d = Kd CaPd----_A (Eq 3.3)
Wo
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Usingvaluesfrom FiguresB.3 and B.4, Kd is 3.7E+06,Mpdis 2.0, andCdpd iS
0.6, and AVt.d is found to be 1.305 ft/s. However, since a large portion of the atmosphere

is already below the Gryphon at first stage ignition, just 20% of this value is used.
Therefore, AVLd is 261 ft/s.

The burnout velocity ol the first stage can be determined from (Eq 3.4):

V = AV:,: - kVt_ -AVu_ , (Eq 3.4)

This yields a value of 5.245 ft/s.

3.3.3 First Stage Performance

Once the losses have been calculated, the flight performance of the first stage can be

analyzed. First, the empirical constant Kh must be found from Figure B.3. Then the
tollowing data may be calculated: altitude of first stage burnout, hi; the range angle, 0i; the
inertial thrust orientation angle, Ei; the inertial burnout velocity, Vi; the inertial burn out

angle, [3i; and the inertial angle of attack, oti.

hi = (_- AVLdtb2 1--
(Eq 3.5)

where

go b- (Eq 3.6)
I_'- _lnr_ t'

-gol_pt b 1 r-l) 2

Evaluation of (Eq 3.6) yields an h of 142,750 feet, which results in an h_ of

130,397 feet.

Inertial burnout velocity can be computed from the following equation:

v 'V V_ + _c,ipsc) + Vro," + 2(Vbo + V_ctips°)V'°'sin[3b° (Eq 3.7)

where Vecli se is the initial velocity of the Eclipse carrier aircraft and Vrot is the rotationalp
velocity of the Earth in the southern United States. Assuming these values are 778 ft/s and

1,340 ft/s, respectively, Vi is 7,297 ft/s.

The angles or, 13, e, and 0 are illustrated in Figure 3.1 to allow easier interpretation

of the results presented herein.
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Figure 3.1 Circular Orbit Diagram for Trajectory Analysis
[Reference 1091

Figure B.5 yields a range angle, 0i, of 1 degree. The inertial thrust orientation

angle, ebo, is simply the sum of the range angle and the burnout angle:

Ebo = 0i + [_bo (Eq 3.8)

Inertial burnout angle, [3,, and inertial angle of attack, o_, are found from the following

equations:

[_i = COS-I ( COS[_b° Vbo (Eq 3.9)
_, Vbol

Oti =[_-[3_ o

Thus [3i is 75.8 degrees and c_ is 5.8 degrees.

(Eq 3.10)

3.3.4 Determination of Second Stage Burnout Conditions

The analysis for the second stage assumes that the second stage trajectory is essentially
non-atmospheric. A method for modeling low altitude circular orbits with a constant pitch
rate was employed for trajectory analysis. This method is outlined in Appendix A of
Reference 109. Figure 3.8 depicts a typical trajectory profile generated by this method.

This procedure finds the flight path burnout angle, altitude, and the final burnout
velocity for circular orbital insertion by iterating different constant pitch rates. For the

Gryphon, a low earth parking orbit (LEO) of 100 nm, or 607,610 feet, is desired. This
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requires a final velocity of 25 581 ft,'s at an angle of 90.0 degrees. From this parking orbit
the Gryphon can enter the elliptical GTO and insert its payload into a GEO.

Required input for the procedure are: the initial thrust acceleration angle, g, the
initial inertial velocities, ,_ and v _,,ee Figure 3.1), the initial pitch rate, e, and the initial
distance from the center of the Earth. r. These values are found using the equations below:

_. =[3L-cz (Eq3.11)

,_ = V sin[3 (Eq 3.12)

v = V cos[3 fEq 3.13)

e = 0.{)75 (Eq 3.14)

r =r e+h, (Eq3.15)

The results obtained with these equations are shown below in Table 3.3. Note also that the
value for _ shown in (Eq 3.14) is an initial estimate. Using the method outlined here, this
initial value is modified if necessary. In the case of the Gryphon, the value shown in Table

3.3 is sufficient to reach the desired orbit.

Table 3.3 Initial Second Stage Input

70 °EO t

7,074 ft/s

1,790 ft/s_L

0.075°/s

r_ 21,033,297 ft

Additional information is needed to proceed with the analysis, however. The
effective radial distance from the center of the Earth, r', the effective gravitational

acceleration, g', and the effective exhaust velocity of the rocket engines, c', are computed
as shown below.

E (r" =r +t_, V +golsp 1-¢ _'_-_-_f K'cos[3i
(Eq 3.16)

where

0.0163(T/W,)

K" = p,[l- Pf(l-lnP,)]
(Eq 3.17)

Using values from Table 3.2 to find K" yields 0.194. Substitution into (Eq 3.16) results in
a value of 21,147,847 ft for r'. Finally:
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• 3 IS)
g =_tr')

• Eqc = o ! t 3.10t
_ ,p

yielding valtLes ,_l 31.45 tls 2 l,,r e :tnd 1(),175 ft/s for c _.

Altitude and velocity :ire [,,und by solving two equations of motion. The,,' arc

differential equations derived bv a,,,,umine circular motion in a plane. Using the coordinate
,_vstem illustrated in Figure 3. !. _l',c cquatl_ms of motion are

-f
_ • _,()),_.=--cose - cos0 iEq " "_

I11

T
_= --sin_ -g" sin0 (Eq 3.21"j

tn

where T is thrust and m is mass. From Figure 3.1

cos0 = y (Eq 3.22)
r

sin 0 = -x (Eq 3.23)
r

where r is the radial distance from the center of the Earth.

Assuming that the variation in r is small compared to its initial value, (Eqs 3.19-20)

can now be simplified.

,," T
y_+_' y=--coss (Eq3.24)

r m

g•_<+_x = Tsine (Eq 3.25)
r m

Assuming constant thrust, the generalized thrust to weight equation can be defined
and solved:

n= 7

The constant thrust assumption is valid due to the Gryphon's high altitude. Substitution of

the appropriate values results in a value of rl equal to 1.0578.

Since _o, denotes the initial thrust attitude, the thrust attitude varies in time as
follows:
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= _o, + N (Eq 3.27)

where t is time.

.-Mlowing that T = tr_c and ,,ubstituting into (Eq 3.26), one can show that

t =(l-Pt.) c . (Eq 3.28)
rig

Substituting this equation into t Eq 3.271 yields:

= v + _.Pf (Eq 3.29)

where

c_
v = E,, + _. (Eq 3.30)

rlg

and

c_
=------7 (Eq 3.31)

rig

Solution of (Eqs 3.30-31) results in v equal to 1.6220 radians and _ equal to -0.4003

radians.

At this point, (Eq 3.26) and (Eq 3.29) are substituted into the equations of motion,
and the independent variable is changed from t to Pf. The differential equations become

Y"+ ZZY k b7
(Eq 3.32)

L }7
(Eq 3.33)

where

__ (c') 2

rig*
(Eq 3.34)

and

.Z (Eq 3.35)
x= c Yr"

Solution of (Eqs 3.33-34) yields values of _ equal to 3.1120E+06 and Z equal to 0.3730.

t,.la, ,r X, .,t.. i ...... tS
Olr p,_?+i+' _' e++'!-wy
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The bracketed portions of (Eqs 3.31-32) are in the form of sine and cosine

integrals, defined as foUows:

I ,

f sln oS (ul = --de5 (Eq 3.36)

Clui=-ic°s°d¢5 IEq3.37
J (5

These integrals were evaluated usine *IAPLE V. Tile results are presented in Table 3.4.

Table 3.4

Function Argument (u I

r-+ Z = -0.02730

Sine and Cosine Integrals

Cosine lntel_ral Ci(u) Sine Integral Si(u)

-3.02384 -0.027299

(_ + z)pf = -0.0044 --4.84894 -0.004399

_, - Z = --0.77330 0.174305 -0.748066

(_, - z)Pe = -0.1252 -1.50540 --0.125091

The equations of motion are linear first order differential equations. They are solved

using an integrating factor of e -'_P' . The actual solution method is too complex for
inclusion here (see pages A-15 to A-18 of Reference 109 for details), though it results in

two important complex quantities Z and m that will be used later.

In order to solve the differential equations, several constants whose values were

derived during the equations' solution must be found. These constants were evaluated

using information from Table 3.4:

= _ +E [C,(s+ x)P_--C,(L+ Z)] [C_(,.,-z)P_-C,(_-)_)] ¢Eq 3.38)

F= +z)p,- +z)]+ z)p,- z)] (Eq 3.39)

G =[C_(_+ z)P,-C,(_+ Z)]-[C,(_- z)Pe-C(_-Z)] (Eq 3.40)

H = [S,(_ + z)p. _ S,(_ + Z)]_ [S_(_ _){)pc - S,(_- Z) ] (Eq 3.41)

The following constants were evaluated using the values of the constants calculated in (Eqs

3.38-41):

A = _(Ecosv- Fsinv) (Eq 3.42)

B =}(Gsinv+Hcosv) (Eq 3.43)
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C = g(Esinv+Fcosv)

D = 4( -G cos vH sin v)

The values of these constants are shown in Table 3.5.

(Eq 3.44)

(Eq 3.45)

Table 3.5 Solution Constants

A

B

C

"3 "3--4)..3_9

-4).0577

-1.7662

D -0.3034

E -3.5039
F -4) .6459

G -0.1463

H -0.6001

Using these constants the real and imaginary parts of Z and m were computed. Their values
are shown in Table 3.6.

lmZ = A sin zPe - Bcos zPf

Re Z = A cos _Pf + Bsin )_Pf

lmm=CsinzPf - DcoszPe

Rein =CcosZPe + DsinxPf

(Eq 3.46)

(Eq 3.47)

(Eq 3.48)

(Eq 3.49)

Evaluation of (Eqs 3.46-49) results in values of 0.0435, -0.2360, 0.1962, and -1.7813,

respectively.

With the differential equations solved, the rectangular coordinates and velocities

were computed using the following equations:

_ IlmZ + c__Sinz(1 _ pt)l+ r cosZ(1 - pf) (Eq 3.50)Y=_

x = lmm+_sinz(l - Pf
C"

_ =-c'(Rem) + _ cosg(l- Pf)

The solutions of these equations are presented in Table 3.6.

(Eq 3.51)

(Eq 3.52)

(Eq 3.53)
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Table 3.6 to Equations of Motion

2.1207E+07 ft

Solutions

V

\ . .,_936E+06 ft

v -:.._54.5 ft/s

,_ 24.751 ft,,s

F nally, the values of final height, velocity, and flight path angle at second stage
burnout were calculated.

h =, ,, +v: -r +11 (Eq3.54)

¢- .

V. = V xc + y: (Eq 3.55)

F-
= cos-' _ x_ + yy13,

k , +y:)+y:)(':
(Eq 3.56)

From this data the thrust orientation angle, el, the total velocity loss, AV L,the range

angle,0f, and the final angle of attack, o_f, at burnout of the second stage can be found:

e`. = e, + et b (Eq 3.57)

kV L = c" In I + V_ - V`. (Eq 3.58)
P;

y0e =0, +cos-' __
(Eq 3.59)

c_; = 13.-+O_ -e: (Eq 3.60)

The results of the evaluation of these equations are presented in Table 3.7, with the

exception of AVt, which is 962.3 ft/s. It does not appear in Table 3.7 because it is taken
into account in the value for Vf.

Table 3.7 Vehicle Performance Results

First Stage Second Stage

Vi = 7,297 ft/s Vf = 24,864 ft/s

_i = 75.8° [3f = 86.34 °

hi = 130,397 ft hf = 574240 ft

0i = 1o Of = 10.09 °

Cf = 88 °_:oi = 70°

Oq = 5.8 ° Otf= 89 °

= 0.075°/S
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3.4. GEOSYNCHRONOUS MISSIONS

For a mission to GEO, the Gryphon will first launch to a circular LEO and execute a
Hohma;ln transfer as shown in Figure 3.2.

Point 1
Point 2

GEO

Figure 3.2 Hohmann Transfer

The Hohmann transfer consists of two maneuvers. The first occurs at Point 1,

where an impulse increases the orbital velocity of the vehicle, putting it into a geotransfer
orbit (GTO). Once the vehicle has reached Point 2, apogee of GTO, the payload is released

and another impulse inserts into GEO in an analogous manner.

The first change in velocity, ,_xVI, is the difference between the velocity of the

elliptical LEO and the velocity at perigee of GTO. This is:

AV I = 2p.
rLEO + rC,EO 0

(Eq 3.61 )

where P. is the gravitational constant of the Earth (1.40764E+16 ft3/s2), rLEO is the apogee
radius of the circular LEO, and rt;EO is the orbital radius at GEO (22,766 nm).

The second change in velocity, AV2, will be performed at the apogee of GTO,
where it intersects GEO. This is:

AV, = g-- 21,t -
- rc, Eo rC,EO rLEO + rC,EO

(Eq 3.62)
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This turnsout to be4,776ft;s. This is handledby apogeekick motorsthatarepartof the
payload.

Since GEO has an inclination of zero, unless the Gryphon can be launched from a

point directly' over the equator, an inclination change must be pcrformed. The ,_xVrequired

is given by equation (3.6 .

= 2_,ini --Ai 1 1
R r t _(_ + rc_[_)

(Eq 3.63)

where R is the distance from the center of the earth at the time the maneuver is performed.

Since the minimum ._xVi is desired, the maneuver should be performed as far away from

earth as possible, i.e. as close to GEO as possible.

The required change in inclination will be equal to the latitude at which the Gryphon
is launched. The minimum launch latitude depends on both the launch site and the distance
it is carried by the Eclipse before launch. Assuming that the inclination change maneuver is

performed when R equals rGzo for an inclination of 12.5 °, the AV required will be 998 Pds.
This can be performed by the remaining fuel in the RLIOA-4. The actual R when the
maneuver is performed will be less than rtqEO, since the payload must separate from the
orbiter before rendezvous with GEO. If the maneuver is performed when R is 20,766 nm,

or 2,000 nm from GEO, the AVi is 1,300 ft/s.

3.4.1 Phasing for transfer from LEO to GEO

GTO must be phased properly if the orbiter is to deploy its payload at the proper point over
the equator. That is, the orbiter must enter GTO at a specific point in space relative to its
destination. To do this correctly, the time taken to reach that point must be calculated.

The time taken by the transfer is simply half of the period of the transfer ellipse.

The period of an elliptical orbit is given by:

(Eq 3.64)

Thus At is:

At= _: " •
p,

(Eq 3.65)

where a-, is the semimajor axis of the GEO orbit and al is the semimajor axis of the LEO
orbit. Note that for a circular orbit, al and a2 are simply equal to their respective orbital

radii.

The transfer of the payload from the parking orbit in LEO to GTO must be timed

correctly in order for the payload to arrive at the correct position in GEO. Figure 3.3
shows how the payload must be positioned.
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GEO Position at

beginning of
transfer

Rendezvous

Payload Position at
beginning of transfer

Initial Payload Position

Figure 3.3 Geotransfer Phasing

% is the angle by which the GEO destination point leads the orbiter when it makes
the transfer to GTO, and q_iis the angle between the orbital insertion point and the point

where the transfer to GTO is made.

Now, q)L must be the angle of the arc which the point in GEO travels while the

payload is in GTO in order for the GTO to intersect GEO at the correct point. Thus, the

following ratio holds true:

_L _ At___ (Eq 3.66)

2x TGEO

Substituting (Eqs 3.64-65) into (Eq 3.66) yields:

a,+__a_,OL = _, 2a 2
(Eq 3.67)

For a Hohmann transfer from 100 nm to GEO, At = 22,756 seconds, about 6.32 hr, and

q)L = 76.97°.
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Since 0L is not necessarily 76.97 ° when the Gryphon achieves orbit, there is a wait

period, Atwait, before the Hohmann transfer can be initiated. This wait time is determined

by (Eq 3.68):

O_ (Eq 3.68)M,.,al t =
(01 -- _

where o3_ is the orbital frequency of the destination point in GEO and o31 is the orbital

frequency of the LEO parking orbit. These values can be determined from (Eq 3.69):

2_
o3 =_ (Eq 3.69)

T

The maximum possible value of 0i before 0L reaches the necessary value is 2ft.

Thus, for the LEO to GEO transfer, the maximum waiting time is 5,946 s or 1.65 hr.

3.4.2. Multiple Payload Launches

In the case of a multiple payload deployment, the orbiter will perform the proper phasing
maneuvers to insert the first satellite into the correct position. The orbiter will remain in

GTO until it completes an orbit and once again intersects GEO. This will happen at a
position 159.2 ° around the circular GEO from the first payload's position. The orbiter will
continue in GTO in this manner until the second payload can be deployed near its proper

position. The payload's thrusters will make the necessary adjustments to move it to the
correct position in GEO. (See Chapter 5 for further information on multiple payload
launches.)

3.4.3. Rendezvous with Space Station

The Gryphon will launch its payload directly to the Space Station Freedom's orbit. To
ensure a swift rendezvous with the station, the launch must be timed correctly. Assume the

orbit of the space station remains stationary while the Earth rotates beneath it. The
inclination, i, of the station's orbit is 28.45 °. The latitude, k, of the launch site determines

the heading of the launch, or the launch azimuth, A, and the number of launch

opportunities per day. The launch azimuth is defined by (Eq 3.70):

cos i
sin A = _ (Eq 3.70)

COS/],

Assuming that the Gryphon is launched directly over Kennedy Space Center, which
has a latitude _-Kof 28.45 °, the Gryphon should be launched due east (A = 90°). The actual
launch site will be east or southeast of Kennedy, within the 1,000 mile range of the

Eclipse. If the latitude of the launch site is less than 28.45 °, there will be two possible

launch opportunities. Please refer to Figure 3.4.

As Space Station Freedom orbits, it will cross the launch site's latitude line.
Sometimes it will cross headed north, away from the equator; sometimes it will be headed

south, toward the equator. Each of these passings represents a launch opportunity. The
launch azimuth A needed to reach Freedom's orbit as it makes its southward pass over the

43



Chapter3 - Mission Analysis

launch site is given by (Eq 3.70), while the necessary, launch azimuth as it crosses the
launch site heading north is simply be the supplement of A, or 180 ° minus A.

Space Station
Orbit

Mission Launch

Site

Equator

Launch Site

Latitude Line

Figure 3.4 Launch to Rendezvous with Space Station Freedom

The Gryphon will be launched into an orbit that is identical to Space Station
Freedom's in all respects except altitude. It will orbit at a slightly lower altitude than
Freedom, allowing it a greater orbital frequency and having the effect of chasing Freedom.
Once it catches up, it corrects its orbit and performs a rendezvous with the station. Since
the station's altitude will vary from approximately 200 nm to 240 nm, the exact
intermediate orbit will be mission dependent.

Once the payload has reached the vicinity of the space station, the f'mal maneuvering
will be dictated by the docking procedures mandated by NASA. These procedures are

currently being reviewed and no final procedure has been announced.

3.5. SPIN RATES

A spin-stabilized payloads might require the Gryphon to impart spin to it upon deployment.
To calculate a nominal spin rate, the maximum off-axis spin of a typical satellite under a

given spin rate was estimated. The governing equation for this motion is:

cos_,[ I_q _ + Wocot0 / (Eq 3.71)0

1 Wo"+ Ix,( + WoCOtO)2J
where lmxx is the satellite's moment of inertia about the x-axis, Imzz is the its moment of
inertia about the z-axis, • is the spin rate, and 0 is the off-axis spin angle. Please refer to

Figure 3.5.
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Figure 3.5 Typical
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Cylindrical Satellite

Given the off axis spin the satellite can tolerate and the initial spin rate, (Eq 3.71)

can be solved numerically.

While this analysis is helpful, a much easier way to determine the spin rate was
found. Using figures from the NASA Solid Spinning Upper Stage (SSUS) variant A and D

data, a spin rate was interpolated. The data is presented in Table 3.8.

Table 3.8 SSUS spin rates

Variation Spin Rate Mass

A Approx. 45 rpm 243 slug

D Approx. 80 rpm 120 slug

According to the Payloads Group (see Chapter 5), the weight of a typical
telecommunications satellite of the type to be carried by the Gryphon will be 2,000 lb,

about 62 slugs. By linear interpolation, the spin rate is found to be 97 rpm. A factor of

safety of 1.18 is incorporated to give a final spin rate of 105 rpm.

The Power/Thermal/Attitude Control Group is responsible for the Gryphon's spin

and despin mechanisms, (see Chapter 8)

3.6 VEHICLE AERODYNAMICS

The Gryphon will be launched at a subsonic velocity of 500 mph, and quickly accelerate to
supersonic velocity. Because of the differences in the calculation of aerodynamic properties
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in different flow regimes, lift and drag computations were carried out separately for

subsonic and supersonic flight.

3.6.1 Subsonic Aerodynamics

The subsonic aerodynamic analysis was divided into two parts. The Gryphon was
analyzed along its body axis and" in the vertical plane perpendicular to this axis. Each

anal_csis assumed that tt{e Gryphon's fuselage and two SRBs could be modeled separately.
and the results added together. A series of equations from Reference 107 was used to

calculate drag along the body axis, with a resulting Cd of 0.019861. Details of the analvsis

may be found in Appendix 13.

To find the perpendicular component of the drag force, the Gryphon was modeled
as three cylinders. First, Reynolds numbers were computed for a variety of velocities and

altitudes {hat might be expected during the Gryphon's flight. To compute the Reynolds
number the following equation was used:

Re = 9VD (Eq 3.72)

where r is the density of the air, V is the freestream velocity, D is the diameter of the

cylinder, and lay is the viscosity of the air. The results of this analysis are shown in detail
in Appendix B. From these Reynolds numbers, the coefficient of drag was computed using
a standard Cd vs. Re for the unit cylinder obtained from Reference 126.

Since the data is valid for unit cylinders in a free stream only, interference effects

must be included. To account for this, 15 percent was added onto the drag coefficients of

the SRBs.

As the velocity in the perpendicular direction increases, the cylinders reach drag

crisis very quickly -- about 55 ft/s on the SRBs and about 35 ft/s on the fuselage. Drag
crisis occurs when a turbulent boundary layer completely surrounds the cylinder. This
leads to a greatly reduced drag coefficient. However, since turbulent flow is unsteady it

suggests that some device for roll control must be considered. The uncoupled drag force is
calculated using the equation

1 "_D = -foSV-CdL (Eq 3.73)

where S is the reference area and L is the length.

Release conditions for the Gryphon -- a velocity of 733 ft/s at 40,000 feet -- were
assumed in creating the drag polar. Drag was computed for angles of attack from 0 ° to 20 ° ,
in 2 ° increments. Velocity components in the axial and normal directions were found by

multiplying the velocity by the cosine and sine of the angle of attack, respectively. Then,
the uncoupled drag forces on the SRBs and the fuselage were computed using the above
formula. These were added to find the total uncoupled normal drag force, or Dperp. The

drag, Db, in the axial direction was computed in an analogous manner. The forces were

decomposed to find total lift and drag forces:

D,o_l = D b cosot + D_p sinot (Eq 3.74)
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D,o_= Dp_ coso_- Dbsinot (Eq 3.75)

whereocdenotestheangleof attack.Lift anddragcoefficientswerefoundasfollows:

C - D...., (Eq 3.76)
qS

where q is the dynamic pressure at 40.000 ft and 733.3 ft/s, and S is the reference area of

the Gryphon. The results are summarized in Table 3.9:

Table 3.9

a Vb Veem Db D_e_

0 733.3 0 6297 0

2  329 25.6 6>0
4 731.5 51.1 6267 210.9

6 729.3 76.6 6229 486.0

8 726.2 102.0 6175 861.5

10 722.2 127.3 6108 1341

12 717.3 152.4 6025 1923

14 711.5 177.3 5929 2603

16 704.9 202.0 5819 3379

18 697.4 226.5 5697 4247

20 689.1 250.7 5561 5203

Computation of dra

Drerp Total Total
fuselage Dee m Drag

0 0 6297

371.0
1482

3328

5900
9185

13167
17827

23143

29O88

35634

_olar

Total {,,--'d _ I

Lift

0 .0198 0

482 6303 262.4 .0198 .0008

1693 6369 1252 .0200 .0039

3814 6593 3143 .0208 .0099

6761 7056 5837 .0223 .0184

10526 7842 9306 .0247 .0294

15090 9030 13509 .0285 .0426

20431 10693 18391 .0338 .0580

26523 12901 23893 .0407 .0753

33336 15714 29946 .0495 .0944

40837 19186 36475 .0605 .1150

Note: In Table 3.7, V is freestream velocity and D is drag. The subscript b indicates the

property is measured along the body axis, while the subscript perp indicates the property is
measured in the vertical plane perpendicular to the body axis. Cd is drag coefficient and Ci
is lift coefficient. Velocities are expressed in ft/s and forces are expressed in pounds. The

subsonic drag polar is shown in Figure 3.6.
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Figure 3.6 Subsonic Drag Polar

47



Chapter 3 - Mission Analysis

3.6.2 Supersonic Aerodynamics

The supersonic aerodynamics of Gryphon were calculated from missile
aerodynamic theory. The most "important factors in aerodynamics are the lift and drag of
tile vehicle, which can be calculated from the general equations:

L = ;0V-'SC fEq 3.771

D = +9V:SC_L (Eq 3.78)

VelociW can be changed into term,, of Mach number, M. and the speed of sound, a.

V: = M:a" (Eq 3.79)

The lift coefficient, CI, is simply a function of the angle of attack of the vehicle, c_.

Ct = 2or (Eq 3.80)

The reference area for lift is the base area of the vehicle, Sb. For the Gryphon, Sb= 269.02

ft 2 .

Thus, the final equation for lift is:

L = pM2a2Sbo_ (Eq 3.81)

Drag is more difficult to calculate. There are several types and sources of drag. Of

primary concern to the Gryphon are the pressure foredrag of the rocket body, the drag due
to lift, and the drag from the vertical tail. Other sources of drag are interference drag, skin

friction drag, and base drag of the rocket. The total drag is the sum of the drags due to
each item listed above. Directly, the total drag coefficient is the sum of the drag coefficients

due to each type of drag.

C d = c_ +Car +Ca, +%, + %, + Cd_ (Eq 3.82)

The drag coefficient due to pressure foredrag is taken from Figure 3.7. This graph
shows the drag coefficients of cones of various thicknesses as functions of Mach number.
This value will be called X in the drag equation. The pressure foredrag uses the base area
of the rocket as its reference area. The Gryphon has a half-cone angle of 30 °.
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Figure 3.7 Drag Coefficients of Cones at Supersonic Speeds
[Reference 94]

The drag coefficient due to lift is a function of angle of attack. The reference area

for this type of drag is also the base area of the rocket.

cd _ = 0t2 (Eq 3.83)

The drag coefficient from the vertical tail is raken from supersonic wing theory and
is a function of Mach number. The reference area of the tail, STall, is the area of the tail

along its chord. STall for the Gryphon is 112.5 ft2. The drag coefficient of the tail Cdt, is

computed using the formula:

4 (t_/'-
Cot =4M2-1\ C /

(Eq 3.84)

Where tm/C is the maximum thickness to chord ratio for the vertical tail. In the case of the

Gryphon, this value is 0.10.

The interference drag, skin friction drag, and the base drag were accounted for by

adding an error factor of twenty percent additional drag.

The final equation for drag is:
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(Eq 3.85)

where the value X is obtained from Figure 3.5.

See Appendix B for a listing of lift and drag values for Mach numbers from 1.5 to 8.0 at
angles of attack from 2 ° to 18 ° for altitudes of 50,000 feet, 75,000 feet, and 100,000 feet.

The supersonic drag polar is shown in Figure 3.8.
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Figure 3.8 Supersonic Drag Polar

3.6.3 Center of Pressure

Another aerodynamic factor that was important to the design of the vehicle was the
location of the center of pressure (CP). The CP is the point of acuon of the aerodynamic

forces acting of the Gryphon--that is, the lift and drag can be taken as point forces acting at
the CP.

For rockets, the center of pressure can be estimated by the location of the center of

the projected area. Most rockets, Gryphon included, have the CP ahead of the center of

gravity. With the CP ahead of the center of gravity, the vehicle is inherently unstable. The
result of this instability lead to the consideration of various control mechanisms, including

aerodynamic control surfaces. Table 3.10 shows the CP locations for each stage of the

Gryphon. One can see that the CP is forward of the center of gravity for each stage.
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Table 3.10 Center of Pressure Locations

Center of Pressure Center of Gravity

Stage l, 2, 3, ANC 30.74 26.92

Sta[e 1, 2, 3 40.41 27.44

Stage 2.3 59.37 40.12
State 3 73.47 65.34

Note: In Table 3.10, measurements are in feet from the base of the stage 1 nozzles.

3.6.4 Control Surfaces

Several of the design considerations included aerodynamic lifting and control

surfaces to help control the Gryphon's attitude during the drop from the Eclipse and the
initial pull up after first stage _gnition. Three concepts were considered and analyzed for

possible use: a delta wing lifting surface, winglet/canard pairs for pitch and roll control,
and a vertical tail for yaw control.

The delta wing was designed to incorporate control surfaces that would aid in
orientation control during the drop and subsequent pull up maneuver. It had the added

advantage of providing lift, thereby reducing total fuel weight. However, the delta wing
was found to be very heavy, compromising the possible savings on fuel. Moreover, it was

very expensive, which hampered the Gryphon's ability to compete with other launch
vehicles.

Since only control surfaces are necessary to keep the vehicle's attitude in check,
winglets and canards were the next logical step. They would keep it properly oriented
during the drop and pull up maneuvers. The winglets were to be mounted on the SRBs,
while the canards were to be attached to the interstage hardware between stages two and

three. Vertical tail fins were added to allow control of all three body axes.

The winglets were discarded for the following reasons:

weight and cost were too great
attachment to SRBs was very difficult
The added area at the back end of the vehicle shifted the center of

pressure (CP) far enough back to cause a severe pitch down motion
during the drop

The canards were discarded for the following reasons:

• Roll analysis showed that the vehicle was stable enough in roll to not

require roll control during the drop maneuver, despite the turbulent
boundary layer around the SRBs.

weight and cost too great

are examples of the lifting and control surfaces

ID

Shown in Fig. 3.9
considered and discarded.
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Figure 3.9 Control Surface Designs:
Delta Wing (left); Winglets and Canards (right)

The vertical tail was retained because the vehicle is unstable in yaw, requiting active

yaw control during the drop maneuver. The tail, shown in Figure 3.10, was designed to
counteract yaw moments created by an unsteady drop or cross winds experienced during

the drop. The tail is locked in the no moment (straight ahead) direction once the rocket
motors fire. The cross section for the vertical tail is that of a 10% thick diamond, and the

thickest point is at the quarter-chord point. The tail is triangular in shape, having a 15 ft
base chord length and a 15 ft height. This gives the leading edge a sweep back angle of
45 ° . The entire tail is deflectable, with the pivot point nine feet from the base of the first

stage rocket nozzles.

Figure 3.10 Control Surface Designs: Vertical Tail

The amount of force generated by the tail is given by the following equation:

Fr,it = +pST_ilV2Ctr,_

The yaw moment created by the tail is:

MTat I = FT_,L.(Distance from tail to CG)

(Eq 3.86)

(Eq 3.87)
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The angular acceleration in yaw is then found from:

YlT_,,= I<,,,[3 (Eq 3.88)

The yaw anole is then found by inte,.zratine twice

[._= }_: (Eq 3.89)

• tNote: (Eq .,.8)) assumes initial c_,ndilion,, of [3 = () and _<, = 0.

Table 3.11 show', thc ctwrcctablc yaw deviations. The values in Table 3.11 assume

a drop velocity of 7.33 [l <.from 411.(I{1(1tcet. The table uses a lift coefficient of 0.8 for lift
(horizontal) from the vertical tail. The table also uses moment arms of 17.92 feet when the
ANC is attached, and 18.4-4 fcet once the ANC is detached.

Table 3 11

Time of Correction

(sec)
Angle Correctable

With ANC (de_)

Correctable Yaw Angles
Angle Correctable

Without ANC (deg)

l 0.032

2 0.128
0.289

0.034

0.136

0.306

0.5444 0.514

5 0.802 0.851

6 1.156 1.225

7 1.573 1.668

8 2.055 2.178

10

2.601

3.211

2.756

3.403

3.6.5 Aft Nozzle Cover Design

The aft nozzle cover (ANC) was designed to reduce the drag of Gryphon while it is being
carried by the launch plane. See Appendix B for a four view diagram of the ANC. Since

the ANC'is dropped into the ocean following separation from the plane, the goals for this
design were to make it as light as possible and as inexpensive as possible. Initial designs
have the ANC being constructed out of reinforced molded fiber glass, this should reduce

weight, while giving the ANC enough strength to support its own weight and any loads
incurred during the plane flight, separation and drop.

3.7 MISSION TIMELINE

The Gryphon will be assembled in three phases that will each take 4 weeks to

complete; leading to a total of 12 weeks of construction and assembly. The flight and post
flight operations will take a total of 5 weeks; therefore, the overall length of a mission will
be 17 weeks.

The first building stage involves receiving the motors, building the individual
stages, and then doing pre-mate testing before moving on to the integration stage. The
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second building stage is when the stages are integrated together and the mated vehicle is

tested before the payload is added. During the third building stage, the payload is received
and mated to the vehicle itself. Final systems tests are then performed and the fairing is

mated to the vehicle.

After the vehicle i,,,c_m_pteted, there is a launch readiness review to ensure that the

vehicle is ready, and the ,,'chicle i_, then mated to the launch aircraft during the hours

preceding launch. Fuel will hc manufactured on site and added to the vehicle after it is
mated to the aircraft. Final te_ts arc Men done on the mated vehicle. During this period the

crew is being briefed and the vchic!e Is then ready for launch.

Immediately after the t:mnch, the ilight crew is debriefed. There is a post flight
analysis leading to a post tli,.:,ht review. During this time, facility maintenance is also

performed. The individual m(,,_,ion 1,, then complete. See Appendix B for a pictorial view
of the mission timeline.

3.8 FUTURE WORK

3.8.1 Trajectory Optimization

Currently, the Gryphon's ascent trajectory is not optimized. This is critical to maximizing
the Gryphon's payloads. A computer model of the Gryphon was generated for use with the
Simulation and Optimization of Rocket Trajectories (SORT) program from Lockheed

Engineering and Sciences Corporation. However, the trajectory has not been successfully

optimized.

Additionally, as the Gryphon's design specifications evolve, subsystem weights
and aerodynamic data will change. Since this information is critical to modeling the ascent,

a new trajectory must be calculated for each new design.

3.8.2 Orbital Maneuvers

When deploying multiple payloads to GEO. the orbiter might need to remain in GTO for
multiple orbits before it reaches the appropriate GEO insertion position. A potential GEO
insertion point is reached every time the orbiter reaches apogee on its GTO; this point is
rotated 159.2 ° around the circular GEO from the previous insertion point. Given this lack

of control over the insertion points subsequent to the first, a large number of GTO orbits

may be required before reaching the proper position. This is not optimal, as the Gryphon
has limited power supplies. To decrease the time interval between multiple GEO payload

deployments, the remaining fuel in the third stage RLIOA-4 can be used to rotate the

geotransfer orbit.
If a radially directed force, Fr, is applied to the orbiter, the argument of perigee, _,

will change according to (Eq 3.90):

do) _ x/l- e2

dt ex/_ F_ cosy (Eq 3.90)

Note: dc0/dt is maximized at perigee, i.e. when v = 0 °.
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Thisessentiallyrotatestheorbit aboutthecenterof the Earth, and can be controlled
so as to move the apogee of GTO to the desired position of deployment for the second

payload. The payload can then be deployed on the second orbit.

3.8.3 Aerodynamics

Currently. all aerodynamic data i,', ba_,ed on calculations from theory. To make high-

fidelity predictions of the Gryphon", aerodynamic behavior will require testing of a detailed
,,tale model in a super,,onic wind tunnel. This would give a truer picture of the

aerodynamic forces and moment,, acting on the G_'phon.

The vertical tail ab, o i', nnt _plillllzcCl. An optimally sized tail would increase yaw
control and reduce drag and weight. Y:tw-roll coupling effects from the tail have not been

studied in detail, a _,tep that _,_uld certainty t_e necessary to accurately control the Gryphon.
Also, an interference analysis ol the vertical tail and the airplane attach structure needs to be

performed

The aft nozzle cover and payload shroud would also benefit from optimal sizing,

which would reduce drag and weigl{t. ANC separation techniques also must be studied so

as not to damage the rocket nozzles or SRBs upon separation.
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4.1 INTRODUCTION

The single purpose of any rocket propulsion system is to provide necessary thrust for the
delivery of payload to a determined destination. In order to accomplish this task the

system will consist of engines, propellant feed systems, and propellant tanks. This chapter
will introduce the design of the Gryphon's propulsion system and the accompanying

systems required to get the selected payload into orbit.

When designing the Gryphon's propulsion system three goals were recognized.

The first goal highlights the safety of the vehicle. This space booster is attached to an
aircraft (Eclipse) carrying crew members. Dangers of the different propellants had to be

explored to minimize potential hazards to these humans and the airplane. The second
goal of the propulsion system was that it would have the minimal amount of complicated
connections with the aircraft. The third goal involves weight. The vehicle weight limit

was designated to be 500,000 lb. This required a study into high performance engines
that would give as much thrust as possible for minimal propellant. Consequently, the
final design resulted in the Gryphon's three stage system composed of: (1) two Castor
120s and one LR91-AJ-I 1, (2) two LR91-AJ-I Is, and (3) one RL10A-4. The following
discussion describes the final configuration that was selected by the propulsion design

team and the process that guided the team members to that decision.

4.2 ENGINES

The most basic structure of a propulsion system begins with its engines. Engine choice

depends on several factors: the selection of fuel, the performance required from the
system, the weight of the entire system, and cost. These four factors determined the final
selection of engines to be the Morton Thiokoi Castor 120, the Aerojet LR91-AJ-I 1, and

the Pratt & Whitney RLIOA-4.

4.2.1 Morton Thiokoi Castor 120 Solid Fuel Rocket Engine

The purpose of the first stage engine is to produce enough thrust to overcome the large
pull of gravity close to the Earth's surface. Because the vehicle is so heavy and contains
the entire staging system, work horse solid engines are used instead of the more efficient
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liquids. These solid engines are simpler in design than their liquid counterparts and are
more easily handled as strap-on engines than the liquids.

The easiest decision made by the propulsion design team was the powerful engine

to use for the first stage. Orbital Sciences had suggested the Thiokol Castor 120. This

engine was developed as a cooperative effort between Orbital Sciences and Thiokol
Corporation specifically with the Pegasus and Taurus programs in mind.

performance

The Castor 120 was developed as a hi,.zh reliability, expendable, low cost engine. The

engine's main purpose wa_ _ccn a._ first_',tage or strap-on type usage. The basic idea was
to function in a ship-stack-',hoot ,,cenario. This scenario allows for fast assembly and
modification of any space vehicle _o fit to a particular payload. Industry's objective with

this engine was to shoot for 99.9% reliability and to cut production costs by 50%. This is
accomplished using new technology for case construction as well as a simplification in

manufacturing.

The following data provides a performance overview of the Castor 120. All data
was obtained through the cooperation of Orbital Sciences and Thiokol Corporation.

Table 4.1 Castor 120 Engine Parameters
403,759Average Vacuum Thrust (lb)

Specific Vacuum Impulse (lbf-sec/lbm)

Expansion Ratio
A_:tion Time (sec)

Total Engine Vtei_ht (lb)

Propellant Weight (lb)
Length (it)
Width (ft)
Cost ($)

292

17:1

78

117,687

108,159
30

10

4,500,000

The first step in producing a Castor 120 is the mixing of the propellant. The

propellant is a base of hydroxy-terminated poly-butadiene (HTPB) with a short mix cycle
and has a Department of Defense classification of 1.3 (non detonable). Once the

propellant has been mixed and poured into the mold, it is then allowed to cure. When this
process is complete, the mandrel is removed and the inner layer of the grain is machined
and conditioned for proper use. The Castor 120 is built with a carbon epoxy case
structure. This case is manufactured through a continuous winding process which cuts

manufacturing time by 65%. After the case is wound, the motor is fitted. The last step
involves installation of the igniter and final inspection before shipment (See Figure 4.1

for Castor 120 components).

Thrust Vector Control

The Castor 120 motor may be fixed or vectorable. The vectorable version utilizes a cold

gas blow down system for thrust vector control. This system employs helium to control
the hydraulic actuators. The actuators allow the engine to rotate about a flex bearing +5*
from the home position in all 360* of its exit plane. Sensors located on the Gryphon

analyze position and then send signals through the system computer to the actuators on
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the Castor engines. This signal is then sent through the hydraulic system to maneuver the

nozzle into the proper orientation.

17:l

Pyrogen Expansion

_gmter Ratio Nozzle

Radial TP-H1246. Conical Radial

Slot Propellant Slots Slots

Figure 4.1 Castor 120 Propellant Grain and Engine Components

I_nition and Burn

The Castor 120 utilizes a pyrogen igniter to start its combustion. The igniter receives a

28 V impulse from the flight computer as the start up signal. Once ignition has occurred,
combustion is unalterable and will continue burning until all fuel has been consumed.

The grain of the Castor is manufactured in a progressive burning, cylindrical shape.
There is a radial slot cut into the core at the igniter. Towards the nozzle end of the grain,
conical slots are cut followed by radial slots located directly forward of the throat. (See

Figure 4.1)

Conclusion

The Castor 120 is the solid, workhorse engine of the Gryphon's propulsion system. The

objectives of its design coincide with the description of the space booster's ship-stack-
shoot mission. An engine was needed that would be easy to manipulate, cost effective,

and expendable. The simplified manufacturing process causes this engine to be
affordable and readily available; therefore, we concluded that it was the perfect choice for

our lead-off leg in the propulsion system.

4.2.2 Aerojet LR91-AJ-I 1 Liquid Fuel Rocket Engine

The Gryphon space booster uses a storable liquid fuel propulsion system in the flu'st and
second stages. This turbopump-fed rocket engine is designated as the Aerojet LR91-AJ-
11 and develops about 105,000 lb of thrust in vacuum. The LR91 uses storable,
hypergolic liquid rocket propellants. The fuel is Aerozine-50 which contains
approximately 50% hydrazine and 50% unsymmetrical dimethylhydrazine (UDMH).
The oxidizer used with these fuels is nitrogen tetroxide (N204). The engine itself
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consists of various subsystems. These include the inlet pump suction lines, turbopump

assembly, pump discharge lines, thrust chamber valves, gas generator system, fuel and
oxidizer injector, thrust chamber, ablative skirt, roll control assembly, autogenous

pressurization system, control and instrumentation harness, and engine frame (See
Appendix C for diagrams 1.

performance

The fuel and oxidizer are ducted from the storage tanks to the LR91 through the suction
lines. The fuel is then directly brought into the turbopump assembly. This turbopump is

driven by a 2000 horse-power turbine and pressurizes the propellants by more than 1000

psi. Because of the tremendous increase in pressure, the propellants are forced through
the discharge lines and into the thrust chamber. At this point, valves are used to control
the flow of propellants into the thrust chamber for the purpose of starting and shutting
down the engine. The LR91 thrust chamber valves are not used for throttling since the

engine does not have such a capability. Some of the propellant is ducted from the
discharge lines to a gas generator. This generator is used to drive the turbine which
maintains proper propellant flow rate (See Table 4.2). The combustion, which takes

place in the thrust chamber as a result of mixing the propellants, produces a gas with
pressure greater than 800 psi and temperature in the range of 5000 °F.

Table 4.2 LR91-AJ-II Performance Parameters

Thrust Vacuum (lb)

Specific Impulse (sec)
Mixture Ratio

Expansion Ratio
Chamber Pressure (psia)
Service Life-Nominal (sec)

Oxidizer Flow Rate (lb/sec)

Fuel Flow Rate (lb/sec)

Weight (lb)
Height (in)
Width (in)

Cost Per Engine ($)

105,000
316

1.86

49.2:1

860

247
213.9

12.5

1298

110

64

1,200.000

Pressurization System

Maintaining the right level of propellant tank pressurization during engine operation is
very important for the pumps to operate properly and for maintaining the structural
integrity of the propellant tanks. In the LR91, the propellant tanks are pressurized on the

ground, before engine start-up, using high pressure gaseous nitrogen. Just before lift-off,
the nitrogen tanks are disconnected and the propellants tanks are sealed. In the case of
the Gryphon, propellant tanks are pressurized on the ground right before the Eclipse takes
off with the Gryphon under its belly, and sufficient pressure is maintained until the

Gryphon is launched about three to five hours later. Initially this provides sufficient inlet
pressure for the engine pumps to function. However, during operation, there is a pressure
loss because propellants are constantly being removed from the tanks. To compensate for
this loss, an autogenous (self-generating) system is used. This self-generating system
uses cooled gases from the turbine inlet to pressurize the fuel tanks. The oxidizer tank is
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pressurized by oxidizer which has been heated to a gaseous state by a heat exchanger in
the turbine exhaust.

Electrical Systems

The main purpose of the instrumentation harness on tile LR91 engine is to carry' signals
from various engine transducers. These transducers measure parameters such as

propellant tank pressure, thrust chamber temperature, propellant flow rate etc. These
signals are then convened using adapters and AC/DC converters and conducted through
the instrumentation harness to tile tqight control computers. The flight computers then

relay this engine performance data to ground receiving stations.

Thrust Vector Control

Pitch and yaw thrust vector control is achieved by pivoting the thrust chamber on a
gimbal bearing mount. The gimba[ assembly allows the thrust chamber to move 3.5 ° in
both pitch and yaw directions. With snubbing and over travel, the thrust chamber is able
to move a maximum of 4.9 ° from a neutral position. Gimbaling the two LRgl thrust
chambers in the second stage can provide control in all three axes. However, in the first

stage there is only one LR91 thrust chamber. In this case, a separate source of thrust for
roll control is usually necessary, since one thrust chamber can only provide thrust for

pitch and yaw control. This thrust is then provided by directing the turbine exhaust
through a nozzle. This nozzle can develop 860 lb of roll control thrust and can be
swiveled +35 ° from a neutral position. In the case of the Gryphon, the first stage

configuration is such that the LR91 operates simultaneously with the Castor 120 solid
rocket boosters. These boosters have gimbaling capabilities; therefore, the LR91 turbine
exhaust can be directed straight down for additional thrust and does not have to be used
as a roll control thrust vector device.

Engine Operation

The LR91 engine does not require thrust control systems because it is hydraulically
balanced. The oxidizer flow rate is preset at 213.9 lb/sec, while the fuel flow rate is

preset at 120.5 lb/sec. The gas generator of the turbine is hydraulically set for a steady-
state level thus establishing a set propellant flow rate and constant turbine speed over a
wide range of downstream pressures. Although this leads to greater reliability and
functional simplicity, there is one design tradeoff. The LR91 cannot be throttled to a
desirable thrust level. The engine also does not require an ignition system since it uses

hypergolic fuels i.e. the fuel and oxidizer combust spontaneously upon contact. The
absence of an ignition system is beneficial since it makes the engine lightweight and less
complex. The LR91 engine has demonstrated the ability to shutdown and restart again in
ground tests; however, this capability is still in the developing stages and has not been
used in practice. The shutdown command is automatically given when decreased
acceleration is detected due to fuel exhaustion.

To begin engine operation, prevalves which are located in the tank-engine
interface are opened. These valves are used to prevent propellants from entering the
engine before they are required to do so. When these prevalves are opened, the engine is
filled with oxidizer and fuel and electric signals are readied to receive startup signal.

Releasing the prevalves also leads the engine to the bleed process. This process is
necessary to insure that no air is left in the propellant lines. Once the bleed process has
begun, about 1200 cc of propellant is flown over board per minute through a drain line
until the process is stopped by starting the engine.
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To start the engine, a 28 V DC signal is received from the flight computers and

applied to a solid propellant cartridge mounted on the turbine inlet. This causes the
turbine to accelerate and start fuel and oxidizer pumps. It takes about 0.9 seconds for the

thrust chamber valves to completely open. As soon as the valves begin to open, oxidizer

is pumped into the combustion chamber. The fuel is first directed into steel tubes used to
cool the combustion chamber walls, and then the liquid is allowed into the fuel injector.
As fuel and oxidizer arc finally mixed in the thrust chamber, there is hypergolic
combustion. A small amount ot t_ropellant is also forced into the gas generator. The gas

generator begins to operate and supplies _as to run the turbine. This completes the
starting procedure and the engine reaches itsnormal operating level within approximately
one second of receiving the ,tart signal.

