
NASA Contractor Report 188243

Fast Gravity, Gravity Partials,
Normalized Gravity, Gravity Gradient
Torque and Magnetic Field:
Derivation, Code and Data

Robert G. Gottlieb
McDonnell Douglas Space Systems - Houston Division
Houston, Texas

Prepared for
Lyndon B. Johnson Space Center
under contract NAS9-17885

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas

February 1 993

CONTENTS
1.0 Summary .. 1

2.0 Introduction .. 2

3.0 The Gravitational Potential Function .. 3

4.0 The First Partial ... 6

5.0 The Second Partial ... 9

6.0 Computational Considerations ... 14

7.0 First and Second Partials Using Normalized Coefficients 15

8.0 Gravity Gradient Torque 19

8.1 Point Mass Gravity Model .. 19

8.2 General Gravity Model ... 21

8.3 Formulation Validation .. 23

.. 9.0 GeomagneticField 25

10.0 Conclusions 2 8

1 1.0 Acknowledgments .. 29

12 . 0 References 3 0

Appendix A .. 3 1

A 1 Spec of Fast-Gravity-Model .. 3 2

A.2 Body of Fast-Gravity-Model. ... 3 3

A 3 Body of Nonnallzed-Gravity-Model .. 40

A.4 Body of General-Gravity-Gradient .. 4 9
A.5 Spec of Fast-Magnetic-Model .. 50

A6 Body of Fast-Magnetic-Model .. 51

Appendix B .. 55

B . 1 4 x 4 Gravity Model Test Case from Ref . (21 .. 56

B.2 5 x 5 Gravlty Model Test Case from Ref . 121 .. 57

B.3 Gravity Gradient Torque Test Case .. 58

B.4 Magnetic Field Vector ... 59

MbfBmxa
Figure 1 . Position of a Particle of Mass in the Body Ards System 19

........ . Figure B- 1 Execution Times for Fast Normalized & Ref (21 Gravity Models 60

........ . Figure B-2 Execution Times for Fast Normalized & Ref 121 Gravity Models 61

L i S u K m h
.. Table 1 . Table of Derived Legendre Functions 14

0 NASA CR-188243 January 1993

This report contains the development of a recursive, non-singular method for computing
the first and second partials of the gravitation potential, with respect to position, using
both unnomalfied and normalized harmonic coefficients. When unnormalized coeffi-
cients are used, every attempt was been made to bufld a 'fast" algorithm. When normal-
ized coefficients were used. the algorithm developed uses a more stable. albeit more
complex, recursive algorithm for the derived Legendre functions. Even so. the normal-
ized algorithm is still quite efficient. The normalized algorithm should be quite stable
and portable for model sizes exceeding 180x180 in degree and order. Efficiency in com-
putation was gained by precomputing everything that was not a function of the state and
by using singly dimensioned arrays wherever possible as well as arrays of pointers to
arrays.

A complete derivation of the gravity gradient torque resulting from a full (nxn) gravity
model is given since it uses the second partial of the potential developed earlier.

A complete derivation of the geomagnetic field vector was included since the computa-
tion of the magnetic field is so similar to that of the gravitational field.

Ada code for all of the algorithms is included.

Test cases compare the algorithms to each other and to previously published data.

January 1993 NASA CR- 188243

This report is basically a rewrite of Ref 121. with some useful additions. First of all, by
examining the derived Legendre functions that are used to compute the gravitational
acceleration it is noted that some of them are not functions of the state and hence may
be computed only once. This fact is used to speed up the computation of gravity and its
partials.

Secondly, a derivation using normallzed gravity coefficients and a superior recursion for-
mula for the derived Legendre functions is presented. As the size of gravity models
increases, an algorithm using normalized coefficients becomes more attractive since the
unnormallzlng process requires the computation of terms on the order of 2n! Even for
models of size 50x50 this would be a number so large (- 10'~') that some computers
might not be able to compute it.

Algorithms are developed. using both normalized and unnormalized gravity coefficients.
that compute the first and second derivatives of the potential function. This yields the
gravitational acceleration, and the partial derivative of the gravitational acceleration with
respect to the position vector. The partial derivative of the gravitational acceleration is
needed in the computation of the state transition matrix for both estimation and optimi-
zation. In addition. the partial derivative matrk can 6e applied to the problem of com-
puting general gravity gradient torque.

Next. a general gravity gradient torque derivation fs presented that uses the second par-
tial of the potential developed in the previous section.

Since the geomagnetic field is defined in terms of Legendre functions, a derivation of the
geomagnetic field is included which is very similar in form to the gravity derivation.

And finally. Ada code as tmplemented in the Ada Simulation Development System
(ASDS). 191, is given for the various algorithms in addition to test cases that verify the
validity of the derivations.

2 NASA CR- 188243 January 1993

3.0 The Gravitational Potential Functfog

The gravitational potential function is normally written

where p is the gravitational constant, ae is the equatorial radius. r is the magnitude of
the position vector. 8 = (x, , x2, x3) , and

are the associated Legendre functions and Pn are the Legendre polynomials. Also. we
have the sine of the latitude

E = x3/r

and the longitude is computed from

For notational convention. we define a potentfal function U to be

Ut -V
and write eq(2- 1) as

Given the equation for E above, P, , becomes

where

The are known as derived Legendre functions.

Note that

January 1993 NASA CR- 188243 3

Also define.

The C,, and the S,, are the unnormalized cosine and slne gravity coefficients that
result from the mass distribution of the planet. When these coefficients are published,
they are published in normalized form. The relationship between the normalized and
unnormalized form is given by

where

(n - m)! (2 n + 1) (2- ti,,)
N (n m) = (n + m)!

Where ti,, is 1.0 if m = 0. and is zero othenvise.

The derivation will proceed using unnormalized notation because the derivation is some-
what simpler. In a later section, a derivation using normalized coefficients will be devel-
oped. The normalized form does not require the computation of tenns on the order of
(n+m)! This may be desirable on some computers where very large or small numbers may
cause a problem. For now, the potential can be written

This form is especially useful since c. C,. and S, can be calculated recursively and
the singularity at the pole (p = 0) can be avoided.

