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This report contains the development of a recursive, non-singular method for computing 
the first and second partials of the gravitation potential, with respect to position, using 
both unnomalfied and normalized harmonic coefficients. When unnormalized coeffi- 
cients are used, every attempt was been made to bufld a 'fast" algorithm. When normal- 
ized coefficients were used. the algorithm developed uses a more stable. albeit more 
complex, recursive algorithm for the derived Legendre functions. Even so. the normal- 
ized algorithm is still quite efficient. The normalized algorithm should be quite stable 
and portable for model sizes exceeding 180x180 in degree and order. Efficiency in com- 
putation was gained by precomputing everything that was not a function of the state and 
by using singly dimensioned arrays wherever possible as well as arrays of pointers to 
arrays. 

A complete derivation of the gravity gradient torque resulting from a full (nxn) gravity 
model is given since it uses the second partial of the potential developed earlier. 

A complete derivation of the geomagnetic field vector was included since the computa- 
tion of the magnetic field is so similar to that of the gravitational field. 

Ada code for all of the algorithms is included. 

Test cases compare the algorithms to each other and to previously published data. 
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This report is basically a rewrite of Ref 121. with some useful additions. First of all, by 
examining the derived Legendre functions that are used to compute the gravitational 
acceleration it is noted that some of them are not functions of the state and hence may 
be computed only once. This fact is used to speed up the computation of gravity and its 
partials. 

Secondly, a derivation using normallzed gravity coefficients and a superior recursion for- 
mula for the derived Legendre functions is presented. As the size of gravity models 
increases, an algorithm using normalized coefficients becomes more attractive since the 
unnormallzlng process requires the computation of terms on the order of 2n! Even for 
models of size 50x50 this would be a number so large ( - 10'~') that some computers 
might not be able to compute it. 

Algorithms are developed. using both normalized and unnormalized gravity coefficients. 
that compute the first and second derivatives of the potential function. This yields the 
gravitational acceleration, and the partial derivative of the gravitational acceleration with 
respect to the position vector. The partial derivative of the gravitational acceleration is 
needed in the computation of the state transition matrix for both estimation and optimi- 
zation. In addition. the partial derivative matrk can 6e applied to the problem of com- 
puting general gravity gradient torque. 

Next. a general gravity gradient torque derivation fs presented that uses the second par- 
tial of the potential developed in the previous section. 

Since the geomagnetic field is defined in terms of Legendre functions, a derivation of the 
geomagnetic field is included which is very similar in form to the gravity derivation. 

And finally. Ada code as tmplemented in the Ada Simulation Development System 
(ASDS). 191, is given for the various algorithms in addition to test cases that verify the 
validity of the derivations. 
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3.0 The Gravitational Potential Functfog 

The gravitational potential function is normally written 

where p is the gravitational constant, ae is the equatorial radius. r is the magnitude of 
the position vector. 8 = (x, ,  x2, x3) , and 

are the associated Legendre functions and Pn are the Legendre polynomials. Also. we 
have the sine of the latitude 

E = x3/r 

and the longitude is computed from 

For notational convention. we define a potentfal function U to be 

Ut -V 
and write eq(2- 1) as  

Given the equation for E above, P, , becomes 

where 

The are known as derived Legendre functions. 

Note that 
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Also define. 

The C,, and the S,, are the unnormalized cosine and slne gravity coefficients that 
result from the mass distribution of the planet. When these coefficients are published, 
they are published in normalized form. The relationship between the normalized and 
unnormalized form is given by 

where 

(n -  m)! ( 2 n +  1) (2-  ti,,) 
N ( n  m) = ( n +  m)! 

Where ti,, is 1.0 if m = 0. and is zero othenvise. 

The derivation will proceed using unnormalized notation because the derivation is some- 
what simpler. In a later section, a derivation using normalized coefficients will be devel- 
oped. The normalized form does not require the computation of tenns on the order of 
(n+m)! This may be desirable on some computers where very large or small numbers may 
cause a problem. For now, the potential can be written 

This form is especially useful since c. C,. and S, can be calculated recursively and 
the singularity at the pole (p = 0 )  can be avoided. 

The unnormallzed derived Legendre functions may be calculated recursively a number of 
different ways. In 111 and [2] the were computed from 
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In 131. seven recursion algorithms were compared numerically for stability. Unfortu- 
nately. eq(3- 13) was not among those studied. Of the seven algorithms studied, two 
were clearly superior. The simpler of these is 

P;: = ( (2n -  I ) E ~ - ,  - (n+m-  1)P;:-,)/(n- m), (m<n)  (3-14) 

Note that when m=O. eq(3-14) reduces to eq(3- 13) for m=O. Experiments similar to those 
carried out in [3] were conducted by the author using the normalized error between a 
single precision computation of the and a double precision computation of the 
using both eq(3- 13) and eq(3- 14). In wery case eq(3- 14) had lower error. The worst error 
in all cases occurred for E = 0.2. 

Although eq(3-14) is highly stable, it cannot generate the diagonal elements c. Realizing 
that c-, = 0. (all beyond the diagonal are zero). eq(3-13) can be used to compute 

c = (2n- 1)q:;  (3-15) 

Starting with either eq(3- 13) or eq(3- 14) it is rather easy to show that the inner diagonal 
terms, c- ' . can be computed from 

q - I  = &q 
Also, note that 

It is helpful during coding to note that Cmr C,/? and&,,= s&'" are also recurswe. since 
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- 
The gravitational acceleration vector. g. is calculated as the first partial derivative of U 
with respect to the planet-fixed vector. z. kom eq(3- 12). we have 

We note that 

ap ax Now. using the definitions of - and - given earlier. ax ax 

cosmh X' sin& -+ sind X' cosmh -+ ax -.m = w m - l c ~ m [ T [ ~ - T [ : ] ] + m P m - l s , m [ P [ j  +P[:]) 
x1 

where c o l u y  matrices are used in the interest of saving space. Since cosX = - 
and sink = - . and using the definition of Cm and S,. it is rather easy to show that P 

P 

Also* 

1. Note: For ~mtatlonal simplicity, Ex o E throughout. 
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and 

where 

~ ~ = ( 0 0 1 )  

Combining these partials and substituting into eq(4- 1). we get 
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we can write 

Note that the final result for the first partial derivative of the potential is a rather simple. 
compact. vector equation. 
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a 2u Next. we calculate - starting with eq(4-1). as it leads directly to a compact symmetric 
notation. a l f  

We have from eq(4- 11 

au - amr auk au as,, - - - + - - +  ax arax a& ax aB,,ax 

Thus, 

The second and cross partials appearing in eq(5- 1) are 
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where I is a 3x3 identity matrlx, and 

BRm-2 = C & m C m - 2  + S & m S m - ~  

An, m-2 Cn, mSrn-~-Sn, mCm-2 

We also note the special combinations 

and 

where 

and 

Putting all these into eq(5- 1) leads to 
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If we now define 

then with these defhitions 

we can write eq(5- 1) as 

12 NASA CR- 188243 January 1993 



Collecting like terms, we get 

Recalling that 

and defining 

F r L + e ( M e + 2 ( P + H ) )  + A  

G = - ( M & + P + H )  

Li=~a+r 
we have finally 

Note that the final result for the second partial derivative of the potential is a rather sim- 
ple. compact. symmetric matrix equation. 
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If the derived Legendre functions are arranged in a table such as Table 1 below. it is 
rather easy to see that to the rlght of the diagonal all terms are zero. Along the diagonal 
only pure numbers appear. and immediately to the left of the diagonal. the diagonal term 
appears multiplied by e .  This means that a number of the derived Legendre functions 
that are needed in the computation of gravity can be computed once only and stored. 
and do not need to be computed using the recursion relationships. 

This can save a great deal of time. If in addition, all coefficients in the recursion relation- 
ships are computed and stored as functions of n, another slight savfngs can be gained. It 
was found that these two taken together save about 15 - 20% of the time normaUy taken, 
depending on the size of the coefficient array used. 

In Ref 111 and 121. the gravity coefficients were placed in a single array in an attempt to 
avoid the time it takes to manage a two dimensional array on a computer. In the new 
code given in Appendix A, it was found that by having an array of pointers to arrays the 
code is more clear and just as fast. 

m=O 1 2 3 4 5 6 7 
------ 

n = O  e=1 < = o  I $ = O  etc. 

1 $ = E  e = l  * = o  $ = o  etc. 

Table 1. Table of Derived Legendre Functions 

In the code given in Appendfx A, the 'fast" gravity model takes advantage of all of the 
things mentioned in this section. The normalized model is also 'fast" in the same sense. 