4.2.3 Pratt & Whitney RLIOA-4 Liquid Fuel Rocket Engine

The third and final stage of the Gryphon's propulsion system is used only for

Geosynchronous Transfer Orbit (GTO) missions. This stage carries the payload from
Low Earth Orbit (LEO) to the higher GTO For a third stage engine the choice had to

have high performance characteristics as well as an exceptional reliability rating. Several
engines were considered which utilized solid fuels, storable liquid fuels, and cryogenic
fuels. Our final choice was the Pratt & Whitney RLIOA-4.

One category of motors that was considered were the Orbus motors from United
Technologies. These have been used in upper stages as well as in maneuvering vehicles
for satellites. Unfortunately, the Orbus motors had a higher thrust rating and a lower

specific impulse than could be used for the final stage. This last reason caused them to be

disregarded in the analysis. (See Table C.I)

A second engine that was considered was the Castor XX. This is a smaller engine than
the Thiokol Castor 120. It produces about half the thrust and burns for a much longer
time than the 120. However, the performance of this engine was still too low to be

effective for the third stage. (See Table C.1)

The final third stage choice was the Pratt & Whitney RLIOA-4. The earlier A-3 model

was the original selected engine, but through numerous iterations we determined that only
one A-4 could take the place of two A-3 engines. As a cost saving measure and

reliability factor we decided to use one A-4. (See Table C.I)

performance

The RL10A-4 is a regeneratively cooled engine that is fed by a turbopump system. It has

a single combustion chamber, and the updated model has a 20 inch extension on the
nozzle skirt which deploys prior to engine start. All of the A-4's valves are actuated with
helium, and the helium supply is controlled by electronically actuated solenoids. This

engine is flexible for use because it is vectorable and can withstand multiple starts. These
last two points combined with its well known reliability made it the most attractive of all
the engines under consideration. The only drawback is that it consumes cryogenic fuels.
Both the Gryphon and Eclipse Design Teams wanted to avoid liquid fuels, especially

cryogenics, as much as possible. However, the RLI0 was seen as the best alternative.

(See Section 4.2.4 for details)
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The following is a list of performance parameters on the RL10A-4. All
information was obtained through the courtesy of reference 133:

Table 4.3 RLIOA-4 Basic Engine Parameters

Thrust ILbl

Speciiic Impulse {,,ec
Mixture Ratio

20,800

449

5.5:1

Expansion Ratio 84:1
Chamber Pressure Ipsia'_ 564
Nominal Run Time _,,ec) 380

370Engine Weight {lb}

Lcnsth (tt)
Width (ft) 4

Cost {$} 1 200,000

The RLIOA-4 requires delicate handling because of its propellants. Cleanliness is

required, and purging of the fuel and handling systems is necessary prior to use. If any
foreign matter is encountered by the propellants, an explosion could result. The purging
is accomplished by running helium through all lines and chambers before the propellants

encounter the engine system.

Operation and Tank Pressurizatign

Upon start up, the propellant tanks have been pressurized with helium. A 28 V signal is
received from the system computer which allows the propellant supply valves to open.
Small amounts of liquid are allowed into the spark chamber where the igniter activates
for at least one second. This allows the combustion process to begin which starts hot

gases flowing through the turbine to turn the shafts of the oxygen and hydrogen fuel
pumps. Some of this hot turbine gas is bled off and used to pressurize the liquid
hydrogen tank. As the liquid oxygen moves into the combustion chamber, some of the
liquid is removed and allowed to change into a gas with the help of a heat exchanger.
This gas is then rerouted back to the liquid oxygen tank and is used as the pressurizing

gas, see Figure 4.3.

Thrust Vector Control

The thrust vectoring on the RLIOA-4 is accomplished through a universal bearing system
like the one discussed for the Castor 120. The gimbal assembly is composed of (1) a

pedestal, (2) a conical engine mount, and (3) a spider block. This assembly enables the
engine to be gimbaled +4 ° from its neutral position in a square pattern (See Figure 4.2).
This allows for control over pitch and yaw maneuvers of the vehicle.

Conclusion

The Pratt & Whitney RLIOA-4 is a versatile engine with excellent performance
characteristics. Its performance and reliability ratings are impressive, and the

vectorability makes it even more attractive. By comparison, it overwhelmingly out-
classed any engine that we considered and made it possible for the Gryphon to reach its

payload goals.

63



Chapter4 - Propulsion

\
\

Z
Conical Engine

Mount

Figure 4.2 RL 10A-4 Gimbal Mount

4.2.4 Conclusion

The Gryphon's propulsion system had several constraints that led to the final choice of
engines. The first constraint was a safety concern by the Eclipse Design Team against
using cryogenic propellants. Due to the hazardous nature of these chemicals, the contract
between the two groups stated that usage of cryogenic propellants was to be kept to an
absolute minimum. The second constraint was simplicity. This design project was given

a completion time of four months. In that amount of time, a complete propulsion system
had to be constructed with as much detail as possible. This made an entirely solid

propellant system very attractive. A solid propellant system would make the design job
much easier because each engine could be treated as a single unit. It would be possible to

avoid designing fuel tanks and feed systems as well as baffles, diaphragms, insulation,

and pressure systems. A final constraint was the concern of handling different kinds of
propellants. Solid propellants are the easiest to handle because they are all prepackaged.
Storable liquids are hazardous but can be safely used if proper precautions are observed.
Cryogenic propellants can also be used safely, but their boil-off ability made them
unattractive for a delay of four hours while the plane flies to the designated drop zone.
All of these factors were considered when this propulsion system was being designed. It
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was only through many iterations that the Castor 120, LR91-AJ-I 1, and RLIOA-4 were
chosen.

4.3 STAGING

The staging of a booster is a critical part of the propulsion system. It is an integration of
every piece of hardware and cverv pound of matter that composes the vehicle. The three
main variables of staging calculation,', are weight, velocity, and specific impulse. It is the
combination of these numbers that permits or denies a given payload to reach the desired
orbit. The following discussion is a prcsentation of the methods and calculations used to

determine the staging configuration for the Gryphon.

4.3.1 Weight

The overall design goal of the Gryphon was to place 8,000 lb into GTO with a gross lift
off weight of less than 500,000 lb. Three stages are used to achieve this goal, not
including the launch aircraft. The first two stages reach Low Earth Orbit (LEO), and the
final stage takes the payload to Geosynchronous Transfer Orbit (GTO).

Overall Weight

The Gryphon has a gross lift off weight of 465,059 lb. This is the weight of the Gryphon
at the time of stage one ignition. Table 4.4 is a breakdown of the weight by stage. The

following paragraphs describe the weights of each stage.

Table 4.4

Payload

Gross weight stage 3

Gross weight stage 2

Gross weight stage 1
Gross lift off weight

Overall Weights
5,575 Ib

12,748 lb

173,235 Ib

273,501 lb
465,059 lb

Stage 1
Stage one consists of an Aerojet LR91oAJ-II and two Morton-Thiokol Castor 120
engines. The engines require 242,877 lb of propellant. The propellant is divided into
26,703 lb for the LR91 and 216,174 lb are for the Castor 120s. A total of 651 lb of liquid

propellant for the LR91 remains unused.

The first stage weighs 30,624 lb dry (no fuel). The engines are 18,372 lb, 1,300 lb
for the LR91 (nozzle and thrust chamber) and 17,072 lb for the two Castor 120s (casing
and nozzle). Inert weight is 12,252 lb. Inert weight is structural materials, tanks, etc.,

engines are not included, and this inert weight remains with the stage through burnout.
Included in this weight is 6,200 lb for the payload shroud. Although the payload shroud
is not physically located on the first stage, its weight is included there because it is
jettisoned shortly after first stage burnout. This fact is used by the performance
spreadsheet described in Section 4.3.3. Other inert weights on the first stage are the tanks
for the LR91, a vertical tail and the struts connecting the two Castor 120s to the center
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body. Table 4.5 lists the overall weights for Stage I, see Chapter 1 for a detailed
breakdown of the components and weights of Stage 1.

Liquid

Oxygen

f

Liquid

Hydrogen

f

Oxidizer

Pump

L
Fuel Pump

Turbine

Chamber Nozzle

Figure 4.3 Propellant Flo,_ Schemat;," for RLIOA-4

Table 4.5 Stat e 1 Weio.ts

Dr_ Weight 30,624 lb

Propellant 242,877 Ib
Gross Stage Weight 273,501 lb

Stage 2
Stage two is powered by two Aerojet LR91 engines. Each engine weighs 1,300 lb. The
engines require 164,000 lb of propellant of which 4,000 lb is unused. This unused
propellant is caused from losses of liquid trapped in fuel lines and adhering to tank walls.
The dry weight of the stage is 9235 lb. The fuel tanks weigh 2,500 lb. The gross weight
of the stage is 173235 lb. The Gryphon will be in a LEO upon stage two burnout. Table
4.6 lists the overall weights for the second stage, see Chapter 1 for a detailed breakdown

of the components and weights of stage two.

Table 4.6 Sta{ e 2 Weights

Dry Weight 9,235 lb l

Propellant 164,000 lb
Gross Stage Weight 173,235 lb

66



University of Michigan Aerospace Project Gryphon

Stage 3
Stage three is the upper stage that boosts the payload from LEO to GTO. The stage is

powered by one Pratt & Whitney RLIOA-4 engine. The engine weighs 370 lb and has
8,246 lb of propellant, of which 201 lb are unused. Similarly to Stage 1, this unused

propellant is due to trapped liquid in lines and adhering to walls. The stage carries a
payload of 5575 lb which is less than the 8000 lb goal. The reason for the reduction in
payload will be discussed in the paragraph below. The dry weight is 4502 lb. Included in
the third stage is the avionics, power and thermal control system. The stage has a gross

weight of 12.748 lb. Table 4.7 lists the overall weights for the third stage, see Chapter 1
for a detailed breakdown of the components and weights of Stage 3.

Table 4.7 Stage 3 Weights
Payload 5.575 lb

It

Dry, weight 4,502 lb

Propellant 8,246 lb
Gross Stage Weight 12,748 lb

4.3.2 Performance

Velocity Requirements

The velocity Gryphon is required to achieve is dictated by its mission. The basic mission
consists of launch to LEO, followed by the third stage boosting the payload into GTO. In
order for the Gryphon to be in LEO after second stage burnout it must reach the orbital

velocity for this altitude. For LEO this velocity is 24,934 ft/s, corresponding to an
altitude of 250 nautical miles. The velocity increment needed to enter GTO from LEO is
an additional 7934 ft/s. This velocity is only provided by the third stage. For missions to

LEO the third stage engine and propellant system is omitted and replaced by payload.

The velocity that a rocket achieves in ideal conditions (no drag, no gravity) depends on
the Specific Impulse of the engine (lsp) and the Mass Ratio (R)--(See Table 4.8) which is
defined by equation (4.1). Since the Gryphon is a staged rocket the velocities of each
stage are added together for the final velocity. Velocity increment AV is related to Isp

and R by the following equation:

R- Mo (Eq4.1)

Me

AV = Isp x g x Ln(R) (Eq 4.2)

where Mo and Mf are the initial and final masses of the stage and g is the acceleration of

gravity equal to 32.174 ft/s 2. The lsp, in units of seconds, is a measure of engine

performance and efficiency. Isp is total thrust divided by weight flow:
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l p - Thrust + × g

Table 4.8

I:_p (sec )

Engine Specifications

Thrust (lb) Weight Flow (lb/sec)

Castor 120 291 q 404,000 1,386

LR91 _ t 6 I()5,000 334

RL 10A-4 449 20,800 44.5

(Eq 4.3)

Because specific engines have been chosen, Isp is fixed. Velocity is added or

taken away as needed hv varying the mass ratio. The speed is increased by adding

propellant or removing'payload or inert weight, and it is decreased by removing
propellant or increasing payload or inert weight. However, adding or subtracting weight
from one stage affects the performance of the earlier stages. To keep track of these
changes a spreadsheet was programmed. This spreadsheet will be explained in more
detail in Section 4.3.3. Table 4.9 lists the Isp, mass ratio and ideal AV for each stage.

Table 4.9

lsp (see)

Sta_e Performance
Mass Ratio Ideal AV (ft/sec)

Stage 1 295 2.09 6,983

Stage 2 316 6.07 18,335
Stage 3 449 1.78 8,352

Ideally, the Gryphon's engines provide enough velocity for the LEO and GTO
requirements. However, the Gryphon will experience velocity losses due to gravity, drag
and atmospheric effects. Rising against a gravitational field, the Gryphon will lose
kinetic energy as its gravitational potential energy increases. For a rocket directly

opposing gravity (vertical flight) this energy conversion will cause a negative velocity
increment:

AV = -g x T b (Eq 4.4)

where Tb is the burn time. The acceleration from gravity is considered a constant during
the burn time. Equation (4.4) gives the maximum velocity loss caused by gravity. If the
rocket is not in vertical flight, the gravity loss is calculated using a specific angle from the
vertical. This is determined by the trajectory, and a more detailed analysis of this loss

may be seen in Chapter 3.

During Stage l, the Gryphon must also overcome drag. Drag will reduce the

velocity of the first stage at burn out, the second stage and third stages are assumed to
operate in a vacuum. Precise calculation of the drag loss requires detailed knowledge of
the variation of drag with time. This information was unavailable during this design

phase, so a value was assumed. The amount of loss assumed during the design process
was 750 ft/s. This figure was representative of the drag loss of ground launched rockets.
Air launching means the Gryphon starts above 75% of the atmosphere which
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considerably reduces the drag loss compared to other launch systems. An empirical
method for determining the drag loss was found; however, its results were not plausible,
see Section 4.3.3.

Atmospheric pressure also causes velocity to be reduced. More specifically it
lowers thrust and consequently lowers lsp. The thrust of a rocket engine is given by the

following equation:

T=[,. _V..I+[(P -P )_A ] _Eq4.51

where m is the mass flow rate. V e i_, the exhaust velocity, Ae is the exit area, Pe is the
exhaust pressure, and P. is the ambient pressure. The Isp's specified earlier are measured
in a vacuum, P_= 0. At the launch altitude of 40,1)00 It, P_: 0. Calculation of velocity
loss is difficult due to the ;'ariation of P_ with altitude and the variation of thrust

produced by the solid rocket boo,,ters. A. method was found to estimate the loss from a
ground launched rocket. The total loss for a ground launch was no more than 51)0 ft/s.

Again the Gryphon has the advantage of launching at an altitude where the pressure is
25% that of sea level. This effect was combined into the assumed drag term discussed
above.

Velocity Gains

Two effects of the launching technique improve the Gryphon's performance. The first is
the rotation of the Earth. Launching the Gryphon eastward provides an additional 1,342
ft/s. The actual amount depends on the launch latitude and the azimuth angle of the
trajectory. Launches to polar orbits would not have this benefit and would have a
reduced payload as a result.

The Gryphon also benefits from the velocity of its launch vehicle, the Eclipse.
The Eclipse and the Gryphon travel at a velocity of 733 ft/s prior to launch. The two
effects combine for a velocity gain of 2,075 ft/s.

Burn Time & Service Life

Burn time (Tb) is controlled by two factors, the service life of the engine and the amount
of propellant carried by each stage. The selection of Castor 120 solid rocket motors for
the first stage fixed the burn time of the first stage at 78 seconds. This is the service life
of the Castor 120. The amount of liquid propellant in the first stage is the amount

required to fuel the LR91 for the same 78 seconds.

The burn time of the second stage is limited by service life as well. The LR91
has a nominal service life of 247 seconds. At a weight flow of 334 lb/s each and a service
life of 247 seconds, two LR91s can burn 165,000 lb of propellant. This is the maximum

amount of propellant that can be used by the second stage. The propellant of the second
stage was fixed at 160,000 lb. This allows the engines to burnout and use thrust vector
control which will extend burn time before service life expires.

The burn time of the RLIOA-4 is controlled by the amount of propellant. The

RL10 burns propellant at a rate of 44.5 lb/s. There are 8,045 lb of usable propellant on
the third stage, resulting in a burn time of 181 seconds. Table 4.10 lists the service lives
and burn times of the engines for each stage.
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Table 4.10 Service Lives & Burn Times

Engine Service Life (sec) Bum Time tsect

RL 10A-4 38(1 181

247 239LRgl (stage 2/

LR9I (stage 1t
Castor 120

247

-'8

78

78

Acceleration-L0ads

Longitudinal acceleration loads, g-toads, of the Gryphon equals its thrust to weight ratio
at all times. Physically, one pound tt_rce will accelerate one pound mass at Ig. Table
4.11 lists the extremes of the thrust to weight ratio, which occur at stage ignition and

stage burnout. These are longitudinal g-loads only. Lateral loading requires the engines
Power Spectral Density i PSD) which was not available.

The g-loading at Stage 2 burnout is 6.65 g. This value exceeds the recommended
maximum value of 5.5. The high g-loading is due to the high mass ratio of stage two.
The LR91 is not throttlable, thus it produces the full thrust of 210,000 lb even when the

vehicle only weighs 31,558 lb. The structure of Stage 2 and 3 had to be designed to
withstand these higher g-loads.

Table 4.11 Thrust to Weight Ratios

Stage Ignition Burnout

1 i.96 g 4.10 g
2 1.10 _ 6.65 g

3 1.12 g 1.99 g

4.3.3 Methods

Perfgrmance Spreadsheet

The performance of the Gryphon is evaluated by solving equations (4.1), (4.2) and (4.5).
At first this was done by hand. It was a slow process and had to be repeated for the entire

vehicle if any changes were made. To save time and to keep a total of all weights, a

spreadsheet was developed. The program can be found in Appendix C. Given the
vehicle weight, mass of propellant, and lsp the program evaluates the mass ratio and
velocity of the vehicle. This program allows the operator to change the vehicle weight

distribution and quickly evaluate the results.

The program requires the following information for each stage:

Weight of the engines
Inert weight
Weight of the propellant
lsp of the engines
Weight flow of the engines
Flight angle (B)
Payload (third stage only)
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The program calculates:

• Initial weights

• Final weights
• Weight of unused fuel
• Mass ratio
• Burn time
• Structural coefficients

• Gravity los_,es
• Ideal velocities
• Final vctocitv of file vehicle

The program was modified for certain con,,,traints on the Gryphon. For example.
the burn time of the first stagc i,, fined at 78 second.', and is not calculated. It remains 7g

seconds regardless of any change', made. The program also adds 2.5% of the weight of
all liquid fuels to account for unused fuel.

The program does. however, have three drawbacks. First, effects from thrust
vector control cannot be calculated. The Ideal Rocket Equation, equation (4.2), assumes

that all mass expelled contributes to the velocity. Thrust vector control expels propellant
but does not contribute to the velocity of the rocket, i.e. it reduces lsp. The mass of the

fuel is present at the beginning of each stage but is not there at the end. There is no way
for the computer to calculate this reduction in Isp. Since the initial weight of the
propellant must be counted, an extra 2.5% of the total weight of the propellant is assumed
to remain onboard throughout the bum time.

The second drawback is caused by the payload shroud. The payload shroud is

jettisoned shortly after second stage ignition. Similar to the fuel used by thrust vector
control, its mass is present at the beginning of Stage 2 but not at the end. Once again its
weight must be counted in the program. The program assumes the payload shroud is

jettisoned along with Stage 1. For this reason its weight is included in Stage l's inert

weight.

The final drawback is the losses and gains from velocity. The program uses the

values for losses and gains assumed by the Propulsion Group. The drag loss is assumed
to be 261 ft/s. The program does not except any other aerodynamic data. The velocity of
the launch aircraft is assumed to be 733 ft/s, the figure stated by the Eclipse Design
Team. The Earth's rotation is assumed to contribute the full 1342 ft/s. The program does

not take into account the true launch trajectory.

There are definite drawbacks to this program, but it turned out to be a quick and

easy way to check hand calculations and to compare values calculated by other groups.
From the comparison with the Mission Analysis Group's trajectory calculation, it was
determined that the payload goal of 7,900 lb of payload to GTO could be achieved.

9.maamzma

A handbook (reference 109) contained a method of estimating the performance of a

ground launched rocket. When the method was attempted it failed to produce realistic
results. According to the results, the Gryphon would lose 5,500 ft/s due to drag and
1,700 ft/s due to gravity in the first stage alone. The final velocity of the first stage would
be -500 ft/s. Since this result made no physical sense it was disregarded. It is believed
that the method failed because the book assumed a ground launched trajectory. Many of
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the values used in computation came from graphs whose origin was unspecified. The
information contained in them may not have been applicable to air launched vehicles.

SORT

SORT is a Lockheed computer program that the Mission Analysis Group has obtained. It

is used to optimize trajectories for the Space Shuttle. SORT will provide independent
verification of the performance of the Gryphon. The program uses more advanced
methods to calculate the velocity losses on the rocket. However. the results must be

carefully checked to ensure thatthe final weights given by the program are consistent
with the designed weights. The latest results from SORT are inconclusive. The program
has not been made workable and imd to be abandoned.

4.3.4 Other Versions

Table 4.12 is a partial list of some configurations that were studied and rejected for the

reason listed.

Table 4.12

Confil_uration

All solid Fuel

No cryogenic fuels

Cryogenic Second Stal_e
Extra stage

Rejected Configurations
Drawback

Not enoush pa_'load, Too Hear),
Not enough payload, Too Heav)'

Safety concerns
Too expensive

The "All Solid Fuel" version was investigated because of the Eclipse Design

Team's desire that no liquid fuels be carried. Various combinations of Castor 120s and
Castor XXs were examined. No version was able to lift even 4000 lb to GTO except for

one which weighed over 500,000 lb. The all solid configuration was rejected because of
the large weight that would be required. Since then, liquid fuels have been considered a

requirement.

Alternatives to the RL10A-4 were considered for the "No Cryogenic Fuel"
version. The Orbus 7s and 21 upper stage boosters were investigated. The Orbus 7s is
unable to boost 8,000 lb into GTO. The Orbus 21 is capable of boosting 8,000 lb.

However, the Orbus raised the weight of the third stage to over 30,000 lb, which the

lower stages were unable to lift into LEO.

A version was examined that used a cryogenic second stage. A Rocketdyne J-2

replaced the two LR9 ls on the second stage. The Gryphon's overall weight was lowered,
and it was still capable of lifting 8,000 lb to GTO. This version was rejected because

large amounts of cryogenic fuels were deemed too dangerous to be placed under the
aircraft. Also, for large amounts of cryogenic fuels much larger fuel tanks are required.

This greatly increases the total weight of the vehicle and decreases the structural

efficiency.

The final alternative was to place an extra stage between stage two and stage

three. The stage was powered by one LR91. This vehicle also lifted 8,000 lb to GTO and
had a lower total weight. The extra stage also alleviated the high g-loading at second

stage burnout. The version was rejected because of the added expense of the engine and

the added length to the vehicle.
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4.4 PROPELLANTS

The Gryphon's propulsion system is composed of three different engines that consume
three different propellants. The first stage uses solid and storable liquids. The second

stage is composed of only storable liquids. Tile third stage uses cryogenic liquids. Each
of these propellants has'very different performance and handling characteristics. The
following discussion is a summary of data gathered on each of these chemicals. It

includes performance data and safety precautions.

4.4.1 Castor 120 Solid Rocket Propellant

The Castor 120 is the only solid propellant engine in the Gryphon's propulsion system. It

is an hvdroxy-terminated'poly-butadcine _HTPB_ base with 88% solids. Ve_ little data
has been made available on the particular tuel combination that is employed in the Castor
120. The most information that has been gathered was produced in various books

dealing with rockets and missiles. The following information is data taken from one of
those books [reference 991 for one combination of HTPB/AP/AL (AP= ammonium

perchlorate, AL= aluminum).

Table 4.13 Fuel Properties
Is (sec)

Flame Temperature (°F)

Density (lb/in3)
Metal Content (wt%)

Burning Rate (in/sec)

Pressure Exponent (n)
Hazard Classification

of the Castor 120

260-265

5600-5800

0.067

4-17

0.40

0.4
1.3

Combustion

The solid propellant of the Castor 120 is cast into a cylindrical grain. Once the pyrogen

igniter is activated, burning cannot be stopped and will continue in a progressive process.
As the cylinder burns from the inside out, more surface area of propellant is exposed:
therefore, burning will accelerate. Spaced throughout the grain are radial and conical
cuts. Each cut will have an effect on the burning process, but at this time it is not known

exactly what that effect will be, see Figure 4.1.

The specifics on the solid propellant of the Castor 120 are not known. The design
team has endeavored to find information about its actual chemical composition as well as

its burning characteristics and storing properties. This information was not available for
use; therefore, estimations had to be used for all calculations.

4.4.2 Aerojet LR91-AJ-I 1 Storable Liquid Propellants

The LR91 propulsion system used in the first and second stages of the Gryphon uses
storable hypergolic liquid propellants to power the engines. The fuel used by the LR91 is
Aerozine-50. It contains approximately 50 percent hydrazine and 50 percent

unsymmetrical dimethylhydrazine (UDMH). The oxidizer is Nitrogen Tetroxide. These
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propellants have two very significant properties. First, they are storable in ambient
temperature and pressure conditions so they do not need refrigeration equipment.
Second, these propellants combust on contact and therefore eliminate the need for an

ignition system on board the vehicle. However. there are tradeoffs for having these two
desirable properties. Because the propellants are storable, engine performance is vastly
inferior to that of cryogenic propulsion systems. In addition, because the propellants are

hypergolic, they present an extremely high potential for explosion, corrosion of
surroundings, and toxic effects if spilled.

This section contains general descriptive information on the liquid propellants
used to power the LR91s on the Gryphon space booster. It includes summaries of the
physical and chemical properties ,_l the propellants. Other information, such as material
compatibility, is also provided because of its importance in storage and handling.

Aerozine-50

The two components of Aerozine-50. hydrazine and UDMH, are quite similar in chemical
structure and in terms of physical properties. Hydrazine, by itself, is a better performing
fuel than Aerozine-50, but its low thermal stability and tendency to violently decompose

make it rather impractical. Mixing it with UDMH gives the fuel more stability.
Aerozine-50 combines the improved stability characteristics of UDMH with the higher

performing hydrazine to form a relatively stable fuel without much loss in performance.

Table 4.14 Physical Properties of Aerozine-50
Chemical Structure 50% 2H-2N-2H

Physical Description
Molecular Weil_ht

Specific Gravity, at 77 °F
Boiling Point (°F)

Freezing Point (°F)

Density at 77 °F (lb/t_al)
Viscosity at 77 °F (lb/ft-sec)

Vapor Pressure at 77 °F (psia)

Critical Temperature (°F)

Critical Pressure (psia)

Heat of Vaporization at 77 °F (Btu/lb)
Heat of Formation at 77 °F (Btu/lb)

Thermal Conductivitj. at 77 °F (Btu/ft-sec-°F)
Heat Capacity at 77 F (Btu/lb-*F)

50%2CH3-2N-2H

Clear Colorless Uquid
41.805

0.8987

158

22

7.5

.000543
2.68

633

1731

346.3

522.9

0.0000458

0.732

In appearance, Aerozine-50 is a clear and colorless liquid at ambient conditions.
The volatility of the mixture is primarily due to the more volatile component, UDMH.
That is why Aerozine smells more like UDMH than hydrazine i.e. fishy rather than
ammonia-like. Aerozine can be mixed using any proportion of its components. To

actually create a uniform mixture from hydrazine and UDMH, a sufficient amount of
agitation, or forced mixing, is required. Aerozine itself does not decompose into its two

components unless it is purposely distilled or until it is frozen.
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Like its components. Aerozine is thermodynamically quite unstable. However,
the decomposition rate on clean surfaces and in the absence of any catalysts is extremely
low at ambient conditions. The mixture also presents a great fire and explosion hazard.

Because the vapor above Aerozine is largely UDMH, the flammability hazards of
Aerozine are also largely those of UDMH. At or above 18°F, the vapor pressure of
Aerozine is sufficient to form a flammable vapor-air mixture. Therefore, under normal

storage conditions care must be taken that the fuel is not placed in the vicinity of ignition
sources. The flammability hazard becomes extremely high if temperatures exceed 500°F.

In this range of temperatures. Aerozine vapor can easily auto-ignite in air. Any
substance with which Aerozine reacts exothermally can cause such high temperatures.

Examples are: common types of litter, oxidizers, acids, halogenated solvents, dirty or
rusty surfaces etc.. Even an Acrozine and water mixture could be tlammable if the
solution contains more than 35_c aerozine. One way of keeping Aerozine from becoming

a fire hazard is to keep it blanketed with liquid nitrogen.

Various common materials react differently with Aerozine. Water, for example,

gets readily absorbed in Aerozine and makes it even more. If significant amounts of
water ( more than 5% ) are contained in Aerozine, damage can be done to the engine.

Water, in any amount, does degrade the performance of the engine. Carbon Dioxide
reacts rapidly with UDMH to form a water soluble product. These products of reaction
can become solid particles if the temperature near the freezing point. In this respect
carbon dioxide can be used as a fire extinguisher or to clean the UDMH vapor around
Aerozine. Some industrial cleaners and solvents react with Aerozine similar to carbon

dioxide. Solid particles or contaminants could be formed which may either block

passages and joints, or corrode engine parts.

For storage and tankage purposes, metals are a usable group of materials. They
are non-reactive and do not suffer corrosion by Aerozine-50 under most conditions.

However, in the presence of contaminants such as water, air, or oxidizers, the corrosivity
towards metals increases. Some metals, like magnesium, copper, zinc, and ferrous alloys
are not recommended for use with Aerozine-50 because of incompatibilities such as

possible contact with rust.

Generally, non-metals are incompatible with Aerozine-50 as far as storage vessels
are concerned. In fact, contact with most non-metals can cause degradation or
destruction of the materials. Materials like plastics, elastomers, lubricants, and coatings

can be easily dissolved or decomposed in Aerozine-50. The fuel could extract materials
from non-metal containers or be absorbed by them. This could change the physical and

chemical properties of both. Some non-metals can be used with Aerozine for a short

period of time, but very few can be used in service indefinitely as metals can. Teflon, for
example, can be used with Aerozine-50 for 90-120 days depending on the conditions.

The two components of Aerozine-50 have differing toxic qualities. Hydrazine is
very toxic. It can cause harmful effects if ingested, inhaled, or touched for a prolonged

period. UDMH is also very toxic but less than hydrazine. However, UDMH can cause
more toxic harm to a person since it is readily found in vapor form and is very volatile.

Nitrogen Tetroxide

The Oxidizer used for the LR91 in conjunction with the Aerozine-50 fuel is Nitrogen

Tetroxide (N204). It is generally stable at ambient conditions and it is available in large
quantities because of its widespread use for other industrial applications. Unlike
Aerozine-50, Nitrogen Tetroxide is not a mixture, rather it is a compound. Propellant
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-grade Nitrogen Tetroxide is at least 99.5% by weight N204 and no more than 0.17%
water.

Anhydrous Nitrogen Tetroxide is a dense non-corrosive, non-flammable,
hygroscopic (absorbs water) liquid. At room temperature, the color of the oxidizer is
reddish-brown. As the temperature is lowered, the color approaches a pale brownish-
yellow. As a propellant, N20_I. is hypergolic with many fuels including UDMH,
iwdrazine, aniline, and alcohol. On its own, the oxidizer is non-flammable and non-
corrostve. However, _t does support otfaer combustion processes and when it is mixed
w_th water it becomes substantially corrosive, As N204 reacts with water, its color

changes to blue-green, indicating the formation of nitric or nitrous acids.

Nitrogen Tetroxide is considerably more stable than Aerozine-50.. At normal

temperatures an equilibrium exists, between N2Oa. and NO2. As the temperature is raised,
the amount of NO2 increases proportionately. At still higher temperatures, around 350-
400°F, the NO2 dissociates into NO and O. Upon cooling, these reactions are reversible

and the mixture returns to its previous condition.

Keep in mind that Nitrogen Tetroxide is a very strong oxidizer and although it is
non-flammable itself, it can ignite automatically if it comes in contact with fuels. N204

will also in most cases promote ignition of other combustible materials. Fires involving
N'_O4 burn vigorously and produce toxic fumes. As with Aerozine, large amounts of
water can be used to extinguish N204 fires and vessels used for storing N204 can also be
cooled with water to prevent fires from spreading. Some organic compounds, such as
solvents for degreasing metals, can also react with N204 and produce spontaneous

explosions. Care should be taken in choosing solvents and degreasing agents which are
compatible with N204 . Potentially explosive mixtures can also form if N204 comes in
contact with large amounts of hydrocarbon materials.

Table 4.15

Chemical Structure

Physical Description

Molecular Weight

Specific Gravit}' at 77 °F

Boiling Point (°F)

Freezing Point (°F)
Density' at 77 °F (lb/gal)

Viscosity at 77 "F (lb/ft-sec)

Vapor Pressure at 77 OF

Critical Temperature (°F)

Critical Pressure (psia)

Heat of Vaporization (Btu/lb)
Heat of Fusion at 77 °F (Btu/lb)

Thermal Conductivity at 77 °F (Btu/ft-sec-°F)
Heat Capacity at 77 °F (Btu/lb-°F)

Physical Properties of Nitrogen Tetroxide
20-2N-20

Red-Brown liquid
92.016

1.433

70.I

11.8

11.96

0.000267

17.38
316.8

1440

178

68.5

0.0000211

0.378

Nitrogen Tetroxide with less than 0.17% water content is non-corrosive and can
be used with almost all metal alloys for extended exposure. More non-metals axe suitable
for service with N204 than Aerozine. Materials such as Teflon and KeI-F 300 nplastics,

perhalogenated lubricants, and certain silicone greases. These materials will however, be
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physically deteriorated from prolonged exposure to N204. Other non-metals, hke some
inorganic materials (graphite, molybdenum, disulfide, and Pyrex glass) appear to be
unaffected by N204.

Nitrogen Tetroxide is more toxic than Aerozine and proper precautions have to be
taken while handling this chemical. If it comes in contact with the skin, it can produce a

strong itching and burning sensation. If it is washed with water immediately, it leaves no
scars. Prolonged contact can leave painful acid like scaring on the body. If N204 vapor
is encountered, it can cause irritation to the lungs, throat, nose, and eyes. If it is splashed

in the eye, it can cause permancnt damage.

4.4.3 Pratt & Whitney RL 10A-4 Cryogenic Liquid Propellants

Upon choosing Pratt & Whitnev's RLIOA-4 engine, which uses cryogenic propellants
(liquid oxygen and liquid hydrogen), a large number of handling and storage concerns
were raised. Although cryogenic propellants are very common liquid rocket propellants,

their extremely low temperatures and high reactivity posed a major problem. After
further investigation, it was discovered that these propellants were no worse than storable
fuels as long as strict handling and storage procedures were followed. In this section,

properties of both liquid oxygen and liquid hydrogen will be discussed as well as certain
safety precautions that must be followed.

kiaaia..Qz,ze. 

The health hazards of liquid oxygen are due to its low temperature (boiling point of -297
°F, see Table 4.16). If liquid or cold gaseous oxygen comes in contact with skin, burns

may result. These burns can range from only minor burns to complete embrittlement and
permanent destruction of the tissue. No toxic effects are caused by oxygen; however, if
cold gases are inhaled, some respiratory irritation may result.

Table 4.16 Physical Properties of Liqu
Chemical Structure

Molecular Weight

Specific Gravit), at -297 °F

Boiling Point (*F)

Freezing Point (*F)

Densit_ at -297 °F (lb/gal)
ViscosiV at -297 *F (lb/ft-s)

Critical Jremperature (°F)

Critical Pressure (psia)

Heat of Vaporization at -297 *F Btu/lb)
Heat of Fusion at -287 °F(Btu/lb)

Thermal Conductivity at -297 *F Btu/hr-ft-°F)

d Oxygen
O-O

31.9988

1.14

-297.35

-369.04

9.518

0.000128
-181.08

736.90

91.738

5.976

0.08643

Liquid oxygen will not burn, but supports combustion readily. Accidental spills
are cause for concern if the liquid oxygen is mixed with any material that can burn,

especially fuels. In addition to this hazard, oil or grease may explode spontaneously
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when in contact with liquid oxygen. For this reason, all contact materials must be clean.
When storing liquid oxygen, very complex insulation blankets must be used in order to
minimize losses due to botloff. Some materials that are compatible with liquid oxygen

are; aluminum, stainless steel, nickel alloy, copper, Teflon, and KeI-F. For this particular

application stainless steel was chosen as the tank material. This will be discussed in
detail in section 4.5.

Liquid Hydrogen

The health hazards of liquid hydrogen arc similar to that of liquid oxygen and are due to
its low temperature (boiling point ot- -423 °F, see Table 4.17). As with liquid oxygen.
burns may result from contact v, ith liquid or cold gaseous hydrogen. The even lower
temperature of liquid hydrogen nlakc,, _hi_ danger even more profound.

An unconfined mixture of air and gaseous hydrogen will burn but not detonate if a

small ignition source occurs, buch as a spark. If the mixture is confined and is ignited by
a shock source, a detonation or an explosion can occur. When hydrogen burns in air, the
flame is invisible. Hydrogen-air mixtures are readily ignited when the mixture has

between 4 and 74 percent hydrogen by volume. Hydrogen-oxygen mixtures are
flammable over a range of 4 to 94 percent hydrogen by volume. The most effective

control of a hydrogen fire is to simply shut off the supply. Fires caused by hydrogen gas
can be controlled effectively by the use of common extinguishers, such as; water, carbon
dioxide, and steam. However. it must be noted that if the supply is not shut off and

gaseous hydrogen continues to leak, a cloud of combustible gas will form and may
explode if ignited. Because of these dangers the following sources of ignition must be
controlled; open flames, electrical equipment, metallic sparks and static electricity.

Table 4.17 Physical
Chemical Structure

of Lit

Molecular Weight

Specific Gravity at -423 °F

Boiling Point (°F)

Freezin_ Point (°F)

Density at -423 °F (lb/gal)
Viscosity at -423 °F (lb/ft-s)

Critical Temperature (°F)

Critical Pressure (psia)

Heat of Vaporization at -423 *F (Btu/lb)
Heat of Fusion at -423 "F (Btu/lb)

Thermal Conductivity at -423 *F Btu/hr-ft-°F
i

H-H

2.01594

0.071

-422.99
-434.425

7.112
9.072e-6

-399.95

190.8

193

25.0

0.0687

The low temperature of liquid hydrogen also makes the problem of choosing
suitable tank and piping materials difficult, since most metals become very brittle at such

low temperatures. Although the extremely low temperature of liquid hydrogen poses a
handling problem, the most serious hazard is the danger of f'tre or explosion. The low
specific gravity requires very large fuel tanks, which necessitates large vehicle volumes.
Liquid hydrogen also requires complex insulation to minimize losses due to boiloff.
Some materials that are compatible with liquid hydrogen are; stainless steel, nickel alloy,
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aluminum alloy, and KeI-F. Again stainless steel was chosen as the tank material and
will be discussed in detail in Section 4.5.

Handling and Cleaning

When handling both liquid oxygen and liquid hydrogen, trained supervision is essential.

All personnel that will be around these propellants will be educated as to what materials
are compatible, what type of protective equipment and clothing is needed, first-aid
instruction, and the general nature of both propellants in their liquid and gaseous phases.
All areas that contain these fuels will also be equipped with the appropriate fire

extinguishers and personnel showers. In addition to personnel knowledge, strict cleaning
procedures must be followed to avoid mixing the propellants with small foreign particles,
which may be very, dangerous together. Most importantly, parts must be degreased using

perchloro-ethylene vapor or ,,olvent for 30 minutes then rinsed well with alcohol and then
with water. Stainless steel parts must be cleaned using a 4% detergent solution for 30
minutes and then bathed in a 40-50% nitric acid solution for at least 1 hour and rinsed
clean with distilled water. Plastic parts should also be cleaned with a 4% detergent
solution for 30 minutes and rinsed clean and dried.

If these guidelines are followed closely, as well as periodic inspection of the

storage tanks, no problems are expected by using these propellants.

4.5 PROPELLANT TANKS AND INSULATION

4.5.1 Propellant Tanks

The propellant tanks were among the last things to be designed within the propulsion
system. The design of the tanks was an evolution of several different schemes which
were proposed. The fuel tanks were separated among the three stages and also into
separate tanks for the oxidizer and fuel which must be kept separate until they are
combined in the combustion chamber of the rocket engines.

The first and second stage tank designs are very similar in function. They both

are pre-pressurized by nitrogen before engine start up.and then employ engine bleed to
maintain fuel tank pressurization during engine operatton. These tanks are designed to

carry storable fuels, and are not used as part of the Gryphon's overall structure to take the
stresses created by the engines thrust and accelerations created during the ascent. In
effect the thickness of the tanks was minimized by taking into account only the tank

pressures required to provide adequate fuel to the engine's turbine fuel pump inlets.

The third stage tanks were designed much differently than the first two stages
because they store cryogenic fuels and because they are to be used as the primary
structure on the third stage. These fuel tanks will be pressurized by a separate helium

tank incorporated in the third stage until engine ignition, then they will be pressurized by

the third stage engine.

The volume, thickness, and weight of the propellant tanks is of primary

importance to the design of the Gryphon. The volume of the tanks is directly
proportional to the length of the vehicle which was to be minimized as much as possible.
The thickness of the tanks is critical to the safety and operation of the propulsion feed

:'! '4 ..... _ _-
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system. Finally, the weight of the tanks, which was minimized as much as possible, is a
large portion of the weight which only hurts the rockets performance since it is neither

propellant nor payload.

pr_;liminary calculations of fuel and oxidizer on Gryphon

The design of tile fuel tanks originated from estimations of the required trajectory and
from the staging procedures. A certain amount of fuel was allotted for each stage from

this preliminary, analysis. The amount of liquid fuel on each stage was then changed in
order to maximize the performance of the Gryphon. Each stage was then designed to

carry the following amounts of fuel. _ccn in Table 4.18.

Table 4.18

Sta_c 1

_ta_e 2
_Stage 3

Stage Fuel Weights
23.924 lb

164,000 lb

9,057 lb

The propellant was then divided up into the amounts of fuel and oxidizer on each
stage in accordance with the mixture ratios of each engine. The LR91 engines have a
mixture ratio of oxidizer to fuel of 1.86:1 while the RLI0 has a mixture ratio of 5.5:1. An
extra 2.5 % fuel was also allotted for unusable fuel. The unusable fuel is fuel left over in

the tanks after the engine has finished firing. From this information the amounts of fuel
and oxidizer were computed, as shown in Table 4.19.

Table 4.19 Fuel and Oxidizer Weights Per Stage

Stage Oxidizer (lb) Fuel (lb)

1 15,948 8,574
2 112,057 60,246

3 7,547 1,510

Volumes of the tanks

Once the total amount of fuel and oxidizer upon each stage was known, the volume

required for each tank was then calculated. The volume of the tanks also takes into
account a 5% ullage, or empty space when the tanks are completely full. This ullage is
included in order to deal with over pressure problems which may be encountered during
the useful lifetime of the tank due to forces exerted on the fuel during ascent and pressure
fluctuations within the tank.

The volumes of the tanks were calculated according to the equation:

(Eq 4.6)

Where subscript p stands for propellant. Calculating the volume required for the Stage 2

tanks used the following equations.
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112.0571bV : _-_-_ x(1.05)=1318ft 3

[ 60.2461b ]V_ = _)x(l.05)=ll30ft 3

The volumes for the other tanks were calculated in the same manner yielding the volumes

seen in Table 4.20.

Table 4.20

Sta_e

Volume of Propellant Tanks Per Stage
V_lumc of Oxidizer Volume of Fuel

1 18g ft3

2 1318 ft3

3 110 ft3

161 _3

1130 ft3

357 _3

Tank pressures and Pressurization systems

The pressure at which the fluid inside the tanks must be pressurized to assure proper
operation of the fuel pump is dictated by the following equation:

Pt = NPSH + (feed line friction losses) + (vapor pres.) - (propellant head)
(Eq 4.7)

where NPSH = Net Positive Suction Head.

Pt was estimated to be 27 psi for all of the fuel tanks. This was an estimate based

upon similar engine and propellant tank designs. An estimate of this function had to be
made since some information in equation (4.7) was not available.

The ullage in the tanks is to be maintained at constant pressure of 27 psi both
before and after launch until the useful life of the tanks and engines is over. To

accomplish this on the first and second stage a pre-charged nitrogen fed pressurization
system is used. To accomplish this on the third stage an on board helium pressurization
system was employed.

The first and second stage pressurization will be accomplished initially by

pressurizing the tanks shortly before the Gryphon is flown to its launching point. Once
the engines are started, the fuel tank will then be pressurized by cooled turbine gas from
the turbine manifold of the LR91-AJ-I l, and the oxidizer tank will be pressurized by

liquid nitrogen tetroxide taken from the oxidizer fuel pump and vaporized into nitrogen
dioxide gas. This will in turn increase the tank pressure to a value high enough to break
the burst diaphragms in the system and allow the fuel to flow from the tank to the engines
and assume steady state operation. The pressure within the tanks will then be controlled

by the use of monitors in the tank and variable controlled pressure valves in the

pressurization system.

The third stage pressurization system will first be accomplished by a helium tank
connected to both the cryogenic fuel and oxidizer tanks. The helium pressurization

system is required due to the boil-off that occurs with cryogenic fuels. The helium tank
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will be included with the third stage and will also provide some cooling to instruments

within the avionics bay. Pressure will also be maintained in this tank through the use of

pressure monitors and variable control valves in the helium lines. The volume required
for the helium tank is 5.74 ft 3 and the pressure required to assure tank pressurization
durine the entire mission will be 1000 psi. The fuel tank will be pressurized by exhaust

gas from the turbine fuel pump after the engine is operational, and the oxidizer tank will
be pressurized bv excess oxidizer from tile turbine oxidizer pump.

Tank Material, Shape, and Thickness

The tanks to house the liquid propellant on all three stages are to be built out of 301
stainless steel with a density ,_I ) 2,";5 lh, tt -_ and a yield stress of 70.000 psi. Weight

minimization and compatibility _I Ihc tank material with the storable and cryogenic
propellants was the main (actor in _hc decision to use 301 stainless steel.

Once the material, pressures, and volumes had been established the calculations of
thickness and weight estimations could then take place. The thickness of the first and
second stage tanks is based solely upon the pressure forces within the tank since the tank
is not an integral part of the structure for these stages. Therefore the thickness can be
found from the following equations:

kP, d,
t¢ - (Eq 4.8)

20"

kP, d_
t, - (Eq 4.9)

20"

tc = cylindrical
thickness

Fuel
tank

dt

ts = endcap
thickness

Figure 4.4: Tank Thickness

The radius of the endcap was chosen to be the same as the diameter of the fuel
tank itself in an effort to make their construction homogenous and to reach a good

compromise between the endcap height and its thickness.
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The thickness of the second stage tank, using a factor of safety of 1.5, was then

calculated using equation (4.8):

( 1.5/(27 psi)(168 in) O. 0486 in
t -- '=t

12)(70,000psi)

The thickness of the first stage was calculated in the same way.

The upper or third stage thickness depended upon the maximum force exerted
upon it from above, since this stage is being used as an integral part of the structure on
the third stage. This tank must al_,o withstand pressurization forces, but these are less
than those forces exerted on the tanks from above. These tanks can be estimated as thin

walled pressure vessels, and the determination of the thickness of this stage proceeded as
follows:

(Eq 4.10)

Where F is the force of the payload at a maximum value of 6 times the force of gravity.

Solving equation (4.10) for t with s < the yield stress of the material t = 0.02 in for the
oxidizer tank on the third stage.

The thickness for the spherical fuel tank was calculated in the same manner and found to

be equal to 0.022 in. A summary of the thicknesses and weights of the tanks is found in
Table 4.21.

Table 4.21 Thickness and Weisht of Propellant Tanks

Sta_e Thickness (in) Weight (lb)

0.0486

2

3- Fuel 0.022

3- Oxidizer 0.02

0.0486

395
2500

350

260

Overall Tanl_ and Propulsion System Design

The tanks were designed using the preliminary calculations for the tank volume and
thickness. The length of the tanks was minimized in an effort to minimize the length of

the Gryphon while staying within a maximum diameter of 14 ft. Piping from the engines
to the tanks was then laid out in as straight a line as possible to conserve weight and to

provide good flow characteristics within the pipes. The piping will be constructed of
stainless steel and will incorporate expansion fittings to accommodate for expansion and
movement in the propulsion system. Outflow and filling ports were then integrated into
the design, and weight estimates of each tank assembly was computed, see Figure 4.5.