The unnormallzed derived Legendre functions may be calculated recursively a number of
different ways. In 111 and [2] the were computed from

4 NASA CR- 188243 January 1993

In 131. seven recursion algorithms were compared numerically for stability. Unfortu-
nately. eq(3- 13) was not among those studied. Of the seven algorithms studied, two
were clearly superior. The simpler of these is

P;: = ((2n - I) E ~ - , - (n+m- 1)P;:-,)/(n- m), (m<n) (3-14)

Note that when m=O. eq(3-14) reduces to eq(3- 13) for m=O. Experiments similar to those
carried out in [3] were conducted by the author using the normalized error between a
single precision computation of the and a double precision computation of the
using both eq(3- 13) and eq(3- 14). In wery case eq(3- 14) had lower error. The worst error
in all cases occurred for E = 0.2.

Although eq(3-14) is highly stable, it cannot generate the diagonal elements c. Realizing
that c-, = 0. (all beyond the diagonal are zero). eq(3-13) can be used to compute

c = (2n- 1)q:; (3-15)

Starting with either eq(3- 13) or eq(3- 14) it is rather easy to show that the inner diagonal
terms, c- ' . can be computed from

q - I = &q
Also, note that

It is helpful during coding to note that Cmr C,/? and&,,= s&'" are also recurswe. since

January 1993 NASA CR-188243 5

-
The gravitational acceleration vector. g. is calculated as the first partial derivative of U
with respect to the planet-fixed vector. z. kom eq(3- 12). we have

We note that

ap ax Now. using the definitions of - and - given earlier. ax ax

cosmh X' sin& -+ sind X' cosmh -+ ax -.m = w m - l c ~ m [T [~ - T [:]] + m P m - l s , m [P [j +P[:])
x1

where c o l u y matrices are used in the interest of saving space. Since cosX = -
and sink = - . and using the definition of Cm and S,. it is rather easy to show that P

P

Also*

1. Note: For ~mtatlonal simplicity, Ex o E throughout.

6 NASA CR- 188243 January 1993

and

where

~ ~ = (0 0 1)

Combining these partials and substituting into eq(4- 1). we get

January 1993 NASA CR- 188243 7

we can write

Note that the final result for the first partial derivative of the potential is a rather simple.
compact. vector equation.

8 NASA CR- 188243 January 1993

a 2u Next. we calculate - starting with eq(4-1). as it leads directly to a compact symmetric
notation. a l f

We have from eq(4- 11

au - amr auk au as,, - - - + - - + ax arax a& ax aB,,ax

Thus,

The second and cross partials appearing in eq(5- 1) are

January 1993 NASA CR- 188243 9

where I is a 3x3 identity matrlx, and

BRm-2 = C & m C m - 2 + S & m S m - ~

An, m-2 Cn, mSrn-~-Sn, mCm-2

We also note the special combinations

and

where

and

Putting all these into eq(5- 1) leads to

10 NASA CR- 188243 January 1993

January 1993 NASA CR- 188243 11

If we now define

then with these defhitions

we can write eq(5- 1) as

12 NASA CR- 188243 January 1993

Collecting like terms, we get

Recalling that

and defining

F r L + e (M e + 2 (P + H)) + A

G = - (M & + P + H)

Li=~a+r
we have finally

Note that the final result for the second partial derivative of the potential is a rather sim-
ple. compact. symmetric matrix equation.

January 1993 NASA CR- 188243 13

If the derived Legendre functions are arranged in a table such as Table 1 below. it is
rather easy to see that to the rlght of the diagonal all terms are zero. Along the diagonal
only pure numbers appear. and immediately to the left of the diagonal. the diagonal term
appears multiplied by e . This means that a number of the derived Legendre functions
that are needed in the computation of gravity can be computed once only and stored.
and do not need to be computed using the recursion relationships.

This can save a great deal of time. If in addition, all coefficients in the recursion relation-
ships are computed and stored as functions of n, another slight savfngs can be gained. It
was found that these two taken together save about 15 - 20% of the time normaUy taken,
depending on the size of the coefficient array used.

In Ref 111 and 121. the gravity coefficients were placed in a single array in an attempt to
avoid the time it takes to manage a two dimensional array on a computer. In the new
code given in Appendix A, it was found that by having an array of pointers to arrays the
code is more clear and just as fast.

m=O 1 2 3 4 5 6 7

n = O e=1 < = o I $ = O etc.

1 $ = E e = l * = o $ = o etc.

Table 1. Table of Derived Legendre Functions

In the code given in Appendfx A, the 'fast" gravity model takes advantage of all of the
things mentioned in this section. The normalized model is also 'fast" in the same sense.

Since no difference in the computation of the gravitational acceleration could be detected
out through a 30x30 model using both eq(3- 13) or eq(3- 14) to generate the c, and since
eq(3- 14) requires more multiplications and additions than eq(3-13). eq(3- 13) was used
for the "fast" model. Since normalization makes more sense as model size, n, increases.
it was decided to use eq(3- 14) in constructing the normalized algorithm. (Section 7).

14 NASA CR- 188243 Januruy 1993

Following (31 and [4]. d e h e the normalized derived Legendre functions,

c=~(n, m) c
where N(n,m) is given by eq(3- 11). Note that this definition means that

Note also that if m = 0.

and if m 2 1

(n- m)! (2 n + 1) 2 5
N (n m) = ((n + m)! 1

The recursion relationships given earlier for the derived Legendre functions are repro-
duced below for the sake of convenience

c= c-,+ (2 n - l)r:,',(rn> I) , or

c= ((2 n - l) ~ C - , - (n + m - 1) c - ,) / (n - r n) , (m < n)

= Pn = ((2 n - 1) ePn-, - (n - l)Pn-,) / n

= (2 n - 1) c: (7-5)

c-' = EC
l $ = 1 * = o
I f = € * = 1

Either of the fonnulae for computing the may be used. The first is faster, and the sec-
ond is more stable numerically. The Werence In the resulting algorithm is slight. as
shall be seen. Taking the definition given in eq(7-1) and applying it to the first of eq(7-51
@"-

K'= N (n m) c = ~ (n , r n)
N (n - 2, rn) N (n - 1, m- 1)
N (n - 2, m) c-,+ (2 n - 1) N (n , m) N (n - 1, m- 1)

q':; (7-6)

or.