Since no difference in the computation of the gravitational acceleration could be detected 
out through a 30x30 model using both eq(3- 13) or eq(3- 14) to generate the c, and since 
eq(3- 14) requires more multiplications and additions than eq(3-13). eq(3- 13) was used 
for the "fast" model. Since normalization makes more sense as model size, n, increases. 
it was decided to use eq(3- 14) in constructing the normalized algorithm. (Section 7). 
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Following (31 and [4]. d e h e  the normalized derived Legendre functions, 

c=~(n, m ) c  
where N(n,m) is given by eq(3- 11). Note that this definition means that 

Note also that if m = 0. 

and if m 2  1 

(n-  m)! ( 2 n +  1)  2 5 
N ( n m )  = ( ( n +  m)! 1 

The recursion relationships given earlier for the derived Legendre functions are repro- 
duced below for the sake of convenience 

c= c-,+ ( 2 n -  l)r:,',(rn> I ) ,  or 

c= ( ( 2 n - l ) ~ C - , -  ( n + m -  1 ) c - , ) / ( n - r n ) ,  ( m < n )  

= Pn = ( ( 2 n -  1 )  ePn-, - (n -  l)Pn-,)  / n  

= ( 2 n -  1 )  c: (7-5) 

c-' = EC 
l $ = 1  * = o  
I f = €  * = 1  

Either of the fonnulae for computing the may be used. The first is faster, and the sec- 
ond is more stable numerically. The Werence In the resulting algorithm is slight. as  
shall be seen. Taking the definition given in eq(7-1) and applying it to the first of eq(7-51 
@"- 

K'= N ( n m ) c =  ~ ( n , r n )  
N ( n -  2, rn) N ( n -  1, m- 1 )  
N ( n -  2, m) c-,+ ( 2 n -  1 )  N ( n ,  m) N ( n -  1, m- 1 )  

q':; (7-6) 

or. 
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(2n- 1 )  N(n,m) e-I- (n+ m- 1 )  N ( n ,  m) z= ~ ( n , m ) c = e  
( n -  m) N(n- 1, m) (n -  m) N(n- 2, m) E'-21m<n 

These define the recursion relationships for the c. at least symbolically. Computation- 
ally, these relationships can be simplified. Defining 

1 
(n -  m) ( n -  m- 1 )  (2n+ 1 )  5 

( ( n + m ) ( n + m - l ) ( 2 n - 3 )  1 
1 (7-9) 

(2n- l )N (n ,  m) 2 (2n+ 1 )  (2n- 1 )  
i ( n , m ) =  I = (  

N(n- 1, m- 1 )  ,,, (n+m) (n+ m- 1 )  (2-60,m-1) 

and 

1 

On-  1 )  N(n,m) (2n- 1 )  (2n+ 1 )  2 I = ( ( n -  m) (n+ m) 5 t n m ) E  (n -m)  N(n-1,m) ,,, 1 

1 
(7-10) 

(n+ m- 1 )  N(n, m) 
q (n ,m)=  

(n+ m- 1 )  (2n+ 1 )  ( n -  m- 1 )  5 
(n- m) Nin-2, m) I ,,, = ( (n+ m) ( n -  m) (2n-3)  1 

the recursion relationship for becomes either 

- 
Note that 5 ( n, m) and ii (n, m) or 6 ( n, m) and q (n, m) are constant functions of n and 
m and need be computed only once. There is no need to use both eq(7- 11) and eq(7- 12). 
either one will do. The code for the normalized model contained in Appendix A is based 
on eq(7-12). Another model was developed based on eq(7-11). but that code is not 
lncluded in Appendix A The test cases in Appendix B labeled 'norm_Iw came from the 
model using eq(7-11). and test casw labeled 'no?--IIw came from the model using eq(7- 
12). The only Merence in the code is the use of 5 (n, m) and 4 (n, m) in lieu of 5 (n, m) 
and q (n m) . and eq(7- 11) in lieu of e (7- 12). In either case. everything that follows will 

nX be exactly the same. Since roughly - more multiplications are required if eq(7-12) is 
2 

used, it was anticipated that the "nonn_Iw model would run faster than the 'norm-II" 
model. The difference in run time turned out to be less than the noise in the timer. This 
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means that 'norm-11" is the way to go, since it is based on a more stable recursion for- 
mula. 

Going back to eq(7-8) and defining 

the equations for the normalized derived Legendre polynomials become 

= ~ a ( n > z - ~ - ~ < n > z - ~  (7-14) 

Note that a (n )  and P (n )  need be computed only once and stored since they are only 
functions of n and are not functions of the state. 

Going back to eq(7-8) and defining the inner diagonal term. 6  (n )  , as 

The inner diagonal, c- ' can be computed as 

c-' = &8(n) (7-16) 

Note that 6  (n )  need be computed only once and stored since it is only a function of n 
and is a not function of the state. The use of 6 (n )  will speed up the computation since 
only a single multiply is required to build the inner diagonal term. 

Looktng now at eqs(3-29) given earlier for J,. K,. m. and H,, note that multiplies 
C,, S,, nteryurhere except in H,,. Therefore, c. C,, and S may be replaced 

+7 by e. C,, and S, ,  mxywhere except in H, where the terms c C,, and 

c* IS,, appear. Multiplying and dividing by N(n,m) and NIn.m+ 1) leads to 

note that 
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These last two may also be computed and stored and then used to compute H,. This will 
allow the computation of gravitational acceleratton without the necessity of unnormaliz- 
ing the gravity coefficients. This makes the algorithm more portable, since for large grav- 
ity models, some computers can't handle the large numbers involved in the 
unnorrnalizing process. 

An examlnation of L. M, N, R .  P, Q. R S, and Twill show that the only other tern needed 
In order to compute the second partials using normalized coefficients is in the term, M. 
and involves C, , and C"S, ,. Consequently. form 

As before, define 

r (n ,m) .  N ( n m )  
( n -  m) ( n -  m-  1 )  (2-6,,,) ( n +  m+ 1 )  ( n +  m + 2 )  

N ( n ,  m+ 2 )  
(7-21) 

( 2  -60, m + 2 )  

Note that 

Again, these may be computed and stored and used to compute M. This will allow the 
complete computation of the first and second partials of the potential using normalized 
coefficients. 

One comment, the sfmplScation in Table 1 that allowed the inner diagonal to be the 
diagonal multiplied by E is no longer valid. In the normallzed case, the inner diago- 

nal term is computed by multiplying 6  ( n) by E. 

All the normaUzed equations have been coded in ASDS I91 and verified agalnst previously 
published 121 test cases. and found to agree exactly. The code for the normalized gravity 
model using the recursion relation from 13) Is given in Appendix A and the test case data 
is given in Appendix B. 
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The gravity gradient torque on a spacecraft is derived twice here. The first derivation 
uses a point mass gravity model and assumes that 1 /IT+ 6 1  is approximated by the first 
term of the binomial expansion. 

The second derivation uses a full n x rn gravity model and assumes that gravity varies 
linearly about the csnter of mass, i.e.. that graaty in the vicinity of the center of mass is 
given by 3 = g +% . where both acg and 9 are computed using a general gravity 

Cg a: a? 
model subroutine such as the models discussed in previous sections. and given in 
Appendfx A This derivation shows that the eigenvectors in [7] are not needed. as was 
pointed out in [8]. 

It is then shown that the point mass derivation and the general derivation give identical 
results when the harmonic coefficients of the full gravity model are set to zero. 

It is shown in Appendix B that when only 52 (-Qd is used, the general formulation gives 
the same torque as that given by Roithrnayr's (51 model. 

It is anticipated that the use of the full potential model in the calculation of the gravity 
gradient torques will lead to more accurate attitude simulations. 

8.1 Point M a u  Gravity Model 
In Figure 1. the vector p' describes the position of a particle of mass, dm in the body ards 
system. 

Flgun 1 Position of a Particle of Mass in the BO& Axis System 

Assume the matrix, B, relates the body axis system to the system in which F and il are 
defined and 5 is computed. Then, 

T1 = T+Bp 

The gravitational force on dm is 
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rl # = -p-dm 
t: 

Rotating this force back into the body system yields 

= [P+ P 2 + 2 ~ ~ T F ] 3 / 2  (8.4) 

We note that the term B ~ T  appears in both the numerator and denominator of the 
expression for d j  and rewrite it as 

BTF = r ~ ~ ?  
where i is the unit vector along 7. 

Now define the unit vector 6 in the body axis system 

b= ~~t 
and write 

The moment about the center of mass due to d l  is 

df = ~ x & =  - p @ x  bdm 

(P + p2 + 2 r p b )  'I2 

If we factor out 3 and ignore p2 compared to one. we get 

df = - prp'x bdm 
3/2 

~ ( 1 + 2 P )  r  

Now, uslng the binomial theorem and again ignoring p2 terms, we get 

Integrating over mass, we get 

-- 
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but i p d m  = 0 since p is measured from the center of mass: hence 

where 

Fb = pxb, + ~ , 4  + ~ , 4  
and 

therefore. 

thus 

where we define the moments and products of inertia to be 

8.2 General Gravity Model 
The force of gravity at the particle, dm, is now assumed to be computed from 
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Refenlng back to Figure 1. we recall that B  rotates p' back into the system where 3 is 
computed, i.e.. that 

67 = Bp 

and therefore the force on the particle is gtven by 

Rotating this force back into the body system yields 

~ ~- - 
d l  = BT& = (BTgcg+ B*B~) dm a r 

The moment about the center of mass due to d j  is 

- 
di = p x  d j =  ( C ~  B*Bp)drn 

af 

Integrating aver mass, we get 

- 
i = ~ $ i  = ~pdrnx  B ~ G +  ~ F X  B * B F ~ ~  ar (8-23) 

The integral Ibdm = 0 since p' b measured from the center of mass. Hence. 

Next, define 

45 GrB -Bt a 7 
(8-25) 

then 

a t It must be pointed out that is computed in an equatorial or planet-fixed system and must be rotated into the 

body system. The simplest choice for B is b o d y - t q u a t d  if only spherical or zonals are considered, and body-to-earth- 
fixed if tesserals arv aonsidd.  
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The operation, [PX 1. may be considered a matrix, where 

then 

and finally 

931P&- 921P,PX+ ~ 3 2 ~ ; -  922PZPU+ 933PflZ - 

.x CF = 9,l PzPx- g3, P: + g l 2 ~ ~ ~ ~  - 9 3 2 ~ ~ ~  + g13P: - 
g21p: - gllPyPx+ g22pp,- g12p;+ g,pp.- [ 

Since the C matrix is always syrnmetrft121, we may write 

8.3 Formulation Wdation 
As a check on the general form gwen by eq[8-30). consider the gravity vector (assuming 
spherical planet) given by 

and consequently. 