The first stage tank was designed as a squashed spherical tank in order to make
better use of the space provided. The fuel and propellant are separated by an internal
spherical divider. The propulsion mechanism for the first stage is one LR91-AJ-11
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rocket engine which was mounted three feet below the tank by an engine mount which

also supports the tank weight and transfers the loads created by the engine to the
Gryphon's outer structure, see Chapter 7 for details. The tank design along with the
engine placement, piping and pressurization system is shown in Figure 4.6.

The second stage uses a cylindrical tank core with rounded endcaps. This shape

provides the most efficient use of ,pace for fuel. Tile fuel tank feed lines run through the
inside of the oxidizer tank. This was done in order to make tile most efficient use of

space and to provide the two LRgls with the best flow conditions within the piping as
possible, see Figure 4.7.

The third stage uses a ,phericaI fuel tank and a partially cylindrical oxidizer tank

in an effort to use space efficiently while at the same time providing a sturdy structure.
The third stage also incorporatc,, tile helium tank used for tank pressurization before the

firing of the RLIOA-4. The third ,,tage is also the sole structure between the payload and
the LRgl engines of the second stage, see Figure 4.8.

4.5.2 Insulation

As mentioned earlier, the use of cryogenic propellants poses a problem with keeping the

propellant tanks insulated enough to minimize losses due to boiloff. There are three types
of heat flow that must be considered in choosing an insulation. These are conduction,
convection, and radiation. Conduction is the type of heat flow caused by a higher

temperature on the outside of the propellant tanks than on the inside, this will be
discussed in detail later. Convection is a transfer of heat within the liquid itself, this type

of heat flow is fairly advanced and was not analyzed for this report. Finally, radiation
heat flow is caused by the sun, which emits radiant energy and is absorbed by the tank.
In this section, we will present how these forms of heat transfer affected our choice of
insulation.

In addition to the types of heat flow, many other criteria were used in selecting a
suitable insulation for the cryogenic tanks. These criteria are weight, availability, cost,

safety, ruggedness, reliability, and heat conductivity. A low heat conductivity is the most
important feature for insulation.

One type of insulation is the laminated-type which uses an aluminum foil and fiber-glass
structure. The aluminum foil acts as a reflector, to reduce radiative heat, while the

vacuum space between the layers prevents conductive heat transfer. One problem with
this type of insulation is that the laminar insulation is not very rugged, and could
therefore result in a loss of the vacuum layer because of cracks.

[-loneycomb

Another type of insulation is the honeycomb-supported structure. With this type of
insulation, the small honeycomb cells form individual vacuum spaces when cold.

Because of the possibility of air penetrating the outer layer and then loosening the
vacuum cells, they are often purged with helium because it will not freeze like air.
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Figure 4.5 Overall Diagram of Propellant Tanks
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Figure 4.6 Stage One Propellant Tanks and Piping

v--

-..)

<

v--

EE

86



University of Michigan Aerospace Project Gryphon

Figure 4.7 Stage Two Propellant Tanks and Piping
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Figure 4.8 Stage Three Propellant Tanks and Piping
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The types of insulation that other launch vehicles use on their cryogenic tanks was
investigated because of a lack of information available on current insulation. Therefore.
the choice of insulation is based almost exclusively on Centaur information. Both the

liquid hydrogen and liquid oxygen tankb will be using the same insulation.

Both tanks will have a sidewall insulalion that consists of two I).75 inch thick

layers of insulation blankets covered bv two radiation shields. Each blanket is made of
two fiberglass reinforced Kapton (ace sheets and aluminized Kapton radiation shields
evenly spaced by sheets of dimpled Kapton. The blankets are purged with helium to
prevent the liquification of air or freezing water vapor. The outermost sheet is not
aluminized to minimize the outcr ,,lucid temperature to reduce boiloff.

An analysis of the boilotf rate caused by the conductive heat flow to the tank as
given in equation 4.11.

qh=kA(T'-T°) _. (Eq 4.11)

Where q is the heat flux, k is the average thermal conductivity of the insulation (plus the
tank itself), A is the area of the insulation, Tt is the outside temperature, To is the

temperature inside of the tank. and L is the thickness of the insulation. The problem that
was encountered is that no information on the thermal conductivity of this insulation is
available. Had this information been available, a more accurate estimation of boil-off

could have been obtained. In addition to this problem, there was no information on the

purge system itself, namely what type of controlling device needs to be used or if the
purge system needs power from the batteries in the avionics section of the Gryphon. It
was also difficult to determine how much helium is needed in the insulation or how often

it needs to be changed. These problems are left for further investigation.

The first and second stage LR91s were also thought to need insulation to avoid

freezing at launch altitude. However, after speaking with Martin Marietta, the
information that was given stated that the heat of friction caused by the air on the outside
of the tanks may produce enough heat that insulation would not be needed. Further
investigation will be needed to determine the requirements for the insulation.

4.6 FUTURE WORK

Lack of time has prevented a more in depth analysis of the Gryphon. Research and
calculations have uncovered several topics which must be addressed in the future. This

section is a projection of those ideas. The present analysis will not be continued, but
some other engineering team may start where this study stopped.
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4.6.1 Engines

More research could be done to find a propulsion system which is better than the current
combination. In later parts of the process, when it was too late to change the Stage 2

engines, it was discovered that an engine with longer nominal life could have given
better performance in _ome instances and could also have saved money. Also. it is
conceivable that a storable liquid propellant engine exists which gives better performance

in terms of Isp and thrust. More research could also be done into the usage of cryogenic
rocket engines for better performance and the safety concerns associated with their usage
could be further examined.

4.6.2 Staging and Dynamics

The staging and dynamics analvsis of the Gryphon is the area most in need of work. At
this time, the trajectory has been compared with data calculated by the propulsion design
team, and final numbers tend to vary. The first objective should be to find an optimal

trajectory. Once this has been completed a stage optimization analysis can be done.
With these bits of information a better estimate of engine performance qualifications can

be compiled, and the engines can then be chosen with more certainty.

4.6.3 Propellants

There is one very important concern left unaddressed due to lack of time. The problem of
LR91 fuel separation could cause major design changes in the Gryphon if it cannot be
solved. The fact that the LR91 will be cruising with the Eclipse at about 40,000 ft for

extended periods of time could lead to freezing of the Aerozine-50 and thus separation of
hydrazine and UDMH is possible. What needs to be done is an analysis of how the low
temperatures at such high altitudes will effect the fuel, what type of insulation or other
measures are required, and how much of the effect can be countered by the aerodynamic

drag. This situation is unique to the Gryphon and a solution to this problem must be
considered.

A second concern regarding fuel is a detailed analysis of the boil-off rates of the

cryogenic fuels. The Gryphon has a delayed launch of three to five hours. The carrier
plane takes off and ferries the booster to its launch site. During these hours certain
portions of the cryogenic liquids change phase from liquid to gaseous form. This gas has
to be vented overboard to prevent excessive pressure build up within the propellant tanks.

If too much of this propellant is vented there will not be enough fuel and oxidizer to

power the RL10A-4 to its final destination. This is a topic of much concern that has
consumed much analysis time but has yielded few results. Future analysis of this

problem is crucial to the overall success of Gryphon.

4.6A Propellant Tanks and Insulation

Future work in the area of the propellant tanks design will include many topics. First a
detailed analysis of sloshing in all the propellant tanks needs to be performed. Using this
data the interior of the tanks could then be designed with baffles in order to bring the

sloshing frequencies within tolerable limits. Design of the fuel tank outlet piping to
prevent cavitation in the propellant flow field should also be accomplished. In the
present design of the fuel outlet pipes, they were only modeled after the correct curvature.
Their curvature was never quantitatively calculated. The actual design of these outlets
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would also requh-e testing of the fluid properties in a controlled environment in order to
provide proper fuel to the various engines on Gryphon. Minimization of the fuel tank
wall thickness using exact pressures required by equation 4.8 should also be done since

the tank pressure was only estimated. A final area of investigation would be process of
manufacturing and constrtlction of the tanks in an effort to minimize tank weight and
construction costs.

A _tudy of propellant tank insulation is a great necessity. This insulation will

protect all fuels and oxidizers from freezing as well as unwanted heating. By eliminating
the cold and hot extremes, the condinon of the propellants will be kept relatively constant
and will provide better performance as well as better stability and safety.

4.7 CONCLUSION

The original goals of the Gryphon called for an air launched space booster that would be
able to carry 8000 lb of payload to LEO and 17,000 lb to GTO. The problem given to the
Propulsion Group called for a staging system that would be able to convert to both types
of payloads. Research into engines, staging, propellants, and tank design helped to
achieve the design of the present system. This three stage system utilizing the Castor
120, the LR9 I-A J-11, and the RL 10A-4 is the most cost effective and optimal system that

could be designed.
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5.1 INTRODUCTION

The overall design of the Gryphon was linked to decisions made about what its payload
should be. Therefore, the first goal of the Payloads group was to find general information
about satellites and other possible payloads. This information was useful in helping other
groups to set their design parameters. After determining the payload goals for the
Gryphon, work was completed to determine the market for satellites. The market was
used to find the payload weights the Gryphon needed to be able to carry, and the required
dimensions of the payload area. The next step was to determine the payload limitations
of the Gryphon's design. The following sections describe the goals of the payload group,
the payload market, the method of determining the dimensions and weights of the
payload area, the limitations of the payload, some structural considerations, and the Space
Station Freedom options.

5.2 PAYLOAD GOALS

The Gryphon air-launched space booster was designed with the goal of meeting several
important payload delivery criterion. The payload related criterion are:

• The delivery of 7900 lb, including payload support structures, to
Geosynchronous Transfer Orbits (GTO)

• The delivery of 17,000 lb, including payload support structures, to
Low Earth Orbits (LEO)

• The maximization of usable payload envelope volume

• The capability for multiple-satellite deployments to both low earth and
geosynchronous transfer orbits

• The compatibility of delivering Space Station Freedom related payload

packages

These goals acted as the driving force behind the design of the Gryphon. The
delivery weights of 7900 and 17,000 lb for geosynchronous and low earth missions,
respectively, were decided upon after careful consideration of the likely market demand
(see Section 5.3) and cost analysis (see Chapter 2). The geosynchronous delivery limit
will allow the booster to carry a large majority of the currently existing commercial
communication satellites to their transfer orbits, utilizing either single or multiple payload

configurations. The low earth capability will allow for the delivery of a large variety of
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scientific satellites, either in single or multiple configurations. The capability of a 17,000

lb, 15 ft diameter payload will also allow for the delivery of payload packages to the

Space Station Freedom.

5.3 PAYLOAD MARKET

An important concern with tile Gryphon was to determine its payload market.
were two main questions, each wtth several options:

• Which type of payload will the Gryphon be designed for'?

• Communications Satellite
• Scientific Satellite

• Defense Operations

• Space Station Freedom Resupply

• Where will the satellite be placed?

• Low Earth Orbit (LEO)

• Geosynchronous Transfer Orbit (GTO)
• Geosynchronous Earth Orbit (GEO)

There

After much consideration, the highest market was determined to be

communications satellites in GEO by route of GTO.

5.3.1 Communication Satellites

The United States launched its first man made communication satellite, Project SCORE,
in December 1958. The satellite lasted a mere twelve days at which time the batteries
failed. Since this monumental launch, communication satellites have become the
foremost instrument in long-distance international communications. In 1988, for

example, INTELSAT linked 172 countries, territories, and dependencies around the globe

using 1,738 full time earth-station to earth-station pathways.

A communication satellite is simply a spacecraft that receives electrical signals
from a transmitter on the earth, amplifies the signals, changes the carrier frequency, and

then re-transmits the amplified signals back to receivers on the earth. These satellites are

placed in such an orbit around the earth as to seem stationary to the transmitters and
receivers on the earth. To get an idea of the power of these satellites, one should note that
one transmitter and one satellite can transmit a signal to receivers covering an area equal
to one-third of the earth's surface. Satellite communications can relay both analog and

digital signals. The transmitter on earth modulates a baseband input signal onto a carrier,
amplifies the modulated carrier signal, and then radiates the signal up to the satellite.
This path followed by the transmitted beam from the earth to the satellite is called an
uplink. This signal is received by the satellite and without altering the information, the
beam is amplified and the frequency is changed from a 6 GHz band to a 4 GHz band.
The satellite next radiates the signal back to earth. This return path is called the
downlink. The downlinked signal is received by antenna on the designated area of the

earth, and is again amplified. This final step completes the path traveled by information
to and from the communication satellite.
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Since the mid-1970's, satellites have become an important aspect of domestic

communications for the United States, USSR, Canada, Australia, Brazil, India, Indonesia,

Mexico, and Japan. Other countries around the world have domestic systems in the

planning stage. The world has realized the many uses of satellite communication,

including broadcasting and fixed services.

The International Telecommunication Union (ITU) recognizes twelve categories

of communication satellite ,,,ervices:

• Fixed satellite service

• Broadcasting satellite service
• Mobile _atellile scr_'icc
• Radio determination ,,atellite service

• Space operatton service
• Space research service
• Earth exploration satellite service
• Meteorological satellite service
• Inner-satellite service
• Amateur satellite service

• Radio astronomy service
• Standard frequency and time signal satellite service

The most prominent services in use today using communication satellites are
fixed, broadcast, mobile, and radio-determination services. Also, since satellites are

equipped with multiple transponders, and often have dual frequency capabilities, two or
more of these services can be provided by the same satellite.

Traditionally, fixed satellite service has consisted of the telephone, telegram, and
television distribution. These services were usually transmitted by cable, even across the
ocean. However, televisions have wide-band requirements and special cables are needed

if reverse-frequency transmissions are unavailable, but they can be sent through satellites.

In addition to the standard communication services, satellites can be used for
business services such as providing mail, facsimile text, picture transmission, banking,
and reservation data networks. Communication satellites can also provide businesses

with extensive, high speed transmission of documents including text, graphs, pictures and
newspaper print. Also, they can provide high speed data transmission among computers
at rates in the megabit per second range. In addition to these services, satellites can

supply businesses with video teleconferences, in which groups of people at different sites
around the world can confer with each other through live television transmissions.

The broadcasting satellite service is now reaching maturity. As a result of low
noise receivers, it is possible to distribute television by communication satellites. As of
1987, there are over 1.5 million C-band satellite dishes in the United States used for

television reception. A broadcast satellite service can beam radio, TV, and cable signals
from the originating stations directly to small, low cost, home mounted terminals, using

high powered satellite transmitters.

Mobile satellite services allow communications between earth stations which are

in motion, whether it is by land, sea, or air. These mobile satellite systems are used in

shipping, aviation, railroading, medical emergencies, interstate trucking, and temporary
sites. They can also be used for communication purposes in sparsely populated areas

where the existing systems are unreliable or inadequate.
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The United States and Canada are both heavily involved in mobile satellite

technology. The United States is currently in a program called the Mobile Satellite

Experiment (MSAT-X), which started in 1984, and is managed by NASA and the Jet
Propulsion Laboratory. The purpose of this program is to initiate commercial mobile
satellite services. MSAT-X concentrates on the development of new techniques for

mobile communications in future generation high capacity systems.

In spite of the high costs involved with launching communication satellites, the
flexibility and advantages allow satellites to make a valuable contribution to world wide
communications. To _,ome extent, the high costs are due to the backup satellites
necessary to ensure continuous ,,ervice. The high level of reliability of today's current
technology gives satellites an operational lifetime of about fifteen years. When compared
to microwave relays and undersea cables, and the fact that in some parts of the world
there is no other way of communication, communication satellites are actually very cost

effective.

As can be seen, there is more than enough applications for communication
satellites in the world today to provide steady business for another launch vehicle. This is
one of the main reasons we chose to design a cost-effective air launched space booster.

5.32 Geosynchronous Earth Orbit

A communication satellite in Geosynchronous Earth Orbit (GEO) is at an altitude of

22,282 miles above the earth's surface, and travels around the earth at 6879 miles per
hour. This is the same as the speed of the earth's rotation giving the satellite a period of
24 hours. If a satellite is traveling in the equatorial plane, and is moving in the same
direction as the earth's surface, it will appear to be stationary over one point on the earth.
The satellite would then be called a geosynchronous satellite, and its orbit is called a

Geosynchronous Earth Orbit.

Placing a communication satellite in GEO requires high precision maneuvers.
The Gryphon will take the satellite to a GTO, an elliptical orbit with a perigee altitude at
about ! 35 nautical miles, and an apogee altitude of about 19,322 nautical miles from the

earth. The satellite is spin-stabilized in GTO to allow the earth stations to communicate
with its telemetry system. This orbit is measured as accurately as possible so the
satellite's orientation can be adjusted. This is necessary to ensure the satellite will be at
the correct altitude for GEO. When the satellite is at the apogee, a motor on the satellite

is fired to put it in a circular orbit around the earth. The satellite's velocity is then
adjusted to the same velocity of the earth's rotation. Then, the attitude is changed so that
its antenna points in the right direction. This is called a Geosynchronous Earth Orbit.

GEO has many advantages:

• The communication satellite remains almost stationary relative to the
earth's antennas, so the cost of computer controlled tracking of the

satellite is avoided. A fixed antenna is satisfactory.
• It is not necessary to switch from one satellite to another as one

disappears over the horizon.
• There are no breaks in transmission. A geosynchronous satellite is

permanently in view.
• Because of its distance, a geosynchronous satellite is in line of sight

from 42.4% of the earth's surface (38% if angles of elevation below
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5% are not used). A large number of earth stations may then
intercommunicate.

Three satellites give global coverage with the exception of the polar

regions.
There is almost no Doppler shift, which is the change in the apparent

frequency of the radiation to and from the satellite caused by motion of
the satellite to and from the earth station. Satellites in elliptical orbits

have different Doppler shifts for different earth stations, and these
increase the complexity of the receivers, especially when large
numbers of earth statiom, intercommunicate.

Geosvnchronous satellites ab, o ha,,e some disadvantages:

• Latitudes greater than 81.25 degrees north and south (or 77 degrees if
angles of elevation below 5 degrees are excluded) are not covered.
There are mostly polar ice at these latitudes.

• Because of the distance to the satellite, the receiver signal power,

which is inversely proportional to the square of the distance, is weak,
and the signal propagation delay is 270 milliseconds.

Communication satellites in GEO can relay signals between two or more locations
on the earth. The advantages of communication satellites greatly outweigh the

advantages of other methods of communication such as microwave relays and fiber optic
cables. Therefore, the decision to build a cost effective air launched space booster can be

justified. The Gryphon is designed to carry a satellite to GTO, from which the satellite
can maneuver itself to GEO.

5.3.3 Low Earth Orbit

A satellite in LEO travels in a circular orbit at 17,500 miles per hour and has a period of
rotation of about 1.5 hours. This orbit is used mostly for scientific satellites and military

purposes. The Space Station Freedom will also be located in LEO. Although the market
is not very large for this orbit, the Gryphon will leave open the option of carrying
scientific satellites and Space Station Freedom resupply modules to LEO.

5.4 DETERMINATION OF PAYLOAD BAY DIMENSIONS

The volume of the Gryphon payload envelope was maximized in order to ease satellite
design and payload configuration constraints. The maximization of the payload envelope

provides several attractive features for potential booster customers. First, a large payload
volume allows customers to relieve launch cost burden by participating in multiple

customer/satellite deployments. In this manner, a customer pays for only that portion of
the payload volume which their package occupies. Second, a large payload bay eases the
design constraints which commercial and scientific satellite producers must adhere to.
One primary goal of satellite producers is to array their satellites with as many power
generating panels as possible. This leads to a desire to maximize satellite surface area or
solar array sizes. The limit to these sizes is the available payload volume of the launch

system. By easing the volume constraints which the launch system imposes, satellite
manufacturers are able to build satellites capable of generating more power. Third, a large
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payload volume, in the case of the Gryphon air-launched space booster, allows for
compatibility with proposed Space Station Freedom related payload packages. These
packages have large diameters and lengths and are. therefore, able to be delivered by few

launch systems.

The initial conception for the payload bay was a flat boat shaped volume. This

configuration was considered because originally the height of the Gryphon was restricted
by the Eclipse to 10 ft. With this configuration, satellites would be placed side by side
for multiple launches. This did not ,,cem the most efficient method, as it had never been
done before. After discussion w_th the Eclipse Design Team, the height restriction was

lifted and the payload bay (:_long with the rest of the Gryphon) became cylindrical in

shape.

Satellites are usually cvlindrica[ in shape when in the launch configuration. They

cover a large range in size, but average 7-10 ft in diameter and 8-12 ft in length. The
Space Station Freedom payloads are about 15 ft in diameter and 10-15 ft in length. The
volume of the payload bay, approximately 19,675 cubic feet, is large enough to
accommodate both of these payloads in various configurations (single, double, and

possible triple stacked). The final design of the Gryphon payload envelope is shown in

Figure 5.1.

Payload Static

Envelope _,_

A
1

M

v

15.83

Dimensions in feet

10.00

25.00

Figure 5.1 Gryphon Static Payload Envelope

The large static payload envelope (usable space in the payload area) has a
diameter of 15.5 ft, which provides ample space for most existing communication

satellites and many scientific satellites. This diameter is also comparable to that of the

Space Shuttle launch system, which represents the currently proposed delivery system for
space station payloads. The Gryphon is therefore capable of delivering most Space
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Station Freedom Logistics Modules. The large envelope height of the booster provides

adequate space for multiple-satellite stacking configurations. It also allows for the
possibility of the delivery of satellites to orbit with a variety of large antennae arrays.

5.5 PAYLOAD LIMITATIONS

The purpose of this section is to describe all of the limitations that the payload will
impose on the Gryphon design. Due to the nature of the possible payloads, restrictions
are necessary to ensure that damage will not occur to the payload. Since the payload is

the purpose for the entire project, these limitations must be strictly enforced. The
following restrictions are in a general range, because the exact limitations are mission

specific, as different satellites and other payloads require different standards. The
following is a general envelope, which was obtained by examining several possible

payload packages. This helps give an idea of what limitations the other parts of the space
booster need to follow.

5.5.1 Cleanliness Requirements for Payload Envelope

The initial cleanliness for the payload fairing is achieved by baking the components in a
vacuum at over 212°F. In order to avoid contamination of any of the satellite subsystems,

the fairing is cleaned in a class 10,000 environment, which means that in a cubic foot of
filtered air, there are no more than 10,000 particles larger than 0.5 microns. The fairing is

then bagged using Llumaloy anti-static plastic film before being placed in storage. The
satellites and payload shipping container are prepared in a similar manner. All payload

preparation and assembly is done in these cleanliness conditions, and the interior of the
payload is sealed and kept in this cleanliness envelope until it has left the earth's

atmosphere.

5.5.2 Electrical and Thermal Requirements of Payload

For the typical communications satellite payload, the power and thermal needs are fairly
small. The typical communications satellite is mostly self-contained, needing little from
the launch vehicle. They are in an undeployed position, which means that they are in
their most stable and their most dormant formation. Most of the electrical and thermal

requirements occur after they are deployed. Once open and in orbit, the orientation of the
satellite with respect to the sun and the earth causes many problems with regard to the
thermal limitations. Also, because communication satellites are generally solar powered,

they also face the problems of power supply once in orbit and open. Because we will be
getting these satellites from vendors, these problems are not in the scope of our project,
and therefore not included in this report. The following requirements and limitations are

only for the undeployed satellites on the launch vehicle.

The satellites generally have battery packs of either NiCd or H2 which are charged
to 50% before the launch. This is usually done with an umbilical which is attached to the

payload area, and the power is supplied from one of the ground stations. The status of the
H2 batteries is generally monitored by the use of strain gauges. The status of the batteries
is reported as seen in the communications requirement Section 5.5.4. No power will be
needed from either the Gryphon or from the Eclipse prior to deployment in orbit.
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Inside the payload area, the thermal requirements are specific to the payload, but

for many satellites, the temperature envelope is between 62°F and 82°F. On the ground.
an air conditioner is generally used on the transportation vehicle and in the assembly
clean room. Once mounted_ the payload can stay in the environment of the other

components, and usually no special thermal accessories for the payload are needed. If
there is an abnormal tl"ieht path. or higher altitudes are reached'before drop, simple

heating coils may need to be installed.

5.5.3 Loading and Vibration Limits of Payload

The loading limits were determined from the original Pegasus to be 7.5 g's in the
transverse direction, and 2.85 ,_'s in flae Lateral direction. The final design of the Gryphon

has g-loads below these limit_. The resonance frequencies of most satellites are usually
above 30 Hz longitudinally and 1{_Hz laterally. The booster must be designed in such a
way that the resonant frequencies do not couple with any of the satellite natural

frequencies.

5.5.4 Communications Requirements of Payload

There are relatively few communication requirements for the payload area during flight.
To assure that the satellite is operational during ascent, only the basic vital statistics need

to be relayed to the launch vehicle. The communication requirements after deployment
axe critical to the use and applications of the satellite. However, since the requirements

are part of post-launch considerations, they do not concern the scope of this report.

The communications requirements for the payload prior to deployment are

basically to be sure that the payload is intact and functioning correctly or if any large

problems occurred. The communications monitor simple vital signs such as the battery
voltage level and the temperature. These are important statistics, which are very
inexpensive and easy to monitor. No complicated devices are needed, just simple strain
gauges for the batteries, and thermometers to ensure that the thermal requirements are

met.

For an average satellite payload there are different communications requirements

depending on the phase of the mission. On the ground, the attached umbilical will have
the necessary information transmitted down it. When on the plane, the attachment wires
will transmit this information. After it is dropped, there is a small R-F (radio-frequency)

window which this information can be transmitted through.

5.6 STRUCTURAL CONSIDERATIONS

The Payloads group worked in conjunction with the Structures group to determine the
needs for a shroud and a payload/booster interface. The shroud dimensions needed for

given payloads (see Section 5.4) were given to the Structures group for their design. The

payload interface requirements are discussed in the following sections.
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5.6.1 Payload/Booster Interface

Communications satellites are designed :o be attached to the booster through a payload
interface ring that mounts to the bottom of the satellite near the apogee kick motor nozzle.
This allows the load to be transferred to the satellite's structural central core. The layout

of a typical satellite is _,hown in the following figure (Ref 40).

AKM '

I

I

I

Central thrust tube

Launcher interface

Figure 5.2 Typical Satellite Configuration

The size of the actual payload interface ring depends on the requirements of the
satellite(s) being launched. Interface rings in general have compressed springs and

explosive bolts to jettison the payload away from the booster when in space.

The Pegasus launch vehicle used two standard payload interface rings with
diameters of 38 and 23 inches. Due to the large variance in the sizes of satellites to be

carried by Gryphon, more than two standard sized rings will be required. As with the
Pegasus, alternative ring sizes can be fabricated for satellites that do not lend themselves
to mounting with the standard sized rings.

5.6.3 Double and Triple Satellite Mounting

With such a large payload volume and weight, most launches will carry two or more
satellites. A special payload interface ring, or tandem adapter, needs to be designed for
these situations. The basis for these designs were the SYLDA and SPELDA, seen in

Figure 5.3. (Ref 35)

The purpose of the adapter is to allow the Gryphon itself to carry the acceleration forces
of each satellite, rather than the bottom satellite carrying the loads of the top satellite.
The satellites are released one at a time, with reorientation between orbital injections.
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Fairing

t

SYLDA
SPELDA

Ariane 1-3 Ariane 4

Figure 5.3 The SYLDA and SPELDA

5.7 SPACE STATION FREEDOM OPTIONS

The Space Station Freedom has been designed to be built and resupplied by the space
shuttle. Although the shuttle may be the most efficient vehicle to boost the actual space
station components into space, it is not the most efficient for some of the resupply
payloads. Therefore, the Gryphon has been designed to be capable of boosting some of

the space station resupply payloads more cost effectively.

5.7.1 Logistics Element Overview

All resupply of the space station has been compacted into four main elements each

designed to be held in the space shuttle.

• Pressurized Logistics Module (PLM): This module stores

resupply/storage racks, payload (user) racks, refrigerator/freezer racks,
and has room for aisle stowage. These racks carry internal users, crew

systems, and spares and maintenance resupplies. (See Appendix D)
• Mini-Pressurized Logistics Module (MPLM): This module is a

smaller version of the PLM, carrying identical payloads. (See

Appendix D)
• Unpressurized Logistics Carrier (ULC): This module is basically a flat

stand which holds the cryo nitrogen carrier, the cryo oxygen carrier,
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and the dry cargo carrier. It is used for cryogenic fluids, external

users, spares and maintenance. (See Appendix D)
Propellant Module (PM): This module carries the Hydrazine

propellant. (See Appendix D)

5.7.2

The major
boost was

respective
Appendix

Determining Which Elements the Gryphon Can Handle

consideration in determining which elements the Gryphon would be able to

size and weight. Therefore. listed below are all of the elements with their
sizes and weights 1with cargo}. Diagrams of each module can be seen in

D.

• PLM: This module is approximately cylindrical in shape, with a
diameter of 14.58 ft. and a length of 23.08 ft. The PLM weighs

34,750 lb.
• MPLM: This module is also cylindrical in shape, with a diameter of

14.58 ft, and a length of 12.47 ft. Its weight is 18,050 lb.
• ULC: This module is simply a flat plate with holes in it. It can be any

size, but it must be able to carry the Cryogenic Fluid Container
(rectangular, 5.25 ft x 4.5ft x 10.33 ft) and the Dry Cargo Carrier
(rectangular, 6.83 ftx 4.33ft x 12.5 ft). The ULC weighs 18,695 lb.

• PM: This module is also rectangular in shape, with dimensions 14.67
ft x 7.33 ftx 13.83 ft. The PM has a weight of 11,040 lb.

Although all of the above modules are about the right size to fit into the Gryphon,
the PLM is much too heavy to be considered. The PM is well below the maximum

weight of 17,000 lb to LEO. The MPLM and ULC are just a little above the maximum
weight. However, 41.6% of the MPLM's weight and 18.4% of the ULC's weight is in
the carrier alone" therefore, if these packaging weights could be reduced by as little as

10%, the Gryphon would be able to handle these modules. Consequently, the Gryphon

has been designed to carry the MPLM, ULC, and PM.

5.7.3 Structural Considerations

The Gryphon will easily be able to support the self contained MPLM and PM by using a

grapple fixture similar to that found in the space shuttle. The ULC will have to be
designed specifically for the Gryphon, but will simply be a flat, circular plate with the
same diameter as the Gryphon. The design of these attachments is an area for future

work.

5.7.4 Docking With Space Station Freedom

The Gryphon will be able to boost any payload into the vicinity of Space Station Freedom
(SSF), but it will not be able to maneuver directly to SSF. Any of the logistics modules
will need to have an orbital maneuvering system attached to it similar to a satellite with
thrusters. The module will then be able to move close enough to SSF so that a grapple

arm can reach the module and pull it in.
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5.8 CONCLUSION

In conclusion, formulation of the Gryphon payload capacities has involved extensive
satellite-oriented research -- their market, their orbits, their sizes, and their limitations.

The major market [or a space booster is in communications satellites. These satellites
need to be placed in a Geosynchronous Earth Orbit. When designing for this type of

payload, there were a few limitations that had to be considered. The Gryphon will also be
able to help resupply Space Station Freedom. The Gryphon designers have determined
that there is a need to carry 7,9(H) lb to GTO and 17,000 lb to LEO with the specified

payload volume, and the Gryphon will be able to satisfy this need.
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6.1 INTRODUCTION

Mission Control is an important and intricate part of any space system such as an air

launched space booster For the Gryphon, some specific goals were defined that had to
be met Mission Controls specific goals were to identify and gain an understanding of the

required mission control systems and components, investigate upgraded components and
alternate configurations, and to evaluate components and configurations

The main responsibilities of the mission control group were:

• Guidance, navigation, and control (GNC) of the booster and the

payload
• Determining the location and structure of mission control
• Determining airborne support equipment on carrier aircraft
• Sizing of the Gryphon's on-board computer and the payload

required to accommodate GNC operations, data storage and
handling requirements

• Managing the tracking and data transmission between the
ground station and the Gryphon, and between the Gryphon and

the space station
• Outlining the flight termination system (FTS)
• Monitoring the health of the booster, payload, and carrier

aircraft

The final components and configurations were based on evaluation of cost

estimates, required capability, characteristics (weight, dimensions, power requirements,

temperature and structural limits), reliability, compatibility with other components and
systems, and present and predicted usefulness to Gryphon missions.
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6.2 GUIDANCE, NAVIGATION, AND CONTROL

Guidance, Navigation. and Control (GNC) is the most important responsibility of Mission
Control. Mission Control must be able to accurately keep track of the Gryphon's

position, velocity, and acceleration in order to determine what attitude controls need to be
implemented. The selection of components for GNC is based on accuracy, reliability,
and cost. To insure that these criteria are met, selections have been limited to strictly

"off the shelf" components.

The first aspect of GNC to be considered was the location of mission control, or
the ground tracking station. In addition the following subjects will be discussed:

• The inertial guidance system, which is the primary tracking component on

board the Gryphon.
• The Global Positioning System which is used in conjunction with the

Inertial Guidance System
• A section on additional GNC support from the aircraft

6.2.1 Mission Control Ground Support

The ground support system will monitor the health of the Gryphon and its payload as well
as track and determine its position. The attitude of the Gryphon will be determined by

sensor information. The ground system will use Gryphon health monitoring telemetry
and transmitted mission data to carry out the above functions. The mission control

ground support will also determine when the flight termination sequence is necessary and
when it will initiate it accordingly.

Because one of the goals of this project is to keep cost per flight at a minimum, it

is necessary to compare the cost of using an existing system to the cost of building and
maintaining a dedicated system. The main advantage to the use of an existing ground

system is that it will be less expensive than building, maintaining, and making necessary
upgrades to a new dedicated system. An existing system will also have a defined and
predictable cost schedule with high predictable reliability and availability. The
disadvantages to using an existing system include matching the mission and the system
which may increase cost and reduce mission effectiveness. There are also contractual
negotiations required for determining priority agreements such as mission importance
relative to other network users, criticality of events, and the amount of control the user

has over ground assets.

Since the Gryphon is similar in concept to Orbital Sciences Corporation's Pegasus

and will be performing similar missions to the Pegasus there is no justification for
building a new existing system. If the Gryphon uses the same ground support systems as
the Pegasus, the missions will have already been matched to the system, because of this
mission similarity. Mission similarity will also have the advantage of reducing
contractual negotiations required for the Gryphon. In keeping with the goal of
minimizing costs, the continued use of the existing ground support systems is

recommended.

Each Gryphon mission is supported with a tracking, telemetry, and command
(TTC) ground based facility. Tracking is accomplished with a network of ground based
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radar sites, supplemented with a global positioning satellite _ystem (GPS). The ground

facility is the locus of all downlink telemetry from the vehicle. This includes

navigational data as determined by the on board navigation system, and all data from
health and subsystem monitoring. All carrier aircraft operations will be monitored by

the facility, and'it will provide a direct radio link with the Launch Panel Operator (LPO')

aboard the aircraft. The ground facility also determines the range safety specifications for

each particular mi.,,sion, and is responsible for activation of the l-light termination system
in accordance with any violation of range ,,afetv specifications.

The Gryphon project will emptoy all TTC services from the Eastern and Western
Space and Missile Centers. All captive carry takeoffs from Kennedy Space Center will
be supported by the eastern range, anti all those from Vandenberg AFB will be supported
by the western range. A high end cost estimate for TTC services from these locations is

$75.000 per launch.

6.2.2 Inertial Guidance, Navigation and Control

Hardware descrmtion

The system's central hardware consists of a strapdown inertial measurement unit (IMU)

supplemented with a navigation processor card (NPC), and the flight computer's

autopilot processor.

The IMU consists of integrating gyroscopes, linear accelerometers, and sensor

electronics. A single gyro produces one component of the total angular inertial reference,
which is known in body defined coordinates (along one of the axis). Each accelerometer

provides one component of the linear inertial constant, where each component

corresponds to one body defined coordinate axis.

The IMU is supplemented with the NPC which receives a position and velocity
reference from a GPS receiver in the avionics bay. The NPC performs all navigational
and control calculations, and transmits navigation data and flight control data to the flight

computer's autopilot processor. The NPC uses the GPS supplied position and velocity
reference to improve the accuracy of these calculations. The GPS reference is compared
to existing computed values, and their comparison is monitored to control error

propagation in computational iterations.

The flight computer's autopilot processor operates stage separation and the flight
control mechanisms. It integrates navigational data and flight control data with the pre-

programmed mission data, steering the Gryphon along the desired trajectory. The
mission data is programmed specifically for each mission. The autopilot also transmits
the computed navigation data to the ground station via downlink telemetry. This data is
used for post-mission analysis of the systems operation. The hardware control block
diagram in Figure 6.1 is a general schematic of the hardware functions, which vary with

specific systems.
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_;oftware description

The system software functions at three levels:

Inertial instrument control and sensing (ICS)

Navigation and control calculations

Flight control.

ICS software is inte,zratecl _nto the IMU electronics. It performs high speed

sampling of the inertial instruments. 1-his raw data is converted to velocity and attitude
angle change and transmitted to the NPC. This software also maintains the performance
of the inertial instruments. The gyro', are calibrated with a closed loop control to

compensate for angular drift and momentum loss due to environmental disturbances and
mechanical friction respectively. The accelerometer quantifier is also operated with this

software in a closed loop control.

The NPC holds the navigation and control software. The NPC inputs a position

and velocity reference from the GPS receiver. Using the data from the NPC, velocity and
attitude angle change are converted into instantaneous position, velocity, attitude, attitude
rate, and linear acceleration. Numerical methods are employed in quaternion integration,
direction cosine matrix transformation, and 313 Euler angle transformation from body

defined coordinates to the inertial frame.

Flight control software (FCS) is preprogrammed with mission data load software
(MDL), which specifies the mission for the autopilot FCS to follow. The navigational
data and flight control data, both calculated in a closed loop iteration process, are used by

FCS to operate the flight control mechanisms on the exterior of the vehicle.

Hardware selection

Using "off the shelf' hardware minimizes cost and maximizes confidence. The Litton
LR-81 system is the choice for the GNC subsystem by OSC. It is currently under
contract for use and is thus readily available and cost effective, while providing the
functions desired on the Gryphon system. Information used in the consideration of

spacecraft integration is given in Table 6.1. The autopilot processor is an element of the
flight computer, included in Section 6.3.

6.2.3 Global Positioning System

The Global Positioning System (GPS) works in conjunction with the Inertial

Measurement System to obtain accurate measurements for position, velocity, and
acceleration. The GPS functions in this tracking system to update the IMU on frequent
intervals on the vehicle's current position and velocity reference. As was mentioned

previously, the GPS reference is compared to existing computed values, and their
comparison is monitored to control error propagation in computational iterations.
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Table 6.1 Litton LR-81 Inertial Measurement System Characteristics:

Cost $100.000

6.3 x 2.5 x 3.0 in.Size of Sensor assembly
I

Electronics a,,,_,cmhlv
r

Navigation procc,,_or as,cmbl_'

Weight _Lb. t

Power requirements

Coolin_

Output data rate

I/O

12.8 lbs

28 Vdc, 43W ave., 200W peak

air conduction

100 Hz

RS-422 bi-directional serial bus

CS_¢nchronous Data Link Control)

A GPS receiver makes measurements of the distance between its antenna and a

number of GPS satellites. By combining those measurements with the knowledge of the

satellites position stored in an ephemeris, the receiver is able to determine its own

position. The GPS receiver takes the ephemeris parameters and computes the coordinates
of the satellite in an earth-centered, earth-fixed (ECEF) coordinate system. A new set of

orbital parameters is computed for each one-hour period using overlapping spans of four
hours. A GPS satellite broadcasts the appropriate set of parameters during a particular

one-hour interval.

The details of this computation have been carefully spelled out by the designers
of the Global Positioning System and can be found in a number of reference publications.

The particular ECEF system used by GPS is the World Geodetic System 1984 (WGS 84)
of the Defense Mapping Agency (DFA). For all intents and purposes, the reference frame
of WGS 84 and the North American Datum of 1983 (NAD 83) are identical.

The broadcast ephemeris is computed with sufficient accuracy to guarantee the

design goal of horizontally positioning a GPS receiver with an accuracy of 16 meters.
This is the accuracy of the Precise Positioning Service (PPS), the service afforded to
authorized (primarily military) users. When GPS is fully operational, the accuracy of the
broadcast ephemerides are intentionally degraded as one of the mechanisms for

implementing the policy of selective availability (SA) for the Standard Positioning
Service (SPS) available to civilian users.

Using both cost effectiveness and reliability as primary criteria for selection, the
Trimble Quadrex is the GPS Receiver chosen for use on Gryphon. Trimble also provided
the six-channel GPS Receiver that was used on Pegasus, but the Quadrex is an improved
version because it includes a multiple antenna. The multiple antenna provides better

visibility and attitude determination. The quadrex's characteristics are detailed in Table
6.2.
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Table 6.2 Trimble Quadrex GPS Receiver Characteristics:

Cost $14.000

Size 7" x 7" x 2"
3 lbsWeight

Power Requirements

Operating Temperature
Max. Velocity

Accuracy
I/0

3.5 W

-40 ° Fto +158 ° F

25.000 ft/sec

75 ft (with SA: 300 ft)
RS-422 bidirectional serial bus

(S_'nchronous Data Link Control)

6.2.4 Aircraft Support

For a variety of reasons the Gryphon will need support from one or more additional crew
members on board the carrier aircraft. The aircraft must be able to monitor the Gryphon's

systems before launch and keep track of the Gryphon immediately after launch for safety
purposes. In addition, the Gryphon IMU needs to be updated before launch since the
GPS is not activated until after the launch. This is most conveniently done from the
carrier aircraft.

It was decided that one additional crew member, a Launch Panel Operator (LPO),

would be sufficient to provide these external needs. His/her responsibilities will include:

Monitor Gryphon and payload status
Provide external power (aircraft power) to Gryphon
Switch between external and internal power (prior to launch)

Update Gryphon IMU prior to release
Download mission data to the flight computer and verify mission data load

Prepare and enable vehicle for drop
Capture, record, and display data from the vehicle and payload

The LPO will be seated at a special console that consists of:

Ruggedized PC
Display devices
Mass data storage device
Precision IMU

The most important unit in the special console is the ruggedized computer, a
North Atlantic KMS. All of the telemetry between the aircraft and Gryphon are handled

through the PC, along with the data storage, switch of power sources, and the processing
of IMU information. There will be three monitors for visual display. The first two will

be fore and aft camera views from Gryphon, as part of the health monitoring system. The
third will be a variable display, depending on what the LPO is currently checking. It
could display IMU, power, storage, or health-monitoring data. The mass data storage
device is the largest component in the LPO console. For a more detailed version of the
LPO's console, see section 6.4.1

The precision IMU is a ring-laser gyro, the Litton LN-93. The ring-laser is much
more accurate than the rate gyro on board Gryphon, and updates the latter every second.
Only after Gryphon has been launched will it switch to GPS for updating.
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Launch Control Organization and Decision Process

Tile launch control organization will consist of three basic functional areas. They will be

the Management Group, the Operation_;Engineering Group, and the Airborne Operations

Group.

The Management Group will include:

Payload Mis,_i(m Director
Gryphon Mission Director
Range Mission Director
Flight Operation,, Director
Launch Service,', Director

The Operations/Engineering Group will include:

Test Conductor

Vehicle Engineer

Payload Engineer
Range Control Officers

The Airborne Operations Group will include:

Flight Controller
Carrier Aircraft Crew

A mission specific launch process should have coordinated GO/NO GO situations
during actual launch operations. The process should be structured so that all critical
events and GO/NO GO situations are coordinated through the appropriate mission
director. The flow for launch decisions will mirror the launch control organization,

where anomalies are worked by the appropriate groups and decision-making is passed to

the Management Group.

6.3 ON-BOARD COMPUTER SYSTEM

Once launched from the carrier aircraft, the Gryphon operates as an autonomous system
that is able find it's way to GTO along a pre-programmed flight trajectory. Except for the
event of flight termination, the Gryphon receives little or no flight command from the

ground. The ability to execute the mission independently relies on the on-board computer

system.

The on-board computer system interfaces with the sub-systems and determines
the course of action that the sub-systems should take. In short, it functions as the brains

behind the Gryphon and plays a critical role in the success of the mission. In defining the
computer system for the Gryphon, the following steps are taken, most of which are
discussed in the subsequent sub-sections :
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Identify mission objectives and mission characteristics.
Establish a baseline for system characteristics based on mission

requirements and typical design values.
Use baseline to source for specific computer systems in the market.
Establish method of integration and control between computer system and

,,ub-systems.

6.3.1 Calculation of System Characteristics

The main characteristics of a computer svstem are the throughput and the memory size.

The throughput defines the speed at which instructions are executed by the system and is
measured in KIPS (Kilo Instruction Per Second) and MIPS (Mega Instruction Per

Second). The memory size defines the capacity for storing information and is measure in
KW (Kilo Words) and MW _Mega Words). For further detail see Table 6.3.

The memory size is divided into two categories: Code and Data sizes. Code size
defines the memory size that is used to store the instruction sets. Data size defines the

memory size that is used to store the input and output variables. For example, the

operating instructions in a hand-held calculator will be defined as code while the numbers
that are displayed will be data. Together, the throughput and the memory size are the
essential driving parameters behind the design of a computer system. Table 6.4 records a

simple method used to obtain the throughput and memory size of a computer system that
suits the mission requirements of the Gryphon. The method and its associated typical data
are from James R. Wartz and Wiley J. Larson. Certain assumptions are used in the
calculations which are based on industry-wide standards which provide a valid

framework and are seen below:

1) 1750A class Instruction Set Architecture

2) Ideal class S, minimal class B classification (t)
3) 50% redundant processing capacity at launch

4) 50% redundant processing capacity for development (2)

5) A Word is 16-bits long

6.3.2 Other estimated system parameters and considerations

Pegasus I used a flight computer system that was developed by AI Tech. (Israel) while
the existing Pegasus uses one that was developed by O.R. computers (Germany). Table
6.3 information applies to the Pegasus computer system and was used as relevant

baselines in the Gryphon's system.

Il) 'Class S' labels the computer system as space-ready. 'Class B' is label for space-

ready systems that has not gone through extensive tests as class S. 'Class B' systems are
consequently less expensive but less reliable.

(2) 50 % redundancy is used to accommodate unexpected increases in computing

requirements that are typical in the development cycle of a computer system.
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Table 6.3

Processor

Architecture

Telemet_ processor

Weisht
Dimensions

Power requirement

Temperature tolerance

Reliability
Estimated cost

Radiation protection

Vib. amplification

Characteristics of Gryphon Computer
32 bit, 68000 Motorola based

Versa Module Europe Bus
16 bit

10 lb.

4" x 8" x 8"

22-36 Volts D.C.