January 1993 NASA CR-188243 15

(2n- 1) N(n,m) e-I- (n+ m- 1) N (n , m) z= ~ (n , m) c = e
(n - m) N(n- 1, m) (n - m) N(n- 2, m) E'-21m<n

These define the recursion relationships for the c. at least symbolically. Computation-
ally, these relationships can be simplified. Defining

1
(n - m) (n - m- 1) (2n+ 1) 5

((n + m) (n + m - l) (2 n - 3) 1
1 (7-9)

(2n- l)N (n , m) 2 (2n+ 1) (2n- 1)
i (n , m) = I = (

N(n- 1, m- 1) ,,, (n+m) (n+ m- 1) (2-60,m-1)

and

1

On- 1) N(n,m) (2n- 1) (2n+ 1) 2 I = ((n - m) (n+ m) 5 t n m) E (n -m) N(n-1,m) ,,, 1

1
(7-10)

(n+ m- 1) N(n, m)
q (n ,m)=

(n+ m- 1) (2n+ 1) (n - m- 1) 5
(n- m) Nin-2, m) I ,,, = ((n+ m) (n - m) (2n-3) 1

the recursion relationship for becomes either

-
Note that 5 (n, m) and ii (n, m) or 6 (n, m) and q (n, m) are constant functions of n and
m and need be computed only once. There is no need to use both eq(7- 11) and eq(7- 12).
either one will do. The code for the normalized model contained in Appendix A is based
on eq(7-12). Another model was developed based on eq(7-11). but that code is not
lncluded in Appendix A The test cases in Appendix B labeled 'norm_Iw came from the
model using eq(7-11). and test casw labeled 'no?--IIw came from the model using eq(7-
12). The only Merence in the code is the use of 5 (n, m) and 4 (n, m) in lieu of 5 (n, m)
and q (n m) . and eq(7- 11) in lieu of e (7- 12). In either case. everything that follows will

nX be exactly the same. Since roughly - more multiplications are required if eq(7-12) is
2

used, it was anticipated that the "nonn_Iw model would run faster than the 'norm-II"
model. The difference in run time turned out to be less than the noise in the timer. This

16 NASA CR- 188243 January 1993

means that 'norm-11" is the way to go, since it is based on a more stable recursion for-
mula.

Going back to eq(7-8) and defining

the equations for the normalized derived Legendre polynomials become

= ~ a (n > z - ~ - ~ < n > z - ~ (7-14)

Note that a (n) and P (n) need be computed only once and stored since they are only
functions of n and are not functions of the state.

Going back to eq(7-8) and defining the inner diagonal term. 6 (n) , as

The inner diagonal, c- ' can be computed as

c-' = &8(n) (7-16)

Note that 6 (n) need be computed only once and stored since it is only a function of n
and is a not function of the state. The use of 6 (n) will speed up the computation since
only a single multiply is required to build the inner diagonal term.

Looktng now at eqs(3-29) given earlier for J,. K,. m. and H,, note that multiplies
C,, S,, nteryurhere except in H,,. Therefore, c. C,, and S may be replaced

+7 by e. C,, and S, , mxywhere except in H, where the terms c C,, and

c* IS,, appear. Multiplying and dividing by N(n,m) and NIn.m+ 1) leads to

note that

January 1993 NASA CR- 188243 17

These last two may also be computed and stored and then used to compute H,. This will
allow the computation of gravitational acceleratton without the necessity of unnormaliz-
ing the gravity coefficients. This makes the algorithm more portable, since for large grav-
ity models, some computers can't handle the large numbers involved in the
unnorrnalizing process.

An examlnation of L. M, N, R . P, Q. R S, and Twill show that the only other tern needed
In order to compute the second partials using normalized coefficients is in the term, M.
and involves C, , and C"S, ,. Consequently. form

As before, define

r (n ,m) . N (n m)
(n - m) (n - m- 1) (2-6,,,) (n + m+ 1) (n + m + 2)

N (n , m+ 2)
(7-21)

(2 -60, m + 2)

Note that

Again, these may be computed and stored and used to compute M. This will allow the
complete computation of the first and second partials of the potential using normalized
coefficients.

One comment, the sfmplScation in Table 1 that allowed the inner diagonal to be the
diagonal multiplied by E is no longer valid. In the normallzed case, the inner diago-

nal term is computed by multiplying 6 (n) by E.

All the normaUzed equations have been coded in ASDS I91 and verified agalnst previously
published 121 test cases. and found to agree exactly. The code for the normalized gravity
model using the recursion relation from 13) Is given in Appendix A and the test case data
is given in Appendix B.

18 NASA CR- 188243 January 1993

The gravity gradient torque on a spacecraft is derived twice here. The first derivation
uses a point mass gravity model and assumes that 1 /IT+ 6 1 is approximated by the first
term of the binomial expansion.

The second derivation uses a full n x rn gravity model and assumes that gravity varies
linearly about the csnter of mass, i.e.. that graaty in the vicinity of the center of mass is
given by 3 = g +% . where both acg and 9 are computed using a general gravity

Cg a: a?
model subroutine such as the models discussed in previous sections. and given in
Appendfx A This derivation shows that the eigenvectors in [7] are not needed. as was
pointed out in [8].

It is then shown that the point mass derivation and the general derivation give identical
results when the harmonic coefficients of the full gravity model are set to zero.

It is shown in Appendix B that when only 52 (-Qd is used, the general formulation gives
the same torque as that given by Roithrnayr's (51 model.

It is anticipated that the use of the full potential model in the calculation of the gravity
gradient torques will lead to more accurate attitude simulations.

8.1 Point M a u Gravity Model
In Figure 1. the vector p' describes the position of a particle of mass, dm in the body ards
system.

Flgun 1 Position of a Particle of Mass in the BO& Axis System

Assume the matrix, B, relates the body axis system to the system in which F and il are
defined and 5 is computed. Then,

T1 = T+Bp

The gravitational force on dm is

January 1993 NASA CR- 188243 19

rl # = -p-dm
t:

Rotating this force back into the body system yields

= [P+ P 2 + 2 ~ ~ T F] 3 / 2 (8.4)

We note that the term B ~ T appears in both the numerator and denominator of the
expression for d j and rewrite it as

BTF = r ~ ~ ?
where i is the unit vector along 7.