Therefore, 

but we defined b to be equal to B ~ P .  Therefore, 

or. 
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Substituting the G elements from eq(8-35) into eq(8-30) gives 

which is identical to eq(8- 16). This lends confidence that the general expression is cor- 
rect and that the spherical case Is  contained in the more general expansion as a special 
case where all higher gravitational harmonics are zero. 

The formulae given here were coded in ASDS 191 and checked against a FORTRAN pro- 
gram containing Roithmayr's method for n=2, m=O (52 only). The data used and the 
results obtained are given in Appendix B. 

Further data was run for a 4x4 gi-avity model. Note that the gravity gradient does change 
as the model size increases. This result is expected to be especially important during 
control when longitude effects will vary much more quickly than those due to latitude. 

24 NASA CR- 188243 January 1993 



The magnetic field for the earth is also defined in terms of Legendre functions. It was 
felt that it would be useful to include a derivation for the magnetic field in this report. 
since so much of the gravity algorithm can be used. 

The potential function, V, for the magnetic field is given 1101. I 1  11 as 

n =  l m = 0  

where a is the mean radius of the earth, r is position magnitude, 0 is the geocentric 
colatitude, gr and hr are the spherical harmonic coefficients. and k is the longitude. 
The in eq(9-1) are not derived Legendre functions, rather they are Schmidt normal- 
ized associated Legendre functions of degree n and order m. defined by 

- 
2 (n- m)! 
(n+ m)! 

The cosine of the colatitude is the same as  the sine of the latitude, which was denoted by 
E in eq(3-3). Also. define 

- 
2 (n- m)! 

chm=[ (n+ m)! - 'om] 2gr 

- 
2 (n- rn)! 2 

s d [  (n+ m)! - a0 m] hr 

It is now possible to write eq(9-1) as 

This is not quite the form of the gravitational potential since the sum on n started at 2 in 
eq(3-5). Note also the appearance of a* in eq(94) in lieu of p in eq(3-5). 

Using the definitions in eq(3-6) and eq(3-9). and separating out the n = 1 term, eq(9-4) 
can be written 

Where now, the are derived Legendre functions. The double sum part of eq(9-5) is 
now identical in form to the double sum part of eq(3-12). the only difference being that 
a2 replaces p. Using the definitions of e and P: in eq(3- 13). the leading term of eq(9-5) 
can be written 

The magnetic potential function can now be expressed as 
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The magnetic field vector. 8,  is computed as 

The partials of the double sum part of V will look exactly as they did for gravity (assum- 
ing a2 replaces p). That being the c se. the definitions of r. H,. J,,. and K,, are the ;av same as given in eq(4-11). This allows - to be written ax 

Computing the partial of Vl results in 

The negative of this result can be found in [I21 as the field resulting from a magnetic 
dipole. Now. defining 

av The equation for - can be written ax 

Finally, then, the equation for the magnetic field vector, 8, becomes 
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Note that eq(9- 13) is the same as eq(4- 13) with -p replaced by a'. Assuming that equal 
degree and order were desired, a great deal of time could be saved by computing the 
gravitational acceleration and the magnetic field vector together, since they both would 
use the same state, the same derived Legendre functions. and all of the sums would be 
of exactly the same fonn. An examination of the code given In Appendix A for the 
fast-gravity-model and the fast-magnetic-model will show that they are almost entirely 
the same. The magnetic field vector resulting from IGRF 1985 data at a given position 
vector is given in Appendfx B. 
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Derivations of the first and second partials of the gravitational potential have been given 
in both normallzed and unnorrnalized form. ?Lvo different recursion relationships for the 
derived Legendre functions were considered. Code for both a "fast" unnomalized gravity 
model and a normalized gravity model using the best recursion relationship were given 
in Appendix A Speed comparisons made in 1131 indicate that the model in [21 ran at 
essentially the same speed as other gravity models in general use at JSC. The plots in 
Appendix B show that the 'fastw algorithm is always faster than the model in 121. in some 
cases by as  much as 20%. and consequently should be that much faster than other 
models in general use at JSC. The normalized models are faster than the model in 121 out 
through degree and order 27. Beyond that, the extra multiplications inherent in the nor- 
malized approach begin to outweigh the savlngs gained by precomputing all possible 
terms. Gravitational acceleration computed by the normalized and unnormallzed mod- 
els agreed through the 15th (out of 16) significant digit. out through degree and order 
50. for a variety of Initial states. For larger models, one would probably be safer using 
code based on the recursion relationship from 131. 

A gravity gradient torque derivation for a general gravity model was given as well as code 
and data showing that the torque agrees with another model restricted to 52 only. 

A derivation of the magnetic field vector was given. The derivation was given in a form 
that was as close as possible to the form of the gravity derlvation. An examination of the 
resulting code shows that the two algorithms are almost totally alike. 
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A 1 Spec of Fast-Gravity-Model 
with Real-Types: 
use Real-Types; 
with VectorMatrix-3; 
use Vector-Matrix-3; 

package fast-Gravity-Model is 

Max-Gravity-Model-Name-Length : constant Positive := 80; 
rnqdegree-amorder : constant Positive := 50; 

type Data-Coefficient-Array is 
array [Natural range o. Natural range o) of Real: 

type gravity-array L array(0. .ma-degree-anddorder+2) of real; 
type gagt r  is access gravity-array; 
type gravity-array-2 ls array(0. .ma-degree-and-order) of gagtr: 

type Gravity-Model-Data is private; ---------------------------------------------------------------------------- 
function Create-Gravity-Model (Name-In : Strlng; 

C. S : Data-Co&cient-Array; 
Mu. Radius : Real) return Gravity-Model-Data; ----------------------------------------------------------------- 

procedure Gotpot (Gmd : in Gravity-Model-Data; 
X : in Vector-3: 
R : in Real: 
Want-Central-Force : in Boolean; 
Nax. Max : in Natural; 
G : out Vector-3); --no potential 

procedure Gotpot (Gmd : in Gravity-Model-Data; 
X : in Vector-3; 
R : in Real; 
Want-Central-Force : in Boolean: 
Nax. Max : in Natural: 
Pot : out Real; 
G : out Vector-3; 
Dgdx : out Matrix-3x31;--pot and dgdx 

private 

type Gravity-Model-Data is -- defaulted to point mass gem-9 
record 

Name : String ( 1 . . Max-Gravity-Model-Name-Length); 
Name-Length : Integer, 
C : gravity-my-2; 
S : gravity-array-2; . - .7 . 
Mu : Fkd := 398-60.4739; -- planet gravitational constant[m**3/s**Z) 
Radius : Real := 6-378-139.0: -- planet equatorial radius (m) 
Model-Max-Size :Natural; -- max size current gravity model data 

end record: 

end fast-Gravity-Model; 
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A2 Body of Fast-Gravity-Model 
with Extended-Range-Combinatorl~~Functions; 
use Extended-Range-Cornbinatoric-Functions; 
wlth Exponential-Logarithm-Functions; 
use Exponentfal-Logarithm-Functiom; 

package body fast-Gravity-Model Is 

Default-Gmd : Gravity-Model-Data; 
Have-Set-Default-Gravity : Boolean := False: 
Gravity-Model-Name-Too-Long : except ion; 
bad~ravity-data : exception; 
twonrnl ,twonmlon.nmlon : gravity-array: 

P : gravity-array-2 := (others => new gravity-array); ------------------------------------------------------------------- 
procedure Gotpot (Gmd : in Gravity-Model-Data; 

X : in Vector-3; 
R : in Real; 
Want-Central-Force : in Boolean; 
Nax, Max : in Natural, 
G : out Vector-3) is 

Ri, Xovr, Yovr, avr. Ep : Real; 
Muor, Muor2, Reor, Reorn.Sum-Init : Real; 
ctil. stil : gravity-array; 
Sumh, Sumgam, Sumj, Surnk. Sumh-N. Lambda : Real; 
pnm,cnm,snm,ctmml.strnrnl : real; 
SumgamN, Sumj-N, SumkN. Mxpnm, Npmpl : W, 
Bnmtil.n-const : Real; 
Mml. Mm2, Mpl . Nml. Ltm ,nrn2: Integer: 
pn.pnm 1 ,pnm2 : gagtr: 
cn,sn : gagtr; 

Ri := l . O / R ;  
Xovr := X (1) Rl; 
Yovr := X (2) Rl: 
Zovr := X (31 Rt; 
Ep :=Z;ovr; 
Reor := gmd.Radius Ri: 
Reorn := Reor; 
Muor := gmd.Mu Ri; 
Muor2 := Muor R1; 

Case Want-Central-Force is 
When true => Sum-Init := 1 .O; 
When false => Sum-Init := 0.0; 

end case: 
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stiI(0) := 0.0; stil(1) := Yow; 
Sumh := 0.0; 
Sumj := 0.0; 
Sumk := 0.0; 
Sumgarn := Sum-Init; 

p(1)(0) := ep; 
for N in 2 .. Nax loop 
n-const := twonm 1 (n); 
Reorn := Reorn Reor; 
pn := p(n); 
cn := grnd.c(n): 
sn := gmd.s(n); 
nml := n - 1; 
nrn2 := n - 2; 
pnml := p(nm1); 
pnm2 := p(nrn2): 
Pn(nm1) := epePn(n); 
Pn(O1 := ?trvonm 1 on(n)*Ep*Pnm l(0) - Nm lon(n) *Pnrn2(0): 
Pn(1) := Pnrn2(1) + n-const * Pnml(0); 
Surnh_N := Pn (1) Cn(0); 
Sumgam-N := Pn (0) Cn[O) real(n + 1): 

ff Max > 0 then 
form in 2..nm2 loop 
Pn(m) := Pnm2lm) + n-const Pnm 1 (m- I): 

end loop: --Have all derived Legendre functions 
Sumj-N := 0.0: 
Sumk-N := 0.0: 

ctil (N) := ctil11) ctil (Nml] - sttl(1) stil [Nml); 
stil (N) := stil (1) CW (Nml) + ctil(1) stil (Nml): 

if N < Max then 
Ltm := N; 

else 
Ltm := Max: 

end II; 
for M in 1 .. Lim loop 

Mml := M - 1: 
Mpl := M + 1; 
Npmpl := Real (N + Mpl); 
pnm := pn(m); 
cnm := cn(m); 
snm := sn(m); 
ctmml := ctil(mm1); 
stmml := stil(mm1); 