-40 _C to +85 _C ( optimum 25 _C)

0.95 at end of 10-year period
$2 Million (includes software development)

hardenin_ to 1 Mrad
close to factor of 1

Table 6.4 Throu:

On Board Applications

1) command processin_

2) Telemetry
3) Attitude sensor

processin_
4) Attitude determination
and control

a) Kinematics integration
b) Error determination
c) Thrust control
d) Complex Ephemeris

e) Orbit propagation

5) Complex autonomy
6) Fault monitors

Fault correction

Lput and Memory Calculations
Code Data Throughput Execution

(K W)

1.0
1.0

2.0

2.0

1.0
0.6
3.5

13.0
15.0

4.0
2.0

(K W) (KIPS)

7.04.0

2.5

15.0

0.2
0.1
0.4
2.5
4,0

10.0

1.0
10.0

3.0

2.0

15.0
12.0
1.2
4.0

20.0

20.0

15.0
5.0

Freq. (Hz)

10.0
10.0

0.01

10.0
10.0
2.0
0.5
1.0

10.0

5.0
5.0

7) Power management 1.2
Thermal control 0.8

Operating software

8 ) Executive

9) I/O handlers

10) Built-in tests

& diasnostics
11) Math utilities

12) Run-time
kernel

Sub-total

Redundancy
Grand total

Code

(K W)

3.5

2.0

0.7

1.2

8.0

Data

(K W)

2,0

0.7

0.4

0.2

4.0

62.5 59.0

15.4 59.0

125.0 i 18.0

0.5
1.5

5.0
3.0

1.0
0.1

Throughput
(KIPS)

21.0

40.0
0.5

0.0

0.0

173.7

173.7

347.4
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In order to appreciate the magnitude of the figures computed, Table 6.5 compares

the Gryphon's computer system characteristics with existing commercial workstations
and other space-based computer systems:

System
f

Gryphon
TDY 75O

ATAC 16ms

GPC

Sun-Sparc IPX

Sun-Sparc 1+
Dec 3100
Dec 5000

Tai ,le 6.5 Comparison with

Applications

Gryphon
Milstar

Galileo

Shuttle

commercial

commercial

commercial

commercial

Existing Systems

Throughput

347.4 KIPS

450 KIPS

500 KIPS

2O0 KIPS
15.8 MIPS

15.8 MIPS

14.0 MIPS

24 0 MIPS

Memory

243 K W

512 KW

64 K W

32 K W

32 MW
2 MW

1 MW
I MW

Besides meeting the computing requirements of the mission, some other
considerations involved in the choice of a flight computer are cost, compatibility with

existing support equipment, and reliability. A breakdown of each is as follows:

Cost involves the price of the hardware as well as the cost of the software

development. The cost of software development is usually more substantial than the
hardware cost since the software is developed specifically to meet different mission

requirements.

The flight computer communicates with the carrier plane LPO computer during
transit to launch altitude and also with the ground support computer during flight

preparation. It is important that all three systems are compatible with each other for
effective communication.

The reliability of the flight computer is increased by having redundancy,

radiation protection and data error detection and tolerance. Redundancy comes in the
forms of hardware and information redundancies. Hardware redundancy is the addition of

extra hardware (memory units, CPU, etc.) for detecting or tolerating errors. Software
redundancy is the addition of extra software needed to detect and tolerate errors. Many

techniques are involved in each form of redundancy.

Cosmic rays at GTO are strong enough to cause temporary or permanent data
errors. To prevent this, radiation shielding is necessary. Typical protection level is set at 1
Mrad. In view of the considerations mentioned above, the on-board computer system

developed by O.R. computers is favored because of its proven reliability and accuracy
when used on the Pegasus.

6.3.3 Fright termination system

The flight termination system (FTS) is activated in the event of a mission termination and
premature stage separation. It is the only semi-autonomous system in the Gryphon and
operates independently from the flight computer system. Essentially, the FTS detonates
shape charges placed in strategic locations at each stage. The explosions deactivate the
propulsion system without fragmenting the motors which is accomplished by rupturing
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the motor case which relieves the motor case pressure. The disabled Gryphon then falls

towards the ocean.

The FTS is mechanically disabled until after the release from the carrier aircraft

and is armed prior to first _tage tgnition. This approach ensures that the FTS cannot

endanger the carrier aircraft prior to the release. After the release, the FTS is elecmcally
enabled for range safety before first stage ignition.

The FTS can be initiated either by automatic or by ground control command.

Automatic flight termination is initiated in the event of premature stage separation.

Separation sensors relay _it, nals to the microprocessor of the FTS, which then initiates
the detonation sequence. (_round command flight termination is initiated when ranee
safety is violated. For example, if the Gryphon flies off-course from the pre-planned

isflight trajectory. The detonation _equence " initiated when the FTS receives the relevant
signal on its receiver. A decured decoder on the FTS receiver ensures that only the right

ground command signal will by accepted by the FTS. This is to done to ensure that the
system is not activated by unwanted signals.

The control block diagram for the FTS is shown in Figure 6.2.

Termination

Ch_-ge

Figure 6.2 Flight Termination System Block Diagram

6.3.4 Sub-systems Integration and Control

The flight computer interfaces and controls the propulsion, interstage separation, attitude
sensing and control, guidance and navigation, and communication sub-systems. During
its flight to launch altitude, the flight computer communicates with the carrier plane's
LPO computer via an umbilical RS-422 cable. The Gryphon's IMU system is updated by
the LPO's IMU and GPS systems.
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During launch, sensors located near the separation mechanism detects the

Gryphon's separation from the carrier aircraft (Stage 0) and relays the information to the

flight computer system through a multiplexerO'J via RS-422 cables. Taking this cue, the
computer initiates the ignition of the first stage rocket motors after a time interval for the
carrier plane to reach safety distance from the Gryphon. The motors are started, setting

the Gryphon on its independent trajecto_' to GTO.

Signals from the GPS and the IMU systems are compared with the pre-
programmed flight trajectory. Through a closed-loop control scheme, the flight computer
adjusts the attitude of the'Gryphon bv hydraulically gimballing the rocket motors.
Attitude control is also made possible by six hydrazine thrusters located on stage 3. These
thrusters are controlled by the tlight computer via a pyro driver.

The flight computer initiates the separation between stages. Sensors mounted on
the propulsion system provides signals to the computer system. The computer system
continually monitors the signals until a preset threshold is reached, after which interstage
separation is initiated via interstage pyro drivers. Telemetry data from the computer
system is fed to the S-band telemetry transmitter for transmission to ground control.
Figure 6.3 shows the integration of the flight computer with the sub-systems mentioned

previously.

6.4 COMMUNICATIONS SYSTEM OVERVIEW

The goal of the communication system is to provide the best signal transmission in terms
of power, accuracy, reliability and security for the least amount of mass, size, and
expense. The Gryphon's communications system will provide the link between the
spacecraft and ground control after launch from the carrier aircraft. The communication
system's primary functions will be to transmit telemetry and tracking data to the ground
control station and to transmit termination commands, if necessary, from the ground to

the Gryphon. The responsibility of effectively broadcasting and receiving these signals
makes this system crucial to any successful Gryphon launch.

Telemetry consists of functions such as voltages, temperatures, and accelerations,

which require monitoring to determine whether all subsystems are operating correctly.
The sampling of each telemetry sensor in sequence creates telemetry data. Tracking data
consists of position, velocity, attitude, and acceleration information received from the
GPS and the IMU. If necessary and for security purposes, the termination command will
be sent via an encoded signal from the ground to be received and decoded by specific

FTS hardware on the Gryphon.

(3) A multiplexer is a device which selectively channels one of many input signals to

one output. The output of the multiplexer is connected to the input port of the computer

system.
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The communications system components will include the system antennae,

transmitter, multiplexers, receivers, decoders, and radar transponder (see Figures 6.2 and
6.3). The antennae and transmitter, together, allow the system to transmit composite

signals to the ground station. The multiplexers modulate the downlink carrier wave with
mission telemetry bv varying the amplitude, frequency, or phase of the carrier wave for
the transmission of data. The multiplexer combines all telemetry data into a single bit

stream. TMs compacted signal allows for a greater data transmission rate. The receivers
and decoders will work together to acquire. demodulate and decode the flight termination

command if necessary. The radar transponder will receive, amplify, and re-transmit
radar signals for the purpo_c or enhancing the vehicle's radar return for better
determination of the vehicle',, po,,ition.

6.4.1 Data Storage

The LPO console requires a mass data storage device for the storage of mission
data before download to the flight computer and recording of data from the vehicle and

payload. Typical devices for storing data are shown in Table 6.6.

Table 6.6 Typical Data

Data Storage Device

Tape recorders

Solid-state recorders

Bubble memory

Storage Devices
Capacity

75 x 109 bits

128 x 106 bits

128 x 106 bits

Optical data storage is developing into a more efficient way of storing large
amounts of data in a small amount of space. Because of the mass data storage

requirement for the Gryphon, it is recommended that optical storage be implemented
when it becomes available.

6.42 Telemetry, Mission Data, and Radar Frequency Selection

The choice of communication band frequency defines the signal between the spacecraft

and the ground station. The radio frequency (RF) spectrum has been divided into several
categories based on frequency. Agreements on these bands originated with the
International Telecommunications Union (ITU) and the World Administrative Radio

Conference (WARC). Some of the frequency bands are shown in Table 6.7. These

frequencies determine the wavelength of the signal in accordance with:

c = kf (Eq 6.1)

where: c = speed of light

L = wavelength of signal

f = frequency of signal
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Designers have little control in determining at which frequency their spacecraft's
information will transmitted. While the designer can choose the desired frequency, the

actual allocation of frequency bands for commercial users is regulated in the United

States by the Federal Communications Commission (FCC).

Table 6.7 Limitations on Frequency Bands Established by International
Telecommunications Union IITU)

Frequency Band Uplink Frequency
Range (GHz)

UHF t).2 -().45
L 1.635 - 1.66

S 2.65 - 2.60

C 5.t) _ 6.4

X 7.9 - S.4

Ku 14.0- 14.5
Ka 27.5 - 30.1

SHF/EHF 43.5 - 45.5
V 6O

Downlink Service

Frequency Range
(GHz)

0.2 - 0.45 Military
t

1.535-1.56 Maritime/Navi_,
2.5 - 2.54 Broadcast

3.7 - 4.2 Domestic Commsat

7.25 - 7.75 Militar), Commsat
12.5 - 12.75 Domestic Commsat

17.7 - 19.7 Domestic Commsat

19.7 - 20.7

60
Military Commsat

Satellite Crosslinks

Because space is limited on each band, it is becoming more difficult to acquire

permission to broadcast at certain frequencies such as the C, S, and Ku bands. Indeed, for
a new communication service, the approval process may take 3 to 5 years. With other

users of close frequency signals, in close proximity interference also becomes a problem.
Since the Pegasus is already cleared to use the S-band for telemetry transmission, there is
no need to choose a different band for the Gryphon since it will perform similar missions.

The Gryphon will also carry a radar transponder which is a receiver-transmitter
combination that typically amplifies the signals it relays. The purpose of the radar

transponder is to enhance the Gryphon's radar return for better position accuracy. Since
one of the expected missions of the Gryphon will be to re supply the Space Station
Freedom, the Gryphon's radar system should operate at the band at which the space
station operates. This will allow the space station to make use of the signals on a position
transmitted by the Gryphon. As an alternative, the Ka band is suggested since it offers

greater availability and design flexibility.

6.5 CONCLUSION

After significant investigation and research was performed, a better understanding of
mission control systems and components was reached. While researching the design for

the system, it was necessary to keep costs down, which can be accomplished by using
existing technology. As a result of this investigation, a cost effective and sophisticated
system has been designed by the Mission Control Group. However, since this is the flu'st
phase of design, further research must be performed to insure that the most cost effective
and advanced design is used on the Gryphon.
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7.1 STRUCTURES GROUP RESPONSIBILITIES

The structures group is responsible for the structural integrity of the Gryphon. In addition
to the weight constraints imposed by aerospace design, the Gryphon project is very
concerned with minimizing cost. Structural designs will reflect this by using proven

technology, inexpensive materials, and simplistic, easy to manufacture parts.

The structural design of the Gryphon begins with the main booster structure. This
includes the exterior hull of the vehicle which houses the engines and all fuel tanks.

Yield due to static g-loads and aerodynamic loads is the first priority. Determination of
natural modes and frequencies and global buckling loads will also be explored.

The payload shroud and fairings comprise another area of interest. The shroud
and fairings protect the payload from aerodynamic heating and pressure, and reduce the
overall drag on the vehicle. Their composite construction is susceptible to failure from

ply yield and localized buckling, both of which are analyzed.

Inside the payload bay, the payload interface ring physically connects the payload
with the lower stages. Not only must the ring withstand the acceleration loads imposed

by the vehicle, but it must be resistant to engine vibrations. Extensive static and dynamic
analysis was performed to insure the stability of the payload under these load conditions.

In the upcoming chapters, each of the above components will be analyzed in turn.
Loads will be determined in each case, and appropriate structural analysis will be

performed. Finally, the weights and dimensions of each part will be listed.
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7.2 MAIN BOOSTER STRUCTURE

The Main Booster Structure is comprised of three major groups of components:

Stages 1 through 3 hull including skin. longitudinal stringers and
lateral buckling rings.
Two Castor 120's attached to the main hull through struts.

Strut and plane attach ring.',, some of which replace buckling rings.

The role of the Main Boostcr Structure is to provide attachment points for the

engines, tanks and control cqtnpmcnt _,hite at the same time withstanding longitudinal
and lateral aerodynamic and thrust loath,. The driving design objective was to minimize

the weight and cost of the structure. This implied using traditional aerospace materials
such as aluminum alloys as well as requiring the manufacturing and assembly to remain

simple. In general+ proven concepts were preferred over more advanced ideas.

While designing each group of components, an initial guess for dimensions and

configurations was derived from an approximate analysis. This guess was then used in an
iterative process utilizing Finite Element Modeling software to arrive at the final values.
Most of the time, the final FE. model did not drastically deviate from the initial guess, but

provided more detailed results and a deeper understanding of the interaction between the
individual components.

For all components, two distinct structural problems were investigated:

• Static analysis, considering maximum stresses, deflections as well

as global and local buckling behavior.
• Dynamic analysis, specifically the normal modes and their

respective natural frequencies.

These two problems are closely coupled, because the minimum weight

requirement on the structure resulted in very low natural frequencies.

Several assumptions were made regarding the FE. modeling of the Main Booster

Structure:

The hull and the Castors, including all the sub components were
modeled as a beam. For this reason all local design (i.e. stringers

and rings) had to be done analytically.
Thrust loads and aerodynamic forces and moments were resolved

into longitudinal and lateral loads and moments. The worst case
loading was assumed to occur when Stage 1 would acquire a 2.5g

longitudinal and 2.5g lateral acceleration at burn-out.
The second load case of interest occurs when the Gryphon is

carried by the plane. A 2.5g lateral load was applied for this case.
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7.2.1 Main Hull - Static Analysis

The exterior hull as mentioned previously houses the engine and all fuel tanks. A
breakdown of the main hull is as follows:

Outer Skin

Longitudinal stringers
Lateral buckling rings

The main role of the skin is to reduce drag on the vehicle and protect sensitive

interior components such as the avionics equipment. The stringers take most of the axial
and bending loads incurred from accelerations and aerodynamic forces such as lift and
drag. Since the stringers are basicallv long, slender beams, local buckling is prevented by
placing lateral buckling nngs at appropnate stations along the hull. The rings together
with the skin will also take any shear loads present. All components of the main hull are
manufactured from 6061 Aluminum alloy. The two global design requirements for the
hull were:

Maximum von Mises stress is not to exceed the yield stress divided

by a 1.25 safety factor.
The critical global buckling load of the hull is to exceed twice the
maximum axial load.

Quter Skin Design

The outer skin of the hull is bolted to the stringers and the buckling rings. It has a
thickness of 1/64 inches for all stages. The skin is assumed to carry bending loads only

and will buckle locally. The thickness represents a lower estimate, below which local
failure might be expected. Besides buckling, no further analysis was completed on the
skin.

For the analysis of the skin, the thickness of the outer skin was chosen as 1/64
inches. Since the skin is expected to carry some bending loads, local buckling was
examined. Treating the skin locally as a plate, we can utilize the plate-buckling equation:

p2E h

C_cr= -K (b)2 (Eq 7.1)
12(1-v 2)

Where Ocr represents the critical buckling stress, h is the plate thickness and b the

local plate width. Sample values for Stage 2 were used in the plate buckling equation
because this stage has the most severe loading conditions, h is the distance between
buckling rings and b is the distance between stringers:

h =0.015625 in

b = 23.6 in (approx.)

Also, K is a constant dependent on the local height over width ratio as well as the

boundary conditions and is estimated to be around 4 from the literature [Eisley]. Using
material properties for aluminum, the resulting critical stress turns out to be:

Oct = -47.5 psi
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We can safely conclude that the skin will not carry any significant axial

compressive or bending loads. It will only resist shear. Its torsional modulus equals:

7_

Jskm = 5- (rout-rin) 4

= 71500 in4

(Eq 7.2)
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Figure 7.1 Typical Skin Stringer Arrangement

Longitudinal Stringer Design

The major load carrying components of the hull are the longitudinal stringers, 24 of
which evenly space out a 15 foot diameter circle, as shown in Figure 7.1. They are

designed to withstand axial and bending loads with a safety factor of 1.25. Their cross
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section is rectangular, with the long side facing away from the center of the circle. Since

the loads vary between stages, so do the cross sectional areas.

With the skin not taking much axial compressive or bending loads, the

longitudinal stringers had to be designed to function as the major load carrying
components. In order to find the maximum loads, the following assumptions had to be
made:

The worst g-loads occur while Stage l is burning. At maximum
thrust gimbal angle, they correspond to: 2.5g longitudinal and 2.5g
lateral.
The total drag force equal_ 165,()00 lb. and the total lift force
equals 115 .()l)I} lb. These :xrc upper limits of lift and drag, given
the launching altitude _t the Go'phon and maximum speed during
ascent.

A finite element model for the Gryphon was created, using beam elements for all

components such as the stages, Castors, struts and payload shroud. The masses of the
individual components were modeled as lumped masses at the mid-point of each beam
element (see Figure 7.2, Table 7.1). The components modeled are as follows.:

Stage 1: LR-91, propellant stage, Castor 120 (2)
Inter'stage between Stages 1 and 2

• Stage 2: propellant stage
° Stage 3: RL-10, propellant stage, power/avionics stage

Figure 7.2 Static Finite Element Model of the Gryphon
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The lengths and approximate masses of these components are listed below:

9

Table 7.1

Component #

Lengths and Masses of components for Finite Element model

Component Name Total Length [ft] Total Mass [lb.I

1 LR-91 Stase 1

2 LR-91 SI Propellant
3 lnterstage

Sta_e 2 Propellant
RL-II)

StaFe 3 Propellant
Power, Avionics

Pa_'load Shroud
Ca_,tor 120 t2)

9.25 3070

3.25 27200
6300

6.00

6.gO
.80

43.40

37.00 (each)

176200
790

9000
1600

11000
236000 (total)

• Note that these were the masses and lengths used in the final modeling run.

Updated data became available after the deadline, but was beyond the scope of this

report.

Because the Gryphon is unrestrained during flight, the model was clamped at the
center of mass, free to pivot around it. In order to make the model statically equivalent,
the following moments were added (all moments about the y-axis) to account for the
moment of inertia of the stages. (See Table 7.2) More detailed values are given in

Appendix F.2.

Table 7.2 Moments actin on the Gr

x location [ftl Ma[nitude [lb. ftl

16.6 -2.50 106

31.0 -3.23 107 i

phon

Figure 7.3 Gryphon Deformed Geometry under In-flight Loads
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After the model was run, the maximum element forces and deflections were

found. Figure 7.3 shows the maximum deflection of the Gryphon under in-flight loads to
be 22". Stresses could not be found for any components except the struts, because the
KEY-IN option in I-DEAS was used to define the beam cross sections. Considering axial
forces and bending moments, the stress in the vertical stringers can be approximated as:

P Mc

c_,_= _- + law qEq 7.3

With P being the axial compressive load. A the total cross section area. M the
bending moment about the \-_t\i_,. :_nd c the radius of the main booster. Since the
stringers are comparatively ,nlatl. their total moment of inertia can be a approximated as:

Ad 2
I_,_ - _ (Eq 7.4.)

Given a maximum P and M, the maximum stress is now only a/'unction of area.
Using the following values from I-DEAS output given in Appendix F.1 for the Stage 2
cross section:

P = 235,000 lb.

M = 1.01 108 lb. in

c = 90 in

qx = _yield/l.25 = 48 ksi

We can find

A = 49 in 2

This area would be needed for Stage 2. Less severe load conditions which exist in

Stages 1 and 3 require a stringer cross sectional area of only 28 in 2. The area of the skin
is now added to yield the total cross sectional area of each hull section, which is shown
below in Table 7.3.

Table 7.3

Component

Total Cross Sectional Areas by Stage

Total Area [in 2] Weight (lb.)

Sta_e 1
Interstate

Sta_e 2
Stage 3

36.8

57.8
57.8

36.8

550

485

1630

865

Lateral Buckling Ring Design

Lateral rings are spaced such that the stringers will not buckle. The spacing varies

by stage since each stage is subjected to different loads. Their cross section is T-shaped
(see Figure 7.4), such that the skin may easily be bolted to them. Since the rings only
carry shear loads, their cross sectional area is small, 1/2 square inches, for all rings.
Some of these rings coincide with the larger plane attach, strut attach and interstage rings.
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75

/,,/

9O

"--- 75

Figure 7.4 Lateral Buckling Rings

The next step was to find the longitudinal distance between the buckling rings.
For this the stringers were treated as long, slender beams. The buckling equation for

beams, simply supported on both ends is shown in Eq 7.5.

n )2Per = ( a E I (Eq 7.5)

P is the critical load and a is the length (the longitudinal distance to be

determined). The moment of inertia of one stringer in Stage 2 is approximately 0.04 in 2.
This value results from using 24 vertical stringers with rectangular cross sections and a 1

• 7.5 aspect ratio• Assuming a worst case P from above for Stage 2, it is found:

a=8in

Again, the official spacing assumed a much smaller than P, such that for stage 2:

a = 23.5 in

The summary for all components is shown in Table 7.4. The cross sectional area of the
tings is 0.5 square inches for all stages. The tings are expected to react to shear loads

only.
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Table 7.4 Vertical S

Component

Sta_;e 1

InterstaFe
Sta_e 2

":,rage 3

pacing of Buckling Rings

Spacin_ [inl

35.0

23.5

--._' .5

35.0

7.2.2 Main Hull - Global Buckling Analysis

To check for global instability under drag and acceleration loads, a buckling analv',is was

performed, in this case the total moment or inertia of the main booster section was used.
I-DEAS reported a buckling load factor of 34 on the first mode (see Figure 7.5"_.

Figure 7.5 First Global Buckling Mode of the Gryphon

Therefore, it was concluded that the Gryphon is not in danger of collapsing due to

global elastic instability. The area moments of inertia used for this analysis are given in
Table 7.5.

Table 7.5

Component

Area Moments of Inertia by Stage

Sta_e 1
lntersta:[e

Sta_;e 2
Stage 3

I [in4l

132000

215500

215500

132000

Modes 2 and 3 have buckling load factors of 42. Their buckled mode shapes are

given in Appendix F.3
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7.2.3 Main Booster Modal Analysis

For the dynamic analysis the Gryphon was assumed to be free-free (in flight). This was
realized by using a Degree of Freedom set in I-DEAS. Translations were set active,
rotations inactive. The first six elastic-body modes and their frequencies are:

Table 7.6 Normal ,Modes and Frequencies of the Gryphon

Mode # Frequency [Hzl

4.25

4.76
9.09

I() 9.87

II 9.96
14.25

Figure 7.6 Free Vibration Mode 7 for Gryphon

The first six modes are rigid body modes. Mode 7 is the lowest frequency mode

and is shown in Figure 7.6 The other modes are included in Appendix F.4. From the free
vibration frequencies, it is necessary to conclude that some damping mechanism should
be included for the payload, since most satellites will not survive these low frequency
vibrations.

From the mode shapes we can also observe that the interface between the payload
shroud and Stage 3 is a critical point, since the shroud pivots strongly about this point. As
mentioned previously, some stiffening mechanism should be considered for this critical

point.

7.2.4 Struts and Strut Attach Rings

The Thiokol solid boosters are connected to the main hull by way of attach struts. These

struts impart a shear force to rings located inside the main hull. The shear force acting on
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each strut attach ring is estimated from the thrust of the Castor 120 motors. The worst
case scenario would be if the Castor 120's fire and the Liquid Rocket Booster fails to do

SO.

Since there are 4 strut attach rings, each ring takes about 150,000 lb. of ,;hear
force. Assumine the yield strength of the aluminum alloy in shear is to be approximately

one-half the yield strength in axial loading, the required area of the strut attach rings are

found to be equal to 5 square inches I,,cc Figure 7.7)

2.0O

89.5

2.5,_

Figure 7.7 Strut Attach Rings.

The struts are made from an aluminum alloy and have cross sectional areas of

15.7 and 10.5 square inches. The larger struts have an outside diameter of 6 inches and
an inside diameter of 4 inches. For the smaller struts, the outside diameter is 5 inches and
the inside diameter is 3.8 inches. The struts are arranged as shown in Figure 7.8. The
two most forward struts at each attach station are large and the other attach struts are
smaller. The maximum stresses in the struts were found to be about 50 ksi by I-DEAS.

This is within the specified safety factor of 1.25.

Several separation and jettison mechanisms for the struts were identified. The
pyro-thrusters which appear to be the best option will perform both jettison and
separation functions and are located on the Castor 120 side of the struts. This option
reduces debris and increases reliability.
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Figure 7.8 Strut Configuration

7.2.5 Plane Attach Rings

The plane attach rings carry the weight of the Gryphon under a maximum lateral g-load
of 2.5g. Again, there are 4 plane attach rings, but depending on the flight conditions, one
ring may take the majority of the load. Assuming an aluminum alloy construction and a
1.25 factor of safety, the resulting upper limit of the total cross section area equals:

A = Wr°cket = 24 in2 (Eq 7.6)
2s ys

A conceptual design is shown in Figure 7.9.
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,,,- 6.OO

-

m

Figure 7.9 Plane Attach Ring

7.2.6 Conclusion

It is concluded that the design of the main booster structure is a formidable

problem, and it is extremely difficult to minimize the weight, while at the same time
withstand large g-forces and low-frequency vibrations. Nevertheless the physical
concepts involved were investigated thoroughly. The main goal was to quantify the
stringer/skin/ring structure and solve for the cross sectional area given the axial

compressive and bending loads.

Regarding the struts and the attach rings, many iterations were performed. Other
materials than aluminum were considered. Titanium was an excellent option since it

could provide a significant reduction in weight. For example, one plane attach ring made
from aluminum alloy would weigh 360 lb.. Made from titanium, the same ring would
only weigh 110 lb.. However, titanium is very expensive and much harder to shape than
aluminum. For a final design of the Gryphon, titanium should be seriously considered for

highly stressed, massive components.
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7.3 DESIGN OF PAYLOAD SHROUD AND SOLID BOOSTER

FAIRINGS

To ensure the protection of the payload and reduce overall drag on the booster, a payload
shroud and two solid booster fairings, one for each Castor 120 engine, were designed.

During atmospheric flieht, the payload shroud separates the payload from the
environment by absorbing heat, and reduces the overall drag on the Gryphon. Due to its
extreme size, it was important to compare various structures to reduce the shroud's
weight. Also, to reduce drag, conical fairings were introduced on the tops of the solid
booster engines. Since minimal weight is one of the major concerns of the Gryphon
project, different options for structural weight reduction were also examined for the solid
booster fairings. Therefore, this ,,ection of the report examines the design procedure for
the payload shroud and solid booster fairings, the assumptions that were made in design,
the options that were considered, and what design worked and why.

7.3.1 Structural Design of the Payload Shroud and Its Attach Ring

The following section describes the final payload shroud design, dimensions, material,
and weight. The payload shroud is made of a 0.948" thick carbon-epoxy/aluminum
honeycomb sandwich composite. In the sandwich composite, a 0.75" thick 5056
aluminum honeycomb is sandwiched between 18 plies, on each side, of 0.0055" thick
IM7-8551-7 carbon-epoxy (Table 7.7 & 7.8, Figure 7.10). The aluminum honeycomb is
made by Hexcel Corporation and is listed as 0.75-5056-3.0, with 0.75 for the thickness,
5056 for the type of aluminum, and 3.0 for the density in pounds per cubic feet. The
thickness chosen was needed to resist buckling, and the density was increased from the

density that was used on the Pegasus honeycomb. This increase was do to the large size
of the Gryphon shroud. The IM7-8551-7 carbon-epoxy material is manufactured by
Hercules Corporation and is in the pre-preg form, which means it contains the epoxy to
bond the plies together. IM7-8551-7 was chosen because of its strength, the large amount
of data on the material, and its extensive use in aerospace applications.

Table 7.7 Material Properties of 0.75-5056-3.0

Propert7

Modulus of Elasticity in x-direction

Modulus of Elasticity in y-direction

Modulus of Elasticity in z-direction

Poisson's Ratio in x),-plane

Poisson's Ratio in ),z-plane

Poisson's Ratio in xz-plane
Density

Mass Density

Shear Modulus in xy-plane

Shear Modulus in yz-plane

Shear Modulus in xz-plane

Coefficient of Thermal Expansion

Thermal Expansion Reference
Temperature

Aluminum Honeycomb
Value

9.2 X 104 psi

9.2 X 10 4 psi

9.2 X 10 4 psi
0.3

0.3

0.3

3.0 lb/ft 3

4.493 X 10 -6 Ibm/in 3

4.3 X 104 psi

4.3 X 105 psi

4.3 X 105 psi
13.5 X 10"6/°F

529.67°R

(room temperature)
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Allowable Stress in Tension in x-dir.

Allowable Stress in Compression in x-dir.
Allowable Stress in Tension in y-dir.

Allowable Stress in Compression in v-dir.,
Allowable In-Plane Shear Stress

300 psi

300 psi

300 psi

300 psi

20O psi

Table 7.8 Material Properties of IM7-8551-7 Carbon-Epoxy Ply Material

Property Value

Modulus of Ela,,,ticity in x-direction 21.5 X 106 psi

Modulus of Elasticity in ,,'-direction 1.21 X 106 psi

Modulus of Elasticity m z-direction 1.21 X 10 6 psi
0.29Poisson s Ratio m x_-plane

Poisson's Ratio in vz-plane

Poisson's Ratio in xz-plane
Density

Mass Density

Shear Modulus in xy-plane

Shear Modulus in yz-plane

Shear Modulus in xz-plane

Coefficient of Thermal Expansion

Thermal Expansion Reference

Temperature
Allowable Stress in Tension in x-dir.

Allowable Stress in Compression in x-dir.
Allowable Stress in Tension in y-dir.

Allowable Stress in Compression in ),-dir.
Allowable In-Plane Shear Stress

0.0163

0.0163

0.058 lb/in 3

0.00015 Ibm/in 3

8.5 X 105 psi
8.5 X 106 psi

8.5 X 106 psi
7.396 X 10-6/°F

529.67°R

(room temperature)
40000 psi

23500 psi

11000 psi

11000 psi

17000 psi

PAYLOAD

i

SHROUD NATERIAL
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Figure 7.10 Payload Shroud Sandwich Composite Cross Section
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The 18 plies on each side and honeycomb are arranged in the following order:

Table 7.9

Ply Number
I

1

2
3

4

5

6
7

8

Table of Shroud Sandwich Composite Arrangement
Thickness Angle of

Ply Name
¢

IM7-8551-7

IM7-8551-7

IM7-8551-7

IM7-8551 _7

1M7-,_51--

IM7-855l-7
IM7-s55 l-7

IM7-8551-7

9 IM7-8551-7

10 IM7-8551-7
11

12

13

14

15

16

17

18

19

20

21

IM7-8551-7

IM7-855 l-7

IM7-8551-7

IM7-8551-7

IM7-8551-7

IM7-8551-7

IM7-8551-7

IM7-8551-7

0.75-5056-3.0

37

(inches)

0.0055

0.0055

Orientation

45 °

_45 °

0.0055 15c

0.0055 -15 °

0.0055

{).1)(/55
{).//I)55

0.O055

¢).0055
0.0055

0.0055

0.0055

0.0055

0.0055

0.0055

0.0055

0.0055

0.0055

0.75
IM7-8551-7 0.0055

IM7-8551-7 0.0055

22 IM7-8551-7 0.0055

23 IM7-855 I-7 0.0055

24 IM7-8551-7 0.0055

25 IM7- 8551-7 0.0055

26 IM7-8551-7 0.0055
27 IM7-8551-7 0.0055

28 IM7-8551-7 0.0055

29 IM7-8551-7 0.0055

30 IM7-8551-7 0.0055

31 IM7-8551-7 0.0055

32 IM7-855 I-7 0.0055

33 IM7-8551-7 0.0055

34 IM7-8551-7 0.0055

35 IM7- 855 1-7 0.0055

36 IM7-8551-7 0.0055
IM7- 8551-7 0.0055

0.948"Total Thickness =

15 0
_15 °

45 °

_45 o

15°

15°

_45 °

45 °

_15 °
15 °

_15 °

15 °

_45 °
45 °

0 °

45 °

.45 °

15 °

.15 °

15 °

.15 °

45 °
_45 °

15 °

15 °

.45 °

45 °

.15 °

15 °

.15 °

15 °

_45 °

45 °

The carbon-epoxy ply facing the outside is coated with a material used to reduce
thermal loads. The shroud is composed of a 190" inside diameter, 25" high cylindrical
section, and an ogive top with a 190" inside diameter base that is 14' high (Figure 7.1 l).
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Figure 7.11 Three-View Drawing of the Payload Shroud

The bottom 2" of the shroud is made only of carbon-epoxy plies with no

honeycomb. This is done to allow for connection to the shroud attach ring, and to
connect the shroud to the third stage. Holes through the plies are located around these
bottom 2" of the shroud to allow for bolting to the attach ring. The shroud is built into

two halves with explosives along the connection line, so the two halves can separate
easily during jettison. The top of the payload shroud contains a small nose cap,
embedded with explosives. When the explosives in the cap and along the rnidline of the

Figure 7.12 Separation System of the Payload Shroud
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shroud detonate, the shroud falls back along its two halves, rocking about hinges
connecting the two halves to the attach ring and breaking (Figure 7.12).

Connecting the payload shroud to the third stage is the attach ring _Figure 7.131.
It is made of 7075-0 tempered aluminum, and its matenal properties are listed in Table
7.10. Tile payload shroud attach ring is also used as an adapter to drop the overall inner
diameter from 191)" in the shroud to 180" in the third stage.

I
_)" _ _ 10"

i

'_ _ _f _tucb ring
_ 5.099" _drun to c_nter

T-

l..O °

--- b.-

Figure 7.13 Payload Shroud Attach Ring Cross Section

Table 7.10

Propert 7

Material Properties of 7075-O Tempered Aluminum
Value

Modulus of Elasticity in Tension 10.3 X 106 psi

Modulus of Elasticity in Shear 3.9 X 106 psi

Modulus of Elasticity in Compression 10.5 X 106 psi
Poisson's Ratio 0.33

Density 0.101 lb/in 3

Mass Density 2.614 X 10 4 lbm/in 3

Coefficient of Thermal Expansion 13.5 X 10-6/°F

Yield Strength

Tensile Strength

Shear Strength

15 X 103 psi
38 X 103 psi

22 X 103 psi
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By using a sandwich composite design, the material weight of the payload shroud
is reduced to 2,300 lb.. This includes 1.970 lb. of carbon-epoxy material and 330 lb. of
aluminum honeycomb. However, because of the addition of access doors, thermal and
acoustic insulation, separation systems, and other strengtheners, the total weight of the
shroud is about one and one-third times as much as the structure alone. This is about

6,200 lb. according to past data [Shen and Pope]. The shroud attach ring weighs

approximately 300 lb..

7.3.2 Structural Design of the Solid Booster Fairings and Their Attach Rings

For this section, the final solid booster fairing design, dimensions, material and

weight are noted. The fairings are con,,tructed from the same materials used in the

payload shroud, but with a different r)lv orientation and core thickness. The overall
thickness of the fairings is 11.485 inches with the sandwich composite made of a 0.375"
aluminum honeycomb core, and 10 plies of 0.0055" thick carbon-epoxy material on each
side. Figure 7.14 shows the cross section of the fairing composite, and its relevant matrix

properties calculated using laminate modeling in I-DEAS.

SOLID 80©$T_R FAIRIH_ MAT_RI&L

T
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Figure 7.14 Solid Booster Fairing Sandwich Composite Cross Section

The 10 carbon-epoxy plies on each side and the aluminum honeycomb are

arranged in the order shown in Table 7.11 :

Table 7.11

PI_¢ Number
1

2

3

4

Table of Fairing Sandwich Composite
Thickness

PI_, Name
IM7-8551-7

IM7-8551-7

IM7-8551-7

IM7-8551-7

IM7-8551-7

(inches)
0.0055

0.0055

0.0055

0.0055
0.0055

Arrangement
Angle of

Orientation

30 °

-30 °

15 °

-15 °

30 °
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6
7

8
9

10

11

IM7-8551-7 0.0055

IM7-8551-7 (t.0055

lM7-8551-7 0.0055

IM7-8551-7 0.0055

IM7-8551-7 0.0055

0.375-5056-3.0 0.375

IM7-855 I-7 ¢_.005512

l 3 [M7-8551-7 1).0055

14 IM7-8551-7 0.0055

15 IM7-8551-7 ().0055
16 IN17-8551-7 0.0055

17 lM7-8551-7 ().0055
18 IM7-8551-7 0.0055

19 IM7-8551-7 0.0055

20 IM7-8551-7 0.0055

21 IM7-8551-7 0.0055
Total Thickness = 0.485"

30 o I

_15 °

15 °

_30 *

31)°
1)o

30 °

_30 °

15 _

_15 °

30 °

_15 °

15 °

_30 °

30 °

The carbon-epoxy ply on the outer surface, as on the shroud, is also coated with a
material to reduce the thermal loads. Exposed to heat, the carbon-epoxy can only

o

withstand temperatures up to 300-350 F.

TOP VqEW

go. O0

77 94

L

iSOMETRI C V_EW

0.4B5' THICK

CARBON-EPOXY/

ALUMINUM HONEYCOMB

OWlCH COMPOSITE

fRONT VIEW S_DE viEW

Figure 7.15 Three-View Drawing of the Solid Booster Fairing

The solid booster fairings attach to the Castor 120 engines, and have an have an
outside diameter of 7.5 feet to match the diameter of these engines. The sides of the cone

are at 60 ° angles, making the cone equilateral, and the peak height of the fairing 6.495
feet (Figure 7.15). The bottom two inches of the fairing are curved so the sandwich

composite becomes vertical, and can be attached to the attach ring. In these two inches,
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there is no aluminum honeycomb. The attach ring reaches into the fairing, and attaches

to the outer plies of the carbon-epoxy material at hole locations around the fairing. Since
the fairings are so small and lightweight, they experience much less compressive forces
than the shroud. Therefore, the attach ring only attaches to the outer plies. The attach

ring is made of 7075-0 tempered aluminum, and allows for the fairing to be secured to
the ring on the Castor 120 engines.

45.305" radius to

center of attach ring

 06250.5"

425
_m 0.25" I

Figure 7.16 Solid Booster Fairing Attach Ring Cross Section

Each solid booster fairing weighs approximately 52.5 lb., for a total of 105 lb.. Of this,
95 lb. is for the carbon-epoxy material, and 10 lb. for the aluminum honeycomb. The

attach rings for the fairings weigh 25 lb. each, for a total of 50 lb..

7.3.3 Laminate Modeling

The payload shroud was designed using:

• I-DEAS
• FORTRAN program to find modulus of elasticity in a composite plate and

the stiffness of a laminate tube
• FORTRAN program written to calculate buckling in a composite laminate

plate

To be able to use I-DEAS for static analysis, it was necessary to model the

sandwich composite as a laminate. Therefore, proof was needed to say a sandwich

payload shroud was nearly equivalent to a laminate payload shroud.

The shroud material was based on the sandwich composite used on the Orbital

Science Corporation's Pegasus launch vehicle. A sandwich composite was used on the
Gryphon for three basic reasons: it is extremely lightweight in comparison to solid
aluminum and comparable in strength, automated manufacturing techniques make high

volumes of composite shrouds inexpensive to produce, and sandwich composite
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structures are becoming more popular and have a bright future as a material in aerospace
applications.

To find the stiffness of the laminate and sandwich tubes, it was first necessary to

derive the equations for equivalent stiffness from theory. For comparison, the isotropic

equation is included here:

lsotropic Tube:

Laminate Tube:

) 7.71Ell : w {
r

EI)._ : xi[Q]r'dr (Eq7.g)
r

Sandwich Tube:

(EI)_q = 7,__Tk=()_i (rl, _
r k,

i

t

+

4 ,=1 "<11

r'/- r'"') (Eq797

where E = modulus of elasticity. I = I a = area moment of inema, d o and d i = outside and
inside diameters, ro and ri = outside and inside radii, Q = stress matrix or stress matrix
components.

After further derivation of the laminate tube equation, it is found that the
equivalent modulus of elasticity of a laminate is approximately equal to the following,
where •

AII Alz
A;Z

Eeq = (Eq 7.10)
h

The A's are values from the composite material A-matrix (which the FORTRAN program
solves for), and h is the overall height of the laminate, from the inner ply surface to the
outer ply surface.

By using the basic definition for the area moment of inertia of a circle with
thickness,

(Eq 7.11)

and multiplying to the result of Eq 7.10, the equivalent stiffness of the laminate is found.
For the laminate tests, it was assumed the laminate contained the entire thickness of the

sandwich composite, including the aluminum honeycomb core.

For comparison, Eq 7.9 was explicitly solved using a FORTRAN program to
calculate the various matrices. In the sandwich theory, it was assumed the sandwich
consisted only of the carbon-epoxy plies, because the aluminum honeycomb basically
adds no stiffness to the overall structure.

Example materials were then tried in the programs. For tests between the two
theories, there was approximately a 1% difference. From this calculated proof, it was
then logical to assume that the shroud could be modeled in I-DEAS, building the
materials as laminates. (NOTE: A listing of the FORTRAN program used is contained
in Appendix F.5.)
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7.3.4 Static Loads for the Payload Shroud

The loading conditions applied to the I-DEAS shroud model were the worst combination

of loading that would be experienced during atmospheric flight. It was assumed that if
the shroud was designed for the point where the Gryphon is in supersonic flight, and

beginning its turn to go into the vertical position, the shroud would be able to withstand
any other point during flight. Fc,r all _tatic load calculations, a factor of safety of 1.25
was used.

Since the shroud is used e'_c usivelv in the earliest parts of the mission, only

conditions during the first stage firing, and tl_e Gryphon in its ascent turn are considered.

From this assumption, it was discovered that lhe worst flight conditions occurred at an
angle of attack of 18 ° and at a ,,pced of .Xlach 2. These conditions correspond to a total
drag of 165,000 lb.. and total liiI _nt 115.()110 lb.. on the Gryphon. However. only a
percentage of lift and drag acts on the shroud. Since the lift and drag calculations are
modeled on the base area ot the entire booster, the percentage acting on the shroud is
about two-thirds of the total. The components are calculated by multiplying the lift and

drag by two-thirds, and then finding the x- (bending) and y- (compression) components
for an angle of attack of 18°, Also, since the component of lift along the length of the

Gryphon acts on the frontal area only, the lift needs to be multiplied by its frontal area
ratio which is approximately 0.5.

Y-Component of Drag:

= D_( Asl/*SF (D 18°) {/_ 4as= cos (SF)

= (165000)(cos 18°)(0.66)(1.25) = 129,463 lbs.

(Eq 7.12)

X-Component of Drag:

s (SF)

=D'(A_'I*SF--(Dsinlg°'k,AB) 2(_d-'4 F -_d_

= (165000)(sin 18°)(0.66)(1.25) = 42,065 lbs.

(Eq 7.13)

Y-Component of Lift:

=LYk, Au (2(-_d}J+_- s
(Eq 7.14)

145
ORlulN,Jt- IS

OF POOR QUALITY



Chapter 7 - Structures

X-Component of Lift:

A_l At- *SF ILcos18 ° 4d_= qSF_

. 2 " + d_
4 F _-

= _1150()[))(cos lS-_t{).h6 _1/.5 _t1.25)= 45,115 lbs.

Acceleration Load in X-Direction

F, = \V¢SF_," ,_l g!S) = _mg)(SF)(# of g'_)

= _(_ll/[))c 1.25 _t2.51 = 18.750 lbs

Acceleration Load in Y-Direction

F, = WISFff# of g,_) = (mg)(SF)(# of g@)

= t6000ffl.25)(5.0) = 37,500 lbs

where, as shown in Figure 7.17:

ASI =

AS2 =
bs =

hs =
d s =

the base area of the shroud

the longitudinal area of the shroud
the diameter of the shroud

the height of the shroud
diameter of the shroud

d F = diameter of the fairings
A B = the base area of the entire booster
ALB = the longitudinal area of the liquid booster area
bLB = avg. diameter of the entire booster
hLa = height of the entire booster
SF = factor of safety
W = weight

_Eq 7.15_

(Eq 7.16)

(Eq 7.17)

(;:,c: :, '_. ,t • Ur_" iE
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AFI i " L

S

Front (Base) View of Gryphon

ASB blL B ALB

Longitudinal View of Gryphon

Figure 7.17 Sketch of Components from Load Calculations
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Since the Gryphon is accelerated through a lateral turn, the shroud experiences
lateral as well as longitudinal acceleration. Along the booster, there is an acceleration

load equal to 5.0 g's for the structure only during stage one. Adding on the additional
acceleration due to the entire weight of 6200 lb. brings the total acceleration tip to 15 g's,
or 57911 Ibf. This acceleration works in the same direction as the compressive load acting

on the shroud.

The lateral acceleration durin,, ,,lage one is equal to 2.5 g's. Addin_ on the
additional acceleration load for the entire weight of 6200 lb. sets the actual acceleration
load that the shroud sees to 7.5 g,,. ,_r 2S95 lbf. The lateral acceleration opposes the lift
force, and therefore acts c,ppo,,ite I_ that force in the I-DEAS model.

Finally, all of tile calculated hinds are multiplied by 1.25 to account for the factor
of safety. The following tahlc lists <ill ,,tatic loads applied to the finite element model
made in I-DEAS, including factors or ,,afetv.

Table 7.12 Static Loads

Type of Load

Applied to the Payload Shroud in I-DEAS
Y-Component X-Component

_'Compression) (Bending)

Dra_ 129,463 lb.. 42,065 lb..
Lift 29,316 lb.. 45,115 lb..

Acceleration 37,500 lb..

]_ Forces 196.2979 lb..

18,750 lb..

105,930 lb..

7.3.5 Shroud Buckling Analysis

Since the shroud is a large, thin structure, local buckling was a major concern in

its design. It was decided that the buckling analysis should be completed first, thereby
outlining a baseline design. Further iterations were then performed to design the shroud

to withstand ply failure.

Using the aerodynamic and acceleration loads on the structure, the local stress
state of the shroud was characterized. This was compared to critical stress values

obtained from cylindrical buckling theory. A factor of safety of 2.3 was used in

comparing the two stresses to account for uncertainty in loading, the catastrophic nature
of buckling failure, and the sensitivity of shell structures to local imperfections.

The shroud is composed of two sections, one cylindrical and the other conical.
Each had to be analyzed independently. A [45/-45/15/-15]s (symmetric) IM7-8551-7

skin lay-up with a 3/4" aluminum honeycomb core was necessary to prevent buckling in
the cylindrical section. Using the same materials, a [30/-30]s skin and a 3/4" honeycomb

prevented buckling in the conical section.

Load Definition

Using the lift, drag, and acceleration forces in Table 7.12, the local state of stress in the
shroud due to bending and compressive forces was defined. Thermal loads were
neglected since the structure is free to expand vertically. By combining the bending and
compressive loads, an expression for stress can be derived as shown in Eq 7.18.
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P Mr
=--+-- (Eq 7.18)

P is the compressive force. A is the cross sectional area of the shroud. M is the bending
moment, r is the radius of the shroud, and IA is the area moment of inertia of the cross

section.

A critical stress was calculated using cylindrical buckling theory [Vinson and

Sierakowskil. This theory uses the c_mstitutive description of the laminate to compute its
critical buckling stress. Ttac hucklin_ ,,tress is dependent upon the number of half waves.
so a FORTRAN program wa_, u,,cd t[_ iterate a solution. It is presented in Appendix F.6.

Cylindrical Section ,Analysis

The cylindrical section receives the full load condition of the shroud. Aerodynamic lift
and drag apply both compressive and bending loads. The loads were assumed to act
equally over the entire shroud, so the moment arm of the bending portion was assumed to
be half the total height. Using the values for these forces in Section 7.3.2, and Eq 7.18,

the stress on the cylinder was calculated.

(84,800 lbs)(234 in)(95 in)
. "-- ..{.CL"t=d'" 500 in-' 2,280,000 in"

157,000 lbs
= 1,097 psi

A sandwich structure with [45/-45/15/-15]s (symmetric) skins and a 3/4"

aluminum honeycomb has a critical stress of 2,881 psi. Therefore, the cylinder must have
a minimum of 8 ply skins with a 3/4" honeycomb. Further analysis to check for the ply
over stressing and honeycomb failure finalizes the design. This result was used as an
initial guess to check for ply failure. If additional layers had to be added, they would

only increase the critical buckling load. Therefore, no further buckling analysis was
needed.