Now define the unit vector 6 in the body axis system

b= ~~t
and write

The moment about the center of mass due to d l is

df = ~ x & = - p @ x bdm

(P + p2 + 2 r p b) 'I2

If we factor out 3 and ignore p2 compared to one. we get

df = - prp'x bdm
3/2

~ (1 + 2 P) r

Now, uslng the binomial theorem and again ignoring p2 terms, we get

Integrating over mass, we get

--
20 NASA CR-188243 January 1993

but i p d m = 0 since p is measured from the center of mass: hence

where

Fb = pxb, + ~ , 4 + ~ , 4
and

therefore.

thus

where we define the moments and products of inertia to be

8.2 General Gravity Model
The force of gravity at the particle, dm, is now assumed to be computed from

January 1993 NASA CR- 188243 21

Refenlng back to Figure 1. we recall that B rotates p' back into the system where 3 is
computed, i.e.. that

67 = Bp

and therefore the force on the particle is gtven by

Rotating this force back into the body system yields

~ ~- -
d l = BT& = (BTgcg+ B*B~) dm a r

The moment about the center of mass due to d j is

-
di = p x d j = (C ~ B*Bp)drn

af

Integrating aver mass, we get

-
i = ~ $ i = ~pdrnx B ~ G + ~ F X B * B F ~ ~ ar (8-23)

The integral Ibdm = 0 since p' b measured from the center of mass. Hence.

Next, define

45 GrB -Bt a 7
(8-25)

then

a t It must be pointed out that is computed in an equatorial or planet-fixed system and must be rotated into the

body system. The simplest choice for B is b o d y - t q u a t d if only spherical or zonals are considered, and body-to-earth-
fixed if tesserals arv aonsidd.

22 NASA CR- 188243 January 1993

The operation, [PX 1. may be considered a matrix, where

then

and finally

931P&- 921P,PX+ ~ 3 2 ~ ; - 922PZPU+ 933PflZ -

.x CF = 9,l PzPx- g3, P: + g l 2 ~ ~ ~ ~ - 9 3 2 ~ ~ ~ + g13P: -
g21p: - gllPyPx+ g22pp,- g12p;+ g,pp.- [

Since the C matrix is always syrnmetrft121, we may write

8.3 Formulation Wdation
As a check on the general form gwen by eq[8-30). consider the gravity vector (assuming
spherical planet) given by

and consequently.

Therefore,

but we defined b to be equal to B ~ P . Therefore,

or.

January 1993 NASA CR-188243 23

Substituting the G elements from eq(8-35) into eq(8-30) gives

which is identical to eq(8- 16). This lends confidence that the general expression is cor-
rect and that the spherical case Is contained in the more general expansion as a special
case where all higher gravitational harmonics are zero.

The formulae given here were coded in ASDS 191 and checked against a FORTRAN pro-
gram containing Roithmayr's method for n=2, m=O (52 only). The data used and the
results obtained are given in Appendix B.

Further data was run for a 4x4 gi-avity model. Note that the gravity gradient does change
as the model size increases. This result is expected to be especially important during
control when longitude effects will vary much more quickly than those due to latitude.

24 NASA CR- 188243 January 1993

The magnetic field for the earth is also defined in terms of Legendre functions. It was
felt that it would be useful to include a derivation for the magnetic field in this report.
since so much of the gravity algorithm can be used.

The potential function, V, for the magnetic field is given 1101. I 1 11 as

n = l m = 0

where a is the mean radius of the earth, r is position magnitude, 0 is the geocentric
colatitude, gr and hr are the spherical harmonic coefficients. and k is the longitude.
The in eq(9-1) are not derived Legendre functions, rather they are Schmidt normal-
ized associated Legendre functions of degree n and order m. defined by

-
2 (n- m)!
(n+ m)!

The cosine of the colatitude is the same as the sine of the latitude, which was denoted by
E in eq(3-3). Also. define

-
2 (n- m)!

chm=[(n+ m)! - 'om] 2gr

-
2 (n- rn)! 2

s d [(n+ m)! - a0 m] hr

It is now possible to write eq(9-1) as

This is not quite the form of the gravitational potential since the sum on n started at 2 in
eq(3-5). Note also the appearance of a* in eq(94) in lieu of p in eq(3-5).

Using the definitions in eq(3-6) and eq(3-9). and separating out the n = 1 term, eq(9-4)
can be written

Where now, the are derived Legendre functions. The double sum part of eq(9-5) is
now identical in form to the double sum part of eq(3-12). the only difference being that
a2 replaces p. Using the definitions of e and P: in eq(3- 13). the leading term of eq(9-5)
can be written

The magnetic potential function can now be expressed as

January 1993 NASA CR- 188243 25

The magnetic field vector. 8, is computed as

The partials of the double sum part of V will look exactly as they did for gravity (assum-
ing a2 replaces p). That being the c se. the definitions of r. H,. J,,. and K,, are the ;av same as given in eq(4-11). This allows - to be written ax

Computing the partial of Vl results in

The negative of this result can be found in [I21 as the field resulting from a magnetic
dipole. Now. defining

av The equation for - can be written ax

Finally, then, the equation for the magnetic field vector, 8, becomes

26 NASA CR- 188243 January 1993

Note that eq(9- 13) is the same as eq(4- 13) with -p replaced by a'. Assuming that equal
degree and order were desired, a great deal of time could be saved by computing the
gravitational acceleration and the magnetic field vector together, since they both would
use the same state, the same derived Legendre functions. and all of the sums would be
of exactly the same fonn. An examination of the code given In Appendix A for the
fast-gravity-model and the fast-magnetic-model will show that they are almost entirely
the same. The magnetic field vector resulting from IGRF 1985 data at a given position
vector is given in Appendfx B.

January 1993 NASA CR- 188243 27

Derivations of the first and second partials of the gravitational potential have been given
in both normallzed and unnorrnalized form. ?Lvo different recursion relationships for the
derived Legendre functions were considered. Code for both a "fast" unnomalized gravity
model and a normalized gravity model using the best recursion relationship were given
in Appendix A Speed comparisons made in 1131 indicate that the model in [21 ran at
essentially the same speed as other gravity models in general use at JSC. The plots in
Appendix B show that the 'fastw algorithm is always faster than the model in 121. in some
cases by as much as 20%. and consequently should be that much faster than other
models in general use at JSC. The normalized models are faster than the model in 121 out
through degree and order 27. Beyond that, the extra multiplications inherent in the nor-
malized approach begin to outweigh the savlngs gained by precomputing all possible
terms. Gravitational acceleration computed by the normalized and unnormallzed mod-
els agreed through the 15th (out of 16) significant digit. out through degree and order
50. for a variety of Initial states. For larger models, one would probably be safer using
code based on the recursion relationship from 131.