Mxpnm := Real (M) Pnm: 
Bnmtil := Cnm ctll (M) + Snm stil OM); 
Sumh-N := Sumh-N + Pr4mpl) BnmM; 
Sumgam-N := Sumgam-N + Npmpl Pnm BnmW; 
Sumj-N := Sumj-N + Mxpnm (Cnrn*ctmml + Snm*stmml); 
Sumk_N := Surnk_N - Mxpnm (Cnm*stmml - Snm*ctmrnl): 
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end loop; 
Sumj := Sumj + Reorn Sumj-N; 
Sumk := Sumk + Reorn Sumk-N; 

end if; 

---- SUMS BELOW HERE HAVE VALUES WHEN M := 0 

Sumh := Sumh + Reorn Sumh-N; 
Sumgam := Sumgam + Reorn + Sumgam-N; 

end loop: 

Lambda := Sumgam + Ep * Sumh: 
C (1) := -Muon (Lambda Xovr - Sumjl: 
C (2) := -Muon (Lamb& Yovr - SumW: 
G (3) := -Muon (Lamb& Zovr - Sumh): 

end Cotpot: 

---------------------------------------------------------------- 
procedure Gotpot (Cmd : In Gravity-Model-Data: 

X : in Vector-3; 
R :in Real; 
Want-Central-Force : In Boolean; 
Nax, Max : in Natural; 
Pot : out Real; 
G : out Vector-3; 
Dgdx : out Matrix-3x3) is 

Mu :Real renames Gmd.Mu: 
Radius : Real renames Gmd.Radius: 

Ri, %, Yovr. Zow. Ep.Sum_Init.n-const : Real; 
Muor. Muon. Muc1-3. Reor. Reorn, Sumv, Gg, Ff, Dl, D2 : Real: 
ctil. stil : gravity-array: 
Sumh, Sumgam. Sumj, Sumk, Sumh-N. Npl, Lambda : Real; 
Suml. S u m ,  Sumn. Sumo, Sump. Sumq, Sumr, Sums. Sumt : Real; 
SumLN, Sum-N, Sumn-N, Sumo-N, Sump-N. Sumq-N : Real; 
Surnr-N. Sums-N. Sumt-N. Temp : Real: 
Sumgam_N, Sumj-N. Surnk-N, Mxpnm. Npmpl : Real; 
S m N .  Amntfl, Bnmtil. Pnmbnm. Anrntml, Bnmtml : Real; 
Mml . Mm2. Mpl , Mp2. Nm 1. Nm2 , Lim : Integer; 
pnm , pnmpl , cnm,snm. ctmml , stmml .cnO : real; 
pn.pnml ,pnrn2,cnVsn : gagtr; 

Ri :=l.O/R; 
Xovr := X (1) Ri: 
Y w r  := X (2) + Ri; 
Zovr := X (3) + Rt; 
Ep := Zovr; 
Reor := Radius Ri; 
Reorn := Reor; 
Muor := Mu Ri: 
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Case Want-CentraLForce is 
When true => Sum-Init := 1 .O; 
When false => Sum-Init := 0.0; 

end case; 

ctfl(0) := 1.0; dfl(1) := Xovr; 
stil (0) := 0.0; sw (1) := Yovr; 
Sumv := Sum-Init; 
Surnh :=O.O; 
Sumj := 0.0; 
Sumk := 0.0; 
Sumgam := Sum-Init: 
Summ := 0.0: 
Surnn := 0.0; 
Sumo := 0.0; 
Sump :=O.O; 
Sumq := 0.0: 
Sumr := 0.0; 
Sums := 0.0; 
Sumt := 0.0; 
Suml := 2.0 Sum-Init; 

p(l)(O) := ep; 
for N in 2 .. Nax loop 

n-const := Twonm 1 (n) ; 
Reom := Reom + Reor: 
nml := n - 1: 
nm2 := n - 2; 
pn := ~ ( n ) :  
pnml := p(nm1); 
pnm2 := p(nrn2); 
Pn(nm1) := epePn(n); 
Pn(0) : = Twonm 1 on(n)+Ep*Pnm l(0) - Nm lon(nJ+hrm2(0): 
Pd l )  := Pnm2(1) + n-const Pnml(0); 
cn := gmd.c(n); 
sn := gmd.s(n); 
ngl := real(n+l); 
CnO := Cn(0): 
Su-N := Pn (0) CnO: 
Sumh_N := Pn (1) + CnO; 
Su-N := Pn (2) CnO; 
SumgamN := S w N  + Npl ; 
Sump-N := Sumh-N + Npl: 
SumlN := SumgaqN + (Npl + 1.0): 

if Max > 0 then 
for m in 2. .nm2 loop 
Pn(m) := PNn2(m) + n-const Pnml(m- 1): 

end loop: 
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nml := n - 1; 
ctil (N) := ctfl(1) ctil (Nml) - stil[l) stil (Nml); 
stil (N) := stfl (1) ctil (Nml) + ctil (1) s W  [Nml); 

if N < Max then 
Lim := N; 

else 
Lim := Max: 

end ff; 
for M in 1 . . Lim loop 
Mml : = M  - 1; 
Mpl : = M +  1; 
Mp2 : = M + 2 ;  
Npmpl := Real [N + Mp 1); 

pnm := pn(m); 
pnmpl := pn(mp1); 
cnm := cn(m); 
snm := sn(m); 
ctmml := ctil(mrn1); 
stmm 1 := stil(rnm 1); 

Mxpnm := Real (M) pnm: 
Bnmtil := cnm + ctil (M) + snm stil (M): 
Pnmbnm := Pnm Bnmtil; 
Sumv_N := Sumv-N + Pnmbnm; 
Bnmtml :=CNm*ctMml +SNmSstMml; 
Anmtml := CNm s t M . 1 -  SNm ctMml; 
Sumh-N := Sumh_N + Pn (Mpl) Bnrntil; 
Sumga-N := SumgaqN + Npmpl Pnmbnm; 
Sumj-N := Sumj-N + Mxpnm Bnmtml; 
Sumk_N := Su-N - Mxpnm Anmtml; 
Suml_N := S-N + Npmpl (Real (Mpl) + Npl) *pnrnBnm: 
Summ_N := Summ_N + Pn(Mp2) Bnmtil; 
Surnp_N := Sump_N + Npmpl PnMpl Bnmtil; 
SumeN := SumeN + Real (M) + PnMpl Bnmlml; 
Surnr_N :=Sumr_N -Real (M) +PnMpl *Anmtml; 
Sums-N := Sums-N + Npmp 1 Mxpnm Bnmtm 1 ; 
Sumt-N := Sumt-N - Npmp 1 Mxpnm Anmtm 1; 
if (M >= 2) then 

Mm2 := M - 2; 
S u m N  := Sumn_N + Real (Mml) Mxpnm 

(CNm ctil (Mm2) + SNm*stll(Mm2)); 
Sumo-N := Sumo-N + Real (Mml) Mxpnm 

(CNm stil (Mm2) - SNm*ctil(Mm2)): 
end if; 
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end loop: 
Sumj := Sumj + Reorn Sum]-N: 
Sumk := Sumk + Reorn * Sumk-N; 
Sumn := Sumn + Reorn Surnn-N: 
Sumo := Sumo + Reorn Sumo-N: 
Sumq := Sumq + Reorn Sumq-N; 
Sumr := Surnr + Reorn Sum-N: 
Sums := Sums + Reorn Sums-N: 
Sumt := Sumt + Reorn Sumt-N; 

end if; 
---- SUMS BELOW HERE HAVE VALUES WHEN M := 0 
S u m  := Sumv + Reorn Surnv-N: 
Sumh := Sumh + Reorn Sumh-N: 
Sumgam := Sumgam + Reorn SumgaxN; 
Suml := Suml + Reorn SurnLN; 
Surnm := S u m  + Reorn Summ-N; 
Sump := Sump + Reorn Sump-N: 

end loop: 

Pot := Muor Sumv; 
Lambda := Sumgam + Ep Sumh: 
G (1) := -Muor2 (Lambda Xwr - SumJ): 
G (2) := -Mu012 (Lambda Yovr - Sumk); 
G (3) := -Muor2 (Lambda Zovr - Sumh): 