Conical Section Analysis

Figure 7.18 Load Distribution of a Cone Under Buckling Loads
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Cones have a natural resistance to buckling due to their geometry. Loads applied

in a compressive direction do not directly act as buckling loads because the sides of a
cone are angled. To model this, 1he cone was represented as a stacked series of cylinders

(see Figure 7.18).

B,, modelin_ the cone in ttlis manner, the bottom cylinder is subjected to all of tile

compressive and bending [oads v, ith a moment arm equal to half the cone height. It has a
diameter which is an average of the holtom cone diameter, and the cone diameter at ttlc

height of the bottom cylinder. However. since the bottom cylinder is shorter than the t-ulI
cone, it has a higher critical buckling load. By using the shortened length, cylindrical

buckling theory yields a value for lhis _lress. For the purpose of analyzing the conical
section of the shroud, a stack _I ,,ix _linders of equal height was used. Using Eq 7.18.

the applied stress was comptm_'d.

(_cone --

2 I0,4{)()Ibn _35.800 Ibs)(84 in )(83 in)
..,..

500 in-" 1,420,000 in _
= 686 psi

A critical stress of 1,578 psi was required to maintain a 2.3 factor of safety. Using

buckling theory for [30/-30]s skins, and a 3/4 " honeycomb the critical load was found to

be 1,675 psi. Four ply skins were sufficient to prevent buckling, and became the initial

geometry used in ply failure analysis. The addition of more plies to prevent failure only
increases the buckling load, so no further buckling analysis was needed.

7.3.6 I-DEAS Modeling of Payload Shroud

By using SDRC- IDEAS, the model was designed, the laminate material was created and

applied to the model, and the loads of Table 7.11 were applied. Since the shroud material
can withstand temperatures up to 300-350°F, a temperature load of 300°F was also

applied to the shroud. As a restraint, the base of the shroud was clamped. Since the
shroud is rigidly connected to the rest of the Gryphon, it moves as the rest of the booster
moves. Therefore, it is safe to assume that the way the shroud deflects due to

aerodynamic forces is the same as clamping the shroud to the ground, and applying the
forces seen during flight.

After running the model, parameters such as displacements, in-plane stresses,
transverse shear stresses, and ply failure index were examined. The major constraint in

the design was to assure that none of the carbon-epoxy plies, or the honeycomb core,
would fail. The honeycomb carries all transverse shear loads and increases the area
moment of inertia of the cross section without significantly increasing the weight. On the

other hand, the carbon-epoxy is designed to take nearly all the axial load along its two

sets of plies. As was discovered in the model, the determining factor in the material
design was failure due to axial loading of the honeycomb core. There were not enough
carbon-epoxy plies, so some of the axial load was being transmitted to the honeycomb,
which fails easily in the axial direction.

By adding extra carbon-epoxy plies, the axial load on the honeycomb core was
reduced, and as an additional bonus, the critical buckling load is increased. Figure 7.7
and Table 7.9 show the final material description used for the I-DEAS model. The

composite includes mostly +15 ° plies (nearly longitudinal) because bending and

compressive loads act in this direction.
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Figure 7.19 I-DEAS Model of the Payload Shroud with Applied Loads

Figure 7.19 shows the payload shroud with its applied loads and restraints, and

Figure 7.20 shows the displacement of the shroud due to those applied loads.

OISPLACI_MEN? NORMAL MI_: 0 ,00 MAX : 0.435834

Figure 7_20 Total Displacement of the Payload Shroud

The maximum deflection of the shroud due to static loading occurs at the tip. For
conditions listed in Table 7.12, the tip deflection is 0.476 inches in either direction.

Inside the payload shroud is the payload and the payload interface, which supports the

payload. One major concern is that the payload interface and the shroud do not deflect,
and as a result, crash into each other creating significant damage. As is discussed in
Section 7.4 of this report, the maximum deflection of the payload interface/payload
combination is 0.836 inches in either direction. Since there is 7 inches between the

payload and the shroud, the closest that they could be to each other is 5.688 inches.
Therefore, due to static loading, the payload shroud and payload/payload interface will

not collide.

To determine failure characteristics of the payload shroud, the Hoffman failure

theory was applied to the loaded model in I-DEAS. The Hoffman failure theory is listed
in Eq 7.19 where X'r, Yc, YT, Yc are the yield stresses in the x and y tension and
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compressive directions, S is the yield strength in shear, and s is the stress in the ply in a
particular direction. A value greater than unity occurs if the composite layer has yielded.

" _{, _,,cy,, Xc - XT Yc - Y c_:
(::YI1 + ...... + (Yl + r

X rX c Y_ Y,. X_-X c XcX. r ' Y i_(-7 _"-" + --S: (Eq 7.19)

By applymg this theory, a ply failure index for each ply is obtained. The ply
failure index is a measure of how close a ply in a laminate is to failure, based on material

properties and loading conditions. If the ply failure index is less than one, the matenal
will not fail, if it is equal to one. the matenal is at the failure boundary, and if it is greater
than one. the material will fail. Figure 7.21 and 7.22 show a contour plot of the ply
failure index for the honeycomb core Cply number 19), and for one of the carbon-epoxy

plies (ply number 27) respectively..-ks ,,een in the plots, the honeycomb failure index is
higher than the carhon-cpoxy ply (allure index. The compressive load is handled by the
carbon-epoxy with relative ease, hut a small amount of load transmitted to the

honeycomb can cause failure of the overall material structure.

F'lt:_XkUit_l r ZND[X ItOl_ PLY -- MI_G MIN; _)._'lZ_SO_ MIeC'(: 0.50733 q

O • 63_!_S3

_.St3_2

0.30S2S2

PLY NOt 19
0.2_S4;'3 t

O. 14_IO

Figure 7.21 Ply Failure Index Plot for the Shroud Honeycomb Core

The spots on Figure 7.21 with the highest ply failure index are of particular
interest. Therefore, plots were made of the in-plane stress and transverse shear stress
throughout the thickness of the material for the elements with high ply failure index. An
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Figure 7.22 Ply Failure Index Plot for a Shroud Carbon-Epoxy Ply

example of the plots of elements with highly stressed honeycomb are shown in Figure
7.23 and 7.24.
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Figure 7.23 In-Plane Stress for a Shroud Model Element
with Highly -Stressed Honeycomb Core
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Figure 7.24 Transverse Shear Stress for a Shroud Model Element
with Highly-Stressed Honeycomb Core

As shown in Figure 7.23, the in-plane stress does not exceed the strengths of the

material properties for any of the laminate plies, and Figure 7.24 in conjunction with 7.22
proves that the honeycomb carries transverse shear stress but not axial forces. The

payload shroud will not fail due to in-flight loads.

Results

From Eq 7.11, the approximate area moment of inertia of the shroud is calculated

assuming no honeycomb core adding to the moment of inertia:

I _4(190.198_ 90_)= 5.413 X I05 in _: __4( 91.896 _ - 191.698_)+ -I

(Eq 7.20)

Using the A-matrix values obtained in the FORTRAN program for calculating
laminate properties, an equivalent modulus of elasticity for the shroud material is found

from Eq 7.11.

154



University of Michigan Aerospace Project Gryphon

6.32 X 105
All AI'- 2.765 X 106

A, 8.229 X 106
= 2.917 X 10" psi (Eq 7.21'_

E,q - h 0.948

Bv multiplying ttle two numt_ers above, the equivalent El. or stiffness of the
_",shroud, is found to be I._ ,q X 1() l_ psi.

The maximum stress, on average, in any of the carbon plies is 22.000 psi which is

below material property values. The maximum von Mises stress in the honeycomb core
is 241.97 psi. slightly below the allowable value. Even including the 1.25 factor of

safety, all the requirements are met.

Knowing the overall dimensions, and the dimensions of the materials, the weight
of the cylindrical section and the ogive section are calculated. The cylindrical section is
as follows:

W
cyl

= 9c_o, Vc_bo, + 9_,bV ,,l

= _- i 2 *h+ Kr 29c_o,,[n(ro r:).,_ptlo+n(r2o-r,)=e,p,,s] 9A,[ (o-r_) h]

= (0.058)[=(95.9482 - 95.8492)+ r_(95.099 = - 952)]*(25.12)

+(1.736 X 10-')[n(95.8491 - 95.099z)1(25 *12)

= 2066.? + 234.31 = 2301.01 lbs.

(Eq 7.22)

The weight of the ogive section can be calculated similarly:

Wog I = pc=_°V_,t,o_ + p._V_

=Pc_,_, (r2o-r_')o,,_,pu,,+s(r; - ,,==,pt,,s_] P_a 3(r2o-r_) h

+(1.736x (95.849- 95.099 ) 14.12)
[.3

= 385.79 + 43.74 = 429.53 lbs.

There will be additional material at the base of the shroud where aluminum will

be added around the entire circumference for the edge close-out. This is done to end the

honeycomb, and allow for a place to connect to the attach ring. A diagram of the edge
close out for a cross section of material is shown in Figure 7.25. After optimizing

material design by changing the ply orientations and the number of plies, the total weight
of the material for the shroud should be approximately 2,300 lb..
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EdgeClose-Out Carbon-EpoxyMaterial

_Bottom Ed,zcof Shroud AluminumHoneycomb

Figure 7.25 Edge Close-Out at the Base of the Shroud

Conclusion

The payload shroud is designed to protect the payload from the environment, and
because of its enormous size, weight is a major factor. To reduce weight, a carbon-

epoxy/aluminum honeycomb sandwich composite was chosen as the material. This
keeps the high bending and torsional stiffness of the shroud high, and keeps the overall
weight low. The total structure weight of the shroud is 6,200 lb., yielding a lower weight
than a comparable structure of solid aluminum, which would weigh approximately twice
as much. The stress observed in the honeycomb core is still quite high, and during

redesign of the payload shroud, reduction of the stresses in the honeycomb will be the top

priority. Also, an optimization of ply orientation angles and number of plies needs to be
performed. Other concerns that will need to be addressed are how to manufacture such a
large shroud as well as the specifics of how the shroud is fixed to the attach ring.
Investigations must be made as to how the explosive mechanism and the explosives will
interact to jettison the shroud during flight. Finally, research must be done on how the

hinge at the base of the shroud will work, and how the mandrel, used to wind the carbon-
epoxy material, will be designed.

7.3.7 Static Loads for the Fairings

Since it was proven that modeling the sandwich composite as a laminate was
acceptable, and the sandwich composite material was extremely light, the same type of
material was chosen to design the solid booster fairings. The fairings are much smaller
than the shroud size, and are to be used for only aerodynamic purposes. Therefore, the

goal in designing the fairings was to make them as light as possible, and just strong
enough to take the applied loads. Also, because of the reduction in size, the loads
experienced by the fairings are much smaller than seen on the shroud.

As with the shroud, the worst loading conditions were chosen to be at the same

point during atmospheric flight. With a total drag of 165,000 lb.. and a total lift of
115,000 lb.., the same procedure was followed for calculations, except the pertinent area
is now the fairing instead of the shroud.
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Y-Component of Drag:

X-Component of Drag:
X

: D A,=,i ,SF,:
' AB

Y-Component of Lift:

=L_ _j

'165000 cos 18°)(0.18)(1.25) = 35,308 lbs.

165{}1}0 ,+in 18°)(0.18)(1,25) = 11,472 lbs.

= !115(}{}{}sm 18=)({}.18)(1.25) = 7,996 lbs.

(Eq 7.24)

(Eq 7.25 }

(Eq 7.26)

X-Component of Lift:

( AF' )*(SF) = ( l 1S{}{}0cos= L, --_B
18°)(0.18)(0.217)(1.25) = 5,333 lbs. (Eq 7.27)

Acceleration Load in X-Direction:

F, = W(SF)(# of g_) = (mg)(SF)(# of g_)

= (400)(1.25)(2.5) = 1,250 lbs
(Eq 7.28)

Acceleration Load in Y-Direction:

Fy = W(SF)(# of g@) = (mg)(SF)(# of g@)

= (400)(!.25)(5.0) = 2,500 lbs
(Eq 7.29)

where, as shown in Figure 7.17: AFI = the base area of one fairing
AF2 = the longitudinal area of one fairing
AB = the base area of the entire booster
ASB = the longitudinal area of the solid booster
SF = factor of safety
W = weight

Table 7.13 summarizes the above loads. These static forces are what was applied to the

solid booster fairing model created in I-DEAS.

Table 7.13 Static Loads A }lied to the Solid Booster Fairing in I-DEAS

"_'-Component X-Component

Type of Load (Compression) (Bending)

Dra_ 35,308 lb.. 11,472 lb.
Lift 7,996 lb.. 5,333 lb.

Acceleration 2,500 lb.. 1,250 lb.

Y_Forces 45,804 lb.. 18,055 lb.
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7.3.8 Fairing Buckling Analysis

The fairings are similar in design to the conical portion of the shroud. Although buckling
was not the critical factor in the design of the shroud, it provided a good baseline design

/or stress analysis. The same technique was applied to the fairings. Buckling analysis
resulted in a [30/-31)1s (symmetric) IMT-S551-7 skin with a 3/8" aluminum honeycomb

core. The critical stress of this lay-up was 1.970 psi. Stresses due to aerodynamic and

acceleration loads amounted to only 1,127 psi.

7.3.9 I-DEAS Modeling of Solid Booster Fairings

For the fairings, the model wa_ designed, and a new laminate was created and applied to
the model. The loads of Table -'.13 _vcre applied to one solid booster fairing as well as a

temperature load of 3(R)-F. Thi_ tcmpcraturc was also applied to the payload shroud.
The base of the fairing model wa_ clamped since it will be clamped to the attach ring.
The attach ring connects tile fairing to the ring provided with the Castor 120 solid rocket

engines.

Figure 7.26 I-DEAS Model of the Solid Booster Fairing with Applied Loads

Since the loads on the fairings are not as high as on the shroud, not as much

material was needed to design against buckling and failure. This reduction in the number

of plies also reduces the total weight of the fairings. Displacement, in-plane stresses,
transverse shear stresses, and ply failure index were calculated by running the model, and

resulting material changes were made based on the test results. Figure 7.14 and Table
7.10 show the final sandwich composite arrangement for the fairing. Figure 7.26 shows
the solid booster fairing model used in analysis, with applied loads and restraints, and

Figure 7.27 shows the net displacement due to the applied loads.

The maximum deflection of the fairing due to static loading is 0.107 inches at the

tip, which is quite reasonable for a 7.5 foot diameter cone exposed to nearly 50,000 lb. of
force.
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Figure 7.27
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Figure 7.28 Ply Failure Index Plot for the Fairing Honeycomb Core
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As done tor the payload shroud, Figures 7.28 and 7.29 show contour plots of the

ply failure index based on the Hoffman failure theory (Eq 7.19). Figure 7.28 is for the
honeycomb core (ply number 11), and Figure 7.29 is for one of the carbon-epoxy plies
(ply number 4). The failure index reaches a maximum of 0.826 for the honeycomb, and
the carbon-epoxy material is fairly consistent around 0.05. As in the shroud, the

honeycomb core is the weak link in the material. However. if enough surrounding plies
are made to carry, the load. the sandwich composite works well.

O,_O131

0 • _'q._O; _

0. _ t242

0.0t2354

o._tm

Figure 72.9 Ply Failure Index Plot for a Fairing Carbon-El_xy Ply

Highly stressed elements in the honeycomb were also checked to prove that the
material was not experiencing stresses greater than it can withstand. Figures 7.30 and

7.31 are plots of the stress throughout one element, showing that the stress does not
exceed material properties. Once again, the transverse shear stress plot, Figure 7.31,
shows that any failure of the honeycomb would be due to axial loads and not transverse

loads. Any failure of the honeycomb core could be eliminated by adding more carbon-

epoxy plies to take the axial load.
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The maximum stress in any of the carbon-epoxy plies of the fairing is 22.000 psi. below
the allowable stress in compression or tension, and the maximum ','on Mises stre.,,_ in the

honeycomb core is ,,.6.75 psi. also below the allowable value. All the requirements are
met. including the 1.25 factor ot safety.

.As with lhe payload shroud, the weight for each o| the solid booster fairings is
calculated, using the data in Tables 7.7 and 7._N. Tile weight of one fairing is as follows:

W,. _,_,_= p_.,,,,, V .... +pvVv

[_( ' _ ]*h+gv[-_{r:,-r:}h 1

3

+ (1.736x to-tI-(44.94 - - 44.5v -)(6.495"12 
L3

= 46.61 +4.76 = 51.4 lbs.

As with the payload shroud, there will also be an edge close-out, as shown in

Figure 7.23, around the entire circumference of the failings. Therefore, the total weight
for one fairing will be about 53 lb., and for the two together, about 105 lb..

Goqclusion

Two identical solid booster fairings will be built for the Gryphon, each to be mounted on

the top of one of the Castor 120 solid rocket engines. The fairings, used for aerodynamic
purposes, are comprised of a carbon-epoxy/aluminum honeycomb sandwich composite,
which significantly reduces weight. Each fairing, a 7.5 foot diameter by 6.495 foot high
cone, weighs approximately 53 lb.. As of now, the fairings are slightly over designed.
Therefore, to optimize the design, buckling and static yielding cases must be considered.
The design may also work with slightly less material, thereby,, reducing the overall

weight. As with the shroud, the manufacturing of the fairings and the specifics of how

they are fixed to the attach rings needs to be investigated.

7.3.10 Static Analysis of Attach Rings for Payload Shroud & Solid Booster Fairings

For the payload shroud and the solid booster fairings, attach rings needed to be designed
to work as an adapter. In each case, a sandwich composite structure needs to be
connected to the attach ring, which attaches to the main structure of the Gryphon.

The payload shroud attach ring connects the payload shroud to the third stage
external structure. It also is used to match the size of the shroud to the size of the rest of

the Gryphon. The diameter of the shroud is required to be 190", or 15.83 feet. However,
the rest of the booster is 15 feet in diameter. The attach ring reduces the diameter size to

15 feet. Also, the attach ring needs to be strong due to the large loads imparted to the

ring.
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The attach ring for the fairing is much more basic than that for the shroud. The

loads on the fairing are much less than that of the shroud, and therefore the attach ring for

the fairing does not need to be as strong. Also, the fairing attach ring acts as a connection
between the solid booster fairing and the ring accompanying the top of the Castor 120

solid rocket engine.

Payload Shroud Attach Rine

It is assumed that static loading conditions are the governing forces acting on the attach

rings. Therefore. if the attach rings are designed for static loading, they will be strong
enough for use. To design the attach ring for the payload shroud, a basic design was
used. The nng, as shown in Figure 7.13. i_ made of 7(/75-O tempered aluminum, with its
material propertie_ listed in Tat_te -.I(). The same material is also used in the design of

the fairing attach rings.

The cross section view in Figure 7.13 shows how the shroud is supported by two

flanges that jut out from the center-body of the ring. A portion of the ring sticks into the
shroud, where the edge close-out is located. This portion is the same size as the space

between the carbon-epoxy plies. It is three-quarters of an inch, so that it will fit snugly.
After dropping below the flanges, the ring cross section jogs inward, dropping the overall
diameter of the ring down to the required 15 feet. To physically connect, holes are

located along the circumference of the base of the shroud, the portion of the ring that
sticks into the shroud, and along the bottom vertical part of the attach ring. Bolts will

then connect the entire system together.

The attach ring was then modeled in I-DEAS, and loaded on the flanges with the

full drag force experienced in the compressive direction. The analysis provided the
information necessary to approve the design. Shown in Figures 7.32 and 7.33 are the two

important drawings proving the strength of the structure. Figure 7.32 shows that the
maximum tip deflection is 0.000412", and Figure 7.33 shows that the yon Mises stress in
the ring cross-section does not exceed 165.71 psi. Therefore, at this point, it is obvious
that the payload shroud attach ring is over designed. The next step would be to reduce
the weight, and maximize the design until optimal values which maximize the material

properties are achieved, r,
r- I
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Figure 732
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Total Displacement of the Payload Shroud Attach Ring Cross Section
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L65._1
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Figure 7.33
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von Mises Stress Distribution for Shroud Attach Ring Cross Section

The weight of the attach ring material can be calculated using the following

equations:

Wattach ring = P7075- 4.[ VT075-AI = 97075-AIA_-sec'(r_D=vg)

[-(2"* 0.25" ) + (6.403"* 0.25" )'](rt *

= (0.i01)[+(0.5,,, 2.75,,) + (0.75,,, y,) j 185")

= 336 Ibs

(Eq 7.31)

The attach ring weighs approximately 300 pounds, as stated in Section 7.3.1.

Using basic analysis, the stress in the attach ring can also be estimated using Eq 7.32:

P+ My= _ __ (Eq 7.32)
A I

s is the stress in the attach ring, P is the applied load, and A is the area on which the

applied load acts. M is the moment on the area A, y is the distance from the neutral axis
that the stress is being found, and I is the area moment of inertia of the area A. For the

payload shroud attach ring, the dominant load is the compressive force. Therefore, the
bending moment will be not included. The load is being applied to the flanges, so the
area on which the applied load acts is the top area of the flanges. This area is

approximately 1194 square inches. The load applied to the flanges is the 129,463 lb
compressive force on the shroud due to drag. Dividing the load by the applied area yields
a stress equal to 108.45 psi in the flanges. Looking at the yon Mises contour plot in
Figure 7.33, this number is quite comparable to the stress found in the flanges. In the

164
ii,?,_,iL.i_';/,,L;....t_£IS

OF pOOR QUALITY



University of Michigan Aerospace Project Gryphon

figure, the ,,'on Mises stress in the flanges is approximately 100.69 psi. The value
obtained from Eq 7.32 is a basic approximation yielding an answer too conservative by
7 7%+

Solid Booster Fairing Attach Rine

The load on the solid boo,,tcr fairing. 35,308 lb. of compressive force, is quite small in

comparison to the 129,463 pound toad on the shroud attach ring. Also. the shape of the
ring, as shown in Figure 7.16. is c_mptetely vertical, unlike the offset in the shroud attach
ring. Therefore, it was assumed that doing calculations using Eq 7.32 would be reliable
to a high enough level that the rin_ would not need to be modeled on I-DEAS. The
fairing attach ring is ba>,icall'+ _t_," ,,hapc of a T with the vertical part taking the
compressive load. U_ing Eq :'32 tt:_ rind tile ,,tress in tile flange and assuming the

imparted moment is ,,mall enough that it can be as_,umcd to be zero:

P Nlv ;-_ z(},_lbs. _'q)8 lbs.
cy = -- + - " - " - " = 249.75 psi

A- I _D,, t rt(7.5@i2)(0.5")

The stress in the flange is 249.75 psi, and the yield strength of the 7075-0 aluminum is

15,000 psi. Therefore, the attach rings for the fairings are also over designed. Reducing
the size would reduce the weight and would make more efficient use of the material.

The weight of this ring can be calculated in the same way that it was calculated for the
shroud attach ring. Completing these calculations:

W attach rung
--" _ 7075_ .\[ V ,q75_ .,_1--_ 7075 -- At A ,....- t (KDa_g)+

=(0.1011[(4._5 0.125 /+(0.5 0.25 )](rt 7.5@12)

= 18.74 Ibs.

(Eq 7.33)

Therefore, two attach rings will weigh approximately 35 lb..

Three attach rings will be made in total for the payload shroud and fairings, one for the
shroud and one for each of the fairings. The rings will be made of 7075-0 tempered
aluminum, and can support maximum compressive loads with a 1.25 factor of safety.
The shroud attach ring is used as an adapter to drop the overall outside diameter from
190" to 180", and to connect the payload shroud to the third stage. The fairing tings are

simply used as a connection from the solid booster fairings to the attach ring located on
the Castor 120 solid rocket engines. At this point, all of the rings are over designed, and
in the future, would need to be changed to minimize weight and effectively use material.

Also, problems such as how the rings will be manufactured, where the exact attachment

points are located, and how many and what type of bolts will be needed, will have to be
answered in future work.
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7.4 PAYLOAD INTERFACE

7.4.1 Introduction

The Payload Interface IPI) supports and protects the payload during ascent. It is roughly
16 feet high and has a diameter which varies between l0 and 14 feet. It can support two
satellites with a maximum weight of 5000 lb each.

7.4.2 Presentation

Several considerations were taken into account in the design of the PI:

• The design had to be light weight.
• The PI had to withstand axial and lateral acceleration loads.
• The PI had to withstand dynamic loads from random vibration and thrust

fluctuations.

• The design had to be cost effective.

The PI consists of an aluminum skin that is 1/64" thick. The skin is reinforced

with beam supports. Along,,the outside, eight I beams run the length of the PI. These areAluminum beams with a I-beam cross section. Around the top of the PI, a ring is

positioned to interface with an upper satellite. This ring was modeled as a 3" I beam
section, made of aluminum. A second ring, 14' above the base of the PI, supports the
structure against buckling and is a 1" I beam made of titanium. Finally, a third

supporting ring is positioned 10' above the base of the structure. Again this ring mainly
prohibits buckling, and is composed of titanium. The lower satellite is supported by a
truss structure originating from the base of the PI, and running inside the skin. The entire

structure weighs 636 lb. The payload interface is shown in Figure 7.34.

Figure 7.34 Payload Interface
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7.4.3 Loading

The PI loads originate from the two satellites. The vehicle is subjected to a 5.5g axial
load and a 3g lateral load. The axial load results solely from the static thrust of the rocket

engines, since dynamic loading of the PI proved to be negligible in this direction. The
lateral load has two causes. The first part of the lateral load results from a pull up
maneuver during ascent. This maneuver incurs a load of 2.5g. An additional 0.5g results

from dynamic loading during the flight. Each load includes a factor of safety of 1.25.

Static loading information was obtained from the mission analysis group. Using the

trajectory, the static loads on the PI were determined to be 5.5g axially and 2.5g laterally.
Again, these loads arise from the thrust acceleration of the rocket engines and a 2.5 g

pull up maneuver.

Dynamic Loadin_

Dynamic loads result from engine vibration. These loads proved to be the most difficult
to determine. Vibration loads resulted in a negligible axial component and a 0.5g lateral

component.

7.4.4 Modeling

Modeling began with intuitive reasoning and hand calculations. The original model of
the Payload Interface consisted of a solid tapered cylinder, modeled after the Pegasus'
configuration. This proved to be a very weak configuration in terms of buckling strength

and weight.

The next modeling step involved reinforcing the cylinder with titanium stiffeners.
The titanium beams offer a greater buckling strength than the aluminum skin. The use of
stiffeners saved a great deal of weight as compared to a comparable solid shell. Use of an

I beam shape offers a high moment of inertia, and therefore, a higher buckling strength.

The dimensions of the PI were determined from the payload size. The structure

was designed to hold two 12' long satellites with a 12' diameter and a combined weight of
7900 lb.. A Finite Element model was created on I-DEAS for static and dynamic

analysis.

7.4.5 Results

The design of the PI was started by hand. Intuitive work and hand calculations were used
for rough estimates. The early results showed that a solid aluminum skin would be too
heavy if it were to withstand the loads generated during ascent. The first improvement
upon this design was the use of stringer supports which allow the skin to be much thinner,
hence lower in weight. Eight beams were placed around the outer edge of the PI to
stiffen the cross section where high moments of inertia and a low cross sectional area are
desired The beam sections would carry most of the load and protect the structure against

buckling. The optimal beam shape was determined to be I shaped due to its high moment
of inertia and low cross sectional area, therefore providing lower weight.
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At this point the model consisted of a twelve foot diameter cylinder that was ten
feet high. An increase in complexity resulted from determining the size of the lower

stages, and the outer shroud. Initial estimates put the third stage diameter at 15'. The
payloads group decided to aim for a two satellite configuration with a maximum payload
of 7900 lb, including a 10% allocation for structural weight. The maximum size the two
satellites can be is 12' tall and 12' in diameter with a 5000 Ib maximum weight. Although
two 5000 lb satellites would exceed the vehicle's payload capacity, this design allows the

versatility to place the heavier satellite in either spot. This also allows for heavier
payloads in the future if the booster configuration allows the Gryphon to take higher

payloads to orbit.

From this point on all modeling was performed using I-DEAS to allow for fast
analysis of potential design changes. Using this model it was apparent that the skin could
be made very thin, and still support the static load. The major concern with the thin skin
was buckling, since early models showed that the supporting beams would buckle well
before the skin material would exceed the material limit. To rectify this problem
horizontal stiffener rings were placed on the PI. The final configuration had deformations
and stresses within acceptable limits. Maximum yon Mises stresses were found to be 30
ksi, below the material limit for wrought aluminum (35 ksi). The maximum deflections
was on the order of 0.8". Stress contours for the PI are shown in Figure 7.35.

¥

Figure 7.35 Stress Contours of Payload Interface

Although the material limits were not exceeded, other issues needed to be
considered. The PI would support the weight, but how much would it move the satellite?

Upon analyzing the deformed geometry, it was apparent that the deflections incurred
during flight would not cause the satellite to interfere with the outer shroud. The

deformed geometry of the PI is shown in Figure 7.36.
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Figure 7.36 Deformed Geometry of PI

Although the upper ring moved very little, the fact that a 12' high satellite rested

on top of it had to be considered. The largest deflection was found to be 0.8". The worst0.8"
case assumed that two points opposite one another on the ring each deflected in the

vertical (y) direction, which created a total displacement of 1.6". Since the diameter of

the ring is 13 feet, this meant a twist angle of 0.76 °. If the entire satellite rotated thro_g9h,,
this angle the movement of the uppermost part of the second satellite would be

10"which is well within the shroud inner diameter of 15' . This is shown in Figure 7.37.

Undeformed Plane

of PI

\

Deformed Plane
of R

t

Deflection-0.8"

(not to scale)

Figure 7.37 Deflected Plane of Payload Interface

Similarly, the lower satellite support could experience motion. In thiscase the
sizes were designed about the worst case which occurs when the shell of the PI

experiences its maximum deflection in one direction, and the satellite deflects in the

opposite deflection.
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Static Consideratiens

The static deformation and stress were fairly easy to find. Early results indicated that the
material would withstand he static load but problems resulted from buckling of the entire

structure. More specifically, buckling occurred at either the top ring or in material near
the second ring. In order to increase the buckling strength of the PI, horizontal rings were
added to lower the effective column length of the PI. Initial results showed that a ring

placed 14' above the base of the PI increased the buckling strength. The use of this ring
solved the immediate problem of buckling at the top of the PI, but instead created the

problem of buckling approximately 14' from the base. Another horizontal stiffener was
added to remedy the problem. This stiffener again moved the critical stress region lower
on the PI. Finally a third ring was added which solved the buckling problem, and gave a
Buckling Load Factor (BLF) of 1.34. The BLF in I-DEAS is the ratio of the buckling
load to the current load. A BLF greater than one indicates that the structure will not

buckle under the applied load conditions.

Dynamic Considerations

Dynamic loads proved to be the most difficult to derive. These loads result from
random engine vibration. Investigation of this load case began with an investigation of
the normal mode shapes of the entire Gryphon. In I-DEAS the first 12 flexible body
modes were found. Vibration loads were determined starting from these modes.

Beginning with the

Mx" + Cx' +Kx=F(t) (Eq 7.34)

equations of motion for the entire booster, the coordinate system was modified into a
modal coordinate system. If proportional damping is assumed, i.e.

C=etM+ 13K (Eq 7.35)

the system can be represented by:

Mx" + (otM+ 13K) x' + Kx= F (Eq 7.36)

Using a coordinate transform to modal coordinates,

x=0rl (Eq 7.37)

the system may be written as:

OtMO rl"+(ctOtMO+BOtKO)rl'+OtKO 1"!=_tF (Eq 7.38)

Since
¢ t M ¢ = I (Eq 7.39)

a system of equations in rl can be written due to the eigenvectors, _, being mass

normalized:
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(Eq 7.40)

which is really the system of independent equations:

rl i +2Pic°i q i+ q 2=0 (Eq7.41)

where coi is the undamped natural frequency and 9 is the modal damping coefficient of

the ith mode. Knowing the input and output of the system (i.e. the modal shape), a
transfer function can be written in the following form:

fl ,

H(s) = _, , "[_ (Eq 7.42)
,=t S" + 2 pif..0iS + 0)_

The damping ratio of the structure was assumed to be 2%. This is a valid

assumption since it is composed mostly of rigid members which provide little damping.
Some damping could arise from fuel sloshing, but would be minimal.

Another important area of concern was the system input and output. Since the

system consists of multiple inputs with a singular output, one finds:

a(s) -[ HI(s) H 2(s) H 3(s) ] U 2(s) (Eq7.43)
U3 (s)

In this case the input is a Power Spectral Density (PSD) of a rocket engine. The

input PSD was multiplied by the derived transfer function to get an 'equivalent' PSD at
the base of the payload interface. Due to difficulties in finding an accurate PSD for a
Castor 120 or the LR-91 the PSD of the original Pegasus was used. Since Ut, U2, and U 3

are identical the above expression may be written as:

a(s) = [HI(S) + H2(s) + H3(s) ] U(s) (Eq 7.44)

where a(s) represents the output in terms of acceleration. A simple substitution changes

the expression for a into frequency terms:

a(jw) = [Hl(jw) + H2(jw) + H3(jw) ] U(jw) (Eq 7.45)

where afjw) represents the 'equivalent' transfer function. Mode shapes were created for
the first two axial modes, and the first three lateral modes. Using mode shapes a transfer
function can be derived. The transfer function was assembled and plotted using
MATLAB. From this expression, an equivalent acceleration was found by taking the

integral of a in the frequency domain. The expression for the equivalent acceleration can
be written as shown in Eq 7.46.

_2

Aeq2 = I a(jco)dco Eq 7.46)
ca I
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where tot and o)2 are the frequency limits. To be complete one should integrate a over the

entire frequency spectrum. The Pegasus PSD used for analysis is shown in Figure 7.38.
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Fig 7.38 Pegasus Power Spectral Density

Dynamic Analysis of Gryphon

The results of the dynamic analysis show that axial vibrations contribute little to
the overall loading, and can be neglected. The transfer function was assembled using
MATLAB and by utilizing the components of the transfer function as the mode shapes.
The structural model of the Gryphon is shown in Figure 7.39.

:,/

.... LE.A_,_.E./-

Fig 7.39 Beam Model of Gryphon
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The inputs for the model are applied at the rocket motors. The LR-91 is

represented at node 1, while the bottom of the castor motors are represented by nodes 18
and 47. The output is at the base of the PI and is represented by node 8.

Axial mode analysis

Tile results ,,how that the important frequency response at lhe base of the PI occurs in a

low frequency range (<10 Hz). and that tile PSD value over this region is ,,,o low that tile
acceleration value over this range is ncgligible. Furthermore, when the PSD value
increases to a higher level, the trans(er function gain rolls off so fast that again any
acceleration becomes negligible. U,,ing tile input and output from the beam model of the

Gryphon, the transfer function take_, the form:

--_4.48s _ _ "{--__., _- 1()7.46

H(s) -s 4+0.1207s3+4.5617s2+l).2745s+5.1704

zeros: -0.031 +/- 1.553i

poles: -().031+/- 1.559i
-0.029 +/- 1.458 i

A bode plot of the axial transfer function is shown in Figure 7.40.

.wi.
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2II
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F requcn.. _ ral.I/_,

F r_.lcra. _ r'ad, _'.t,

Fig 7.40 Bode Plot of Axial Frequency Response

From the plot, peaks near 1.45 are expected, along with a phase shift of -360 The
reason for this behavior is that two poles and one zero lie in close proximity to one
another. The two second order poles combine to give a -360 ° phase response and the
second order zero causes a +180°phase shift. The net effect of these poles and zeros is a

-180 ° phase shift. To determine the equivalent acceleration, the PSD was assumed to
have a constant value of 0.0001 g2/Hz for frequencies below 10 Hz. To determine the
value of the acceleration it was necessary to convert the frequency response into
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magnitude. To accomplish this, each value was converted from gain to magnitude by the
relation in Eq 7.47.

(_ain}
magnitude= 10 ,_"57-o- (Eq 7.47)

H(jc0) needed to be multiplied bv tile PSD and integrated over a frequency range
which was accomplished bv a numerical integration method. For the axial modes the
value of HOw) was assumed to he negligible at frequencies above 10 Hz. From the Bode
Plot in Figure 7.40, it is seen that the frequency response rolls off at 40 dB/decade. After
making this assumption, it was nccc,s_ar_ to integrate a(sl over the frequency range from
0 - 10 Hz.

If I represents the value of the definite integral of Aeq- from 0 - 10 Hz, it can be

approximated by Equation 7.48.

I= YM(w)Aw (Eq 7.48)
i=l

M(m) represents the magnitude of the frequency response at a frequency co, and Am

represents the interval over which M(co) is considered constant. For the axial modes the

value of Aeq was found to be 0.002g, which was considered negligible.

J

lO-i
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-I00 1

I0o i01

\ i
iJ)

Fig 7.41 Bode Plot of Lateral Frequency Response

Analysis of lateral behavior yielded an equivalent acceleration of 0.5g. The

analysis proceeded in a manner similar to the axial case. For the lateral analysis, the first
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three lateral mode shapes (IVlodes 7.8, and 11) were obtained. Use of the mode shapes

led to the following transfer function:

-6_)2.4s 4-48.7s _ 7"_8s "_ _.9--_, "-2._ 1,,-165.42
H(s) - -_ _

,_ 5+(/. 182s4+8.3s3+ 16.93s"+0.6s+).9

Lcros: -1t.(131 +,- 1.55Qi
-II.IIL4 +/- 1.457 i

poics: -i).()46 +,- ,.AI6 1
-_).(!32 +/- 1.5c)1 i
-tI.Ctl 3 +/- 11.662 i

The lateral frequency response is slightly different than the axial response (see

• Figure 7.41). Due to the two high peaks the system has positive gains over part of the
frequency range 10-100 Hz. To determine the acceleration value of Aeq it was not

possible to consider HOw)={) at frequencies above 10 Hz. For this case, the assumption

that H(jw)=0 was used when o) was above 100. Again a numerical method of integration

was used to determine Aeq. However the value of the PSD in this case was estimated by

the relation in Eq 7.47.

0.0001

U(jm) =/0.001

tO.Ol
m< 10Hz }
10 < o) < 20 Hz

o)>20 Hz

(Eq 7.47)

Gain was transformed to magnitude and integrated over the frequency range 0 to

100 Hz. The result was a value of 0.521g for 4,q. For FEA, a load of 0.5g was added to

the 2.5g pull up maneuver load, giving a combined load of 3g in the lateral direction.

As stated earlier, beam sections were used to stiffen the outer shell of the PI. The beams
were made of aluminum and titanium. Aluminum possesses acceptable strength, and in

addition, is light weight. Titanium is approximately 50% heavier, but has a higher
modulus of elasticity, and, more importantly, an extremely high yield stress.

The cross section shape of the stiffener beams was very important. Since the
beams had to increase the buckling performance, it was important for the beam cross

sections to have a high moment of inertia. Also, the cross section had to posses a low
cross sectional area to minimize weight. For these two reasons, an I beam section was
chosen which offers a high moment of inertia along with a low cross sectional area.
Furthermore, an I-beam is a conventional shape, and can be easily manufactured. For the

applications on the payload interface, the beams selected were I-beams roughly 3" by 3",
and I" by 1" A drawing of these cross sections is shown in Figure 7.42.

The 3" cross section beams were made of aluminum and were used to model the

attach ring of the satellites. They represent the support of the lower satellite interface as

well as support the structure against buckling
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l "xl " I-beam

Fig 7.42 Beam Cross Sections Used for the Payload Interface

7.4.6 Conclusion

From the analysis it was found that the Payload Interface could support two 5000 lb
satellites throughout the ascent of the Gryphon. The overall weight of the structure fell
within the 790 lb weight limit imposed by the Payload group. However, there were
several areas not analyzed, which are important for future work on the Gryphon. First of
all, shocks to the payload generated by a separation mechanism have yet to be studied.
Second, a thorough investigation of the dynamic behavior of the structure is in order.
Ideally, it should be subjected to physical testing. Due to the scope of this project,
construction of prototypes, and access to the required testing equipment was not possible.

7.5 ENGINE MOUNTS

Each liquid stage requires an engine mount to transmit thrust from the engine to the
exterior hull. The Stage 1 engine mount attaches a single LR-91 engine to the exterior
hull. The Stage 2 engine mount attaches two side by side LR-91 engines to the hull and
the Stage 3 attach system is slightly more complex. It consists of an engine mount which
connects a single RL-10 directly to a spherical fuel tank, and a support structure to join

Stage 3 with the Stage 2 exterior hull.

7.5.1 Stage 1 Engine Mount

The LR-91 engine includes a 15" diameter attach ring used to join the engine to the
structure. The base of the Stage 1 engine mount connects to this ring, and a tubular truss
structure transmits the thrust load to the exterior hull via four attach points (see Figure

7.43). The mount is constructed of A333 steel, due to its high yield strength (75 ksi),
high stiffness, and availability in pipe form. Having a total weight of 349 lb., the mount
is capable of transmitting 105,000 lb. of thrust from an LR-91 engine to the exterior hull.
It has a height of 48" and fits inside the 180" hull diameter.
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Figure 7.43 Stage 1 Engine Mount

The LR-91 engine provides 105,000 lb. of thrust. Using a 1.25 factor of safety, the total
load applied to the model was 131,250 lb.. A standard finite element beam model (see
Figure 7.44) was used to analyze the structure. The thrust load was applied by attaching
rigid elements to the four main members in order to distribute the load the same way the
attach ring on the LR-91 motor does. Vertical stiffeners were added to represent the
stringers on the hull, in order to, insure that the hull cross section did not become
deformed from the resulting forces at the engine mount attach points. Table 7.14 gives
dimensions and weights for each member. It references Figure 7.44 for the element

labels.

Figure 7.44 Stage 1 Engine Mount Finite Element Model
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Table 7.14

Element

El

E3

E5

E7

E._0

E31

Length (in)

95.5

95.5

Outer Dia (in) Inner Dia (in)
Dimensions and Weights for Stage 1 Engine Mount

Weight (lb.)

_,.0 _' 6"_5

3.0

05.5 3.() 2.625

95.5 3.0 2.625

127.3 3.() 2.750

12-'.3 3.0 2.750

E.,2 127.3 ,, 0 , .750
E33 127.3 g.() 2.750

45.7

45.7

45.7

45.7
41.6

41.6

41.6

41.6

Results

A maximum deflection of .504" occurred at the point of application of the load. The
maximum yon Mises stress was 48 ksi which is well below the 75 ksi yield strength.
However, since the maximum deflection was already over a half inch, no further

optimization was performed. Lessening the cross sectional area would have lowered the
factor of safety on the material, but would have contributed to engine instability in the
form of higher deflection. Because of the extensive length of the lower members and the
high axial loads, it was necessary to calculate critical column buckling loads. The
deformed geometry is shown in Figure 7.45.

LOAD SET: i L©A_' _T 1

DISPLACEMgNT NORMAL MIN: 0.00 MAX: 3.50 337

I

I

\ \"\ t" .t

\ \ /
• _X I p

Figure 7.45 Stage 1 Engine Mount Deformed Geometry Plot

178



University of Michigan Aerospace Project Gryphon

Assuming clamped conditions at the welded joints, equation 7.49 is a valid

approximation'

4_:EI
p - \ (7.49)

When computed, tile critical buckling load of the '05" member was 2[)g,Ot)() lb.. Since
64.660 lb. is the maximum applied compressive load, buckling was not a factor in

designing the engine mounts.

Conclusion

The Stage 1 Engine Mount ha,,, been designed to support a 105,000 lb lhrust with a 1.25
factor of safety. Failure due Io yield and to buckling was considered in the design of the
structure. The final mount weighs 340 lb and its tubular A333 steel truss structure was

designed to be easily manufactured at a low cost.

7.5.2 Stage 2 Engine Mount

The Stage 2 Engine Mount holds two LR-91 engines side by side and connects them to
the external hull. The mount attaches to the engines at its base, similarly to the Stage 1
mount, and to the hull at six connection points on the top. The Stage 2 mount is shown in

Figure 7.46.

The mount is constructed of A333 steel, due to its high yield strength (75 ksi),

high stiffness, and availability in pipe form. With a total weight of 646 lb., the mount is
capable of transmitting 210,000 lb. of thrust to the exterior hull. It has a height of 40"
and fits inside the 180" hull diameter.

Figure 7.46 Stage 2 Engine Mount

A finite element beam model was used to analyze the loads on the mount (see Figure

7.47). Thrust loads of 130,000 lb including a 1.25 factor of safety were applied with rigid
elements at the location of each engine. This effectively models the distribution of load

caused by the attach ring on the LR-91 engine.
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Figure 7.47 Stage 2 Engine Mount Finite Element Model

Longitudinal stiffeners clamped at one end were added to represent the stringers
on the hull. The stiffeners were included to check the cross section of the hull for

deformation at the engine mount attach points. Table 7.15 details the dimensions and

weights of each member. The element numbers listed are referenced from figure 7.47.

Table 7.15 Dimensions and Weights for

Element Length (in) Outer Dia (in)

E9

El0

El2

El5

El6

E20

E21

69.0

69.2

69.2

69.2

69.2

100.2

100.2

E22 100.2

E23 100.2
E64 115.6

E67 115.6

E65 77.0

E66 77.0

E68 77.0

E69 77.0

Stage 2 Engine Mount
Inner Dia (in) Weight (lb)

3.25 3.000 24.3

3.50 2.900 60.3

3.50

3.50

3.50

3.00

3.00

3.00

3.00

3.25

3.25

3.25

3.25

3.25

3.25

2.900

2.900
2.900

2.625

2.625

2.625

2.625

3.000

3.000

3.000
3.000

3.000

3.000

60.3

60.3
60.3

50.0

50.0
50.0

50.0

40.8

40.8

27.1

27.1
27.1

27.1

,. :%

OF I qotua .
180



University of Michigan Aerospace Project Gryphon

A maximum deflection of .580" occurred at the point of application of the engine loads.
The maximum yon Mises stress was 68.7 ksl which is below the yield strength of 75 ksi.
As with the Stage ! mount, many members are subjected to h_gh compressive loads.
However, none of the members failed due to buckling. The maximum compressive force

on a particular member was 79.001) lb.. Its critical buckling load is 187.700 lb. which is

significantly higher.

The Stage 2 Engine Mount has been dcsigned to carrv a 210,000 lb thrust with a 1.25
factor of safety. Failure due to yield and buckling was considered in the design of the
structure. The final mount weigl_s 646 lb, and its tubular A333 steel truss structure was

designed to be easily manufa__tured at a low cost.

7.5.3 Stage 3 Support Structure

The Stage 3 support structure has two primary functions. First, it supports stage 3 in the

early stages of the mission and second, it connects the RL-10 engine to the stage 3
spherical fuel tanks. Figure 7.48 shows the support structure and engine mount together.

During stage 1 and stage 2 burn, the structure acts as a support, carrying the

Figure 7.48 Stage 3 Support Structure and Engine Attach
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17,400 lb stage 3 under acceleration loads of up to 5 g's. After stages 1 and 2 burn out,

the engine attach transmits 20.000 lb. of thrust from the RL-10 engine to the load
carrying fuel tanks. The support structure is a tubular aluminum truss with a total weight
of 234 lb.. Aluminum provides a high strength to weight ratio and an acceptable stiffness

for

this application. The Stage 3 structure has a height of 90" in order to accommodate the
RL-10 nozzle inside it, and its ,;ides slope from a diameter of 180" where it connects with

stage 2. to a 72" diameter at the fuel tank inte_ace ring.

Loads - Stm_ort Structure

During flight, the support structure must withstand a 17,400 Ib load at 5 g's. This weight
includes 8,900 lb. in fuel tanks and fuel, 8,000 lb. of payload, and 500 lb. of avionics and

mission support equipment. Tile total load on the structure is 108,750 lb. when a 1.25

factor of safety is employed.

Modeling - Support Structure

A beam model of the support structure is shown in Figure 7.49. As in previous models,
these vertical members represent the longitudinal stringers of stage 2. The compressive
load due to the mass of stage 3 components is applied as a point load distributed evenly

with rigid elements at the top of the model. The dimensions and weights of each beam
element is tabulated in Table 7.16 with reference to the element labels in Figure 7.49.

E30 E29 _7

8

E89

E90

E97

El00

Figure 7.49 Stage 3 Support Structure Finite Element Model
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Table 7.16

Element

E25-E36

E86

Egg

Eg9

E90
E91

Dimensions

Length (in)

226.2

1/)0.4

1()0.4

1O0.4

11)0.4

101).4

E92 1(/I).4
E93 q3.0
E94

E96

E97
E95

E98

93.1)

03.()

Oa ,()

93.()

E99 161.0

El00 161.0

and Wei{]hts for Stage
Outer Dia (in)

height = 3
3.25

3.25

3.25

.25

3.25

3.25

3.25
3.25

3 Support Structure
Inner Dla (in)

thickness = .25

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

Weight (lb.)

16.9
12.2

12.2

12.2

12.2

12.2

12.2

11.3

11.3

ti.33.25 3.0

3.25 3.0 l 1.3

3.25 I 1.3

3.25

3.0

3.0
3.0

3.0
3.25
3.25

11.3
19.6

19.6

Results - Support Structure

The deflection of the support structure is shown in Figure 7.50. The maximum deflection
occurred at the top ring and had a value of .373". The maximum value of von Mises
stress was 24 ksi, well below the yield strength of most aluminum alloys. Further

optimization was prevented by the desire for stability of the structure and the desire to
minimize displacements. The buckling loads of the support structure were analyzed, but

did not play a role in its design.
LOAD SET : I LOAD _ET 1

NORMAL MIN : _ . O0 MAX:
_: S FLACEMENT

//_\ \

/ \

/ \

/ \

/ \

/ \

/ \

/ \

z ,X

Figure 7.50 Stage 3 Support Structure Deformed Geometry Plot
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Loads - Engine Attach

Since the engine attach is supported directly by the support structure, it does not carry

any acceleration loads. However. once stage 3 ignites, the engine attach transmits 20,000
lb. of thrust from the RL-10 engine to a fuel tank. With a factor of safety of 1.25. this

translates into a 25.000 lb load for the attach structure.

Modeling - Engine Attach

The engine attach was analyzed with the tgastc beam model shown in Figure 7.51.

Figure 7.51 Stage 3 Engine Attach Finite Element Model

Because the engine attach structure is rigidly connected to the fuel tank, it was
assumed that clamped conditions exist at this connection. In actuality, the RL-10 has a
3" diameter attach ring which connects at this point. Each member is 37.9" long, has an
outer diameter of 3.25", and an inner diameter of 2.875". The load was applied at the

vertex of the four main supports.

Resutt 

The maximum deflection of the structure was .311". The maximum yon Mises stress was

38,110 psi, which is well within the yield strength of aluminum alloys. Buckling did not

occur in any member.

_onclusions

The Stage 3 Support Structure and Engine Attach must withstand two separate load cases.
During stage 1 and 2 burn, the support structure must withstand 108,000 lb. of load
caused by accelerating the stage 3 fuel tanks and payload at 5.0 g's with a 1.25 factor of

safety. When stage 3 ignites, the load transfers to the engine attach, which must
withstand 25,000 lb. of thrust including a 1.25 factor of safety. The use of aluminum

alloy results in a combined weight of only 234 lb. for the support structure and engine
attach.

7.6 INTERSTAGE RINGS

Interstage rings are located at the top and bottom of each interstage. They are used to
maintain the structural integrity of the stages and interstages by withstanding the
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enormous loads imparted by the engines. These loads are on the order of 107 . The rings

must be considerably thicker than the mterstages themselves because there are
concentrated loads applied at these points.

The nng was designed to withstand all forces imparted to it using a factor of

safety of 1.25. The following is alisting of its various dimensions:

• outer diameter of the ring is 15.50 feet

• inner diameter is 15 :.1.4 fcct.

• height is 0.25 feet

To calculate the weight of the rings, the following equation was used.

W = pV (Eq 7.50)

where W is the weight in Ibm, 9 is the density of the material (aluminum) given in

lbm/in 3 and V is the volume of the ring given in in 3. See Table 7.2.9 for values of

weight, density and volume used.

To analyze these rings the following theoretical equations were used. In doing the
analysis it was assumed that to find the number of bolts to withstand the shear, the bolt
material and diameter were needed. A standard bolt diameter of 1/2" was used and it was

assumed these would be steel. For a steel bolt "c approx. 80,000 psi. To calculate the

loading on these bolts the point of maximum force due to the trajectory was used.

4P
r = _ (Eq 7.51)

bird 2

where "cis the shear force of the material, P is the total force acting on bolts, b is the total

number of bolts needed, d is the diameter of the bolt and rtd 2 is the area of bolt upon

which the force acts. The minimum number of bolts needed for structural stability was
calculated to be 96 from Equation 7.51, but for aerodynamic considerations 120 bolts will

be used.

To prevent the bolts from shearing through the Aluminum ring, a shear analysis

had to be done. The shear force (_) equals 39,000 psi. The theoretical equation for this is

given in Eq 7.52.

3P (Eq 7.52)
r,_ - 2x,,_tb

where x is the ring height across which the shear'acts and t is the thickness of the ring.

This equation was used to determine the minimum ring height needed for the ring with a
factor of safety of 1.25, so it would not shear when loaded. It is therefore evident, that to
find the minimum ring height, the maximum shear must be used.

3P (Eq 7.53)

x _, - 2trm_b
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The total force acting through the bolts is given by:

P = F + T tEq 7.54)

F is tile force due to bending and T is the force due to engine thrust. Thi.,, value of P wa,,

then multiplied by the factor of safe_v of 1.25. Tile force due to bending is given by:

My
F = m-A {Eq 7.55_

I

To find the maxinmm hcnding (orce that the rings will have to support. Mma x wa,,
taken from the moment diagram which is shown in Appendix F.2 and Figure F.3. The
variable v is maximum at the t_ttt,,ItlC radius of the Gryphon interstage. In this case I is
the area moment of inertia for the interstages and the stages which came from the finite

element analysis. Table 7.17 shows the values attained using given data and equations
7.50 to 7.55. In the final calculation of the weight the volume of aluminum rings and

steel bolts were combined to come up with the total weight.

Table 7.17 Stage and Interstage Rin_ Values
Total:

includin_ 1.25 F.S.

for Gryphon.

F = 400000 lbf

T = 900000 lbf

P = 1499583 lbf

Xmin = 1.28 in

V = 656.05 in 3

PAlum = 0.1 lbm/in 3

PSteel = 0.3 lbm/in 3

W = 83.28 Ibm

The thickness of the rings was chosen to be 3/8" thick because it is less expensive

and easier to manufactured than thicker material.

According to the analysis done, all of these rings willbe able to withstand any
loads that could be imparted to them throughout the course of the mission. These forces
include lateral, longitudinal and body forces.

7.7 CONCLUSION/FUTURE WORK

Each component discussed in the preceding chapters has been analyzed well beyond the
Phase I stage. Secondary structural components still need to be explored such as tank
attach structures, the Aft Nozzle Cover, hardware mounts for the avionics area, and

access panels in the shroud and interstages. Many of the finite element models used in
the above sections require refinement with updated loads and acceleration values based

on later trajectory data. All components were designed with the goal of having the lowest
cost for the maximum performance. For the most part, this included the use of ordinary
materials even when higher performance could have been gained from advanced
materials technology. If weight becomes a problem on the vehicle, the use of
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titanium may be considered for highly stressed bulky components such as the strut and

plane attach rings. However, these preliminary, results should be sufficient to decide
upon the feasibility of the Gryphon structurally. Design is an iterative process, and by no
means are any of the above components ready for flight testing. However, each

component has had enough analysis and design to give a basic idea for how the Gryphon
would fit togclher if the proiect proves to be practical.
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8.1 INTRODUCTION

This chapter begins with a discussion of the attitude control systems used to guide the
Gryphon through the duration of its flight trajectory. The electrical power system is
detailed in Section 8.3. The elements that provide thermal protection to the Gryphon are

explained in Section 8.4. The chapter concludes with a discussion of the venting system
that is used to regulate the cleanliness and pressurization of the payload bay.

8.2 THE ATTITUDE CONTROL SYSTEM

The Gryphon, similar to all spacecraft, will experience some form of disturbance torques.
During the mission, disturbance torques will appear due to separation forces,
aerodynamic forces, gravity gradient during coast periods, or misalignment because the
thrust vector of the main engines does not pass directly through the center of mass.

Trajectory, velocity, and pointing corrections must be made by using some type of
reaction control system to counteract these disturbances. Additionally, Gryphon needs to

deploy its payload with some angular velocity. To fulfill the requirements of attitude
control and payload deployment, the Reaction Control System (RCS) will use thrust
vectoring from the main rocket engines and an additional series of small thrusters (See

Figure 8.1 on the next page).

8.2.1 Design Considerations & Selections

When choosing an RCS, several concerns were addressed. System selection was based

on application requirements, minimizing cost, weight, and fuel, and demonstrating
accuracy, reliability, and quick response time. After researching several reaction control
techniques, thrust vectoring and Hydrazine thrusters were selected.

Of all the systems investigated, cold gas thrusters were the heaviest and provided
insufficient thrust. The increase in performance characteristics of other systems such as

cryogenics or bipropellant systems was negated by added complexity and increased cost.
Hydrazine thrusters showed excellent reliability, good operation characteristics, and offer
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//
Hydrazine thrusters provide:

* Stage 3 roll control.
• 3-axis control during coast period.

• Satellite pointing and spin-up.
• Maneuvering near S0ace Station Freedom.

- Stage 3: Thrust vectoring with RL-1 0 engine provLdes

yaw and pitch control.

Stage 2: Thrust vectoring with LR-91 engines provides
:]-axis control.

Stage 1" Thrust vectoring with Castor and LR-91 engines

provides 3-axis control.

Figure 8.1: The Gryphon's Attitude Control System

simplicity for a low cost and moderately low weight. Table 8.1 summarizes some basic

characteristics of Hydrazine.

Formula

N'_H4

Table 8.1 H ,drazine Characteristics

Molecular Specific Boiling Heat ot rvnxmg

Weight GraviW Point Formation Ratio
32.05 1.008 235.9°F 21600 Btu/lb-mole 0.75
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8.2.2 Attitude Control During Free Fall

Because of the danger of an explosion when the first stage main engines are ignited, the
booster must be at least a half mile (2640 ft} from the airplane before ignition can occur

(see Section 2.4'). The plane cames out a simultaneous bank and climb maneuver directly
after the release of the booster. Thus, to ensure the half-mile separation distance, the

Gryphon must drop through a vertical distance of 118g ft for the Low Earth Orbit ILEOt
configuration (1258 ft for the Geosvnchronous Transfer Orbit <GTO) configuration I. The
Mission Analysis group determined that a vertical tail will provide the required control in
the yaw direction (see Chapter 31. This _,ection details the systems that will be used to
control the booster pitch and roll attitudes.

During the free fall period, which lasts approximately 8.5 seconds, the booster
pitches up 20 degrees to allow the main cngines to propel the booster into the correct
trajectory after ignition. A detatlcd aerodynamic analysis showed that this pitch-up
maneuver can be satisfactorily accomplished by using the aerodynamic forces that

naturally result from the free fall. The maneuver calls for the separation of the Aft
Nozzle Cover (ANC) from the booster as soon as enough clearance exists between the

booster and the plane. For LEO and GTO configurations, this occurs approximately 2.25
seconds after release at an absolute distance of 261 ft from the plane. The separation of
the ANC shifts the booster's center of pressure forward nearly 10 ft, greatly increasing the

aerodynarmc pitch-up moments that result from the booster's downward velocity.

A detailed analysis of the aerodynamic forces and the resulting motion of the
booster showed that after 8.5 seconds and the vertical drop distances mentioned in the

above paragraph, the booster is pitched at the correct 20 degree inclination from
horizontal. The vertical drop distances mentioned above are greater than those required
for the minimum half-mile separation distance. This additional drop distance was

required in order to complete the pitch-up maneuver. As a point of future study, the
addition of small canards or a wing to the booster could increase the pitch-up moments

and reduce the vertical drop distance to the optimum value of 1056 ft. This increased
altitude at first stage ignition would have to be compared to the cost and weight penalty
that would be incurred through the addition of these control surfaces.

In order to analyze the pitch-up maneuver, the differential equations that govern
the booster's motion during the free fall were derived. These equations were dependent

on the aerodynamic forces on the booster, which in turn were dependent on the booster's
velocity. To solve these differential equations, the free fall drop time was divided into
small time intervals during which the forces and moments on the booster were assumed
to be constant. These forces and moments were then translated into corresponding linear

and angular accelerations using Newton's Second Law. By integrating the accelerations
over the small time interval, the change in the booster's position and orientation over the
interval could be determined. Thus, the position and orientation of the booster at the

beginning of the next time interval was known, and the process was repeated to find new
forces, accelerations, and orientations. In addition, the moments generated by thrust

vectoring of the first stage main engines were incorporated to determine if they were
capable of regaining control of the booster's attitude and pitch rate after ignition. The
above method was implemented using a Microsoft Excel Spreadsheet. It was extended

through the duration of the free fall so that the position and attitude of the booster was
found for every 0.25 second interval. See Appendix G for a complete discussion of this
method.

The optimal pitch angles and sequence of events that were found for the free fall
using the above method are shown for the two booster configurations in Figure 8.2
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below. As was mentioned above, the ANC separates from the Gryphon 2.25 seconds

after release from the plane. The immediate increase in the booster's pitch angle that
results from this separation is evident. The first stage main engines ignite at 8.5 seconds,
when the booster reaches the required 20 degree pitch angle. The analysis showed that

the engines were capable of regaining control of the booster's attitude and pitch rate. and
that full recovery (zero angular velocity) occurred at 14.25 seconds. The plot shows that
the final recovery angle for the LEO configuration (84 degrees from horizontal) is higher
than that for the GTO configuration _62 degrees from horizontal). Because the center of
mass for the LEO booster is closer to the base of the rocket, the moment arm of the

aerodynamic forces is greater for Ihis configuration. The resulting increase in the
aerodynamic pitch-up moment,s t_n the booster cause the increase in the final recovery

angle.

10

Full Recovery

Aft Nozzle Cover

(ANC) Separation Engines Fire

0

2 4 6 8 10 12 14 16

Separation from plane Time (s)

Figure 8.2 Pitch Angle vs. Time During Freefail

+ LEO

• GTO

Preliminary analysis also showed that the Hydrazine thrusters have sufficient
thrust (100 lb) to provide control in the roll direction for the third stage. Natural

aerodynamic conditions aid in creating stability in the roll direction (see Figure 8.3
below). As the booster falls through the atmosphere, deviations in roll from the nominal
attitude create an aerodynamic condition in which correcting moments are applied to the
booster. These moments, when added to those generated by the Hydrazine thrusters, will

provide the required angular accelerations to bring the booster back to the nominal
attitude.
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Rear View

Aerodynamic Restoring
Moment on Booster

Streamlines

Figure 8.3: Aerodynamic Roll Moment Induced on
Deflected Booster During Free Fall

8.2.3 Attitude Control During Stages

The engines selected for each of the three stages possess thrust vectoring capability.
Thrust Vector Control (TVC) provides attitude control and trajectory correction around

the pitch and yaw axes. Also, it can provide roll control if more than one engine is used.
By using the nozzle gimballing capability of the engines, the system complexity is
minimized, while only increasing fuel consumption by 3%. Stage 1 and Stage 2 both use

multiple engines whose nozzles gimbal up to 4 degrees. Stage 3 uses only one engine;
therefore, roll control must be provided by the hydrazine thrusters located above the
avionics bay. The guidance system will provide information about attitude, and will
indicate whether or not TVC is needed. The main rocket nozzles will then respond by

gimballing for a specific amount of time. They will be actuated hydraulically since other
systems such as electromechanical actuation does not provide enough power.

8.2.4 Hydrazine Thrusters

The Reaction Control from the Hydrazine thrusters serve four main functions. These
include:

• Spin/Despin for payload deployment, or maneuvering at Space Station
Freedom

• Attitude corrections during all coast periods

• Roll control on stage 3
• Reorientation before entering GTO

The MR-104 Hydrazine thrusters, manufactured by the Rocket Research

Company, will be located immediately above the avionics section, and attach to the
payload interface ring. The tanks for the fuel and oxidizer will be located in the avionics
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bay. Two thrusters will be placed on each of the three axes: yaw, pitch and roll.
Typically, the two thrusters should be placed an equal distance around the center of
gravity (CG). This is done to limit the imparted load to only pure rotational momentum.
Also, the thrusters should be placed as far away from the CG as possible to increase the

torque, thereby minimizing the required thrust.

The tanks will be made from stainless steel 347. The oxidizer and fuel weight

will equal 450 lb. This will compensate for payload deployment, coast attitude control.
roll control, and any unforeseen emergencies. We approximated the time of use based on

a twenty-four hour mission. The Appendix G contains the calculations and formulas used
to obtain these numbers.

Currently. the Gryphons configuration is not realistically capable of using the
thrusters as a redundant system for _hmst vectoring of the three stages. This is due to the
limited amount of Hvdrazme tucI avat[aOle to accomplish this task. Future redesign
would allow for enough fuel to lake advantage of this possiblity for control.

8.2.5 MR- 104 Characteristics

The Rocket Research Company produces the Hydrazine (N2H4) thrusters which were
chosen for the Gryphon. They use gaseous nitrogen as the oxidizer, and decompose
using a Shell 405 catalytic bed. It does not require ablative materials, since the nozzles
are cooled radiatively. Table 8.2 summarizes some of the characteristics of the MR -104.

Table 8.2 MR- 104 Characteristics

Dry Length Diameter Thrust Nozzle
Mass length

0.1274 18.11 in 5.984 in 1001b 7.008 in

slugs

cooling Specific Total

Impulse impulse
radiative 228-239 s 156 X 103 lb-sl

Listed below is typical operation sequence of a Hydrazine thruster:

a dead zone is set, which means that the thrusters are not required

until a specific angle is passed
after interpreting information received from the guidance system,
the attitude control system indicates the need for the thrusters
a 30W single seat electric-solenoid valve opens, and Hydrazine

flows for a specific amount of time
the thrust output of the thruster varies as a function of the tank

pressure; therefore, the tank pressure changes depending on the
thrust requirement
the pressure forces the propellant into an injector, and then enters
the chamber and comes in contact with the Shell 405 catalyst beds

the catalyst beds act to decompose the Hydrazine into NH3, H2 and

N2
the decomposition products then exit the catalyst beds, and
chamber through an exhaust nozzle which produces thrust
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8.3 POWER SYSTEM

The on-board power systems are broken into two major sub-systems--the principal
system and the ignition system. The principal power sub-system supplies power to the
on-board systems (such as the computer and communications equipment), while the

ignition power .,,ub-system .,,upplies power to the engines tbr startup. The principal power
sub-system will be made up ot long ta_,ting (low rate) lithium thionyl chloride (Li/SOCI2)

primary cells, while the ignition sub-,,vstem will consist of short lived (high rate) silver
zinc batteries.

8.3.1 Principal Power Sub-System

The principal power sub-sv,qem will con,,ist of lithium thionvl chloride batteries. This
type of primary battery (non-rechargeable) is available off-the-shelf and is packaged in
individual cells, each of which operates at a specific voltage and contains a fraction of the
required power. To find a suitable sub-system, it was necessary to examine the power
requirements of all the Gryphons on-board systems (see Section 8.3.2). It was
determined from this information that Li/SOC12 cells with an energy density of 642 W-

h/kg and an open circuit voltage of 3.63 volts would be the most sufficient principal
power sub-system to use. They optimize the power system performance, while
minimizing the cost and weight of the overall system. This sub-system will consist of
four modules, each containing 8 cells, and providing operational power to the Gryphon
for 24 hours.

Table 8.3 Power Requirements of On-Board Systems

Components Power (W)

Fli_;ht Computer
GPS Receiver

Telemetr)z Transmitter (x2)

Radar Transponder
Communications

250

3.5

98

31

323

Thrusters 200

Inertial Receivers 200

Misc. 250

TOTAL 1356

Note: Misc. includes pumps, values, and other small devices which will require electrical

power.

8.3.2 Sizing of Principal Power Sub-System

To determine the size of the battery system, an in-depth study of the power requirements
of the Gryphon was performed. First, for each on-board sub-system, the maximum
power requirements were examined. As shown in Table 8.3, a total of 1356 Watts (W),
excluding the ignition power, was required during full operation of the Gryphon. To
ensure that the Gryphon could operate under any electrically "stressful" situation, the
total power requirement was then increased by 71.5% to 2325 W. This large increase in
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the power only marginally increases the cost of the overall system, while ensuring safe
operation of the Gryphon at all times. Also. this power increase will give the Gryphon
extra time to deliver its payload to the required orbit in the event that problems occur.

The next factor that was considered was the mission time. For resupply of Space

Station Freedom. the Gryphon would only need to be operational for 1-2 hours. However.

for placement of satellites into Geosynchronous Earth Orbit (GEO), the Gryphon would
need to be operational for 17 hours _for two satellites). This presented a problem,
because it was unclear if there _,hould be two separate batter)' configurations, one for each

type of mission, or one configuration, which would supply enough power for both types
of missions. Tile final decision was based on several factors:

When resupplying the space station, extra power would need to be
supplied to the pa,vload. This power requirement would be highly
dependent on the contents of the resupply payload, and therefore
would vary' from mission to mission.
If the Gryphon either missed the space station, or the proper place
in GEO, it must cycle around for another attempt. Both of these

cases would require the Gryphon to remain in orbit for additional
time. During this time, only minimal power would be needed.
A margin of safety of at least 4 hours is needed to ensure that any

delays during orbit do not jeopardize the mission.
Since there is a relatively low overall power requirement, the
effects on monetary cost of supplying more power are minimal,

when compared to the major monetary costs of the Gryphon.
Having two separate battery configurations will add complications
to the assembly process and increase the possibility of errors.

Based on the above facts, planning for a 24-hour mission would ensure the

success of each type of Gryphon mission. For the 1-2 hour re-supply mission, the extra

power that the batteries have stored can be used for the payload power requirements. For
the 17-hour satellite missions, necessary power will be supplied while maintaining a

satisfactory margin of safety. Also, there will be enough power to keep the Gryphon
functional if the orbital target is missed. The battery system will need to supply a
nominal 2325 W for 24 hours, a total of 55,800 Watt-hours (W-h) of energy. Another
factor involved in sizing the system is its operating voltage, which will be a standard 28

volts DC for the Gryphon. At each sub-system which requires power, there will a power
converter. A power converter is used to step-up or step-down the voltage to meet the

component's requirements.

In order to meet all of these requirements, a lithium thionyl chloride battery

system configuration was chosen. The configuration consists of 32 Li/SOCI2 cells, each
containing 1798 W-h of energy and each operating at 3.63 volts. The 32 cells will be
broken up into four 8 cell modules (see Figure 8.4 on the next page) which are connected

in parallel for an operating voltage of 29.04 volts. This voltage will be dropped to 28
volts before the battery system is connected to the various components.

This system will supply 57,524 W-h of energy over a 24-hour period, an increase
of 1724 W over our requirement, at an operating voltage of 29.04 volts.
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Figure 8.4 Layout of Battery Containment Modules

8.3.3 Cost and Weight of Principal Power Sub-System

A space-qualified system such as the one described above will cost approximately $3000.
This information was gathered by contacting lithium battery manufactures such as Eagle-
Picher and Honeywell Inc. The weight of the system, which was based on the battery

and the accompanying equipment, is 250 lb.

8.3A Concerns of Principal Power Sub-System

For preservation, the lithium thionyl chloride batteries must be stored between 14 ° and
50°F. If this is done, they will still contain approximately 97% of their original power
after five years. During operation, the batteries must be maintained between -148 ° and
68°F. This is accomplished by the on-board thermal control sub-system, which is

responsible for the temperature control in the avionics bay.

An additional concern is the operation of lithium batteries. First, when lithium
batteries are over-discharged or experience voltage reversal, they may release vapors,
which leads to large pressure buildups inside the individual battery cells. If this vapor is
not properly vented, an explosion can result. In order to prevent this, special pressure
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release values are installed on the cells, and diodes placed in the circuit. The diodes help

prevent over-discharge and voltage reversal, while the release values ensure that if
venting does occur an explosion will not occur. Since the primary, battery system is
located in the avionics bay, it is very. important to assure that the lithium vapor from

venting not be released directly into the bay. To facilitate this, each module, containing
the 8 individual cells, will be ,,,elf-contained in its own pressure chamber to prevent

leakage of the vapors iSee Figure 8.5/.

Containment
Chamber

Avionics Bay
Wall

[Side View]

[_..,,, 21.5 in _---I
I_'

Li/SOCL2

Cells

9.8 in

Attach
Points

Figure 8.5 Layout of Containment Chamber

Another concern is the activation or startup of lithium batteries. After long

storage periods (4-5 years), a layer of lithium chloride builds up on the surface of the
lithium anode. This layer of buildup delays the cells from immediately reaching their

operational voltage when a load is first applied to them. To prevent this from becoming a
problem, the lithium anode will be coated, and an electrolyte additive will be used. This
will allow full power-up within 10-15 minutes after initial activation of the system.
Because of the 10-15 minutes needed to reach full power-up, it is of great importance that

the power system on-board the Gryphon be activated at least 20 minutes before

separation of the vehicle from the carrier aircraft.

It should be noted again that the cells will be contained in four separate modules.

Therefore, if one module is destroyed by some type of collision, or if the cells in it vent,
the other three modules will escape destruction. The other three modules will be capable
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of supplying enough power to keep the Gryphon functional, and allow the payload to be

deployed.

8.3.5 Ignition Power Sub-System

The rocket engines and the two solid rocket motors require 5 amps at 28 V DC applied

for up to one second to achieve ignition. It is quite possible that this power surge of
140W could damage the principal power sub-system, and even cause the lithium cells to
vent. Therelbre, this short duration, high power requirement is met by a separate power

system for the engines.

8.3.6 Sizing of Ignition Power Sub-System

The system will consist of three modules of silver zinc primary cells. Each module will
be completely independent, and responsible for the ignition of all the rockets in each
stage of the propulsion system. In order to meet the specifications of 5 amps at 28 V DC
for one second, each module will need to contain 20 high rate silver zinc cells. Each of

these cells contains 1.5 W-h of energy and operates at 1.4 volts. The result is that each
module will supply 30 W-h of energy at 28 V DC, more than is needed to activate each

stage.

8.3.7 Cost and Weight of Ignition Power Sub-System

This system will be extremely lightweight, and moderate in cost. The battery modules
and support equipment (i.e. mountings) will weigh under 150 lb. The cost for space

qualified batteries will be at most $1000.

8.3.8 Concerns of Ignition Power Sub-System

A major concern with the silver zinc batteries is their discharge characteristics. After
being connected to a load, their discharge voltages can vary from 1.3 to 1.55 volts.
However, this does not present a problem for the ignition system, because the rockets will
activate provided a voltage between 22 and 31 V DC is applied. Therefore, even with
fluctuations, the output voltage will still activate the engines.

8.3.9 External Power Connections to Gryphon

From the time that the Gryphon leaves the hangar, to the time it is dropped from the
carrier aircraft, it must be supplied with power. Instead of having the on-board power

system supply this power, there will be external power connections. For this, the
Gryphon will be equipped with two external power ports, one for receiving power from a
ground based source, and one for receiving power from an umbilical connection to the
carrier aircraft. The Gryphon will need two separate ports so that it will be possible to

change power sources without having to shut one off, thus interrupting the power supply
to the on-board systems, while attaching the second. Power converters will be used to

either step-up or step-down the incoming power to match the 28 volts that the on-board

system will be maintaining.
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8.3.10 Cabling, Wiring and Insulation

From an investigation of the power loss in the cabling (see Appendix G.3), it was
determined that the losses would not be a factor. They are small enough, 0.5 W at most.

that they can be ignored.

The wiring will be 2 gage. and will be made of standard annealed solid copper.

This will provide a very low resistance conducting path for all of our electrical circuits.
Since most of the wiring will be confined to the avionics bay, only I00 lb of wire will be

required. All of the cabling that _', on-hoard will be coated with space qualified
insulation. This will adequately ,dlield it from any radiation that it might encounter during

the nussion.

8.3.1 1 Power System Layout

The principal power sub-system will be located around the outside of the avionics bay,
with the four 8-cell modules mounted on the inner payload support ring (see Figure in

Chapter 2: Spacecraft Integration). The ignition power sub-system modules will be
located on the main truss of the Gryphon, in a location central to the stage that it is

igniting.

8.3.12 Future Work

From the final analysis of the Gryphon, it is evident that the inert weight in the third stage
of the booster needs to be reduced. When the power sub-system was being designed, an
effort was made to minimize weight, while still ensuring a rather large margin of safety.

It was decided that a small weight penalty would be worth assuring that the batteries
would work, and the Gryphon would be able to launch or correctly position its payload.
Now that the final analysis results are available, it is clear that a more in-depth study
needs to be done to determine how much the margin of safety can be reduced without

endangering the Gryphon's mission. As future work, it is recommended that this be
considered in order to cut as much weight as possible from the power systems, while

keeping the Gryphon safe and functional.

8.4 THERMAL CONTROL SYSTEM

It is the goal of the thermal control system to keep all components within their specified

temperature envelopes, while minimizing cost and weight, and maintaining reliability.
The thermal control system for the Gryphon is concerned with two major areas. These
areas are the external structure, and the avionics bay (See Figure 8.6). The external
structure will use ablative coatings to provide thermal protection against aerodynamic

heating during the ascent of the booster. The avionics bay will use a multi-component
system, which includes a helium purge, a heat sink radiator, enamel coatings, and
multilayer insulation. This system will maintain the temperatures of all the electronic

equipment located in the avionics bay.
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Ablative material (e.g. Firex) on exterior of shroud.

_

/

Avionics Bay Components:
• Blow-down using Helium from RL-1 0

cooling system.
• Radiators used after Stage 3 separation.

Ablative material (e.g. Firex) on exterior of fairings.

Insulation (e.g. cork) on temperature-sensitive components
near engines.

Figure 8.6: The Gryphon's Thermal Control System

8.4.1 Thermal Control of the External Structure

Because of hypersonic speeds during ascent, aerodynamic heating becomes an important
factor in the design of the Gryphon. At speeds of Mach 8.0, temperatures of 4900°F are

present on the booster. The composite material used for the external structure has a
usable realm of up to 350°F. Therefore, ablative coatings will be applied to surfaces
where high heat rates occur, to provide thermal protection. The ablative coatings that will
be used for the Gryphon are Firex and Thermal-Lag. The major surfaces exposed to high
heat rates have been identified as:

the nose cone of the payload shroud
the nose cones of the solid rocket boosters

the leading edge of the vertical tail surfaces
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A maximum thickness of 2.5 inches of ablative coating will be applied to the stagnation
surfaces of each of the mentioned surfaces. The coating will then taper as the heat rates

decrease along the body of the Gryphon.

Firex and Thermal-Lag are ablative coatings used on many space boosters. The

coatings were chosen because they are relatively inexpensive, and they can be applied
easily. Other types of ablative protection include silicate chin panels similar to those
used by the Space Shuttle. Chin panels were not chosen because they must be integrated
into the external structure of the booster. Tiffs integration would ultimately add cost and

weight to the project.

8.4.2 Ablative Material Sizing

The thickness of the ablative material was based on the steady state heat conduction

equation. The following assumptions were made in the sizing of the ablative material:

The thermal conductivity of the ablative material used would equal
the thermal conductivity of graphite
The stagnation heat flow of the Gryphon would not change from
the stagnation heat flow of Orbital Science Corporation's (OSC)
Pegasus
The nose cone of the Gryphon would be modeled as a sphere 16
feet in diameter

The heat flow would take place for a period of 180 seconds
The heat flow would be concentrated on 1/8 of the area of the

sphere

The steady state heat transfer equation is :

qH =
0.57t ror I (T O-Tl) (At)

(r 0 - rl)
(Eq 8.1)

Where:

qH = 58.6 X 103 Btu
k = 1.16 X 10 -5 Btu/s/(in-°R)

TO = 5400°R
TI = 809°R
rl = 96 in
At = 180 sec

This leads to an outer radius of 98.5 inches, and implies an ablative coating
thickness of 2.5 inches.

8.4.3 Thermal Control of the Avionics Bay

Spacecraft electronics typically have temperature limits from 0 to 80°F. The lithium
thionyl chloride batteries must operate at temperatures below 100°F. Consequently, a
thermal control system must be provided in the avionics bay. Thermal control of the
avionics bay consists of a multi-fold system. The system includes: purging with helium,
heat sink radiators, enamel coatings, and multilayer insulation. The system will be used
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to maintain all electronic equipment located in the avionics bay within their specified

temperature envelope.

Helium will be bled from the propulsion system, and purged through the avionics

bay. The purge will take place until the payload shroud is deployed. The helium purge

provides forced convective cooling of the flight computer, the batteries, and certain
transmitters. The helium purge will also be available for use after the payload shroud is

deployed, if the heat sink radiator fails. The decision to use helium for convective
cooling was based on the needs of the propulsion system. The propulsion system's third
stage rockets use helium to control the boil-off rates of the cryogenic fuels. A helium
purge is considered a feasible option since it is an inert gas with similar heating
characteristics as nitrogen (a commonly used purging gas). This option eliminates the
need for two separate systems, and will help minimize the cost and weight of the

Gryphon.

After the payload shroud is deployed, a heat sink radiator will provide cooling for

the flight computer. The radiator has a surface area of 144 in 2, and is made of aluminum.
Its outer surface will be coated with white enamel to improve radiative heat transfer
effects. The radiator will increase the effective surface area for which the computer can

dissipate heat, and has a fairly high emissivity so the heat will be dissipated into space. A
heat sink radiator was chosen for two reasons. Since only a small amount of heat needs

to be dissipated, the use of a large radiator system would be unwise. Also, a heat sink
radiator is a passive system. Cooling with pumped, looped systems requires moving
parts, and are much more complex. These types of systems add weight and cost to the
project. The heat sink radiator was the best choice to provide cooling of the flight

computer after the payload shroud is deployed.

Coatings will also be applied to critical components in the avionics bay. These

coatings include white enamel and black paint, to increase or decrease the net radiative
effectiveness. These coatings are simple devices that can be used to control the

temperature passively, and will add little weight or cost to the project.

Finally, multilayer insulation will be used to protect important electrical boxes
and the electrical wiring against any radiative heat transfer. The insulation will consist of

alternate layers of aluminized Mylar and a coarse netting. Multilayer insulation was
chosen because it is the primary kind of insulation used on most spacecraft.

8.4A Sizing of Heat Sink Radiators

The sizing of the radiators needed in the avionics bay is based on an area/temperature
tradeoff. The steady state heat radiation equation was used to find the area needed to

dissipate enough heat so the electrical equipment would have a desired surface
temperature of 77°F. The following assumptions were made in the sizing of any radiator
needed in the avionics bay:

The heat generated by all electrical equipment would equal 50-

80% of the power required to operate the equipment.
All equipment can be coated with white enamel to increase the net
radiative effectiveness.

The steady state heat radiation equation is then:
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q. - (Eq 8.2)

Where:

qH =
,\ =

('5b =

E =

T_ =
Tt)

The heat dissipated in Btus
The surface area in inZ

The Stefan-Boltzmann Constant

The emissivity of the object
The surface temperature in °R
The ambient temperature in °R

Table 8.4 shows that the flight computer is the only piece of equipment that

produces a significant amount of heat for its area. Therefore, a radiator must be attached
to the flight computer. A simple heat sink radiator will be used for cooling. The table
also shows that some type ot insulation is needed for the electrical wiring to protect

against any radiative heat transfer.

Table 8.4 Heating of Electronic El _nt

iEquipment qH (Btu/s) Ts (°F) Area (in z)

Electrical Wiring 0.398 20

Flight Computer 631 77

GPS Receivers ! 1.0 77

Telemetry Transmitters 155 77

Radar Transponders 98.0 77

0.0521

144

0.356

19.0

13.0

8.5 VENTING SYSTEM

The venting system is composed of eight independently operating units. Design
considerations included possible pressure differences, and cleanliness problems due to air
exchange in the payload bay during the course of the mission. It was important for the
design be as inexpensive, small, and lightweight as possible, while maintaining a degree
of adaptability for the varying payloads. The final system design meets all these

requirements, while requiring no power to function.

8.5.1 Pressure

To prevent unnecessary fluctuations in pressure, it is important the exchange of air be as
controlled as possible. The Gryphon will experience pressure differences in the payload
bay during the mission due to an air-tight design. This pressure must be relieved to

prevent any damage to the payload, or the spacecraft itself. The two possible cases
resulting in a pressure difference are: the internal pressure is greater than the external

pressure resulting in the outflow of air from the vehicle, or the external pressure is greater
than the internal pressure resulting in the inflow of air into the vehicle.
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8.5.2 Cleanliness

To minimize possible contamination from the inflow air, the air must be filtered. When

the pressure difference is such that there is an inflow of air, there is the possibility of

payload contamination from dust or debris. This contamination must be reduced as much
as possible to prevent damage to the payload during the mission.

8.5.3 Pressure Equalization and Filtration Unit

Figure 8.7 shows a conceptual drawing of a Pressure Equalization and Filtration Unit to
be used on the Gryphon:
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Figure 8.7 Conceptual Drawing of a Pressure Equalization
and Filtration Unit

The piston has two functions: it acts as a switch to direct the air flow, and as a
large-particle filter. While acting as a switch, the piston has three positions: up (left vein
open, right vein closed), down (right vein open, left vein closed), or neutral (left and right
veins closed). When the force due to pressure acting on the piston is greater internally,

the piston moves upward. This allows the air to vent through the left vein and pass out,
while the passage through the right vein remains blocked. Once the internal and external

pressure difference reaches the critical point determined by the spring constant, the valve
will move to the neutral position where no veins are open. If the external pressure
exceeds the internal pressure, the piston moves to the down position. The air is allowed
to enter and vent through the right vein, where it passes through the fine-particle filters

and into the payload bay. Again, when the internal and external pressure difference
reaches the critical point, the piston will move to the neutral position.
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To control contamination, the piston acts as a filter by deflecting larger particles,
such as pebbles from a runway, from entering. The fine-particle filter encloses the piston
mechanism, and filters smaller incoming airborne elements, such as pollen or dust.

The dictating elements in the unit can be changed to suit individual payload

requirements. For different payloads, thc spring can be changed, and the spring tension
adjusted, to provide a larger or smaller pressure difference. The fine-particle filter can be
of different specifications depending on payload requirements.

8.5.4 Pressure Equalization and Filtration System

The venting system will consist _1 eight Pressure Equalization and Filtration units. Each
unit operates independently to ensure that lhe total system will not fail in the event that
one or more units fail. The umts will t-_eattached by an adherent, such as an epoxy, to the
interior wall of the payload shroud. The eight units wilt be equally spaced around the

payload shroud. The sizes, weights, and costs for the venting system are given in Table
8.5.

Table 8.5: Size, Weight,

Size (ft 3)

Weight (lb)
Cost ($

and Cost for the Venting System

Unit System (8 units)
0.16 1.33

1.50 12.0

100 8O0
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9.1 INTRODUCTION

The Eclipse was specially designed by the Eclipse Design Team to act as the 'zero' stage of
the Gryphon. In the same manner that booster stages must be interconnected in order for
the system to function, the Gryphon must be physically and functionally attached to the
Eclipse to capitalize on the air launched system. This is where Aircraft Integration
performed several different duties during this design phase. The duties which affected the
Aircraft Integration Group were as follows:

Gryphon Assembly Building (GAB)
Transportation and attachment of Completed Booster
Physical attachment from Eclipse to Gryphon/Drop mechanism
Fueling and Safety Concerns
Power connections to the Eclipse in the Pre-Drop phase
Placement of support systems on Eclipse

Aircraft Integration's concerns begin the moment any of the base components leave their
manufacturing center and become the property of the launch company. Each component is
received and constructed into a complete launch booster, and then mated with the payload.
As the launch window approaches, the Gryphon is rolled out to the Eclipse, connected, and
fueled. The Eclipse either uses its prime facility as its base of operations (for

geosynchronous orbits), or flies to the secondary launch facility (for Polar orbits) by a
series of 'hops'. When the launch criteria have been met, a technician on the Eclipse
handles the release/launch phase.

9.2 GRYPHON ASSEMBLY BUILDING

The main requirements for the design of the GAB were determined to be the following.

Provide facilities and equipment needed to assemble the Gryphon

vehicle from its various sub-components
Provide facilities and equipment needed to integrate payloads with
the Gryphon
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Perform the above tasks at the rate of one completed Gryphon roiled

out every two weeks

9.2.1 Assembly Schedule and Task Determination

The first step in tile design process was to determine what work would need to be done at
the GAB, and how long that work would lake. With this information the building cou[d
then be sized correctly to support the required launch rate of one completed Gryphon every
two weeks.

This step was done hx I_:_,tn,,.: _hc Gryphon s assembly schedule on the Pegasus s
assembly schedule. Due to ihc much larger size and complexity of the Griffin's liquid
fueled stages, as compared wilh lhe Pegasus, considerably longer times were assumed
necessary for certain a_scmhlv _lcps. Fhe tollowing table compares the two assembly
schedules.

Table 9.1 Pegasus/Gryphon fimeline Comparison
Pe:_asus G_phonStep

Stage Build-up and Pre-

Integration Testint_
Stage Integration and
Integrated Vehicle

Testing

Pa_,load Inte_ration

Final S_,stems Tests
Total

3 weeks

1 1/2 weeks

1 week

1 1/2 weeks

7 weeks

4 weeks

4 weeks

2 weeks

2 weeks

12 weeks

The following sections describe the various tasks performed in the steps listed in Table 9.1.

Stage Build-up and pr¢-Intem'ation Testin_

Stage build-up and pre-integration testing involves any work which must be done to the
various stages, interstages, fairings etc. prior to their being assembled together into the

Gryphon. All components of the vehicle will be delivered to the GAB in as close to final
configuration as possible. This will minimize the amount of work which must be done
during stage build-up. The components will also be delivered to the GAB at a time just

prior to their being needed for assembly. This will eliminate the need for on-site storage
facilities.

Stage lntem'ation and Integrated Vehicle Testing

Stage integration and integrated vehicle testing involves the actual assembly of the various
stages and interstages to form the Gryphon vehicle. Due to the large size and increased
complexity of the Gryphon, four weeks were allowed for this step as opposed to one and
one half weeks for the Pegasus.
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payload intem'ation

Payload integration involves connecting the payload with the payload interface. Typically.
the Gryphon will launch two satellites whereas the Pegasus can only carry onc.
Consequently, two weeks were allowed for this step instead of one week for the Pegasus.

Final Systems Tests

Final Systems tests involve any last checks done to insure that the Gryphon is assembled
correctly and will function properly when launched. Due to the increased size and
complexity of the Gryphon two weeks were allowed for this step as opposed to one and a
half weeks for the Pegasus.

9.2.2 Gryphon Assembly Building IGAB) Layout

The basic scheme for assembly of the Gryphon was based upon the method used for

assembling the Pegasus. The Gryphon is assembled horizontally because it is attached to
the Eclipse in a horizontal position. Rather than assemble the Gryphon on a fixed cradle and
then lifting the entire booster onto a transportation trailer to carry it out to the Eclipse for
attachment, it was decided to assemble the Gryphon directly on its trailer. This eliminates
the need for a large crane capable of lifting the entire 500,000 lb weight of the vehicle and
allows it to be moved easily from one area to another during assembly. The group decided

that the Gryphon would be assembled using an assembly line approach where the vehicle
moves from one station to the next. This will reduce the need to move equipment.

After considering several different building configurations, an assembly building

with two parallel assembly lines was chosen. Two independent lines were chosen to allow
greater flexibility in launch scheduling. If only one assembly line were used, launches
could not be easily conducted in close succession. With two independent assembly lines,
the assembly schedules could be staggered to provide one vehicle every two weeks, or two
vehicles in close succession if launch windows require it. Having two independent

assembly lines also allows for some protection from delays in any step in the assembly

process. A problem on one line will not hold up production on the other line. Figure 9.1
on the following page shows the final configuration of the GAB.

9.2.3 The Gryphon Assembly Process

The various components are delivered to the GAB in the Stage Build-up Area and are
unloaded using an overhead crane. Each assembly line is equipped with an 80 ton
overhead crane that was sized at 80 tons to allow it to move the Castor 120 solid rocket
boosters. These boosters weigh approximately 60 tons and are the heaviest component of

the Gryphon.

Following completion in the Stage Build-up Area, the components are picked up
with the 80 ton overhead crane and placed in position on the trailer in the Stage Integration
area. This area of the GAB is equipped with a scaffolding system which can be pushed up

close to the Gryphon being assembled to allow easier access to all areas of the booster. A
cross sectional sketch of a possible scaffolding system is shown in Figure 9.2 This scaffold

system is based on the scaffolding used during construction of the Ariane Launch Vehicle.
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Figure 9.2 Gryphon Stage Integration Scaffolding

Following completion of Stage Integration and Integrated Vehicle Testing, the
scaffolds are pushed back and the Gryphon is rolled on its trailer into the Payload

Integration and Final Systems Check Area. In each line, this area is sealed off from the rest
of the GAB and maintained at a class 10,000 clean room environment. This is necessary to

protect the payloads from contamination prior to installation of the fairing. The Payload
Integration area of each line is also equipped with a 20 ton overhead crane to be used for

hoisting payloads into position for integration with the Gryphon.

Following completion of the payload integration and all final systems checks, the

completed Gryphon is rolled out of the GAB and to the waiting Eclipse for attachment.

9.2.4 Ground Facilities Cost Estimates

Cost estimates for construction of the Gryphon Assembly Building were obtained from
References 121 and 122. These books provided average construction costs per square foot

for various types of buildings. AI Vegter, a local architect, was consulted in how to best
estimate costs for this facility. Due to the high ceilings and large roof span required for the
GAB, it was decided that aircraft hanger construction costs best represented costs for the
GAB. Concrete block bearing walls with steel truss roof structure was determined to be

the cheapest construction method. The dimensions and construction costs are shown in
Table 9.2.

Table 9.2 hon Assembl Buildin Cost Estimate

Length" 400 ft
Width 160 ft

Height 50 ft

Perimeter Len_;th 1120 ft

Square Foot Area 64,000 ft2
Estimated Cost per Square foot $53.40
Total Cost Estimate $3,420,000
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Unfortunately a major cost of this facility is not the structure, but the cost of
providing a class 10,000 clean room environment for the payload integration area. To
determine costs for this part of the facility, reference 73 was contacted. He provided a

price estimate of $400-500 per square foot. This high price was due mainly to the high
quality clean environment required and high cubic volume space due to the high ceiling.
Tablcq.3 below show,, cost estimates tor the clean room environment.

Table 9.3 Class 10.000 Clean Room Costs

Length _lt) 125
Vvidth _ft) 160

50Height _lt}

SL[ttarc loot Area _ft2)

Estimated Cost per Square foot
Total Co,,t Estimate

21) ,000

$500

$10,000,000

Costs for the overhead cranes required for assembly of the Gryphon were obtained
from Overhead Crane and Service in Romulus, MI.

No.

2

2

Table 9.4 Overhead Crane Costs

Item

80 ton 80' span overhead crane
20 ton 20' span overhead crane

CosffUnit Tot_ Cost

$180,000 $360,000

$60,000 $120,000

9.2.5 Gryphon Assembly Labor Cost Estimates

The labor costs associated with construction of one Gryphon booster were based upon the

number of people required to construct the Pegasus. The Pegasus requires four people to
assemble. Due to the increased size and complexity of the Gryphon, an estimate was made

that 12 people would be required to work on each Gryphon during the duration of its 12
week assembly process. Based on this, an estimate of $15 per hour labor costs, and a 40
hour work week the costs were calculated as shown in Table 9.5.

Table 9.5 Assembl_' Labor Costs

number of workers required 12

number of hours worked per week 40 hours/week
number of weeks worked 12 weeks

labor cost $15/hour

total labor cost per Gryphon $86,400

9.3 TRANSPORTING THE GRYPHON

This section deals with transportation of the Gryphon from the Gryphon Assembly

Building (GAB) to the Eclipse, attachment of the Gryphon to the Eclipse, and ferrying the

Gryphon from the assembly site to the launch site.
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9.3.1 The Gryphon Transportation Trailer (GTT)

The main requirements for the design of the Gryphon Transportation Trailer were

determined to be the following.