-- Need to construct second partial matrix-3x3 
Gg := -(Summ Ep + Sump + Sumh); 
M := Sum1 + Lambda + Ep (Sump + Sumh - Ggl: 
Dl  := Ep Sump + Sums: 
0 2  := Ep Sumr + Sumt: 
Muor3 := Muor2 Rt: 
Dgdx (1. 1) := Muor3 ((M Xovr - 2.0 * Dl) Xovr - Lambda + Sumn): 
Dgdx (2.2) := Muor3 ((FT Yovr - 2.0 D2) Y w r  - Lambda - Sumnl: 
Dgdx (3.3) := Muor3 ((Ff Zovr + 2.0 Gg) Zovr - Lambda + Summ): 
Temp := Muor3 ((Ff Yovr - D2) Xovr - Dl Yovr - Sumo); 
Dgdx (1, 2) := Temp; 
Dgdx (2, 1) := Temp: 
Temp := Muor3 ((Ff Xovr - D 1) Zovr + Gg Xovr + Sumq): 
Dgdx (1. 3) := Temp: 
Dgdx (3. 1) := Temp: 
Temp := Muor3 ((Ff Yovr - D2) Zovr + Gg Yovr + Sumr): 
Dgdx (2.31 := Temp: 
Dgdx (3. 2) := Temp: 

end Gotpot; 

--------------------...---.---------------------- --.--------.---------------- 
function Create-Gravity-Model (Name-In : String: 

C. S : Data-Coefficient-Array: 
Mu, Radius : Real) return Gravity-Model-Data is 

Gmd : Gravity-Model-Data: 
Coef : Real; 
n-max : Integer := CUst  (1); 

begin 
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if n-max < 2 then raise bad_gravity_data;end ii; 

gmd.c := (others => new gravity-array); 
gmd.s := (others => new gravity-array): 
-- Unnormalize gravity model coefficients 
for N in C'F2ange loop 

for M in 0 .. N loop 
ifM = 0 then 

Gmd.C (N)(O) := Sqrt(Rea1 (2 N + 1)) C (N, 0) 1.OE-6: 
Gmd.S (N)(O) := 0.0; 

else 
Coef .- .- 

Sqrt (Real (2 + (2 N + 1)) Factorial-Ratio (N - M, N + M)) 
1 .OE-6; 

Gmd.C (N)( M) := Coef C (N, M): 
Gmd.S (N)(M) := Coef S (N. M); 

end if; 
end loop; 

end loop: 
Gmd.Mu := Mu; 
Gmd.Rad1us := Radius: 
Gmd.Name-Length := Name-Inbngth; 
if Gmd.Name-Length > Max-Gravity-Model-Name-Length then 
raise Gravity-Model-NametyTooOOLong; 

end if; 
Gmd.Name := [others => Ascli.Nu1): 
Gmd.Name (1 .. Gmd.Name-Length) := Name-In: 
Gmd .Model-Max-Size := n-max; 

if Have-Set-Default-Gravity then 
return Gmd; 

else 
Default-Gmd := Gmd; 
return Gmd; 

end if; 
end Create-Gravity-Model: 

begin 

pIO)(O) := 1.0: p(O)(l) := 0.0: p[0)(2) := 0.0; 
p(l)(l) := 1.0; p(1)(2) := 0.0: p(1)(3) := 0.0: 
for n in 2..MaxmDegree-And_Order loop 

p(n)[nl := p(n- l)(n- l)*real(2+n- 1): 
p(n)[n+l) := 0.0; 
p(n)(n+2) := 0.0; 
twonmllnl := real(2*n - 1); 
twonm 1 on(n) := twonm 1 (n)/real(n); 
nmlon(nl := real(n - l)/real(nl; 

end loop: 

end fast-Gravity-Model: 
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AS Body of Normallzed-GravitytyModel 

with mathematicalconstants; 
with exponential_logarithm_functfons; 
use exponenm-logarithm_functio~~~; 

package body Normallzed-Gravity-Model is 

sqrt3:constant real := mathematicalconstants.square~root~of~three; 
Gravity-Model-Name-Too-Long : exception: 
badsavity-data : exception: 

P : gravity-array-2 := (others => new gravity-array); 
p l  :gagtr := p(1); 

xi : gravity-array-2 := (others => new gravity-array); 
eta : gravity-array-2 := (others => new gravity-array); 
zeta : gravity-array-2 := (others => new gravity-array); 
upsilon: gravity-array-2 := (others => new gravity-array); 
alpha : gravity-array : 
beta : gravity-array : 
nrdiag : gravity-array : 
num,den: integer; 

................................................................... 
function Create-Gravity-Model (Name-In : String; 

C. S : Data-Coefficient-Array 
Mu. Radius : Real) return Gravity-Model-Data is 

Cmd : Gravity-Model-Data: 
Cocf :Real: 
n-max : Integer := CUst  (1): 

begin 
if n-max c 2 then raise bad~ravity-data;end if; 

gmd.c := (others => new gravity-my); 
gmd.s := (others => new gravity-array); 
-- scale gravity model coefficients 
for N In C'Range loop 
forMinO..Nloop 

Gmd.C (N1( M) := 1.0e-6 C (N. M):-Just scale coefRcients 
Gmd.S (N)[ MI := 1.0e-6 S [N. M);-Just scale coefficients 

end loop: 
end loop; 
Gmd.Mu := Mu; 
Gmd.Radlus := Radius: 
Gmd.Name-Length := Name-InZength: 
If Gmd.Name-Length > Max-Gravity-Model-Name-LengUl then 
raise Gravfty_Model-Name-Too~Long; 

end if; 
Gmd.Name := (others => Ascli.Nul); 
Gmd.Name (1 .. Gmd.Name-Length) := Name-In: 
Gmd.Model-Max_Sfie := n-max: 

return Gmd; 

40 NASA CR- 188243 January 1993 



end Create-Gravity-Model; 

----------------------------------*---------------------------------- 

procedure Gotpot (Gmd : in Gravity-Model-Data: 
X : in Vector-3: 
R :in Real; 
Want-Central-Force : in Boolean: 
Nax. Max : in Natural: 
G : out Vector-3) is 

Ctil. Stil : gravity-array: 
Rt, Xovr, Yovr, ZQW, Ep,Sum-Init : Real; 
Muor. MuolZ. Reor. Reorn : Real; 
Sumh. Sumgam, Sumj, Sumk, Np 1. Lambda : Real; 
Sumh-N.Sumgam-N, Sumj-N. Surnk-N. Mxpnm, Npmpl : Real; 
Bnmtil.pnm.snm,cnm.ctmml .stmml : Real: 
Mm 1, Mp 1, Nm 1, nm2 .Lim: Integer; 
Pn.Pnm 1 ,pnm2 : gagtr; 
cn.snmxln.etn : gagtr; 

Rt : = l . O / R ;  
Xovr :=X (1) Ri: 
Yovr := X (2) Rt: 
Zovr :=X(3) +R1; 
Ep := Zovr; 
Reor := gmd.Radius + Ri; 
Reorn := Reor; 
Muor := gmd.Mu + Ri: 
Muor2 := Muor Rf: 

Case Want-Central-Force is 
When true => Sum-Inft := 1.0: 
When false => Sum-Init := 0.0; 

end case: 

Ctil (0) := 1.0: Ctil(1) := Xovr, 
SW (0) := 0.0; Stfl(1) := Ywr; 
Sumh := 0.0: 
Sumj := 0.0: 
Sumk := 0.0; 
Surngarn := Sum-Init; 

p l(01 := sqrt3.e~: 
for N in 2 . . Nax loop 

Reorn := Reorn + Reor: 
pn := p(d: 
cn := gmd.c(n); 
sn := gmd.s(n): 
zn := zetaln): 
xln := dn); 
etn := etaln); 

-- 
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nml := n-1; 
nm2 := n-2; 
pnml := p(nm1); 
pnrn2 := p(nm2): 
Pn(0) := alpha(nlCEp*Pnrn l(0) - beta(nl*Pnm2(0]: 
Pnhm 1) := ep*nrdiag(n): 
b ( l )  := xin(l)*ep*Pnml(l) - etn(l)* Pnm2(1): 
Sumh-N := m(O)*Pn(l) Cn(0); 
Sumgam-N := Pn(0) Cn(0) realln + 1); 

if Max > 0 then 
form in 2..nm2 loop 

h ( m )  := xin(m)*ep*Pnm 1 (m) - etn(m)* Pnrn2(m): 
end loop: --got all the Legendre functions now 

Ctil (N) := Ctil(1) Ctfl INml) - S W  (1) Stil (Nml); 
Stil (N) := Stil (1) CU (Nml) + Ctil (1) SW (Nml); 

ff N < Max then 
Ltm := n: 

else 
Ltm := Max: 

cnd if; 
for M in 1 . . Llm loop 

Mml := M - 1: 
M p l  :=M+ 1: 
Npmpl := Rtal (N + Mpl); 
Pnm := pn(m): 
cnm := cn(m): 
snm := sn(m); 
ctmm 1 := ctil(mm 1); 
stmm 1 := stil(mm 1): 

Mxpnm := Real (m) Pnm: 
Bnmtil := Cnm Ctil (M) + Snm Stil (M): 
Surnh_N := Sumh-N + Wmpl)  Bnmtil*zn(m): 
Sumgam-N := SurngaxN + Npmpl Pnm Bnmw 
Sumj-N := Sumj-N + Mxpnm*(Cnm*ctmml + SnmLsbnml); 
S-N := Sumk-N - Mxpnm*(Cnm*stmrnl - Snm*ctmml); 
end loop: 
Sumj := Sumj + Reorn Sumj-N: 
Sumk := Surnk + Reorn Sumk_N; 

end ff;  

---- SUMS BELOW HERE HAVE VACUES WHEN M := 0 

Sumh := Sumh + Reorn Sumh-N: 
Sumgam := Surngam + Reorn Sumgam-N: 

end loop: 
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Lambda := Sumgam + Ep Sumh: 
G 11) := -Muor2 (Lambda Xovr - Sumj): 
G (2) := -Muor2 (Lambda * Yovr - Surnk): 
G (3) := -Muor2 (Lambda Zovr - Sumh); 

end Gotpot; 

procedure Gotpot (Gmd : in Gravity-Model-Data; 
X : in Vector-3; 
R : in Real: 
Want-Central-Force : in Boolean; 
Nax. Max : in Natural; 
Pot : out Real; 
G : out Vector-3: 
Dgdx : out Matrix-3x3) fs --pot and dgdx 