Support the weight of 500.000 lb Gryphon
Transport Gryphon {without imparting undue shocks) from the
GAB to the Eclipse
Equipped to allow the Gryphon to be shifted several inches from
side to side to allow tor proper alignment with the Eclipse during

attachment

Based on the preliminary ideas di,,cussed in Sections 9.3.1 and 9.3.2, a drawing of what
the GTT could look like is shown in Figures 9.3 and 9.4.

Figure 9.3

Cradle
Horizontal Screw Jacks

End View of Gryphon Transportation Trailer (GTT)

Figure 9.4

Horizontal Screw Jacks Rail

Side View of Gryphon Transportation Trailer (GTT)

9.3.2 Type of Trailer

The first step was to determine the method of transportation. The GTr was patterned after
the trailer used by Orbital Sciences Corporation to transport the Pegasus from its assembly
building to the B-52 drop aircraft. The trailer used to transport the Pegasus is equipped
with 24 standard semi-trailer wheels on 6 axles. The Pegasus weighs only 41,000 lb

whereas the Gryphon weighs 500,000 lb. By comparison, the GTT would require 73
axles and 292 wheels. It was decided that the GTT should be based on a rail system to

support the Gryphon's large weight. This system need not be based on standard rail gauge
as it only needs to travel a short distance from the GAB to the Eclipse Attachment Facility.
The GTT need not be self propelled and could be pulled by a large aircraft tug.

214



Chapter9 - Aircraft Integration

9.3.3 Method of Alignment

In order to insure proper alignment of the Gryphon with the Eclipse during attachment, the
GTT must be able to shift the Gryphon from side to side and also rotate several degrees.
To allow for this, it was decided that the Gryphon will be supported in a cradle which rests

on top of the trailer. Large screw jacks will be mounted horizontally at the front and rear
end of the trailer. By operating _he t_vo ,,crew jacks synchronously in either direction the
cradle can be moved either left or right. By operating the screw jacks differentially, the

cradle can be rotated a few decrees.

9.3.4 Gryphon to Eclipse Attachment Facility

The design requirement.,, for ,_l_c(3r3 pnon to Eclipse Attachment Facility were as follows:

The facility should allow for close positioning of the Gryphon and

Eclipse prior to the Gryphon being lifted up to the Eclipse
The facility should be able to lift the 500,000 lb Gryphon and the

GTT up to the Eclipse tor attachment

The first step in attaching the Gryphon to the Eclipse is positioning. The Eclipse

will be positioned within a few inches of the correct location by lining its wheels up with
marks on the pavement.

The second step in the attachment process is to roll the Gryphon underneath the

Eclipse and align the two precisely. The Gryphon will be brought out from the GAB on its
trailer and rolled underneath the Eclipse from the rear. Once it is in position, it will be lifted

by four hydraulic lifts (mounted in the ground) up to the Eclipse. The screw jacks on the
GTT will then be used to move the Gryphon either to the left or right or to rotate it to

achieve proper alignment. If the fore and aft positioning is incorrect, the Eclipse can be

pushed forward or backward slightly, or the Gryphon could be lowered, pushed forward
or aft on the rails, and lifted up again. Once correct alignment has been achieved, the

Gryphon will be raised the last few inches and the hydraulic interface mechanism closed,
thus securing the Gryphon to the Eclipse. The GTT can then be lowered back onto its rails
and removed.

The last step is to attach the 24 volt electrical connection from the Eclipse to the

Gryphon. A sketch of the attachment facility is shown in Figure 9.5.

9.3.5 Gryphon Facility Location

The location of the GAB, GTT rail system, and Gryphon to Eclipse Attachment Facility

was determined by the following requirements:

Availability of rocket fuels on site
Location close to the equator (desirable for launches to GEO)

Remote location away from large populations

Availability of a 10,000 ft runway

Based upon these requirements it was decided that the Kennedy space center was
the best place to locate the Gryphon Facility. It was chosen for its close proximity to the
equator, long runway used to land the Space Shuttle, and availability of rocket fuels.
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Gryphon to Eclipse Interface Mechanism

/\

Hydraulic Lifts

Figure 9.5 Gryphon

/
Rail at Ground Level

Gryphon Transportation
Trailer

to Eclipse Attachment Facility

Launches to GEO will be flown directly from Kennedy, thus eliminating the need to

ferry the Gryphon from its assembly site to its launch site. However, a small percentage of
the launches might be made to very high inclination (polar) orbits, For these orbits, it is
desirable to launch from the United States west coast where a northerly launch track can be

flown without crossing back over land. Vandenberg Air Force Base was chosen as the
launch site for the west coast. It was chosen because of its long runway and the availability

of rocket fuel. For these missions, a Gryphon would be ferried unfueled from Kennedy

to Vandenberg by the Eclipse. The Gryphon would then be fueled and launched off the
west coast.

In order to ferry the Gryphon using the Eclipse from Kennedy to Vandenberg it

was necessary to choose several bases at which the Eclipse could stop and refuel in
accordance with its 1500 mile range. These bases are shown on the map in Figure 9.6. All
bases have the 10,000 ft runway required by the Eclipse. However, some modifications

may need to be made to taxi-ways and ramps etc. in order to accommodate the Eclipse's

large size and turning radius.

9.4 AIRCRAFT/BOOSTER INTERFACE

The interface attachments between the launch aircraft and booster are of vital importance.

There were two designs considered for the Gryphon/Eclipse interface:

Space Shuttle / Carder Aircraft attachment
Orbital Sciences Corporation's Pegasus / LI011 interface

These designs were analyzed and compared to see which would best fit the mission's
needs. Some of the design parameters considered were:
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• Structural Failure Loads

• Pin Layout
• Release Mechanism Geometry.
• Hydraulic Power
• Materials

• Smooth Drop Transient
• G-Force Loads
• Environmental Force_

• Reliability. and Reuse
• Dynamic Loading

Both designs were considered t_ascd on these criteria. It was determined that a design
similar to OSC's Pegasus / gl()l I interface would be used. This design was chosen
because it was similar to our project, proven to work, and easier to analyze. The following

sections give overviews of the two designs considered and the specifications of the

Gryphon / Eclipse interface attachments. A final section will review the specifics of the
overall design and show the layout of the components and costs.

9.4.1 Shuttle / 747 Interface

When the Shuttle needs to be moved across the country, it is placed upon a modified

Boeing 747 "piggy-back" style. The attach mechanism used is the same one on the main
Shuttle booster. This is a three point configuration that uses struts mounted on the carrier
aircraft (see Figure 9.7). The three points have "trailer hitch" rods that are attached inside

the Shuttle by collar rings.

+ "Tj
Figure 9.7 Shuttle on Boeing 747 with Three Attach points

9.4.2 Pegasus / LI011 Interface

OSC's Pegasus is launched from a modified L1011 aircraft. The Pegasus hangs from the
L1011 from five attach points. The attach mechanism on the LI011 uses lever arms and
hooks to attach to the five pins on the Pegasus wing (see Figure 9.8). Four of the points

are symmetric about the center of gravity of the Pegasus and the fifth is mounted forward

for dynamic stability.

Figure 9.8 LI011 with OSC's Pegasus and Five Attach points
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9.4.3 Structural Loading

The structural loading of the Gryphon / Eclipse was an important parameter. Once it was
determined to use the Pegasus/Ll011 design, the next step was to determine how to modify
the configuration for current purposes. The Pegasus II weighs approximately 7().000 Ib
while the Gryphon weighs just undcr 500.000 pounds. A structural factor of safety of 1.5
was cho.,,cn based on the Pegasus, LI(I1 l design.

9.4.4 Pin Layout

In order to fully analyze the different p(_ssibilities, a finite element model was constructed
on the CAD program I-DEAS (_ee Appendix HI. It was constructed to run different
configurations using finite clement models in order to find the best pin layout on the

Gryphon. The parameters determining the best pin configuration were:

Distribution of forces on pins
Stability of configuration
Structural Dynamics

Having approximately the same force on each pin would mean only one type of hook and
pin combination had to be designed. This would greatly reduce design work and
manufacturing costs. Having the same forces on each hook / pin combination would also
make the system easier to manufacture. A symmetric system would also help in design and

analysis.

Because an infinite number of pin configurations could be run, some of the pin

layouts were intuitively determined. First, it was determined to align the center of gravity
of the Eclipse and the Gryphon as best as possible. This would ensure some stability and

displace the loading on the interface mechanism evenly. Second, the farther apart the pins
on the Gryphon, the more stable it would be when hanging off of the Eclipse. This is
because the moments created by the hook / pin mechanism would be greater the farther they
were from the center of gravi ' , therefore, it was determined that there would be two pins
located as far back as possible. Finally, the Gryphon, unlike the Pegasus, did not have a
wing in which the pins could be placed. The pins would have to be placed externally since
there was no space to place any type of external structure within the Gryphon. Also, they
would have to be placed where extra internal rings could fit or at the booster interstages.

9.4.5 Release Mechanism Geometry

The geometry of the release mechanism was based on the Pegasus/Ll011 release
mechanism. The release mechanism is very flexible in its operation. The moment arms
and control rods are similar to the one used on the Pegasus/Ll011 interface except that they

are notably larger. This increase is due to the larger weight of the Gryphon and requires
the mechanical linkages to be proportionally large to prevent buckling and beam bending.

This system, as seen from the picture (see Figure 9.9 and 9.10), will release two pins at the
same time. That is, the lever arm rotates the connecting rods evenly. The hook on the right
is released when the connecting rod is pulled up by the lever arm. The hook on the left is

released when the connecting rod is pulled down by the lever arm. This system can release
four hooks simultaneously if two more are place on the main axle of the lever arm.
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Eclipse Wing's Superrib

Hydraulic Release

System

m m m _m m mmm

Gryphon Main Booster

Note: Drawing is not to scale.

Figure 9.9 Side View Layout of Release Mechanism Geometry (Before)

Eclips_ I's Superrib

Hydraulic Release
System

7phon Main Booster

Note: Drawing is not to scale.

Figure 9.10 Side View Layout of Release Mechanism Geometry (After)

9.4.6 Required Hydraulic Force

The hydraulic force to operate the system was calculated using a worst-case-load. The
hydraulic force was calculated by using the forces on the pin/hook combination, the friction
coefficient between the pin and hook, and the geometry and the lengths of the lever arm and

connecting rods. The hydraulic pressure provided by the plane was given at 5000 psi. It
was noted that pumps could be added for emergency pressure loss and additional hydraulic
force if needed. Using the hydraulic pressure, the pistons were sized by calculating the
worst-case load force required. The pistons cross sectional area was found to be 10.54

in 2.
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9.4.7 Materials

The material used for the structural members throughout the interface system is a heat

treated, quenched and tempered, steel alloy ASTM-A242. The specifics of this material arc
summartzed below (see Table 9.7). This alloy was chosen due to the fact that it is the

strongest construction material in yicld shear strength.

Table 9.6 Steel Alloy ASTM-A242

Specific Weight (psi)
Ultimate Tensile Strength (ksi)
Yield Tensile Strength fksi)

Yield Shear Strength Iksi)

Modulus ot Elasticity (10 _ psi)

Modulus of Rigidity {106 psi)

Coefficient of Thermal Exp. (10-6/°F)

Ductility Percent Elongation (2 in)

Pro ,erties

0.28,.1-
120

100

55

29

11.5

6.5

18 I

9.4.8 Drop Transient

Another important consideration involved in air launched vehicles is a smooth drop
transient. This involves simultaneous release of all the attachments between the launch and

launching vehicle. This was found to be an important consideration from studying OSC's
Pegasus launches. In the design of the Gryphon/Eclipse interface, the drop transient was
to be as "straight" as possible so it could be dropped without causing damage to the

payload or any of the internal components.

9.4.9 G-Force Loads

It was necessary to know the maximum G-Force the Eclipse could perform. This was
important so that the Gryphon/Eclipse interface could be designed with a worst-case load.
The maximum G-Force was given from the Eclipse Design Team to be 2.5. So, in the

design of the interface attachments, the Gryphon was considered 2.5 times its weight for
worst-case loading. This would then be multiplied by the structural factor of safety and the

dynamic loading coefficient to obtain the overall system factor of safety of 4.

9.4.10 Gryphon / Eclipse System Overview

Taking into account all of the parameters just discussed, the Gryphon / Eclipse Interface
Mechanism (GEIM) was designed. The best configuration was found to be two four point,
attachment systems on the second stage, symmetric about the center of gravity (Table 9.8

and Figure 9.11). Note, the reference coordinates were taken from the end of the LR91
nozzle. As can be seen, all of the pins lie within the second stage. With the exception of

pins 1 and 2, a circular support structure had to be designed at the pin locations. The first
two pins were purposefully placed at the interstage between stage 1 and stage 2 due to the
structure required there. Pins 5 and 6 are placed at the attach ring required for the struts
connecting the two Castor 120 engines. The finite element model solutions for this

configuration are in Appendix H. Note that many assumptions were made (i.e. rigid
elements, etc.) in this model. However, the purpose was to find the best distribution of
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attach points for the statically indeterminate loading. Some of the key aspects of this

system are shown below (see Table 9.7).

Table 9.7 Im)ortant System Aspects of Gryphon/Eclipse
Hook Cross Sectional Area 16 in z

Maximum Pin Length 27 in

Total System Weight ! 1,104.1 lb

Total P_n Weight 1328 lb
System Cost $472,163.00

T

Interface

The next sections will briefly describe how these system characteristics were calculated and

present the final layout via ¢_AD.

Table 9.8 Reference Coordinates of Pins on Gr

Pin X (in) Y (in) Z (in)

Number

bhon and Loading
Z load

(kips)

1 171 60 67.08 402

2 171 -60 67.08 402

3 222 60 67.08 402
4 222 -60 67.08 402

5 360 60 67.08 402
6 360 -60 67.08 402

7 411 60 67.08 402

8 411 -60 67.08 402

The pin sizing was determined by the shear force equation for square cross sections:

3 F (Eq 9.1)
2A

where z is the shear stress, F is the shear force and A is the cross sectional area. Using the

maximum shear force for the steel alloy ASTM-A242 of 55 ksi, and the force per pin from
the finite element model of 402 kips (see Appendix H), the cross sectional area was found

to be 10.96 in z with the system factor of safety of 4. Due to manufacturing constraints and
the desire for a simple cross section, this cross section was increased to 16 square inches
so that the hook would be 4 inches by 4 inches (see Figure 9.12). The dimensions of the

pin were also determined (see Figure 9.13).

The sizing of the hydraulic actuators was determined from the sum of the forces on

the lever arm in the equations:

(Eq 9.1)

F hydraulic- (Eq 9.2)
Phydraulic = A
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YM =

btf =

Fpin1.2 =

coI3rl _--"

Fh,,draulic =

ddflll _--"

Phvdraulic =
A =

sum of the moments about the lever arm

static coefficient of friction for steel on steel

forces of a pin
distance of the connectors on the lever arm
hydraulic force

i.,, tile length or the hydraulic arm

hydraulic pressure from the plane
cross ,_ectionat area of the hydraulic

After inserting the values for thc_c cquations, it was found that the hydraulic needed to
have a cross sectional area or 1().3 inchc,, f_,r worst-case loading.

Figure

Side View of
Pin

A Q71 8g
l:.:,:-:.:.

05 I 60
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_iii!ii!ii_iiiiiii;!_!i!i!i]_

................ =

i i iiiiiiii !i'    iiiiiiiiiii!ili!i!i 
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9.11 Top Down Location of Attach Pins on Gryphon
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Figure 9.12
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Figure 9.13 Pin dimensions showing side and front views

A summary of the parts costs provided by OSC was found to be a good estimate for
our systems costs (see Table 9.9). Note these are the costs of the parts only.

The entire system is shown in the next drawings (see Figure 9.14 - 9.16). Note
that the plane is not shown in this figure. The struts are attached to the Eclipse's superrib
support structure. Note also that the superribs needed to be extended 3 feet out the back of
the wing to support the last two connection points (see Figure 9.17).
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Table 9.9 Cost Analysis for Gryphon / Ecli
Mechanical Parts Quantity

Steel

Baseplate Assembly
Hook Blocks

Linka_:es
Overcenter Cam

Torque Tube

Bearings

Locators, Stops. Tonss
Hooks

Preload Bolls
Preload Shear Pins

Hydraulics / Electronics

Safm_ Pin Actuators

Hydraulic Actuators

g

4

2
g

8

8
8

4

4

Microswitches 16

Accumulators

Hydraulic Pump
Release s/o valves

8

2

4

_se Interface Mechanism
Total ($)

4163.00

10000

18000

4800
2000

5O0O

4000

1000
40000

6000

12000

24000

100000

8000

120000

30000

12000

Release flow valves 8 48000

Isolation valve 1 1200

Hand valves 3000

Pressure Transducers

Hydraulic lines

Emergency Explosives

Total

8OOO

30OO
8000

472,163.00

9.5 FUELING THE GRYPHON

The Gryphon will be fueled just prior to take-off and after it has been attached to the
aircraft. Fueling the Gryphon presented an interesting problem due to the nature of the
liquid fuels used for its various stages. The first two stages use storable liquid fuels. The
oxidizer is Nitrogen Tetroxide, and the fuel is Aerozine-50 ( a 50/50 mixture of Hydrazine

and Unsymmetrical Dimethylhydrazine). The third stage uses the cryogenic fuels liquid
hydrogen and liquid oxygen. The storable fuels need to be handled with extreme care due
to their toxic and corrosive nature, and the cryogenic fuels need to be handled with extreme

care due to their low temperatures.

9.5.1 Recommended Safety Precautions

The storable fuels, Nitrogen Tetroxide and Aerozine-50, should be handled with extreme
care do to their toxic and corrosive nature. The following is a list of hazards and relative
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safety precautions compiled from Ref 42. Since Aerozine-50 is a 50/50 mixture of both

Hydrazine and Unsymmetrical Dimethylhydrazine (UDMHJ, both fuels are listed below.

Nitrogen Tetroxide

Hazards:
• Skin contact causes severe burns

• Breathing of vapor may cause poisoning
Spills may cause fire and ,nay liberate toxic <,as

• Contact with fuels may cause explosions

Safety Precautions:
• The nature and characteristics of nitrogen tetroxide shall be

explained to all persons working with this material
• Persons engaged in operations involving handling or transfer of

nitrogen tetroxide shall wear approved boots, gloves, acid hood,
and protective suit. In addition, a protective mask shall be worn by
all persons exposed to the vapors of nitrogen tetroxide

• Operations requiring the handling or use of nitrogen tetroxide shall
be performed by groups of two or more persons

• Before beginning to use equipment, make sure the system is not

pressurized. Work from above and to one side of an acid line,
rather than from below it. Avoid trapping nitrogen tetroxide
between closed valves. Do not operate pumps against closed
valves. Check lines, valves and the receiving tank before starting to

transfer nitrogen tetroxide
• Protective clothing, hand tools, and other equipment shall be flushed

with water immediately after contact with nitrogen tetroxide

Hazards:
• Contact with liquid may cause burns, severe eye damage, and

general poisoning
• Breathing vapor may cause lung damage and irritation of the eyes,

nose, and throat
• Spills represent an immediate fire and explosion hazard
• Contact with acid causes fire and possibly explosion

Safety Precautions:
The nature and characteristics of hydrazine shall be explained to all

persons working with this material
Persons handling hydrazine must wear fuel-resistant gloves, shoes,
or over-boots, a face shield, wrist and arm protectors, and a rubber-

type apron. Where there is a chance of splashing, an approved

protective suit must be worn
Respiratory protection must be available when working in
Hydrazine-contaminated atmospheres
Storage, transfer and operating areas shall be kept clean of organic
matter and oxidizers
Leaks and spills must be immediately flushed away with large
amounts of water
Transfer, handling and storage must be performed by at least two

persons
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An atmosphere of nitrogen must be maintained over the hydrazine
Drums and containers shall be grounded

Unsymmetrical Dimethylhydrazine (UDMH)

Hazards:
• Contact with UDMH mav cause eye damage and general poisoning

• Breathing UDMH vapor may cause lung damage and may irritate the

eyes, nose and throat
• Spills create immediate [-tre and explosion hazards
• Contact of UDMH with oxidizing agents causes fire and possibly an

explosion

Safety. Precautions:
• The nature and characteristics of UDMH shall be explained to all

persons working with this material
• Persons handling or transferring UDMH shall wear approved boots,

gloves, hood and clothing. In addition, a protective mask shall be
worn by all personnel exposed to UDMH vapor

• Operations requiring the handling or use of UDMH shall be
performed by persons working in groups of two or more

• Avoid spills of UDMH: the resulting vapors present a fire hazard.

Wash all spills with water immediately
• Protective clothing, wrenches, and all other equipment that has been

contaminated shall be flushed with water as soon as practical

The cryogenic fuels for the third stage (liquid hydrogen and oxygen) need to be handled
with extreme care due to their extremely cold temperatures. The following is a list of

hazards and relative safety precautions compiled from Reference 95.

Idaaat_Q,r,

Hazards:
• Contact with skin causes frostbite and "bums"

• Mixing with fuels causes a dangerous explosion hazard
• Gaseous oxygen from the liquid is absorbed in clothing, and any

source of ignition may cause flare burning

Safety Precautions:

All persons shall be familiar with the nature and characteristics of

liquid oxygen
Personnel engaged in operations involving the handling or transfer

of liquid oxygen shall wear the approved goggles or face shields,

protective clothing, gloves and boots
Operations involving the handling of liquid oxygen shall be
performed by persons working in groups of two or more
Extreme caution shall be exercised to prevent any oils, greases, fuels
or combustible materials from coming into contact with liquid

oxygen
Care shall be taken to prevent the accumulation of moisture in lines,

valves, etc. to avoid freezing and plugging and subsequent pressure

ruptures and the trapping of liquid oxygen in unvented sections of

the system
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Liauid Hydrogen

Hazards:
• Skin contact causes severe frostbite and "burns"

• Extremely flammable
• Explosive hazards are present when-

. ,.3lid air collects in liquid hydrogen

• gaseous hydrogen is mixed with air in a confined space

Safety Precautions:
• All personnel ";hall he famflaar with the following:

• Nature and characteristics of liquid hydrogen
• Safety teatures or the equipment
• Proper operating procedures
• Fire regulations

• Approved clothing, including face shields and gloves shall be worn

as specified.
• Allow no ignition source of any kind to be brought into the area.
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9.5.2 Procedure for Fueling the Gryphon

The Gryphon is to be fueled just prior to take-off. This is to minimize the time between
fueling and launch of the Gryphon due to boil-off of the cryogenic fuels in the third stage.

The minimum safe distance from the Gryphon in the event of an explosion was

determined to be 2000 feet. In accordance with this distance, all personnel and equipment

not directly involved with fueling the Gryphon should be moved a distance of at least 2000
feet from the Gryphon. In order to minimize the risk of explosion the following

precautions should be taken prior to fueling.

The carrier aircraft Eclipse should be shut down and its engines and
APU's should be allowed to cool down sufficiently

The Eclipse. Gryphon. and any equipment being used during
fueling should be grounded
The area should be swept clean of organic matter to minimize the
chance of a fire should Aerozene-50 be spilled

All possible ignition sources should be removed from the area

In order to minimize the amount of cryogenic fuels lost to boil-off, the storable fuel

stages should be fueled flu'st and the cryogenic fuels used in the third stage fueled last. The

fueling procedure is as follows:

°

2.

3.

4.

5.

.

7.

8.

Nitrogen Tetroxide and Aerozene-50 will be transported to the
Gryphon in fueling trucks.
A water truck and crew should stand by ready to wash away any

spill of Nitrogen Tetroxide or Aerozene-50 which might occur.
All personnel should work in teams of at least two and should wear
approved protective suits and breathing protection.
Only after all connections between the Gryphon and the fueling
truck have been checked, should fuel transfer begin.

Following completion of first and second stage fueling and removal
of all associated equipment, fueling of the third stage with cryogenic

fuels may proceed.
Liquid Hydrogen and Liquid Oxygen will be transported to the

Gryphon in fueling trucks.
Only after all connections between the Gryphon and the fueling
truck have been checked, should fuel transfer begin.

Following completion of third stage fueling the Eclipse crew should
immediately return to the aircraft and begin launch preparations so as to
minimize the amount of cryogenic fuel lost to boil-off.

9.6 POWER AND FUEL CONNECTIONS

Since systems on the Gryphon need an external power supply for the pre-drop phase of the
mission, an umbilical power cord is needed to connect the Eclipse and the Gryphon. The
umbilical cord will be extending from the underside of the Eclipse next to the right forward

most attach point and will be securely attached to the Gryphon. At the point on the
umbilical cord closest to the Gryphon there will be placed a cartridge-actuated wire cutter,
the most reliable form of wire disconnect available. The cutter consists of a cylindrical

housing from steel, a piston cutter blade, an anvil, an end cap, and a cartridge (see Figure
9.14). The piston blade is retained by a shear pin until, after firing within milliseconds,
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sufficient pressure develops to shear the pin. At this instant, the blade strikes against the
anvil and severs the wire. The device _s sealed to prevent gas or flame leakage from

causing damage to the Gryphon. After firing, this component can be re-used in future
missions by replacing only the piston blade, anvil, and cartridge. The wire cutter is

designed to sever a rubber-sheathed electric cable of 16 strands of No. 21 plastic-coated
stranded wire of 3/16 in. a diameter of().875 in and weighs only 0.12 lb. The wire will be
more than needed to carry the 28 V load taken from the Eclipse engines and required by the

Gryphon components. Thi> wire cutter was chosen so that for future applications or
modifications of the G_'phon. anofller cutter will not have to be designed to cut a larger
wire.

The external structure of the umbilical port on the Gryphon consists of a small

"hole" with a flap. After die umbilical cord is severed, the flap will close and latch itself to
form a smooth surface for tile remainder of the mission.

A fluid line connection was also developed for the Gryphon because at one point it

was thought that some coolant would have to be pumped from the Eclipse through the

Gryphon in the pre-launch phase of the flight. This line would be a rigid pipe connected to
the Gryphon near the left forward most attach point and would be securely connected with
a cartridge-actuated release valve. When the release signal is given, the valve will close and
detonation will separate the pipe from the Gryphon.

9.7 PLACEMENT OF SUPPORT SYSTEM ON ECLIPSE

On board the Eclipse, it has been determined that one crew member is required. The

launch panel operator's (LPU) duties are:

• operate short-range radar and relay information to carrier plane crew
• monitor vehicle status
• switch between external and internal power

• update vehicle IMU prior to release
• prepare and enable vehicle for release
• activate release mechanism

• download and verify mission data
• capture, record, and display data from vehicle and payload

• The launch panel console LPC consists of the following equipment: two

computers, an inertial measuring unit (IMU), a mass data storage system, the release panel,
and three monitors. Two of the monitors will be television screens videoing the forward

and aft ends of the Gryphon. The third monitor will be an LCD display used to visually
monitor the computers, IMU, and data storage system. Through a keyboard the crew
member will be able to manually switch between these displays.

The LPC will be assembled into a desk unit as seen in Figure 9.16. The top

shelving unit will consist of three shelves that are 19 inches high. The overall dimensions
of the unit are 6' x 5' x 2'. As seen in the figure, all hardware except for the monitors and

the keyboard will be placed in the shelving unit. The front of the shelving unit will be
covered to prevent equipment from falling out during the mission. The desk unit is

approximately 6' x 3' x 6' and will include a swivel chair bolted to the floor. The monitors
will be placed at a 45 ° angle and in a semi-circle on the desk to ensure easy Viewing. The
keyboard will be located in the middle of the semi-circle. The entire unit (shelving and
desk) will be placed directly behind the main cockpit on the Eclipse.
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0.661 in /

(HEX 0.625) ANVIL SHEAR PIN

END CAP PISTON BLADE

Figure 9.14 Umbilical Cord Cutter

//

CARTRIDGE

0.557 in
DIA

The final piece of equipment that needs to be placed on the Eclipse is a power
transformer. The transformer will convert the 110 volt, 400 Hz AC power supply from the

Eclipse engines to a 28 volt DC supply that can be used by the Gryphon systems. The
transformer unit will be approximately eight inches square and weigh ten pounds. It will

be placed in a convenient location between the forward most attach points in order to have
easy access to the avionics bay on the Gryphon.
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A

E

G

A
B
C
D
E

8' F

G

H
I

Computer 21 "xl 9"x8.75"

Computer 21"x19"x8.75 _'
IMU 18"x 8" x 9",

Data Storage 12"x 18"x 8"
Aft Video 10"x 10"x10"

Forward Video 10"x 10"Xl0r'

LCD Display 10"x 10"x10"
Release Panel 12"x 6" x 12"

Keyboard 18"x 2" x 6"

Figure 9.16 Launch Panel Operator

9.8 FUTURE WORK

Due to time constraints, there are some factors that still must be determined. These are:

• Cost analysis
• Refining current system designs
• Force analysis
• Prelaunch checklists

Cost analysis will need to be updated. At the assembly level, more information will
be needed to determine a better estimate for the costs of the clean room. Also, cost will
need to be determined for the Gryphon Transportation Trailer (GTT) and for the minor

assembly equipment (such as wrenches, bolts, etc.). Finally, current estimates for the
connections between the Gryphon and Eclipse are based on scaling similar systems

between the Pegasus and L10-11 used by OSC, and will need updating.

Further design work will be necessary in some areas. Primarily the GTT and the

Gryphon's physical connections. The reason for the redesign of the connection system
would be due to the fact that some of the applicable forces still need to be determined.
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Undetermined forces will affect the design of the physical connection system.

Forces such as drag and side forces, tbrces due to braking and touchdown (in the event of
mission termination), nodal analysis, and forces that will incur when the rigid-body

assumption of the Gryphon is removed. A non-rigid finite element model for the
Gryphon/connection combination was attempted, but was exceptionally difficult to

complete and due to time-constraints was abandoned.

Checklists will be needed from assembly to launch. Starting with Post-Assembly

Inspection Checklists to be performed at every'sub-level of its completion (for example,
after a castor is mounted, all connections and attach struts will be inspected). Then,
checklists will be needed for transportation of the booster, mating of the booster to the
carrier aircraft, and fueling safety. Finally. a pre-flight checklist and a pre-launch checklist

will be necessary.
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10.1 INTRODUCTION

This chapter summarizes the findings of the Gryphon project, identifies the status of the

project in the framework of a complete design life cycle, and discusses future work to be
performed in a Phase II study.

10.2 SUMMARY

Development of a 500,000 lb air launched space booster as a feasible, profitable
commercial space venture has been demonstrated in this report. The increased performance
associated with the air-launched system provides twice the payload delivery capability of an

identical ground launched system. Coupled with the use of "off-the-shelf" technology and

components, the increased payload capability allows the Gryphon to undercut competing
space booster systems' cost per pound to orbit by almost 50%.

The Gryphon Air Launched Space Booster can deliver 7,900 lb of payload to

Geosynchronous Earth Orbit (GEO). The vehicle is released from the Eclipse carrier
aircraft at an altitude of 44,000 ft at the start of its trajectory. Based on the investment

necessary to develop such a system in addition to per-mission costs and financing, the

Gryphon can deliver its payload at a cost of $6,2900 per pound to GEO.

10.3 DESIGN STATUS

The process of developing a large-scale engineering project, such as the Gryphon, can be
divided into the following categories.

Phase I: Preliminary Design

• Feasibility study
• Cost analysis
• Preliminary analysis
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Phase 2: Detailed Design

In-depth analysis of system
Comprehensive integration of sub-systems

Phase 3: Development

• Sub-system testing
• Prototype development
• Testing of prototype

Phase 4: Realization

• Manufacturing

• Operation

This report represents the Phase I design of a 500,000 lb air launched space
booster. Although a substantial amount of preliminary analysis was performed for this

system, the time constraints imposed by the academic semester halted the design process
prior to a Phase II study. The feasibility study and cost analysis performed in the design of
the Gryphon present strong motivation to continue the project through the realization stage.

10.4 FUTURE WORK

A brief listing of items that would need to be addressed in a Phase II study are presented
below.

Identification of Secondary_ Structural Masses

The weight of the booster is a vital parameter that must be constantly monitored and
modified to ensure its payload delivery capability. Currently the design accounts for all

primary masses: i.e. support structures, fuel tanks, engines, and avionics. The amount of
secondary mass introduced in the form of wires, fasteners, conduit, etc. must be identified
and accounted for.

Qptimization of Trajectory

Although all effort has been made to produce an efficient trajectory for placing payloads in
orbit, optimization of this trajectory must be performed in order to minimize fuel used and
maximize payload weight.

D¢_ailed Analysis of Orbit

The primary mission for the Gryphon is placing communications satellites in
Geosynchronous Transfer Orbit. All payload weights and trajectory analysis was
computed for this orbit. The secondary goal of the booster is the placement of scientific
payloads into Low Earth Orbit and resupply of Space Station Freedom. An analysis must
be done of these low orbits to identify the variation of payload delivery capability with

orbital altitude and inclination angle.

240



University of Michigan Aerospace Project Gryphon

$lability Analysis of Vehicle

A stability analysis of the vehicle must be performed in order to develop a more complete
attitude control system. The vehicle is currently equipped with Reaction Control Thrusters
and a Vertical tail to provide control during the unpowered portion of the launch, however,
time constraints did not allow dcterrnination of the actual vehicle stability characteristics.

Aft Nozzle Cover Design

The need for an Aft Nozzle Cover wa.,, identified to reduce aerodynamic drag during captive

carry of the booster. Althot, gh the ,,hape _I- this cover was designed, no attempt was made
to perform a structural analysis or lhe ANC or to design a mechanism to separate the ANC
from the booster. The actual design ot rials component must minimize both weight and cost
since the cover does not play .tn intcgrat part in the Gr3'phon's mission.

D_;ign of an Orbital Maneuvenng System

Resupply of Space Station Freedom was selected as a secondary mission for the Gryphon.
The delivery of payloads to the Space Station will require precise maneuvers to ensure

payload-station rendezvous. This maneuvering system would have to be included in any

resupply payload.
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Appendix A - Spacecraft Integration

A.1 EXPENSE REPORT

Appendix A.I contains a complete expense report for the Gryphon. Where uncertainty
existed, costs were overestimated. Still. there is a great uncertainty in the cost to build

and operate the Eclipse airplane.

Table A. 1

Airplane Costs

1.5 Airplanes
Operating, Costs

Aircraft Inte ]ration

and Ground Support

Hanger

Assembl, Buildin_

Assembl_' Cost

Rail S_,stem

Gryphon Expenses
Low Estimate High Estimate

S 750 million* $ l billion*
$ 2 million$ 1 million

$ 32 million*

$13.4 million*

$ 81 thousand
$10 million*

Attach Mechanism

Steel Material Cost $ 4.163 million
Base Plate $10 thousand

8 Hook Blocks $18 thousand

8 Linkages $ 4.8 thousand
40vercenter Cams $ 2 thousand

2 Torque Tubes $ 5 thousand

8 Bearings $ 4 thousand
Locator, Stops, Ton_s $1 thousand
8 Hooks $ 40 thousand

8 Preload Bolts

8 Preload Sheer Pins

$ 6 thousand

$ 12 thousand

$ 24 thousand

$100 thousand
4 Pin Actuators

4 H),draulic Actuators
16 Microswitches

8 Accumulators

2 H_,draulic Pumps
4 Release Valves

8 Release Flow Valves

Isolation Valve
Hand Valves

8 Pressure Transducers

H_cdraulic Lines
Emergency Explosives

$ 8 thousand

$120 thousand

$ 30 thousand

$12 thousand

$ 48 thousand
$ 1.2 thousand

$ 3 thousand

$ 8 thousand

$ 3 thousand

$ 8 thousand

$ 32 million*

$13.4 million*

$ 81 thousand

$10 million*

$ 4.163 million

$ thousand

$18 thousand
$ 4.8 thousand

$ 2 thousand
$ 5 thousand

$ 4 thousand

$1 thousand

$ 40 thousand

$ 6 thousand

$12 thousand

$ 24 thousand

$100 thousand

$ 8 thousand

$120 thousand
$ 30 thousand

$12 thousand

$ 48 thousand
$1.2 thousand

$ 3 thousand

$ 8 thousand

$ 3 thousand

$ 8 thousand
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Mission Control

Computers and Software $ 2 million
GPS Receiver $ 14 thousand

IMU $ 100 thousand

Transmitters & Receivers $ 50 thousand

$ 2 million

$ 14thousand

$ 100 thousand

$ 50 thousand

Mission Cont. Employees 5, 500 thousand*
Ground Station Use $ 75 thousand

Plane Modification g 340 thousand

Inertial Navigation S 50 thousand

Power/Thermal

Thermal Control Sw, tem
r

Lithium Chlorate Batters'
r

Silver Zinc Battery
Attitude Control Thrusters

Venting System

Propulsion
1 RL10A-4 (GTO only)

'5 4.9 thousand

$ 2.5 thousand

$ 1 thousand

$ 3.9 thousand

$ 800

$ 225 thousand

$ 500 thousand*
$ 75 thousand

$ 340 thousand

$ 50 thousand

$ 4.9 thousand

$ 2.5 thousand
$1 thousand

$ 3.9 thousand

$ 80O

$ 250thousand

RL10 Fuel
2 Castor 120's

3 LR91's

LR91 Fuel

$12 thousand

$ 8.4 million

$ 3.6 million

$ 2.5 million

Structures

Sta_e II Fuel Tank $1 million
Stage III Fuel Tank $100 thousand

Payload Interface Rin_ $100 thousand
A tach Struts

Fairin_s
Main Shroud

Pa]cload Shroud
Aft Nozzle Cover

Vertical Tail

$ 500

$100thousand

$ l million
$1 million

$ 20 _ousand

$ 500 thousand

$12 thousand

$ 9 million

$ 3.6 million

$ 2.5 million

$ 4 million
$ 500 thousand

$ 500 thousand

$ l thousand

$ 500 thousand

$ 2 million

$1 million
$ 50 thousand

$1 million

* indicates a one time cost

A.2 WEIGHT AND CENTER OF MASS CALCULATIONS

The spreadsheet below tabulates individual component weights and center of mass
locations on the Gryphon. The origin is located at the center of the Stage One LR-91

engine nozzle exit (See Figure 2.6A). The x-axis then runs up the center line of the
booster and the y-axis points out towards the left Castor. The center of mass is assumed
to lie on the x-axis for each configuration. This is an approximation since the Gryphon is

not perfectly symmetrical about this axis because of the non symmetrical Stage One
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propellant tanks, power/avionics bay configuration, and the internal cabling and piping.
However, this assumption should be accurate because of the large ratio of (x-axis)

symmetrical masses to (x-axis) non symmetrical masses.

The center of mass is calculated by using the relation.

Em

(Eq A.I)

where m is the mass of each component ,rod r is the distance from the yz-plane. The

centers of mass were calculated for each stage individually and then added using the

above formula to find the c(mfigur',tli_ms center of mass.

The moments of inertia l(_r each component are determined by modeling each as a

simple geometric shape. The parallel axis theorem,

1 = I_ + m r 2 (Eq A.2)

was then used to transfer each component's moment of inertia (Ii) about its center of mass
to its moment of inertia (I) a distance r from the center of mass of each stage. Then, these

moments of inertia were added together to find the three principle values (Ixx, Iyy, Izz) for

each stage. A configuration of stages' moments of inertia were then calculated, again

from the parallel axis theorem and the center of mass formula above. These values are
tabulated in Table A.2. For light components, such as the 2 lb radar transponder,

individual moments of inertia were not calculated since they would be insignificant

compared to much heavier items. However, the item was used as a point mass in the

parallel axis theorem.

Table A.2 also includes moments of inertia for half full and empty propellant

tanks. To do this, the masses of the oxidizer and fuel were modified along with their

respective center of mass locations and individual moments of inertia. The method
described above was then used to calculate the configuration's moments of inertia.

Table A.2

Stage 1

Castor Le.[t

Propellant

Engine
Nozzle

Fuel Tanks

-'ront Attachment

_ear Attachment

Fairing Attach Rinl_

Fairing

Component Weights, Centers
GTO OPTION

Weight

lib)

109000

0

3(R)0

5687

200

200

20

CM from

vz-plane
tin)

210

62

24

210

360

65

360

39655

of Mass, and

CMfrom

xz-plane

(in)

148

148

CM from

xy-plane

Im)

0

0

0

o

¢loments of Inertia

55

148

148

97

97

148

148

LEO OFrlON

Weight CM from
yz-plane

0b) (in)

109000 210

0 62

3000 24

5687 210

200 360

200 65

20 360
396
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Castor Right

Propellant

Eneine
Nozzle

:uel Tanks

Front Attachment

Rear Attachment

Fairing Attach Rin_

Fairin_

LR-9/

Engine
Nozzle

Fuel

Oxidizer

External Skin

Bottom Support Ring

Plane Attach Rin_. t

Gryp-Eclipse Rings l&2

En$.ine Mount
Fuel Tank

Oxidizer Tank

Pa_,load Shroud
Vertical Tail

Interstage

Intersta_.e Ring

Aft Nozzle Cover (ANC)

S_ge2

LR-9! {2)

Right Engine

Right Nozzle
Left Engine
Left Nozzle

Fuel

Oxidizer

_Plane Attach Ring 2
Gryp-Eclipse Rings 3&4

Plane Attach Rin_ 3
Gryp-Eclipse Rings 5&6

Plane Attach Ring 4
Gryp-Eclipse Rings 7&8
External Skin

Strut Support Ring

Engine Mount
Fuel Tank

Oxidizer Tank

Interstage Ring 1
ilntersta_,e Rinz 2

1{'10<K)0 210

o2

i48 0 109000 2 tO

_l 148

3t_t_1 2-t 148
io 148

,_t,<I
"e_S7

2+){)

20{) '_5

2{I 3g_t
<-7, -,t_h. .

_7

q7

148

148

q tt) u _. () 0

15_5_ [64

545 130

525 _3

358 17I

334 171

34q 129

395 104

280 164

6200 1000

1500 62

675 238

80 275

26

-38

0

0

0

26

-38

5800 -184 0

67

0
0

153

0 0

0 0

30()()

5687

2OO

200

2O

55

500

800

_2

24

2 l0

36{1

65

36{1

396

93

36

8365 164

15559 164

545 130
525

358

334

349

395

280

6200

63

171

171
129

164

164

762

1500 62

675 238

80

5800

500 295

800 235

5O0

42

42 0

500

800

295 -42 0 5OO

800 235 -42 0 800

58777 385 0 0 58777
109324

358

67
0
0

109324 487

0

67

358 222
334 222

358 360
0

67

0 0

0

334 360

358 411

334 411
1730 429

0

0

0

334

360

325 0

382 0

275

-184

295

235
295

235

382

487

222
222

360

360

41l

411

429

360

325
525

646

1120

t380 487

358

334

358

382
487

279

334

80 279

80 543

1730

525

646

1120

0 0 1380
80

0 80 543
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Stage 3

%-10(1)

Interstage Ring '_0 _,47 0 O

Payload [nterface Attach 2 l0 783 0 0

Engine l l 2 '_)2 0 0
Nozzle _75 -_t) 0 0
Fuel i5 I0 -_l) 0 0

Oxidizer 75d-7 q5,R 0 0

External Skin
Structure Mount

Fuel Tank

Oxidizer Tank

4elium

Helium Tank -_5 _5

Engine Attach 27 619
Power/Avionics Rm_ 22 l SO7

Power/Thermal

Cabling,
Hydrazine/Oxidizer &
Tanks

Control Thrusters

Venting System
Thermal Control

Batteries

Mission Control

CPUs

Radar Transponder

Telemetry Transmitters
GPS

Inertial Guidance/LMUt

GTO Payload

LEO Payload

p_loptl Intprfaee

207 aS2 O 0

_5() ":tl {) 0

_'0/I _58 l) 0
It) '_) 50 0

50 0

0 0

0 0

80 547

210 545

::!!!_!_+_!::_ili!::!!ii_::!i!iiiiiii!::!i!!i::!!i)::_i::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::"i'7"77"i'7"!21:{771!ii_7:'i':711111117:i:i:2:i:.:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::iiiiiiiii_:i_:iiiiii!iii!i!!!}{iiiiiii!iiiiiil}iiiiiil
•.....?..-.......,???-.???????? .;"

.......... ;.x.x.;.;.>a-x.:.>x- ....x.x.;;; ::::::::::::::::::::::::::::::::
?_:i:EE ! E:::::: :? :!:!:i:i:i:i:! :i:i:i:i:i:i:i:_:i:i:i:i:i:!:i:!:i:_:_:_:!:i:i:i:!:i

i'i'i:':':i:i:i:i:i:i:i:i:i:'i:::i:::i:i:i:::i:::::_:i:i:_:::i:i:::':':':':':':':':+:':':':':'::'

10 553

45 553
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

221 569

150 795 0 0 150 557

800 795 0 0 500 557

t3

15

1000

6OO

810

795

795

795

795

795

795

795

795

957

0
89O

0

0

30

-20

0
0

0

0

0

0

0

0

0

0

0

0

l0

2

3

19

6553
0

1347

13

15

1000

160

10

2

3

3

19

0

15653

1347

572

557

557

557

557

557

557

557

557

0

719

652
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A.3 FINANCIAL SCHEDULE

Table A.3

Year

Revenue _$)

Total Expenses t$)

Before Tax Profit ($)

Income Tax 4$)

Alter Tax Profit {$)

Indebtedness IS)

Financial Schedule for Minimum Launch Price

I).o00

53.125

-53.125

-19.125

-34.1)C11)

0.000

_3.125

-53.125

-i9.125

-34.(){ _)

85.308

3

0.000

89.829

-89.829

-32.338

-57.491

166.012

4

130.352

113.104

17,248

6.209

ll.039

180.05430.502

5

260.704

226.208

34.496

12.418

22.077

183.543

391.056 391.056

339.313 339.313

51.743 51.743

18.628 18.628

33.116 33.116

174,771 164.580

Year

Revenue ($)

Total Expenses ($)

Before Tax Profit ($)

Income Tax ($

After Tax Profit ($)

Indebtedness ($)

456.232 456.232

395.865

10

456.232

395.865

60.367 60.367 60.367

21.732 21.732

38.635

125.120

38.635

146.327

395.865

21.732

38.635

100.482

11

456.232

395.865

60.367

21.732

38.635

71.855

12 13

456.232 456.232

395.865 395.865

60.367 60,367

21.732 21.732

38,635 38,635

38.596 -0.045
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Appendix B - Mission Analysis

B.1 ASCENT TRAJECTORY

Drop
Jettison

ANC

Stage 1

l_nition

Stage 2
Ignition
Shroud

Separation

Stage 2
Burnout

Table B.I Ascent Tr_ Data

Time Altitude Angle of Flgt Path l Velocity Weight Latitude
seconds) Ifeet_ Attack An_le fit/s) (Ibs t (_W)

o _).0o0 _1 o 733.3 480,403 12.5

3.5 39,813 _ 32 -_.30 741.0 474,003 [ 2.5

7.5 39,14_ 17.37 -i7.32 768.2 474,603 12.5

1"_- 22.47_.3 37,03e_ - i t) S9 1,08 l 459.090 12.5
__.,, - i _).a.a 1,364 4.4_,578 12.517.5 35.547 _ "!

22.5 33,229 25 S,h -1_.96 1.597 428,006 12.5

47.5 33.681 25.17 i8.34 2,033 350,503 12.5

67.5 53.683 13.92 _9.18 2,718 288,453 12.5

85.5 84,701 11.i8 32.73 3,985 208,614 12.5

' "_'_ .75 4,964 169,550 12.5144.3 200,000 ..,._7 21

175.5

205.5
235.5

265.5

295.5

338.4

257,861 26.20

316,698 18.36

378,84l 11.01

442,403 4. l 1

503,840 -2.28

573,901 -10.19

18.78 5,887 142,004 12.5
t 6.74 7,024 122,067 12.5

14.32 8,528 102,130 12.5

11.56 10,508 82,194 12.5

8.53 13,170 62257 12.4

3.39 19,219 33,713 12.4

Long.