Ctfl, SW : gravity-array; 

Ri. Xovr, Yovr, ZOM. Ep.Sum-Init : Real: 
Muor. Muor2. Muor3, Reor, Reorn, Surnv. Gg, Ff, Dl, D2 : Real, 
Sumh. Sumgam, Sumj. Sumk, Surnh-N, Npl, Lambda : Real: 
SumJ. Summ. Sumn, Sumo. Sump. Sumq. Sumr, Sums. Sumt : Real; 
SumLN. S-N, SurnkN, Sumo_N, SumpN. Su-N : Real; 
Sumr-N. Sums-N. Sumt-N, Temp : Real; 
SuX4iia~N. Sumj-N, Sumk-N, Mxpnm, Npmpl : Reak 
Sumv_N, Amntil, Bnmtil, Pnmbnm. Anmtrnl, Bnmtrnl : Real; 
Mml. Mm2. Mpl. Mp2, Nml. Nm2 . Ltm : Integer; 
Pnm.Pnmpl .cnm.snm, ctrnml , stmrnl ,zgnmp 1 .cnO : real; 
pn.pnrn 1 .pnm2 : gagtr: 
cn.snm.upsnxin,etn : gagtr; 

Rt :=l .O/R;  
Xovr :=X (1) Ri: 
Y m  := X (2) Ri; 
Zovr := X (3) Rt; 
Ep := Zovr; 
Reor := gmd.Radius Ri; 
Reorn := %or: 
Muor := grnd.Mu Ri; 
Muor2 := Muor Rt; 
Muor3 := Muor2 W 

Case WanttCentraltralForce is 
When true => Sum-Init := 1.0; 
When false => Sum-Init := 0.0; 

end case: 

ctil(0) := 1.0; ctfl(1) := Xovr; 
stil (0) := 0.0; stil(1) := Yovr: 
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S u m  :=Sum-Init; 
Sumh := 0.0; 
Sumj := 0.0; 
Sumk := 0.0: 
Sumgam := Sum-Init; 
Summ := 0.0; 
Sumn := 0.0; 
Sumo :=0.0; 
Sump :=O.O; 
Sumq := 0.0; 
Sumr :=O.O; 
Sums := 0.0; 
Sumt := 0.0; 
Sum1 := 2.0 * Sum-Init; 

p(l)fOl := sqrt3lep; 
for N in 2 . . Nax loop 
Reom := Reorn l Reor; 
pn := p[n); 
cn := gmd.c(n); 
sn := grnd.s[n); 
zn := zeta(n): 
xin := xi(n); 
etn := eta(n); 
nml := n - 1: 
nm2 := n - 2: 
pnml := p(nm1); 
pnm2 := p(nm2); 
m(0) : = alpha(n)*Ep*Pnm 1(0) - beta(n)*Pnm2(0); 
Pn(nm1) := ep*nrdiag[n); 
Pn(1) := xin(l)*ep*Pnml[l) - etn(l)* hun2(1); 
upsn := upsilon(n); 
npl := real(n+l); 
CnO := Cn(0); 

S u m N  := Pn (0) CnO; 
SurnkN := Pn (1) CnO Ctn(0); 
Sumrn-N := Pn (2) CnO*upsn(O); 
Sumgam-N := Sumv-N Npl; 
Sump-N := Surnh-N l Np 1 ; 
SumI_N := Surngam-N [Npl + 1.0); 

if Max > 0 then 
for m in 2..nm2 loop 

Pn(ml := ~(m)*ep*Pnml(m) - etn(m)* Pnm2[m); 
end loop; --got all the Legendre functions now 
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ctfl (N) := ctil (1) ctil (Nml) - stil (1) stil (Nml); 
stfl [N) := stil (1) ctil (Nml) + ctil (1) SW (Nrnl); 

if N < Max then 
Lim := N; 

else 
Lirn := Max; 

end if; 

for M in 1 .. Lim loop 
Mml := M - 1; 
Mpl := M + 1; 
Mp2 := M + 2; 
Npmpl := Real (N + Mpl); 

pnm := pn(m); 
pnmpl := pn(mp1); 
cnm := cntm); 
snm := sn(m); 
ctmml := ctil(mm1): 
stmml := sttl(rnrn1): 

Mxpnm := Real [m) + Pnm: 
Bnmtil := Cnm CW (MI + Snm SW (M); 
Bnrntm 1 := Cnm ctMm 1 + Snm stMm 1 ; 
Anmtml :=Cnm*stMml -Snm+dMml;  

Pnmbnm := Pnm + Bnmtil; 
S-N := SLUXIV-N + Pnmbnm: 

ifm < n then 
zgnmpl := znlm)*Pn(mpl); 
Sumh-N := Surnh-N + zgnmp 1 BnmW, 
Sump-N := Sump_N + Npmpl z_PnMpl Bnmtil; 
Sumq_N := Sumq_N + Real (M) z-PnMp 1 + Bnmtrnl : 
S-N := Sumr_N - Real (M) z-PnMp 1 Anmtml : 

end if; 
Sumgam_N := Sumga-N + Npmpl + Pnmbnm: 
Sumj-N := Sumj-N + Mxpnm*bnmtrnl: 
Sumk_N := Sumk_N - Mxpnm*anmtm 1; 
Suml_N := SumlN + Npmpl (Real (Mpl) + Npl) *pnmBnm: 
SurnqN := Summ_N + Pn(Mp2) Bnmtil*upsn(m): 
Sums_N := Surns_N + Npmpl Mxpnm Bnmtml; 
Sumt_N := Sumt-N - Npmp 1 Mxpnm + Anmtml; 
if (M >= 2) then 

Mm2 :=M-2:  
Surnn-N := SumqN + Real (Mml) Mxpnm 

(Cnm ctil (Mm2) + Snm'stil(Mm2)); 
Sumo-N := Sumo-N + Real (Mml) Mxpnm 

[Cnm stil (Mm2) - Snmbctil(Mm2)): 
end E 

end loop: 
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Sumj := Sumj + Reorn Sumj-N; 
Sumk := Sumk + Reorn Sumk_N; 
Sumn := Sumn + Reorn Sumn-N; 
Sumo := Sumo + Reorn Sumo-N; 
Sumq := Sumq + Reorn Sumq-N; 
Sumr := Sumr + Reorn Surnr-N; 
Sums := Sums + Reorn Sums-N; 
Sumt := Sumt + Reorn Sumt-N; 

end if; 

---- SUMS BELOW HERE HAVE VALUES WHEN M := 0 

S u m  := Sumv + Reorn SU-N; 
Sumh := Sumh + Reorn Sumh-N; 
Sumgam := Sumgam + Reorn Sumgam-N; 
Suml := Suml + Reorn SurnLN; 
Summ := Summ + Reorn Sum-N; 
Sump := Sump + Reorn Sump-N; 

end loop; 

Pot := Muor*Sumv; 
Lambda := Sumgam + Ep Sumh; 
G (1) := -Muor2 (Lambda + Xovr - Sumj); 
G (2) := -Muor2 b m b d a  Yovr - Sumk); 
G (3) := -Muon (Lambda Zovr - Sumh); 

-- Need to construct second partial matrix-3x3 
Gg := -(Summ Ep + Sump + Sumh); 
Ff := Sum1 + Lambda + Ep (Sump + Sumh - Gg); 
Dl  := Ep Sumq + Sums; 
D2 := Ep Surnr + Sumt; 
Dgdx (1. 1) := Muor3 ((Ff Xovr - 2.0 + Dl) + Xovr - Lambda + Sumn): 
Dgdx (2.2) := Muor3 ((Ff Yovr - 2.0 D2) Yovr - Lambda - Sumn) ; 
Dgdx (3.3) := Muor3 ((Ff Zuvr + 2.0 Gg) Zovr - Lambda + Summl; 
Temp := Muor3 + ((FY + Yovr - 02) Xwr - Dl * Yovr - Sumo); 
Dgdx (1. 2) := Temp; 
Dgdx (2. 1) := Temp; 
Temp :=Muor3*((~f*Xavr-Dl)+Zovr+Gg*Xovr+Sumql; 
Dgdx (1. 3) := Temp; 
Dgdx (3. 11 : = Temp; 
Temp := Muor3 ((Ff Yovr - 02) + Zovr + Gg Yovr + Sumrl; 
Dgdx (2. 3) := Temp; 
Dgdx (3. 21 := Temp: 

end Gotpot; 

BEGIN 

for n in 2. .max-degree-and-order loop 
form in 0 .. n-1 loop 

num :r (2%- 1)*(2+n+ 1); 
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den := (n+m)*(n-m); 
~ (n ) ( rn )  := sqrt( real(num) /real(den)): 

end loop; 
end loop; 

for n In 2..max_degree_and_order loop 
form in 0 .. n-1 loop 

num := (2*n+ l)*(n+m- l)*(n-m- 1); 
den := (n+m)*(n-m)*(2*n-3); 
if num = 0 then 

eta(n)(ml := 0.0; 
else 

eta(n)(m) := sqrt( real(num)/real(den)); 
end if; 

end loop; 
end loop; 

for n in 2..max_degree_and_order loop 
for m in 0 .. n loop 

if m = 0 then 
nurn := n*(n+l); 
zeta(n)(O) := sqrt( real(num) /2.0); 

else 
nurn := (n-m)*(n+m+ 1); 
if num = 0 then 
zeta(n)(m) := 0.0; 

else 
zeta(n)(m) : = sqrt(real(num)); 

end if; 
end If; 

end loop: 
end loop: 

for n in 2..max_degree_and_order loop 
for m in 0 .. n loop 
ifm=Othen 

nurn := nZ(n- l)*(n+ l)*(n+2); 
upsflon(n)(O) : = sqrt( real(num) /2 .O) : 

else 
nurn := (n-m)*(n+m+ l)*(n-m- l)*(n+m+2); 
if nurn = 0 then 

upsilon(n)(m) := 0.0; 
else 

upsilon(n) (m) : = sqrt(real(num)); 
end if; 

end if; 
end loop; 

end loop: 

for n in 2. .Max_Degree-And-Order loop 
p(n)(n) := sqrt( real(2*n+ l)/real(2Ln))lp(n- l)(n- 1): 
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nrdiag(n) := sqrt( real(2*n+ l)l*p(n- l)(n- 1); 
num := (2*n+ 1)*(2*n- 1); 
alphafn) := sqrt(real(num))/real(n); 
num := (2*n+l): 
den := (291-3); 
beta(n1 := sqrt(real(num)/real(den))*real[n- l)/real(n); 

end loop: 

end Normalized-Gmvity-Model: 
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A.4 Body of GenerslGravity-Gradlent 

with trfgonometrfc_functions: use trigonometric~functions: 

package body generaldravity-gradient is 

function gravity-gradient-torque(~nass-tellsor, dgdx : matrix-3x3: 
pitch,yaw,roll:real) return vector-3 is 

torque : vector-3: 
g, b : matrix-3x3 ; 
sl,cl.s2,c2,s3.~3.~2s3,~2~3:real; 

begin 
sl := sinlpitch): 
c l  := cos(pitch); 
s2 := sinkyaw): 
c2 := coskyaw); 
s3 := sin(rol1): 
c3 := cos(r0ll): 
S2s3 := S2 S3: 
S2c3 := S2 C3; 

g := b*%r dgdx b ; --Note: **tr results in transpose 

torque( 11 := g(2,3)*(mass_tensorl3.3) - mass-tensod2.2)) 
- g( 1.3)' mass-tensodl ,2) 
+ g( 1.2)' mass-tensodl .3) 
- mass_tensor(2,3)*@(3,3) - g(2.2)) ; 

torque(2) := g(l,3)*(mass_tensor(l. 1) - mass_tensor(3.3)) 
+ g(2.3)* mass-tensodl .2) 
- g( 1 .21* mass-tensor(2.3) 
- mass-tensor( 1.3I+(g(l.l) - g(3.31) : 

torque(3) := g( 1,2I*(mass_tensor(2,2) - mass-tensod 1.1)) 
- g(2.3). mass-tensor( 1.3) 
+ g[ 1.3). mass-tensor(2.3) 
- mass-tensodl.21+@(2.2) - g(l.111 : 

return torque : 

end gravity-gradient-torque; 

end generaldravity~adient ; 
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A6 Spec of Fast-Magne tic-Model 

with Real-mes: 
use Real-Types; 
with Vector-Matrix-3; 
use Vector-Matrix-3; 

package fast-Magnetic-Model is 

M-Magnetic-Model-Name-Length : constant Positive := 80: 
rnax-degree-and-order : constant Positive := 20; 

type Data-Coefficient-Array is 
array [Natural range o, Natural range o) of Real: 

type magnetic-array I s  array(O..max-degree_and_order+2) of real: 
type magptr is access magnetic-array: 
type rnagnetic-ar~ay~2 1s arrayto. .max-degree-and-order) of 

magptr; 
type Magnetic-Model-Data is private; 

function Create-Magnetic-Mode1 (Name-In : String: 
G, H : Data-Coefficient-Array; 
Radius : Real) return Magnetic-Model-Data: 

................................................................. 
procedure Maggot [Mmd : in Magnetic-Model-Data; 

X : in Vector-3: 
R : in Real: 
Nax, Max : fn Natural: 
B : out Vector-31: ................................................................. 

private 

type Magnetic-Model-Data is -- defaulted to point mass gem-9 
record 

Name : Strlng ( 1 . . Max-magnetic-Model-Name-Length); 
Name-Length : Integer; 
G : magnetic--2: 
H : magnetic-array-2: 
Radius : Real := 6-371-200.0: -- planet mean radtus (m) 
Model-Max-Size : Natural;-- max slze current gravlty model data 

end record: ............................................................................ 
< .  . . 7 '  .. 

end fast-Magneti~~Model; 
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b e  Body of Fast-Magnetic-Mode1 
with Extended-Range-Combinatori~~Functions; 
use Extended-Range-Combinatori~~Functions; 
with ExponentialLogarithm-Functions; 
use Exp~nential~Logarlthm~Functiom; 

package body Fast-Magnetic-Model is 

Magnetic-Model-Narne-T~o~Long : exception: 
bad-Magnetic-data : exception: 
twonm 1 ,twonrn 1 on.nm 1 on : Magnetic-may: 

P : Magnetic-amy-2 := (others => new Magnetic-array); 

procedure Maggot (Mmd : in Magnetic-Model-Data; 
X : in Vector-3: 
R : in Real: 
Nax. Max : in Natural: 
B : out Vector-3) is 

Ri. Xovr, Yovr. ZOM. Ep : Real; 
Muor. aeon, Reor, Reorn : ~ e d ;  
ctil. stil : Magnetic-may; 
Sumh. Sumgam, Sumj. Sumk. Sumh-N, Lambda : Real; 
Pnm.cn~.snm.ctmrnl .stmml : real: 
SumgaxN, Sumj-N. SumkN, Mxpnm. Npmpl : Real; 
l3nmtil.n-const : Real; 
Mml, Mm2. Mpl. Mp2. Nml, Lim .nm2: Integer; 
pn.Pnml.pnm2 : magptr; 
m,Sn : mag-ptr; 

Rt := l . O / R ;  
Xovr := X (1) Rt; 
Y m  := X (2) Ri; 
Zovr := X (3) Ri; 
E p  := Zovr: 
Reor := Mmd.Radius Ri; 
Reorn := Reor: 
aeor2 := reoPreor: 

ctil(0) := 1.0; ctil(1) := X m ;  
stil(0) := 0.0; Qtil(1) := Yovr; 

If Nax < 1 then 
Sumj := 0.0; 
Sumk := 0.0: 
Sumh := 0.0: 
Sumgarn := 0.0; 

elsif Max > 0 then 
Sumj := reoPmmd.g(l)(l): 
Sumk := reor+mmd.h(l)( 1): 
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Sumh := reor*mmd.g( NO); 
Sumgam := 3.0L(sumj * x m  + sumklywr) + 2.0*(sumh*zovr): 

else -- Max = 0 
Sumj := 0.0; 
Sumk := 0.0: 
Sumh := reol-Lmmd.g( l)(O); 
Sumgarn := 2.0*sumh*zovr: --note: ep and zovr are the same thing 

end il; 

p(1)(0) := ep: 
for N in 2 .. Nax loop 

n-const := twonm l(n); 
nml := n - 1; 
nm2 :=n  - 2: 
pn := pln): 
pnml := p(nm1); 
pnm2 := p(nm2); 
Pn(nm 1) := epcPn(n); 
Pn(0) := 'honmlon(n)*Ep*Pnm l(0) - Nm lon(n)*Pnm2(0): 
Pn( 1) := hzm2( 1) + n-const * Pnrnl(0); 
Reom := Reorn Reor; 
cn := mrnd.g(n): 
sn := mrnd.h(n): 
SurnLN := Pn (1) Cn(0): 
Surngam-N := Pn (0) Cn(0) real(n + 1): 

if Max > 0 then 
for m in 2..nm2 loop 

Pn(m) := Pnm2(m) + n-const Pnm 1 (m- 1): 
end loop; 

Sumj-N := 0.0; 
Surnk_N := 0.0; 
nml := n - 1: 

ctil (N) := ctil (1) ctil (Nml) - sffl(1) stil (Nml); 
stll(N) := stil (I) ctil (Nml) +ctil (1) *sUI (Nml); 

if N < Max then 
Lim := N: 

else 
Lim := Max; 

end if; 
for M in 1 .. Um loop 
Mml := M - 1; 
Mpl := M + 1: 
Npmpl := Real (N + Mpl): 
pnm := pn(m): 
cnm := d m ) :  
snm := sn(m); 
ctmrnl := ctil(mrn1): 
stmml' := stil(mrn1): 

Mxpnrn := Real (MI Pnm; 
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Bnmtfl := Cnm ctil (M) + Snm stfl (M); 
Sumh-N := Sumh-N + Pn(mp1) Bnmtil; 
Sumgam-N := SumgamN + Npmpl Pnm Bnmtil; 
Sumj-N := Sumj-N + Mxpnm * (Cnm*ctmml + Snm*stmrnl); 
Surnk_N := Surnk_N - Mxpnm (Cnm*stmml - Snm*ctmml); 

end loop; 
Sumj := Sumj + Reorn Sumj-N; 
Sumk := Sumk + Reorn SumkN: 

end if; 

---- SUMS BELOW HERE HAVE VALUES WHEN M := 0 

S ~ m h  := Sumh + Reorn Sumh-N; 
Sumgam := Sumgam + Reorn Sumgam-N; 

end loop; 