118.0

118.0

ll8.0

118.0

t18.0

117.9

117.8

117.7

117.6

116.9

116.5
116.0

115.3

114.6

113.6

111.8

Range Dis
(nm)

0

0.4

0.9

1.0

2.6

3.7

11.3

18.1

26.4

63.8

89.6

119.4
155.7

200.4

256.3

365.1
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B.2 SUBSONIC AERODYNAMIC DATA

See Section 3.6.1 for details of the analysis

Table B.2 Data for

Pressure

Temp
Gas
Constant

Density

Viscosity

Speed
Mach #

Length
Diameter

Weight per
ref. area

_9_ 1_

lbt) ft2

Computation of Drag in Axial Direction

G_'phon Fusela:_e
Re # 1.49E+08

399.99:R

1716

O.OO0587

slu_ ft 3
hr

2.97E-7

slu_/ft.s 2
733.3 ft/s

0.78

92 ft

15 ft

333.3

lbf/ft 2

Dynamic 167.4
Pressure lbf/ft 2

Ref. area 1500 ft 2

Rwf

Cf mid

1.105

0.00189

Swet 5026.5 ft 2
mid

Cd9 mid 0.0081088

Cdl mid 0.0003512

Cd mid 0.00846
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Table B.3 Coefficient of dra_[ for Gryphon modeled as cylinders

I Altitude 40,000 ft
Density 0.000587 slu_/fl 3

Viscosity 2.97E-7 slu_/ft s 2

SRBs

Velocity fit/s) Re number

I I .68E+04

Cd per unit length

1.2

2 3.36E+04 1.2

3 5.04E+04 1.2

4 6.72E+04 1.2

5 8.40 E+04 1.2

10 1.68E+05 1.2

15 2.52E+05
20 3.36E+05

25 4.20E+05
30 5.04E+05

35 5.88E+05 0.36

40

50
55

6.72E+05

7.56E+05

8.40E+05

9.24E+05

1.01E+06
60

70

I

0.98

0.8

0.35

0.37

0.37

0.38

0.39

0.39

Cd with 15%
interference

1.38

1.38

1.38
1.3'8

1.38

1.38

1.15
1.127

0.92

0.4025

0.414

0.4255

0.4255

0.437

0.4485

0.4485

Fuselage

Velocit_ (ft/s)
1

2

3
4

5

10

15

20

25

30

35

40

45

50

55

60

65

Re number

2.96E+04

5.93E+04

8.89E+04
1.19E+05

1.48E+05

2.96E+05

4.45E+05

5.93E+05

7.41E+05

8.89E+05

1.04E+06

1.19E+06

1.33E+06

1.48E+06

1.63E+06

1.78E+O6
1.93E+06

Ca per unit len[th
1.2

1.2

1.2

1.2

1.1
1

0.35

0.35

0.37

0.38

0.39

0.39

0.39

0.39

0.39

0.39

0.39
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B.3 SUPERSONIC AERODYNAMIC

The equations used to compute data in this section are:

L = 9M2a2Sb ct

r-

D = +pM:a: S,_ X + c_:)+ ST_i,

See section 3.6.2 for details.

DATA

4 tin;)1'i.2

(Eq B.1)

(Eq B.2)

Table B.4 Lift {in pounds) at 50,000 ft
.-Xn of Attack ,rees)

"_ 4 _ 8 10 12 14Mach
1.5 7.21E+03 1.44.E+04 2.16E+O4i2.88E+04 3.60E+04 4.32E+04 5.05E+04

2 1.28E+04 2.56E+04 3.84E+04 5.[ 3E+04 6.41E+04 J7.69E+04 8.97E+04

3 2.88E+04 5.77E+04 8.65E+04. 1.15E+05 1.44.E+05 1.73E+05 2.02E+05

4 5.13E+04 1.03E+05 1.54E+05 2.05E+05 2.56E+O5 3.08E+05 3.59E+05

5 8.01E+04 1.60E+05 2.40E+05 3.20E+05 i4.00E+05 4.81E+05 5.61E+05

6 1.15E+05 2.31E+05 3.46E+05 4.61E+05 5.77E+05 6.92E+05 8.07E+051

7 1.57E+05 3.14E+05 4.71E+05 6.28E+05 7.85E+O5'9.42E+05 1.10E+06
2.05E+05 4.10E+05 i6.15E+05 8.20E+05 1.03E+06 1.23E+06 1.44.E+06

!

16

5.77E+04

1.03E+05 _

2.31E+05

4.10E+05

6.41E+05

9.23E+05

1.26E+06

[1.64E+06

18

6.49E+04
1.15E+O5'

2.59E+05

,4.61E+05

7.21E+05

1.04.E+06

1.41E+06

1.85E+06

Mach 2

1.5 2.21E+03

2 3.92E+03

3 8.82E+03

4 1.57E+04

5 2.45E+04'

6 3.53E+04

7 4.80E+04
£ 6, 2RE+04

i

 ach I
1.5 I

.41

5

6

7

8

2

6.66E+02
I

1.18E+03
I

2.66E+03
14..74E+03
i

7.40E+03

1.07E+04.

1.45E+04

l1.89E+04

Table B.5

4

4.41E+03

7.84E+03

1.76E+04

3.14E+04

0

6.62E+03

1.l 8E+04

i2.65E+04

4.71E+04

4.90E+04 7.35E+04

7.06E+04

9.61E+04.

,1.26E+05

1.06E+05

1.44E+05

1.88E+05

8.82E+03 1.10E+04

1.57E+04 ! .96E+04

3.53E+04 4.41E+04

6.28E+O4 7.84E+04

9.80E+04 1.23E+05

1.41E+05 1.76E+05

1.92E+05 2.4.0E+05

2.5 IE+05 3.14E+05

Lift (in pounds) at 75,000 ft

es)
12 14

1.32E+04 1.54E+04

2.35E+04 2.75E+04

5.29E+04 !6.18E+04

9.41E+04 1.10E+05
1.47E+05 1.72E+05

2.12E+05 2.47E+05

2.88E+05 3.36E+05
4.39E+O53.77E+05

Table B.6

4 6

1.33E+03 2.00E+03

2.37E+03 3.55E+03
5.33E+03 :7.99E+03
_.4.7E+03 1.42E+O4'

1.48E+04 2.22E+04

2.13E+04 3.20E+04

2.90E+04 4.35E+04

3.79E+04 5.68E+04

Lift (in pounds) at 100,000 ft

Angle of attack (degr
8 t0

2.66E+03 3.33E+03

4.74E+03 5.92E+03

1.07E+04 1.33E+04.

1.89E+04 2.37E+04i

2.96E+O4 3.70E+04

4.26E+04 5.33E+04

5.80E+04 7.25E+04

7.58E+04 9.47E+04

es)
12 14

4.00E+03 4.66E+03

7.10E+03 8.29E+03

1.60E+04. 1.86E+04

L84E+04 3.3 IE+04

4.44E+04 5.18E+04

6.39E+04,7.46E+04

8.70E+04 1.02E+05

1.14E+05 1.33E+O5

16

1.76E+04

3.14E+04

7.06E+04

1.26E+05

1.96E+05

2.82E+05

3.84E+05

5.02E+05 !

16

5.33E+03

.47E+03

2. _E-_4.

3.79E+04

5.92E+04

8.52E+04

1.16E+05

11.52E+05

18
1.99E+04

3.53E+04.

7.94E+04

1.41E+05

2.21E+05

3.18E+05

4.32E+05

5.65E+05

18

5.99E+03

1.07E+04.

2.40E+04

¢.26E+04

6.66E+04

9.59E+04
.31E+05

1.70E+05
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,Mach

[.5
2

4

5

6
7

i

l. [ 2E-¢-05

i .40E+05 !

3,01E+05

5.16E+05

7.63E+05

I. [OE+O6

1.49E+06
1 t.)_1_÷06

Table B.7

4

1.14E+05 .15E÷O5

1.46E+05:1.48 E+05

3.03E+05 _.06E+05

5. t9E+05 5.24E+05

7.69E+05 7.77E*05

t.11E+06 1.12E+0¢)

1.50E+06 1.52E+o6

1.96E+0t_ 1 q8E+06

Drag (in pounds) at 50,000 ft

Angle of attack ide_r
8 t0

1 _i_E+o5 1.17E+05

1.50E+U5 1.52E+05

3.10E+05 3.15E+05

5.32E+0515 .-1.2E+05

7.89E-,-05 8.04E+05

i.13E+06 1.L6E+06

i .54E+u¢_ 1.57E+06

2.01E.u0 2.05E+0_

est
12

1.19E+O5

1.55 E+05

3.22E+05

5.53E+05 !

8.22E+O5

1.18E+O6

1.21E+O5

1.58E+O5

3.30E*O5

5.67E÷05

8.4.,rE+05

1.2 lE+00

1.05E+OO

2.16E+{}h

16 18

1.23E+05 .26E+()5

1.62E+05 .67E+05

3.3t-)E+05 3.49E+05

5.83E+O5 6.02E+05

8.69E+05 8.98E,05

1.25E+0_ 1.29E+06

t .70E+06 1.76E+0_

.... E+Oh 2.29E+06

I ,lach I 2

1.5 13.47E+04

2 [ 4.46E+04

3 [9.21E+04

4 [1.58E+05

5 12.34E+05
6 3.36E+05 !

I i
7 4.57E+05

I 8 15.97E+05

Table B.8

4 6

3.49E+04 3.51E+04

4.48E+04 4.52E+04

9.26E+04 9.36E+04

1.59E+05 1.61E+05

2.35E+05 2.38E+05

3.38E+05 3.42E+O5

4.60E+05 4.65E+05

6.01E+05 6.07E+05

Drag (in pounds) at 75,000 ft

Angle of
8

3.54E+04
4.58 E+04

9.49E+04

1.63E+05

2.4 l E+O5

3.47E+05

4.72E+05

6.17E+05

attack tdegrees)
I0 12

3.58E+04 3.64E+04
4.65E+04 4.74E+04.

9.65E+04 9.86E+04

1.66E+05 .69E+05

2 A.6E+.05 2.52E+05

3.54E+O5 3.62E+05

4.81E+O5 4.92E+05

6.28E+.05 6.43E+05

14

3.70E+04

4.85E+O4

1.01E+05

1.74E+05

2,58E+05

3.72E+05

5.05E+05

i6.60E+05

16

3.77E+04

4.97E+04

1.04E+05

1.79E+05

2.66E+05

3.83E+05

5.21E+05
6.80E+05

18

3.84E+04

5.11E+O4,
1.07E+05

1.84E+05

2.75E+05

3.95E+05

5.38E+05
7.02E+05

Mach 11.5

2

3

4

5

6

7

8

2

1.05E+04
I

1.34E+04
] 2.78E+04

4.77E+04
7.05E+04

.01E+05

1.38E+05

1.80E+05

Table B.9

4 6

1.05E+04 .06E+04

.35E+04 .36E+04

2.80E+04 2.82E+04

4.80E+04 4.85E+04
7,10E+04 7.18E+04'

1.02E+05 1.03E+05

1.39E+O5 1.40E+O5

1,8 IE+05 1.83E+05

Drag (in pounds) at 100,000 ft

An$1e of attack/desn
8 10

1.07E+04 1.08E+04

1.38E+04 1.40E+04

2.86E+O4 2.9 IE+04

4.92E+04 5.00E+04

7.29E+04 7.43E+04

1.05E+05 1.07E+05

.43E+05 1.45E+05

.86E+05 1.90E+05

.s)
12 14

1.10E+O4 1.12E+04

1.43E+04 1.46E+04

2.98E+04 3.05E+04

5. I 1E+O4 5.24E+O4

7,60E+04 7,80E+04

.09E+05 1.12E+05

1.49E+05 1.53E+05

_1.94E+05 1.99E+05

16

14E+04

1.50E+04
3.13E+04

5.39E+04

8.03E+04

1.16E+05

.57E+05

2.05E+05

18

1.16E+041

1.54E+04

3.23E+04

5.56E+04

8.29E+04

1.19E+05

1.62E+05

2.12E+05
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B.4 AFT NOZZLE COVER

/,

, ¢

f' ,'

¢ ,

/'

I

/\
/ ,1

' \

" ,\

', \

! I

I I

I I

I /

\ I I

% 1 I

_, I !

%1 I

\11

I

I1'_

I I \

I I %

I i %

I I

I \

I

\ I



Appendix B - Mission Analysis

B.5 MISSION TIME LINE
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B.5 .I Trajectory Program Data

The following programs were written on MATLAB software. The first program calculates
the function arguments in Table 3.4 that are used to find the sine and cosine integrals. Once
the values of the sine and cosine integrals are calculated using MAPLE V, the second

._ .... ??program evaluates (Eqs 3.26-56). except t Eqs 3._8-,9. ? _2-, _. 3.36-37)

Program I

fi=21033297:
hi=130397:
edot=.075;
rs=21147847:

gs=31.45;
pf=.1619,
cs=10175.2;
n= 1.05784;
nu=( 70+((cs* edot)/(n*gs) ) )/57.3;

s=-((cs*edot)/(n*gs))/57.3;
C=(CSA2)/(n*gs);
X=(c/cs)*(sqrt(gs/rs));
onems+X

two=(s+X)*pf
three=s-X

four=-(s-X)*pf

Program 2

cione=-3.02384;
sione=-.0272989;
citwo=-4.84894;
sitwo=-.0043999;
cithree=. 174305;
sithree=-.748066;
cifour=-- 1.50454;
sifour=--. 125091 ;

E=(citwo-cione)+(cifour-cithree);
F=(sitwo-sione)+(sifour-sithree);
G=(citwo-cione)-(cifour-cithree);
H=(sitwo-sione)-(sifour-sithree);
A=.5*(E*cos(nu) - F*sin(nu));
B=.5*(G*sin(nu) + H*cos(nu));
C=.5*(E*sin(nu) + F*cos(nu));
D=.5*(-G*cos(nu) + H*sin(nu));
imz=A*sin(X*pf) - B*cos(X*pf);

rz=A*cos(X*pf) + B*sin(X*pf);
imw---C*sin(X*pf) - D*cos(X*pf);
rw---C*cos(X*pf) +D*sin(X*pf);
y=(c/X)* ((imz+(yi/cs)* sin(X* ( 1-pf)))) +(ri*cos(X* ( 1-pf)));
x=(c/X)*(imw+(xi/cs)*sin(X*(l-Pf)));
ydot=-cs*(rz+((ri*X)/c)*sin(X*(l-pf))) + yi*cos(X*( l-pf));
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Appendix B - Mission Analysis

xdot=-cs*(rw) + xi*cos(X*(l-pf));

hf=(sqrt(xA2 +y^2))-ri+hi

v f=sqrt(xdot^2+ydot^2)
bet=(x*xdot +y*ydot)/sqrt_'(x^2+y^2)* (xd°t^2+Y d°t^2))
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Appendix C - Propulsion

C.1 ENGINE SPECIFICATIONS

Engine

Orbus 7s

Orbus 21

Castor XX

Table C.I

Weieht (Ib)

7820

_,.,,()0

?,g.0()()
310

Engine Comparison Data

Isp (sec)

285
294

295

444RLIOA-3-3A

RL I0A-4 370 .j,.,tc)

J-2 3350 .t25

Fuel

Solid

Solid

Solid

CQ'og, enic

CQ'o_enic
Cryogenic

Max Thrust (lb)

• .g._4.. O0

44.700
107.880

16.500

20£00
230.000

C.2 LR91-AJ-11 ENGINE DIAGRAMS

Figure C.I Full View: LR91-AJ-II
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i. Turbopump Assembly

2. Oxidizer Discharge __"e

3. Thrust Chamber Valves

4. Fuel Discharge Line

Figure C.2

1 2

• i, i

Figure C3

LR91-AJ-I 1 Propellant Lines

./

4

°.o /

(Q3 _._

\ /

5
I. Four Pin Electrical Connector

2. Conduit

3. Conduit

w. rcPsv(oR)(Ref)
5. Start Cartridge (ReF)

LR91-AJ-I 1 Engine Electrical Control
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C.3 STAGING CALCULATIONS

Table C.2 Spreadsheet Program

Stage 3
Payload & Interface [7900 lib

Engine 360 Ib
Inert 2300 Ib

Propellant 8460 Ib

Unused Fuel(2.5%) 21 2 Ib

Final Weight _0772 Ib
Initial Weight i 9232 Ib

Stage 2

Isp 449
E 0.239
Tb 190.1

R 1.79
AV ideal 8374

S g*Tb
5283 ft/s

s Angle
86 °

Loss
ft/s -347 ft/s

Payload 19232 Ib
Engine 2600 Ib
Inert 5850 Ib

Propellant 160000 Ib
Unused Fuel (2.5%) 4000 Ib

Final Weight 31 682 Ib
Initial Weight 191682 Ib

Stage 1

Isp
E
Tb

R

316 s g*Tb
0.050 7695 ft/s
239.2 s Angle

86 °

6.1 8 Loss
ft/sAV ideal 18514 ft/s -460

Payload 191 682 Ib
Engines 18372 Ib
Inert 10500 Ib

Propellant 242226 Ib
Unused Fuel (2.5%) 651 Ib
Final Weight 220780 Ib

Initial Weight 1473353 l Ib

Velocity Reqiurements

Velocity for GTO 7934 ft/s

Velocity for LEO 24934
ft/s

Final Velocity 32868
ft/s

Isp
E

Tb

R
AV ideal

Velocity

295 s g*Tb
0.109 2510 ft/s
78 s Angle

76 °

2.14 Loss

7239 ft/s -607 ft/s

Losses & Gains

Drag -261 ft/s
Earth 1342 ft/s
rotation
Air 733 ft/s
launch
Gravity 1740 ft/s

Velocity
Achieved
V GTO

V LEO

V Total

8026 Ift/s

26500 Ift/s

37681 Iftls
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Appendix D - Payloads

D.1 SPACE STATION FREEDOM RESUPPLY MODULES

courtesy of Reference 94
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Appendix E - Mission Control

E.1 DATA RATE DETERMINATION

Data rate is defined as the quantity of data being relayed from the space craft to the

ground. A high data rate indicates a large quantity of data transmitted with high
accuracy. The major characteristics involved in calculating the required data rate are the
number of bits per sample and the sampling period. Generally the greater the number of
bits per sample the more accurately the word represents the data measurement. (See Table
E.1)

Table E.I Required Bits per Sample
Number of Bits Maximum Quantization

per Sample

4

5

6
7

8

9

10

11

12

Error (%)

6.25

3.13

1.56
0.79

0.39

0.20

0.10

0.05

0.02

0.01

The sample rate for the telemetry data varies with measurement types. Parameters
which change slowly need to be sampled at lower frequencies (once every 10 seconds)
while critical or rapidly changing parameters need to be sampled at higher frequencies

(10+ times per second). Table E.2 lists some typical sample frequencies. For telemetry,
the sampling rate is calculated with:

FS

rl =

T s =

sample rate (samples/seconds)
number of measurements (samples)

sampling period (seconds)

After determining these two factors, the data rate is determined by:

R = Bits × fs

where R is the data rate.

(Eq E.1)
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Table E.2 Typical Sampling Frequency Required to Transmit Analog Information

Over Digital Communication Links

Analo_ Information Frequency (Hz)

Voice (PCM*) 3600

Voice (Delta PCM**) 3600

Color Television

(Commercial Quality)
Color Television

(Broadcast Quality)

Low Rate Telemetric
High Rate Telemetry

4.0 M

4.2 M

Frequency (samples/sec)

8000

8000

8.8M

9.25M

10 samples / l sec

1000 samples/. 1 sec

* digitized, or Pulse Code Modulatcd

** technique of reducing the bit rate of digitized voice by transmitting only the changes

in amplitude between consecutive samples

For maximum accuracy and maximum quantity of data transmitted, the highest number of

bits per sample and the high rate telemetry sampling rate were chosen.

With: Bits =

fs =

12 (bits per sample)
1000 (samples per second)

The calculated data rate per transmitter is 12 kbps (kilobits per second). The Gryphon
will carry one transmitter and one transponder (transmitter-receiver) for a system data

rate of 24 kbps.

t_ommunications Link Characteristics Calculations

Two important parameters in designing a communications subsystem are the power
consumed and the mass. The link design process allows rough estimates for power and
mass to be determined. The equation for determining the power needed by the
transmitter is:

p = E---Eb- L 1 -G t - L s - L a -G r -228.6 + 10 loglo (T)+ 10 loglo(Ro) (Eq E.2)
No

where: p

Eb

No
LI =
Gt =

Ls =
ta =
Gr =
T =

1% =

transmitter power (dBW)

signal-to-noise ratio (dB)

line loss (dB)
transmitting antenna gain (dB)

space loss (dB)
attenuation loss (dB)
receiving antenna gain (dB)

system noise temperature (K)
data rate (bps) = 24 kbps
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The relation:

A = 101ogl0(A)

converts a quantity into decibels (dB).

Signal-to-N0ise Ratio

Signal-to-noise ratio (SNR) can be predetermined by specifying the desired Bit Error
Rate (BER). BER is the probability of receiving erroneous bits in the signal. For highly

accurate data a BER of 10 m (1 error per million bits ) is an acceptable estimation. The
higher the SNR the better the quantity of the received signal. From curves of various
modulation techniques plus the fact that an additional 1 to 3 dB must be added to the final
SNR value for error correction, a value for SNR can be estimated. For better signal

quality choose:

SNR - Eb - 14 (Eq E.4)
No

Line loss accounts for the transmitter to antenna reduction in power. The value is usually
between -1 and -3 dB when estimated conservatively:

L 1 =-3dB

Transmittine Antenna Gain

The transmitting antenna gain can be calculated from:

11;2 D 2 rl (Eq E.5)
G- k2

where: G

D =

q =

=

antenna gain (dB)

aperture diameter (cm)

antenna efficiency (.55 - .70)

signal wavelength (cm)

The aperture diameter is determined by first choosing the antenna type. An omni-
directional antenna was chosen to spare the weight of the attitude control system

necessary for a directional antenna and for flight planning flexibility. For the omen-
directional antenna types, two options were available: (1) biconical horn and (2) quad-
helix. The biconical horn (one horn each for S and C bands) assembly was investigated.

The aperture diameter was determined from:
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225k
D = _ (Eq E.6)

0brt

where: k

Ob

u

band wavelength
11.5 cm for S band (2.6 GHz)
0.6 cm for C band (5 GHz)

beam width (angle within which the signal is concentrated)

and:
0 R

tan - (Eq E.7)
2 h

Re = earth radius =
h = operating altitude =

4144 miles

23000 miles (GTO orbit)

With these values the aperture diameters:

DS-band horn = 40 cm
DC-band horn = 2.1 cm

Assume a conservative antenna efficiency:

11=0.55

The antennae gains are:

GS-band = 65.6 dB
GC-band = 66.43 dB

Space Loss

Space loss represents the loss of power due to signal path length. It is estimated
from:

= c__f.___ (Eq E.8)
Ls 4glf

where: L S

c --

1 =
f =

space loss (dB)
speed of light (cm/s)
path length from receiver to transmitter (cm)
frequency of transmitted signal (Hz)

path length, 1, was determined to be:

1

l=[x2 +h2] -_
(Eq E.9)

where: x =
h =

operating radius
operating altitude

1500 miles

23000 miles (GTO orbit)
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The space loss was determined to be:

Ls, S-band = 2.47 x 10 -10 -- 0

Ls, C-band = 1.29 X 10 -10 = 0

Att¢nuation Loss

The antenna loss is mainly due to rain attenuation. This value was approximated with the
Crane Model which determines antenna loss given a certain signal frequency. It predicts
no antenna loss:

La=O

for both S-band and C-band frequencies.

Receiving Antenna Gain

The receiving antenna gain will be identical to the transmitting antenna gain.

System Noise Temt_erature

The system noise contributes to overall degradation of the signal.
noise, line noise, and receiver noise.

various downlink frequencies:

It embodies antenna

From tables of typical noise temperatures for

T = 552 K

Power

From the above factors the input power needed for each transmitter is:

P-- 275 W

Thus a total system power requirement of:

Ptotal = 550 W

System Mass Estimate

The system mass was estimated at:

System Mass = 50 kg

for each transmitter. Thus a total system mass of:

Total System Mass = 220 LB
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Appendix F - Chapter 7

Appendix F. 1 Main Booster Element Forces
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Appendi× F - Structures

F2 MOMENT AND SHEAR DIAGRAM CALCULATIONS

To analyze this structure shear and moment diagrams were needed. To create these
diagrams, it was necessary to compute all of the external loading on the Gryphon. The
body of the Gryphon was split into three separate 'effective' masses. This was done to
allow a separate calculation of mass at each of the three stages, and to obtain a more
accurate distributed loading for the lateral and longitudinal calculations. The model of

this system is shown in Figure F.1. To calculate the values for shear and moment, the
five different points shown in Figure F.I were used. These points correspond to the
center of mass, the total center of mass and the center of pressure for stages the 1 2 and 3

Figure F.I Diagram of model used to do analysis on Gryphon.

The effective center of pressure (Cp) was calculated by mission analysis and
found to be at 31 feet from the bottom of the first stage nozzle. From the mission

analysis trajectory, a lateral load of twice the amount of Earth's gravity (2g's) was used.
In this analysis, the 'worst' case loading scenarios of lift (L), drag (D) and nozzle gimbal

angle (_) were used. Lateral and Longitudinal loading values are given in Table F.1 and

the total loading for this model is given in Table F.2. These are the numbers used in

calculating the moment and shear.

Table F.I Lateral

Lateral

Lonsitudinal

mass (Ibm)

mt = 8217

m] = 5348
m3 = 801

ml = 8217

m2 = 5348

m3 = 801

and Lont_itudinal loadin_ values for Gryphon
Force (lbf)

accel. (_-)

a = 2(32.2) F = 529200

a = 2(32.2) F = 344380

a= 2(32.2) F= 51584
a = 32.2 F = 264600

a = 32.2 F = 172190

a=32.2 F= 25792
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Table F2 Total ioadin_ values for Gryphon
Totals: F1 = 926100 lbf

F2 = 602665 lbf

F3 = 902721bf

D = 165000 lbf

L = 128001bf

Based on information given by mission analysis, the maximum aerodynamic loading was
used.

Having calculated all of the loading on the Gryphon it was possible to calculate
the shear and moment at any point along the structure. Using various angle of attacks and

nozzle gimbal angles it was found through trial and error that an o_ of 0 and a [3 of 10
made the moment maximum. This maximum moment acts (as it should in theory) at the
center of mass of the entire structure. The shear and moment diagrams are givenin

Figure F.2 and F.3. It is seen that the maximum moment is located at the center of mass
of the Gryphon and its value is -14.6x106 lbf-ft. The moment diagram was used to
calculate the maximum stress at each stage and interstage. Some stages could be
designed to take a lesser load, and therefore, save weight, because the highest moment on
that stage was less than the maximum moment at the center of mass.

,,e,,-
¢._

t"

O3

1000000 -

500000

-500000

-1000000

-1500000 ---

O

Distance (feet)

Figure F.2 Shear diagram of Gryphon

This preliminary model gave us the shears and moments along the body of the
Gryphon. This lead to current configurations and design for the finite element model
done on IDEAS.
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5000000
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Figure F.3 Moment diagram of Gryphon
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Appendix F.4 Main Booster Free Vibration Modes
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Appendix F.5 Composite FORTRAN Program





C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

...... THIS PROGRAM COMPUTES THE A,B,D MATRICES .....

...... FOR A LAMINATE WITH ORTHOTROPIC LAMINAE .....

........ OF UP TO i0 MATERIAL PROPERTY TABLES .....

THE DATA FILE MUST CONTAIN:

i. Code specifying type of material data:

l=Use Engineering Props -

EII,E22,NUI2,NU21,GI2

2=Use Q-Matrix

QII,QI2,Q22,Q33

*note that data for each must be present

2. The total number of plies (n)

3. The total number of material properties (m)

4. The engineering properties for each mater (5)

5. The Q matrix for each material

6. A table of plies listing information f/top

to bottom of laminate:

a. Material Number

b. Height to upper/lower surface (down=*)

c. Ply orientation

C ..... Init and Read File ....

1

2

3

dimension q(6,6), qbar(6,6), a(6,6), b(6,6), d(6,6)

dimension angle(100),height(100),mat(100),gl2(10)

dimension ell(10),e22(10),qll(10),q12(10),q22(10),q33(10)

real nu21(10),nul2(10)

double precision qbar,q,a,b,d,height,

angle,theta,c4,s4,slc3,s2c2,s3cl,

qll,q12,q22,q33,qtll,qt12,qt22,qt33,pi,

exx,ell,e22,g12

open(5,file='composite.dat')

open(6,file='composite.out')

read(5,*) icode, n, m,
1 (ell(i) ,e22(i),nu12(i),nu21(i), gl2(i),i=l,m) ,

2 (qll(j) ,q12(j),q22(j),q33(J),J=l,m),

3 (mat (k) ,height (k) ,angle (k) ,k=0, n)

C

C

C

1

..... Compute matrix properties .....

do I0 k=l,n

..... Compute Q matrix from Material Values if needed ....

if (icode .eq. i) then

q(l,l)= ell (mat(k-1))/(l-nul2(mat(k-1))*nu21(mat(k-1)))

q(l,2)= nu12(mat(k-1))*e22(mat(k-1))/(l-nu12(mat(k-1))

*nu21 (mat (k-l)) )

q(2,2)= e22(mat(k-1))/(l-nu12(mat(k-1))*nu21(mat(k-1)))

q(3,3)= g12 (mat (k-l))

endi f

..... Assign Material Values to Q matrix if q entered ....

if (icode .eq. 2) then

q(l,l)=qll(mat(k-l))



q(l,2)=ql2(mat(k-1))
q(2,2) =q22 (mat (k-l))
q(3,3 ) =q33 (mat (k-l))

endi f

..... Compute values for qbar matrix .....

pi=3.14159
theta=angle(k-l)*pi/180
c4=cos(theta)**4
s4=sin(theta)**4
slc3=sin(theta)*cos(theta)**3
s2c2=sin(theta)**2*cos(theta)**2
s3cl=sin(theta)**3*cos(theta)

qtll:q(l,l
qtl2=q(l,2
qt22=q(2,2
qt33:q(3,3

qbar(l,l)= qtll*c4 + 2*(qt12+2*qt33)*s2c2 + qt22*s4
qbar(l,2)=(qtll+qt22-4*qt33)*s2c2 + qtl2*(s4+c4)

qbar(l,3)=(qtll-qt12-2*qt33)*slc3+(qt12-qt22+2*qt33)*s3cl

qbar(2,1)=qbar(l,2)

qbar(2,2)= qtll*s4 + 2*(qt12+2*qt33)*s2c2 + qt22"c4

qbar(2,3)=(qtll-qt12-2*qt33)*s3cl+(qt12-qt22+2*qt33)*slc3

qbar(3,1)=qbar(l,3)

qbar(3,2)=qbar(2,3)

qbar(3,3)=(qtll+qt22-2*qt12-2*qt33)*s2c2 + qt33*(s4+c4)

30

20

i0

.... Compute A,B,and D matrices ....

do 20 i=i,3

do 30 j=l,3

a(i,j)=a(i, j)

b(i,j)=b(i,j)

d(i, j ):d(i, j)

+ qbar(i,j)*(height(k)-height(k-l))

+(qbar(i,j)*(height(k)**2-height(k-l)**2))/2

+(qbar(i,j)*(height(k)**3-height(k-l)**3))/3

continue

continue

continue

C

90

89

.... Adjust nil values of variables ....

do 89 i=i,3

do 90 j=l,3

if(abs(a(i,j)) .It.

a(i,j)=0

endif

if(abs(b(i,j)) .it.

b(i,j)=0

endif

if(abs(d(i,j)) .lt.

d(i,j)=0

endif

continue

continue

.00001) then

.00001) then

.00001) then



C .... Process output .....

6O

write(6,*)' The A-Matrix is:'
do 60 i=i,3

write(6,100) a(i,l),a(i,2),a(i,3)
continue

70

write(6,*)
write(6,*)' The B-Matrix is:'
do 70 i=i,3

write(6,100) b(i,l),b(i,2) b(i,3)
continue

80

write(6,*)

write(6,*)' The D-Matrix is:

do 80 i=i,3

write(6,100) d(i,l),d(i,2) d(i,3)

continue

i00 format(5x, e10.4,2x,e10.4,2x, e10.4)

C

ii0

999

.... Compute equivalent Ex ....

exx=(a(l,l)-a(l,2)**2/a(2,2))/(height(n)-height(0))

write (6, *)

write (6, *)

write (6, ii0) exx

format(' The equivalent Ex for this layup is: ',el0.4)

end





Appendix F.6 Buckling FORTRAN Program



C

C

C

C

C

C

c

C

C

C

C

C

C

C

C

THIS PROGRAM COMPUTES A BUCKLING LOAD OF A COMPOSITE TUBE WITH THE

FOLLOWING ASSUMPTIONS (FORCE/CIRCUMFERENCE):

i. MATRIX VALUES ENTERED FROM IDEAS

2. LOCAL BUCKLING FACTOR

3. EULER BUCKLING FACTOR

THE FOLLOWING ARE ENTERED FROM THE DATA FILE:

i. MATRIX A (11,12,22,66)

2. MATRIX D (11,12,22)

3. INNER DIAMETER OF INTEREST

4. OUTER DIAMETER OF INTEREST

5. MAX LENGTH OF INTEREST

6. #OF LENGTH DIVISIONS OF INTEREST

THE PROGRAM WILL RUN EACH COMPOSITE FOR LENGTHS IN STEPS

OF THE MAX LENGTH DIVIDED BY EACH DIVISION

C

C

1

1

301

302

103

1

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 LEN, MAX

OPEN(5, FILE='buckle.dat')

OPEN(6, FILE='buckle.out')

READ VALUES

READ(5,*,END=999) AII,AI2,A22,A66,DII,DI2,D22,

DIAI,DIAO,MAX,IDIV

WRITE(6,301) DIAI

WRITE(6,302) DIAO

FORMAT('MATERIAL INNER DIAMETER:',F9.2)

FORMAT('MATERIAL OUTER DIAMETER:',F9.2)

WRITE(6,*)

START LOOP AT DIFF LENGTHS

WRITE(6,103)

FORMAT(5X,'LENGTH USED',I0X,'EULER PCR',4X,'LOCAL PCR (P/CIRC)',

4X,'SIGMA CR')

WRITE(6,*)

DO 70 J=I,IDIV

LEN=MAX/J

R=DIAI/2

CALCULATION OF EULER BUCKLING LOAD

PI=3.14159

RMOFI = PI/64*(DIAO**4-DIAI**4)

EX = (AII-AI2**2/A22)/((DIAO-DIAI)/2)

PCRE=PI**2*EX*RMOFI/LEN**2

CALCULATION OF LOCAL BUCKLING LOAD

pcr=99999999.

PULCR=9999999.



DO 20 N=I,10

DO 30 M=I,100

BETA=N*LEN/PI/R/M

PHI=I./29.8*DSQRT(R/DSQRT(dlI*d22/alI/a22))

GAMMA=I.0-.901*(I-DEXP(-phi))

TERMI=M**2*(I.0+2*dI2/dlI*BETA**2+d22/dlI*BETA**4)

TERM2=GAMMA**2*LEN**4/PI**4/M**2/dlI/R**2

STUFF=(AII*A22-AI2**2)/A66 - 2"A12

TERM3=(AII*A22-AI2**2)/(AII+STUFF*BETA**2 + A22*BETA**4)

P=PI**2*dlI/LEN**2*(TERMI

if (p .it. pcr) then

pcr=p
mcr=m

endif

+ TERM2*TERM3 )

3O CONTINUE

IF (PCR .LT. PULCR)

NCR=N

PULCR=PCR

MULCR=MCR

ENDIF

THEN

pcr=9999999.

20 CONTINUE

SCR = PULCR*2/(DIAO-DIAI)

102

70

WRITE (6,102) LEN, PCRE,PULCR, SCR

FORMAT(4X,FI0.2,5X,FI5.2,6X,FI0.2,9X, FI0.2)

CONTINUE

WRITE(6,*)

WRITE(6,*)

WRITE(6,*)

GOTO 1

999 STOP

END
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Appendix G - Power/Thermal/Attitude Control

G.1 APPENDIX FOR ATTITUDE CONTROL AND POWER

SYSTEMS

This appendix presents the detailed calculations involved in the design of the attitude
control and power systems. (See next pages).

G.2 ATTITUDE CONTROL SYSTEM

The following section details the method used to analyze the pitch-up maneuver for the
booster's free fall. Section G.2.2 explains the calculations involved in sizing the

Hydrazine thrusters.

G.2.1 Analysis of Booster Pitch-up Aerodynamics During Free Fall

The analysis of the pitch-up maneuver involved the study of the forces and moments
imparted to the booster during the duration of its free fall. The instantaneous forces and
moments on the booster are a function of the booster's velocity and its angular

orientation. To complicate matters, these forces and moments affect the velocity and
orientation of the booster in the subsequent time period.

Because of the time-varying nature of this problem, the total duration of the free
fall was first divided into small 0.25 second intervals. The assumption was then made
that the forces and moments on the booster are constant during these intervals. Thus,
once the forces and moments were determined for a particular interval, the linear and

angular accelerations of the booster could be found for this interval using Newton's
Second Law:

Fx (Eq G.1)
a x _

m

_ Fy
ay - -- (Eq G.2)

m

_ My (Eq G.3)
I_y -- ly-'--_

In the above equation, ax and ay denote the accelerations in the horizontal and vertical

directions, respectively, t_'y denotes the angular acceleration of the booster about the
pitch axis. Fx and Fy are the aerodynamic forces on the booster in the horizontal and
vertical directions, respectively. My is the moment applied to the booster along the pitch

axis. Finally, m is the mass of the booster, and lyy is the moment of inertia of the booster

about the pitch axis.
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Figure G.I: Forces and Moments on the Booster During Free Fall

In order to use to the above equations to find the boosters' accelerations, the

relations governing the aerodynamic forces and moments on the booster were derived.
The instantaneous velocity was first decomposed into components perpendicular and

parallel to the booster's X axis (see Figure G.1 above). The aerodynamic forces on the
booster were then calculated using these component velocities. For the force along the
booster's X axis, each of the three sections (the two Castor engines and the main section)

was modeled as a conical shell followed by a cylinder. This approximation facilitated the
calculation of drag force along the booster's X axis using standardized experimental data.
For this analysis, the coefficient of drag along the booster's X axis was assumed to be
constant at 0.0199. Thus, the drag force along the booster's X axis was computed as
follows:

(Eq G.4)

In the above equation, Fp is the force on the booster, in pounds, along the booster's X

axis, Cdp is the coefficient of drag along the booster's X axis (0.0199), p is the air density

at the drop altitude (5.87 X 10-4 slug/ft3), V o is the component of the booster's velocity
along the booster's X axis in ft/s, and So is the frontal surface area of the three cylinders

(534.09 ft2).

The booster was modeled as three cylinders placed side by side to facilitate the

computation of the force perpendicular to the booster's X axis. The drag force was
computed for each of the cylinders using standard curves giving drag versus Reynolds
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number for a cylinder. The drag forces on the two Castor engines were increased by 15%
to account for interference effects with the main body of the booster. The total drag in
this direction was then the sum of these three cylinder drag forces. Thus, the force

perpendicular to the X axis of the booster was found as follows:

In the above equation, Fc is the total force perpendicular to the booster's X axis in pounds,

Co, is the coefficient of drag perpendicular to the booster's X axis on the Castor engines,

Cd, is the coefficient of drag perpendicular to the booster's X axis on the main cylinder,

Vc-is the component of the booster's velocity perpendicular to the booster's X axis in ft/s,

Scl is the combined planform area of the Castor engines (495 ft2), and Sc,_ is the planform

area of the main cylinder ( 1281 ft2).

By finding the forces on the booster in this manner, it was inherently assumed that
the Gryphon's profile provides no aerodynamic lift force; all forces are derived from drag
terms. The moment applied to the booster was simply the perpendicular drag force
multiplied by the distance between the center of mass and the center of pressure (Ax):

My = F c × Ax (Eq G.6)

The forces in the x and y directions were then found from the forces parallel and

perpendicular to the booster's X axis as follows:

F_ = F c sin 0 + Fp cos0 (Eq G.7)

Fy = F c cos0- Fp sin0 (Eq G.8)

In the above equations, 0 is the booster's angle of inclination with respect to horizontal.

The moment given in equation G.6 and the forces given in equations G.7 and G.8
were then substituted into equations G.I through G.3 to find the corresponding
accelerations of the booster. By integrating these accelerations with respect to time, the

changes in position and orientation over the given interval were determined. From these
position and orientation changes, new positions, velocities, and orientations were found
for the beginning of the next interval. These values were then used to find new

aerodynamic forces on the booster, which in turn led to new accelerations, etc. The
process repeated through each of the intervals, until the end of the time period in
question. In this way, the position and orientation of the booster was calculated for each
0.25 second interval.

The above method was implemented in a spreadsheet. Tables G.1 and G.2 on the

following four pages are printouts of the runs used to find the behavior for the LEO and
GTO configurations. The spreadsheet is set up to calculate values from left to right and
from top to bottom, thus ensuring an orderly calculation of values, and eliminating any

potential data management problems.

The user may enter values for the booster's aerodynamic moment arm, moment of

inertia along the pitch axis, weight, drag coefficients in the direction perpendicular to the
X axis, initial angle of inclination, and initial velocity. Given these quantities, the

spreadsheet computes forces, moments, positions, velocities, accelerations, angular
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orientations, and distances from the airplane for each 0.25 second time interval of free

fall. In addition, given a particular first stage engine configuration, the moments and
forces generated by these engines may be added to the spreadsheet. Thus, the engine's

ability to regain control of the booster at the conclusion of the pitch-up maneuver may be
determined. Please refer to Section 8.2 in the text for a discussion of the results.

G.2.2 Hydrazine Thruster Sizing

For coast periods, forces caused by solar pressure, aerodynamic effects and misaligned
thrust forces are negligible. Only gravity-gradient disturbances are included (Reference

124):

3m I . •
T = --_( _x - iv_ )aL,az,

(Eq G.9)

where T is the torque, azx and azv are equal direction cosines of angles between the
spacecraft axes with a maximum value of _+0.5, m is the mass of the booster, Ixx and lyy
are the booster's moments of inertia about the corresponding axes, and Ro 3 equals the

Earth's gravitational constant (3.986 X 104 m3/sec2). This disturbance torque equals 220
lb.

This must be countered by a restoring force created by the thrusters:

T = F x L (Eq G.10)

Where T is the torque, F is the thrust, and L equals the lever arm.

_2A
(F)(L)- I" _ (Eq G.11)

Ot2

In the above equation, I is the moment of inertia and 0 is the angle of the spacecraft.

However, the main design parameters stems from the first spin-up of the payload
and the reorientation before entering GTO. For spin:

lw_ lr_

T,oq = 2 (Eq G. 12)
0max

In the above equation, wt 2 is the desired spin rate, Ims is the moment of inertia about the

spin axis, and Omu is the maximum angle through which the acceleration can take place.

The thrusters provide 100 lb of thrust each. Therefore, the tip-off rate imparted to
the satellite can be determined. The first payload can be released at a wt 2 of 3.37 radians

per second. The next two payloads can be released with a higher wt 2 since the moment of
inertia decreases.
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[:¢el Requirement

n,pi n = Ira, _(L g l p) (Eq G.13)

In the above equation, Mspin is the fuel mass required for spin-up, _ is the spin rate, L is
the moment arm of the thruster, g is the accleration due to gravity, and Isp is the specific

impulse of the fuel. Using the spin rate and moments of inertia for each of the payloads,
the total propellant mass for the spinup/despin manuevers equals 63 lb. This amount of
fuel will allow for three spinups and two lull despins (down to zero rpm).

Attitude Control

M F, 4I 0 m=-- or M,_m=- _ (EqG.14)
P lsp g T L g lsp

In the above equations, Mp is the propellant mass, t is the time that the thruster is firing,

Matt man is the fuel mass required for a given attitude control maneuver, 0 m is the angle of

the maneuver, T is torque, F is thrust, Ic is the spacecraft's moment of inertia about the

maneuver axis, g is the acceleration due to gravity, and L is the moment arm of the
thruster.

The oxidizer weight is calculated from the propellant weight by using the mixing
ratio. Tables used to acquire the mixing ratios can be located in Sutton (115).

Since the thrusters should not continually fire, it is required that the error in

attitude must past through some angle 0d, referred to as the dead zone (radians). Within

this region, even if the Gryphon does not point at the correct angle, the thrusters will not
fire, nor will the main rocket nozzles gimbal. When the RCS is employed, it will
compensate for this delay by either firing a longer period of time, or gimballing through a

larger angle for a quicker response time. The value for 0d was chosen to be 3". In
addition, fuel is needed to accomodate three-axis attitude control. The thrusters require

aprroximately 5 lb of fuel for a one time use. Assuming that the impulse time of a
thruster may fluctuate from 3 to 5 seconds, and designing for unforeseen emergencies and

payload reorientation, the total fuel and oxidizer weight equals 450 lb.

G.3 POWER SYSTEM

Determining the power losses in the cabling had the following assumpings:

• 150 ft of 2 gage cable
• resistance of .008658 f_

• 5 amp current

Then:
P = I2R

= 0.216 W

Therefore, a maximum of 0.216 W would be lost in the cabling.

(Eq G.15)
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Appendix H - Aircraft Integration

H.1 FINITE ELEMENT MODEL - GRYPHON/ECLIPSE
INTERFACE

The finite element models for the Gryphon/Eclipse inteface requirements were run on

SDRC I-DEAS. Using the finite element code, a model was constructed consisting of

approximately 40 elements. Seven pin configurations were run, but only the one used is
presented here (See Figure H.1). As seen in the picture, the Gryphon was modeled as a
beam. This beam's properties were determined by conventional methods. For instance,
the area moment of inertia and modulus of elasticity were found, at first, by assumptions
then refined as a better model was constructed. Note, in the Figure H.1 there is a ninth

attachpoint. This attachpoint was disconnected and was not part of the final model run.
This ninth point was analyzed for dynamic stability purposes and was found not to be
needed. The solution to the final run is presented next (See Table H.I). As seen in the
table, the forces on the thirty-two nodes of the model are given. Note, the y-forces on
nodes 18 thru 21 and 29 thru 32 are the attachment forces. The loading per pin came out to

402 kips in the "worst case" factor of four load. This determined the pin and hook sizes by
conventional shearing calculations. Note also in the table that there are small 'x' and 'z'

forces present. These forces are errors in the source program and are not relevant because
they are essentially zero. Finally, the deformed geometry of the model was looked into
(see Figure H.2). The only importance the deformed geometry plot gave was the fact that
the load was actually present at the center of gravity. The maximum deflection of 0.78
inches is not relevenant due to the assumption of the point load opposed to a more realistic

displaced load.
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• Table H.I Loading Results of 8 Point Attachment Run

SDRC I-DEAS VI: FE_Modeling_&_Analysis

final_attachpoint_run

Group ID : No stored PERMANENT GROUP

Analysis Dataset : 2 - CASE 2,LOAD 1,REACTION FORCES

Report Type : Arrow Plot Units

Dataset Type : Reaction Forces Load Set

Frame of Reference: Global Data

Node Force-X Force-Y Force-Z

13 0

14 0

15 0

16 0

17 0

18 -2

19 -2

20 -2

21 7

22 0

25 0

26 0

27 0

28 0

29 -2

30 -2

31 -2

32 -2

000E+00 0

000E+00 0

000E+00 0

000E+00 0

000E+00 0

962E-13 4

187E-12 4

962E-13 4

745E-12 4

000E+00 0

.000E+00 0

.000E+00 0

000E+00 0

000E+00 0

962E-13 4

187E-12 4

962E-13 4

187E-12 4

000E+00 0

000E+00 0

000E+00 0

000E+00 0

000E+00 0

020E+05 2

020E+05 2

020E+05 -2

020E+05 1

000E+00 0

O00E+O0 0

O00E+O0 0

O00E+O0 0

000E+00 0

020E+05 -6.

020E÷05 -6.

020E+05 -3.

020E+05 -3.

000E+00

000E+00

000E+00

000E+00

000E+00

105E-14

105E-14

546E-12

032E-II

000E+00

000E+00

000E+00

000E+00

000E+00

716E-13

716E-13

238E-12

238E-12

Total 4.337E-19 3.216E+06 4.337E-19

21 18 21

Maximum 7.745E-12 4.020E+05 1.032E-II

19 13 31

Minimum -2.187E-12 0.000E+00 -3.238E-12

04-APR-93 17:18:45

: IN

:i

Component: Magnitude

Average 2.409E-20 1.786E+05 2.409E-20
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