Lambda := Sumgam + Ep Surnh; 
B (1) := aeon (Lambda Xovr - Sumjl; 
B (2) := aeon (Lambda Yovr - Sumk.); 
B (3) := aeon (Lambda Zovr - Sumh); 

end Maggot; 

function Create-Magnetic-Model (Name-In : String; 
g. h : Data-Coefficient-Array 
Radius : Real) return Magnetic-Model-Data is 

Gmd : Magnetic-Model-Data; 
Coef : Real; 
n-max : Integer := g'Last (1); 

begin 
if n-max < 2 then raise bad-magnetic-data; end If; 

gmd.g := (others => new Magnetic-array); 
grnd.h := (others => new Magneticcarray); 
-- UnnormaJize gravity model coefficients 
for N in g'Range(1) loop 

forMinO..Nloop 
ifM=Othen 

Gmd.C (N)(O) := G (N, O)*l.Oe-9 ; 
Gmd.H N ( O )  := 0.0; 

else 
Coef := Sqrt(2 .OTactorial-RatidN - M,N + M))* 1.0e-9; 
Gmd.C N[ M) := Coef C (N. MI; 
Gmd.H [N)( M) := Coef H (N, MI; 

end if; 
end loop; 

end loop; 
Gmd.Radius := Radius; 
Cmd.Name-Length := Name-InZength; 
if Gmd.Narne-Length > Mrur_Magnetic-Model-Name-Length then 

raise Magnetic-Model-Name-Too-Long; 
end if; 
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Gmd.Name := (others => Ascfl.Nu1); 
Gmd.Name (1 .. Gmd.Narne-Length) := Name-In; 
Gmd.Model-Max-Sfie := n-max: 

return Gmd; 
end Create-Magnetic-Model; 

begin --Initfallze constant values 
-------------------------------------------------------------------- 

p(O)(O) := 1.0; p[O)(l) := 0.0; p(0)(2) := 0.0; 
p(l)(l) := 1.0; p(1)(2) := 0.0; p(1)(3) := 0.0; 
for n in 2..Max_Degree_And_Order loop 

p(n)(n) := p(n- l)(n- l)*real(2+n- 1); 
p(n)(n+l) := 0.0; 
p(n)(n+2) := 0.0: 
twonml(n) := real(2*n - 1); 
twonm 1 on(n) := twonm 1 (n)/real[nl; 
nm lon(n) := real(n - l)/real(n): 

end loop: 

end Fast-Magnetic-Model; 

54 NASA CR- 188243 January 1993 

1 T I  



Numerical Data & 

Speed Comparisons 

January 1993 NASA CR-188243 55 



B.1 4 x 4 Gravity Model Tert C u e  from Ref. 121 
Position vector = 5489 150.0 , 802222.0 . 3 1409 16.0 (meters) 

Gravity Model Data - Gem- 10 (See Ref 1141) 

m3 p= 398-600.4739-. re= 6-378-139.0 m. Degree and order = 4 
s2 

**** standard gravity model (As given in Ref. 121 )**** Run Time: 2.70 Seconds 

Gravitational acceleration from acceleration only call 
-8.442692 12018857E+00 - 1.233936337854853+00 -4.846593523466143+00 
Gravitational acceleration from acceleration plus dgdx 
-8.442692 12018857E+00 - 1.233936337854853+00 -4.846593523466 14E+00 

Potential = 6.253598434407953+07 

Analytic dgdx 
1.87779 19164782 1E-06 4.992707413204393-07 1.965 15882331 1553-06 
4.99270741320439E-07 - 1.465 199954933253-06 2.872 14 1 128 133073-07 
1.965 1588233 1 1553-06 2.872 141 128133073-07 -4.1259 196 15449533-07 

***+ fast gravity model **** Run Time: 2.22 Seconds 

Gravitational acceleration from acceleration only call 
-8.442692 120 18857E+00 - 1.233936337854853+00 -4.846593523466 14E+00 
Gravitational acceleration from acceleration plus dgdx 
-8.442692 120 18857E+00 - 1.233936337854853+00 -4.84659352346614E+00 
Potential = 6.253598434407953+07 

normallzed gravity model 'norm-II" ***I Run Time: 2.39 Seconds 

Gravitational acceleration from acceleration only call 
-8.442692 120188573+00 - 1.233936337854853+00 -4.84659352346614E+00 
Gravitational acceleration from acceleration plus dgdx 
-8.442692 12018857E+00 - 1.233936337854853+00 -4.846593523466 14E+00 
Potential = 6.25359843440795E+07 

Analytic d g h  
1.87779 19164782 1E-06 4.9927074 13204393-07 1.965 15882331 1553-06 
4.9927074 13204393-07 - 1.465 199954933253-06 2.872 14 1 128 133073-07 
1.96515882331 155E-06 2.872 141 128133073-07 4.1259 19615449533-07 

Note that the answers are identical to those in Ref. 121. 
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B.2 5 x 5 Gravity Model Test Cme from Ref. 121 
Position vector = 5489 150.0 . 802222.0 .3 140916.0 (meters) 

Gravity Model Data - Gem-10 (See Ref I1411 

rn3 
p= 398-600.4739-, re= 6-378-139.0 m. Degree and order = 5 

s2 
**I* standard gravity model [ As given in Ref. [2] ) **** Run M e :  3.82 Seconds 

Gravitational acceleration from acceleration only call 
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00 
Gravitational acceleration from acceleration plus dgdx 
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00 

Potential = 6.253586939824503+07 

Analytic dgdx 
1.877732305031903-06 4.992593749544803-07 1.96507472 1 125573-06 
4.99259374934480E-07 - 1.465 135648953593-06 2.8720884453 17963-07 
1.96507472 1 125573-06 2.8720884453 17963-07 4.125966560783053-07 

**** fast gravity model **** Run Time: 3.17 Seconds 

Gravitational acceleration from acceleration only call 
-8.442606335554723+00 - 1.2339324305 18343- -4.846524863326083+00 
Gravitational acceleration from acceleration plus dgdx 
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00 
Potential = 6.253586939824503+07 

**** normalized gravity model 'normRnIIa *'** Run Time: 3.38 Seconds 

Gravitational acceleration from acceleration only 
-8.44260633555472E+00 - 1.2339324305 18343+00 -4.84652486332608E+00 
Gravitational acceleration from acceleration plus dgdx 
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00 
Potential = 6.253586939824503+07 

Note thqt the answers are identical to those in Ref. 121. 
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B.3 Gravity Gradient Torque Test Core 

A comparison of general gravity gradient torque. computed with degree=2 order=O. 

with Roithmyar ( Ref. 151 ) 52 only model is given below. 

Gravity Model - Gem- 10 (See Ref 1 1411 

Position vector = 5489 150.0 . 802222.0 ,3140916.0 (meters) 

The rotation matrix from body to inertial is derfved from 

pitch = 20.0 degrees 
yaw = 30.0 degrees 
roll = 40.0 degrees 

Mass tensor = ((477.0 . 63.0 .0.0 ), 
(63.0 . 770.0. 0.0 I, 
(0.0 . 0.0 . 821.0 1); 

gravity gradient-torque from general gravity model (Spherical 0x0) 
-7.3839 160 15 193823-05 -6.34664808264096E-04 3.5 17470502376063-04 

gravity gradlent-torque fiom general gravity model (2x01 
-7.354301830663303-05 -6.340499798450333-04 3.52 179052 15 12853-04 

gravity gradient-torque from Roithrnayr 52 model 
-7.3543018306633D-05 -6.3404997984503D-04 3.52 179052 15128D-04 

gravity gradient-torque from general gravity model (4x41 
-7.354905924014393-05 -6.34 1023 124490053-04 3.522096103700633-04 

Note that the torque changes slightly as more terms are included. 
The major impact is expected to be control where the effect of 
forces that are longitude dependent will be included. 

58 NASA CR- 188243 January 1993 



B.4 Magnetic Field Vector 
The position vector was (meters) 

8 = (5489150.0 , 802222.0 ,3140916.0) 

Degree and Order = 10 

The resulting magnetic field vector was mesh) 

B = [-3.75259753018348E-05, -6.16002442001094E-06. 1.35 12 1 172654619E-05) 

The mean radius of the earth was 637 1.2 km 

The (10x10) harmonic data were taken from [11] Table 11, IGRF 1985 
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Execution Timss for Fast, Normalized & Ref [2] Gravity Models 
Tim w Drarec I Wrr 

This comparison show the relative efficiencies of the various hnplementations. Note that 
the normallzed models. while less efficient than the unnormalized model, are none the 
less more eaRcient than the Refl21 model. This is a result of the data structures and the 
precomputing of all possible derlved Legendre functions. The simple normallzed model 
(norm-Il and the normalfied model (norm-II], which uses the recursion relationship 
from 131, have very similar speeds. In the next plot, norm-I is not shown. Note also, that 
the 'fast' model is approximately 20% faster than the Ref121 model. 
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Figure 8.2 

This plot. which was generated using the 50x50 GEM-T3 model 1151. shows relattve effi- 
ciency as degree & order increase. The difference in the run times compared to those in 
Flg B1 are a result of uslng a faster computer (Sun Sparc 11 instead of Sun Sparc I). Note 
that past degree and order 27 the normalized model is slower than the algorithm in [21. 
This is a result of the extra multiplication that must be done in the normalized methods 
Anay. overcoming the benefit of precomputing some of the data. The 'fast" model is 
always faster than 121. It is worth noting that, at 50x50, and zero latitude, the gravita- 
tional acceleration vector computed using the simple normalized method (norm-I) dif- 
fered from the other three in the last three (out of 16) places. The benefit of the recursion 
relationship from 131 is begfnning to make itself felt. The other three agreed to 15 places. 
The slight kinks in the plots are the result of tlmer noise and not some sudden change in 
computation speed. 
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