A gravity gradient torque derivation for a general gravity model was given as well as code
and data showing that the torque agrees with another model restricted to 52 only.

A derivation of the magnetic field vector was given. The derivation was given in a form
that was as close as possible to the form of the gravity derlvation. An examination of the
resulting code shows that the two algorithms are almost totally alike.

28 NASA CR-168243 January 1993

The author wishes to express his appreciation to Mike kaietta for checking equations. to
Doug Neal who first typed the bulk of this document into kamemaker. to Bill Lear for
many suggestions related to the gravity description. and to Carlos Roithmayr for his sug-
gestions related to the gravity description and his motivating the author to include a sec-
tion on the magnetic field vector.

January 1993 NASA CR- 188243 29

1 Mueller. Alan C.. 'A Fast Recursive Algorithm for Calculating the Forces Due to the
Geopotential (Program: GEOPOT).", JSC Internal Note 75-FM-42, June 1975.

2 GottUeb. RG.. 'A Fast Recursive Singularfty Free Algorithm for Calculating the First
and Second Derivatives of the Geopotential". JSC-23762. July 6. 1990.

3 Lundberg, J.B. and Schutz, B.E.. 'Recursion Formulas of Legendre Functions for Use
with Nonstngular Geopotential Models". J. Guidance. Vol. 11. No. 1. Jan-Feb 1988

4 Lee. T., 'Formulation of GTDS Gravity Madellng in Terms of Normalized Associated
Legendre Polynomials" , GTDS Formulation, GSFC, Nov, 1989

5 Roithrnayr, C.M.. 'Gravitational Moment Exerted by an Oblate Body on a Small Body".
Journal of Guidance, Control, and Dynamics, Vol. 12. MayJune 1989. pg. 441-444.

6 Gottlfeb. RG.. 'Gravity Gradient Torque". MDSSC TM-FM8EA-5. 30 September 1988.

7 Glandorf, D.R, 'Gravlty Gradient Torque for an Arbitrary Potential Function*, Journal
of Guidance. Vol.9,No. 1. Jan-Feb 1986.

8 Wilcax. J. C.. Comment on 'Gravity Gradient Torque for an Arbitrary Potential Func-
tion". J. Guidance. Vol.10. No. 2. March-April 1987

9 Gottlleb, RG.. Fraietta. M.F.. et al. 'Ada Simulation Development System [ASDS). Ver-
sion 2.0 Documentation", McDonnell Douglas TM 5.23.08.103.23 Jan 1992.

10 Peddle. N.W.. 'International Geomagnetic Reference Field: the Third Generation". J.
Geomag. Geoelectr., Vol. 34, 1982, pp 309-326.

11 Barraclough. D.R. 'International Geomagnetic Reference meld: the Fourth Genera-
tion". Physics of the Earth and Planetary Interiors, Vol. 48, 1987. pp 279-292.

12 Roithrnayr. C.. 'Contributions of Spherical Harmonics to Magnetic and Gravitational
Fieldsn, (Draft), NASA JSC, Dec. 1992

13 Lear. W.M.. mSubroutines to Compute the Gravitational Acceleration". JSC-25469,
February1992

14 Lerch. F.J., et al, 'Gravity Model Improvement using GEOS-3 (GEM-9 and GEM- 10)"
Journal of Geophysical Research. Vol84. No B8, July 30, 1979

16 Lerch, F.J.. et al. 'Geopotentlal Models of the Earth From Satelllte Tracking, Altimeter
and Surface Gravity Observations: GEM-T3 and GEM-T3Sw, NASA Technical Memo-
randum 104555, GSFC. January 1992.

30 NASA CR- 188243 January 1993

Ada Code

January 1993 NASA CR- 188243 31

A 1 Spec of Fast-Gravity-Model
with Real-Types:
use Real-Types;
with VectorMatrix-3;
use Vector-Matrix-3;

package fast-Gravity-Model is

Max-Gravity-Model-Name-Length : constant Positive := 80;
rnqdegree-amorder : constant Positive := 50;

type Data-Coefficient-Array is
array [Natural range o. Natural range o) of Real:

type gravity-array L array(0. .ma-degree-anddorder+2) of real;
type gagt r is access gravity-array;
type gravity-array-2 ls array(0. .ma-degree-and-order) of gagtr:

type Gravity-Model-Data is private; --
function Create-Gravity-Model (Name-In : Strlng;

C. S : Data-Co&cient-Array;
Mu. Radius : Real) return Gravity-Model-Data; ---

procedure Gotpot (Gmd : in Gravity-Model-Data;
X : in Vector-3:
R : in Real:
Want-Central-Force : in Boolean;
Nax. Max : in Natural;
G : out Vector-3); --no potential

procedure Gotpot (Gmd : in Gravity-Model-Data;
X : in Vector-3;
R : in Real;
Want-Central-Force : in Boolean:
Nax. Max : in Natural:
Pot : out Real;
G : out Vector-3;
Dgdx : out Matrix-3x31;--pot and dgdx

private

type Gravity-Model-Data is -- defaulted to point mass gem-9
record

Name : String (1 . . Max-Gravity-Model-Name-Length);
Name-Length : Integer,
C : gravity-my-2;
S : gravity-array-2; . - .7 .
Mu : Fkd := 398-60.4739; -- planet gravitational constant[m**3/s**Z)
Radius : Real := 6-378-139.0: -- planet equatorial radius (m)
Model-Max-Size :Natural; -- max size current gravity model data

end record:

end fast-Gravity-Model;

32 NASA CR- 1 88243 January 1993

A2 Body of Fast-Gravity-Model
with Extended-Range-Combinatorl~~Functions;
use Extended-Range-Cornbinatoric-Functions;
wlth Exponential-Logarithm-Functions;
use Exponentfal-Logarithm-Functiom;

package body fast-Gravity-Model Is

Default-Gmd : Gravity-Model-Data;
Have-Set-Default-Gravity : Boolean := False:
Gravity-Model-Name-Too-Long : except ion;
bad~ravity-data : exception;
twonrnl ,twonmlon.nmlon : gravity-array:

P : gravity-array-2 := (others => new gravity-array); ---
procedure Gotpot (Gmd : in Gravity-Model-Data;

X : in Vector-3;
R : in Real;
Want-Central-Force : in Boolean;
Nax, Max : in Natural,
G : out Vector-3) is

Ri, Xovr, Yovr, avr. Ep : Real;
Muor, Muor2, Reor, Reorn.Sum-Init : Real;
ctil. stil : gravity-array;
Sumh, Sumgam, Sumj, Surnk. Sumh-N. Lambda : Real;
pnm,cnm,snm,ctmml.strnrnl : real;
SumgamN, Sumj-N, SumkN. Mxpnm, Npmpl : W,
Bnmtil.n-const : Real;
Mml. Mm2, Mpl . Nml. Ltm ,nrn2: Integer:
pn.pnm 1 ,pnm2 : gagtr:
cn,sn : gagtr;

Ri := l . O / R ;
Xovr := X (1) Rl;
Yovr := X (2) Rl:
Zovr := X (31 Rt;
Ep :=Z;ovr;
Reor := gmd.Radius Ri:
Reorn := Reor;
Muor := gmd.Mu Ri;
Muor2 := Muor R1;

Case Want-Central-Force is
When true => Sum-Init := 1 .O;
When false => Sum-Init := 0.0;

end case:

January 1993 NASA CR- 188243 33

stiI(0) := 0.0; stil(1) := Yow;
Sumh := 0.0;
Sumj := 0.0;
Sumk := 0.0;
Sumgarn := Sum-Init;

p(1)(0) := ep;
for N in 2 .. Nax loop
n-const := twonm 1 (n);
Reorn := Reorn Reor;
pn := p(n);
cn := grnd.c(n):
sn := gmd.s(n);
nml := n - 1;
nrn2 := n - 2;
pnml := p(nm1);
pnm2 := p(nrn2):
Pn(nm1) := epePn(n);
Pn(O1 := ?trvonm 1 on(n)*Ep*Pnm l(0) - Nm lon(n) *Pnrn2(0):
Pn(1) := Pnrn2(1) + n-const * Pnml(0);
Surnh_N := Pn (1) Cn(0);
Sumgam-N := Pn (0) Cn[O) real(n + 1):

ff Max > 0 then
form in 2..nm2 loop
Pn(m) := Pnm2lm) + n-const Pnm 1 (m- I):

end loop: --Have all derived Legendre functions
Sumj-N := 0.0:
Sumk-N := 0.0:

ctil (N) := ctil11) ctil (Nml] - sttl(1) stil [Nml);
stil (N) := stil (1) CW (Nml) + ctil(1) stil (Nml):

if N < Max then
Ltm := N;

else
Ltm := Max:

end II;
for M in 1 .. Lim loop

Mml := M - 1:
Mpl := M + 1;
Npmpl := Real (N + Mpl);
pnm := pn(m);
cnm := cn(m);
snm := sn(m);
ctmml := ctil(mm1);
stmml := stil(mm1);

Mxpnm := Real (M) Pnm:
Bnmtil := Cnm ctll (M) + Snm stil OM);
Sumh-N := Sumh-N + Pr4mpl) BnmM;
Sumgam-N := Sumgam-N + Npmpl Pnm BnmW;
Sumj-N := Sumj-N + Mxpnm (Cnrn*ctmml + Snm*stmml);
Sumk_N := Surnk_N - Mxpnm (Cnm*stmml - Snm*ctmrnl):

34 NASA CR- 188243 Janwuy 1993

end loop;
Sumj := Sumj + Reorn Sumj-N;
Sumk := Sumk + Reorn Sumk-N;

end if;

---- SUMS BELOW HERE HAVE VALUES WHEN M := 0

Sumh := Sumh + Reorn Sumh-N;
Sumgam := Sumgam + Reorn + Sumgam-N;

end loop:

Lambda := Sumgam + Ep * Sumh:
C (1) := -Muon (Lambda Xovr - Sumjl:
C (2) := -Muon (Lamb& Yovr - SumW:
G (3) := -Muon (Lamb& Zovr - Sumh):

end Cotpot:

--
procedure Gotpot (Cmd : In Gravity-Model-Data:

X : in Vector-3;
R :in Real;
Want-Central-Force : In Boolean;
Nax, Max : in Natural;
Pot : out Real;
G : out Vector-3;
Dgdx : out Matrix-3x3) is

Mu :Real renames Gmd.Mu:
Radius : Real renames Gmd.Radius:

Ri, %, Yovr. Zow. Ep.Sum_Init.n-const : Real;
Muor. Muon. Muc1-3. Reor. Reorn, Sumv, Gg, Ff, Dl, D2 : Real:
ctil. stil : gravity-array:
Sumh, Sumgam. Sumj, Sumk, Sumh-N. Npl, Lambda : Real;
Suml. S u m , Sumn. Sumo, Sump. Sumq, Sumr, Sums. Sumt : Real;
SumLN, Sum-N, Sumn-N, Sumo-N, Sump-N. Sumq-N : Real;
Surnr-N. Sums-N. Sumt-N. Temp : Real:
Sumgam_N, Sumj-N. Surnk-N, Mxpnm. Npmpl : Real;
S m N . Amntfl, Bnmtil. Pnmbnm. Anrntml, Bnmtml : Real;
Mml . Mm2. Mpl , Mp2. Nm 1. Nm2 , Lim : Integer;
pnm , pnmpl , cnm,snm. ctmml , stmml .cnO : real;
pn.pnml ,pnrn2,cnVsn : gagtr;

Ri :=l.O/R;
Xovr := X (1) Ri:
Y w r := X (2) + Ri;
Zovr := X (3) + Rt;
Ep := Zovr;
Reor := Radius Ri;
Reorn := Reor;
Muor := Mu Ri:

January 1993 NASA CR- 188243 35

Case Want-CentraLForce is
When true => Sum-Init := 1 .O;
When false => Sum-Init := 0.0;

end case;

ctfl(0) := 1.0; dfl(1) := Xovr;
stil (0) := 0.0; sw (1) := Yovr;
Sumv := Sum-Init;
Surnh :=O.O;
Sumj := 0.0;
Sumk := 0.0;
Sumgam := Sum-Init:
Summ := 0.0:
Surnn := 0.0;
Sumo := 0.0;
Sump :=O.O;
Sumq := 0.0:
Sumr := 0.0;
Sums := 0.0;
Sumt := 0.0;
Suml := 2.0 Sum-Init;

p(l)(O) := ep;
for N in 2 .. Nax loop

n-const := Twonm 1 (n) ;
Reom := Reom + Reor:
nml := n - 1:
nm2 := n - 2;
pn := ~ (n) :
pnml := p(nm1);
pnm2 := p(nrn2);
Pn(nm1) := epePn(n);
Pn(0) : = Twonm 1 on(n)+Ep*Pnm l(0) - Nm lon(nJ+hrm2(0):
Pd l) := Pnm2(1) + n-const Pnml(0);
cn := gmd.c(n);
sn := gmd.s(n);
ngl := real(n+l);
CnO := Cn(0):
Su-N := Pn (0) CnO:
Sumh_N := Pn (1) + CnO;
Su-N := Pn (2) CnO;
SumgamN := S w N + Npl ;
Sump-N := Sumh-N + Npl:
SumlN := SumgaqN + (Npl + 1.0):

if Max > 0 then
for m in 2. .nm2 loop
Pn(m) := PNn2(m) + n-const Pnml(m- 1):

end loop:

36 NASA CR- 1 88243 January 1993

nml := n - 1;
ctil (N) := ctfl(1) ctil (Nml) - stil[l) stil (Nml);
stil (N) := stfl (1) ctil (Nml) + ctil (1) s W [Nml);

if N < Max then
Lim := N;

else
Lim := Max:

end ff;
for M in 1 . . Lim loop
Mml : = M - 1;
Mpl : = M + 1;
Mp2 : = M + 2 ;
Npmpl := Real [N + Mp 1);

pnm := pn(m);
pnmpl := pn(mp1);
cnm := cn(m);
snm := sn(m);
ctmml := ctil(mrn1);
stmm 1 := stil(rnm 1);

Mxpnm := Real (M) pnm:
Bnmtil := cnm + ctil (M) + snm stil (M):
Pnmbnm := Pnm Bnmtil;
Sumv_N := Sumv-N + Pnmbnm;
Bnmtml :=CNm*ctMml +SNmSstMml;
Anmtml := CNm s t M . 1 - SNm ctMml;
Sumh-N := Sumh_N + Pn (Mpl) Bnrntil;
Sumga-N := SumgaqN + Npmpl Pnmbnm;
Sumj-N := Sumj-N + Mxpnm Bnmtml;
Sumk_N := Su-N - Mxpnm Anmtml;
Suml_N := S-N + Npmpl (Real (Mpl) + Npl) *pnrnBnm:
Summ_N := Summ_N + Pn(Mp2) Bnmtil;
Surnp_N := Sump_N + Npmpl PnMpl Bnmtil;
SumeN := SumeN + Real (M) + PnMpl Bnmlml;
Surnr_N :=Sumr_N -Real (M) +PnMpl *Anmtml;
Sums-N := Sums-N + Npmp 1 Mxpnm Bnmtm 1 ;
Sumt-N := Sumt-N - Npmp 1 Mxpnm Anmtm 1;
if (M >= 2) then

Mm2 := M - 2;
S u m N := Sumn_N + Real (Mml) Mxpnm

(CNm ctil (Mm2) + SNm*stll(Mm2));
Sumo-N := Sumo-N + Real (Mml) Mxpnm

(CNm stil (Mm2) - SNm*ctil(Mm2)):
end if;

January 1993 NASA CR- 188243 37

end loop:
Sumj := Sumj + Reorn Sum]-N:
Sumk := Sumk + Reorn * Sumk-N;
Sumn := Sumn + Reorn Surnn-N:
Sumo := Sumo + Reorn Sumo-N:
Sumq := Sumq + Reorn Sumq-N;
Sumr := Surnr + Reorn Sum-N:
Sums := Sums + Reorn Sums-N:
Sumt := Sumt + Reorn Sumt-N;

end if;
---- SUMS BELOW HERE HAVE VALUES WHEN M := 0
S u m := Sumv + Reorn Surnv-N:
Sumh := Sumh + Reorn Sumh-N:
Sumgam := Sumgam + Reorn SumgaxN;
Suml := Suml + Reorn SurnLN;
Surnm := S u m + Reorn Summ-N;
Sump := Sump + Reorn Sump-N:

end loop:

Pot := Muor Sumv;
Lambda := Sumgam + Ep Sumh:
G (1) := -Muor2 (Lambda Xwr - SumJ):
G (2) := -Mu012 (Lambda Yovr - Sumk);
G (3) := -Muor2 (Lambda Zovr - Sumh):

-- Need to construct second partial matrix-3x3
Gg := -(Summ Ep + Sump + Sumh);
M := Sum1 + Lambda + Ep (Sump + Sumh - Ggl:
Dl := Ep Sump + Sums:
0 2 := Ep Sumr + Sumt:
Muor3 := Muor2 Rt:
Dgdx (1. 1) := Muor3 ((M Xovr - 2.0 * Dl) Xovr - Lambda + Sumn):
Dgdx (2.2) := Muor3 ((FT Yovr - 2.0 D2) Y w r - Lambda - Sumnl:
Dgdx (3.3) := Muor3 ((Ff Zovr + 2.0 Gg) Zovr - Lambda + Summ):
Temp := Muor3 ((Ff Yovr - D2) Xovr - Dl Yovr - Sumo);
Dgdx (1, 2) := Temp;
Dgdx (2, 1) := Temp:
Temp := Muor3 ((Ff Xovr - D 1) Zovr + Gg Xovr + Sumq):
Dgdx (1. 3) := Temp:
Dgdx (3. 1) := Temp:
Temp := Muor3 ((Ff Yovr - D2) Zovr + Gg Yovr + Sumr):
Dgdx (2.31 := Temp:
Dgdx (3. 2) := Temp:

end Gotpot;

--------------------...---.---------------------- --.--------.----------------
function Create-Gravity-Model (Name-In : String:

C. S : Data-Coefficient-Array:
Mu, Radius : Real) return Gravity-Model-Data is

Gmd : Gravity-Model-Data:
Coef : Real;
n-max : Integer := CUst (1);

begin

38 NASA CR- 188243 January 1993

if n-max < 2 then raise bad_gravity_data;end ii;

gmd.c := (others => new gravity-array);
gmd.s := (others => new gravity-array):
-- Unnormalize gravity model coefficients
for N in C'F2ange loop

for M in 0 .. N loop
ifM = 0 then

Gmd.C (N)(O) := Sqrt(Rea1 (2 N + 1)) C (N, 0) 1.OE-6:
Gmd.S (N)(O) := 0.0;

else
Coef .- .-

Sqrt (Real (2 + (2 N + 1)) Factorial-Ratio (N - M, N + M))
1 .OE-6;

Gmd.C (N)(M) := Coef C (N, M):
Gmd.S (N)(M) := Coef S (N. M);

end if;
end loop;

end loop:
Gmd.Mu := Mu;
Gmd.Rad1us := Radius:
Gmd.Name-Length := Name-Inbngth;
if Gmd.Name-Length > Max-Gravity-Model-Name-Length then
raise Gravity-Model-NametyTooOOLong;

end if;
Gmd.Name := [others => Ascli.Nu1):
Gmd.Name (1 .. Gmd.Name-Length) := Name-In:
Gmd .Model-Max-Size := n-max;

if Have-Set-Default-Gravity then
return Gmd;

else
Default-Gmd := Gmd;
return Gmd;

end if;
end Create-Gravity-Model:

begin

pIO)(O) := 1.0: p(O)(l) := 0.0: p[0)(2) := 0.0;
p(l)(l) := 1.0; p(1)(2) := 0.0: p(1)(3) := 0.0:
for n in 2..MaxmDegree-And_Order loop

p(n)[nl := p(n- l)(n- l)*real(2+n- 1):
p(n)[n+l) := 0.0;
p(n)(n+2) := 0.0;
twonmllnl := real(2*n - 1);
twonm 1 on(n) := twonm 1 (n)/real(n);
nmlon(nl := real(n - l)/real(nl;

end loop:

end fast-Gravity-Model:

January 1993 NASA CR- 1 88243 39

AS Body of Normallzed-GravitytyModel

with mathematicalconstants;
with exponential_logarithm_functfons;
use exponenm-logarithm_functio~~~;

package body Normallzed-Gravity-Model is

sqrt3:constant real := mathematicalconstants.square~root~of~three;
Gravity-Model-Name-Too-Long : exception:
badsavity-data : exception:

P : gravity-array-2 := (others => new gravity-array);
p l :gagtr := p(1);

xi : gravity-array-2 := (others => new gravity-array);
eta : gravity-array-2 := (others => new gravity-array);
zeta : gravity-array-2 := (others => new gravity-array);
upsilon: gravity-array-2 := (others => new gravity-array);
alpha : gravity-array :
beta : gravity-array :
nrdiag : gravity-array :
num,den: integer;

...
function Create-Gravity-Model (Name-In : String;

C. S : Data-Coefficient-Array
Mu. Radius : Real) return Gravity-Model-Data is

Cmd : Gravity-Model-Data:
Cocf :Real:
n-max : Integer := CUst (1):

begin
if n-max c 2 then raise bad~ravity-data;end if;

gmd.c := (others => new gravity-my);
gmd.s := (others => new gravity-array);
-- scale gravity model coefficients
for N In C'Range loop
forMinO..Nloop

Gmd.C (N1(M) := 1.0e-6 C (N. M):-Just scale coefRcients
Gmd.S (N)[MI := 1.0e-6 S [N. M);-Just scale coefficients

end loop:
end loop;
Gmd.Mu := Mu;
Gmd.Radlus := Radius:
Gmd.Name-Length := Name-InZength:
If Gmd.Name-Length > Max-Gravity-Model-Name-LengUl then
raise Gravfty_Model-Name-Too~Long;

end if;
Gmd.Name := (others => Ascli.Nul);
Gmd.Name (1 .. Gmd.Name-Length) := Name-In:
Gmd.Model-Max_Sfie := n-max:

return Gmd;

40 NASA CR- 188243 January 1993

end Create-Gravity-Model;

----------------------------------*----------------------------------

procedure Gotpot (Gmd : in Gravity-Model-Data:
X : in Vector-3:
R :in Real;
Want-Central-Force : in Boolean:
Nax. Max : in Natural:
G : out Vector-3) is

Ctil. Stil : gravity-array:
Rt, Xovr, Yovr, ZQW, Ep,Sum-Init : Real;
Muor. MuolZ. Reor. Reorn : Real;
Sumh. Sumgam, Sumj, Sumk, Np 1. Lambda : Real;
Sumh-N.Sumgam-N, Sumj-N. Surnk-N. Mxpnm, Npmpl : Real;
Bnmtil.pnm.snm,cnm.ctmml .stmml : Real:
Mm 1, Mp 1, Nm 1, nm2 .Lim: Integer;
Pn.Pnm 1 ,pnm2 : gagtr;
cn.snmxln.etn : gagtr;

Rt : = l . O / R ;
Xovr :=X (1) Ri:
Yovr := X (2) Rt:
Zovr :=X(3) +R1;
Ep := Zovr;
Reor := gmd.Radius + Ri;
Reorn := Reor;
Muor := gmd.Mu + Ri:
Muor2 := Muor Rf:

Case Want-Central-Force is
When true => Sum-Inft := 1.0:
When false => Sum-Init := 0.0;

end case:

Ctil (0) := 1.0: Ctil(1) := Xovr,
SW (0) := 0.0; Stfl(1) := Ywr;
Sumh := 0.0:
Sumj := 0.0:
Sumk := 0.0;
Surngarn := Sum-Init;

p l(01 := sqrt3.e~:
for N in 2 . . Nax loop

Reorn := Reorn + Reor:
pn := p(d:
cn := gmd.c(n);
sn := gmd.s(n):
zn := zetaln):
xln := dn);
etn := etaln);

--

January 1993 NASA CR- 188243 4 1

nml := n-1;
nm2 := n-2;
pnml := p(nm1);
pnrn2 := p(nm2):
Pn(0) := alpha(nlCEp*Pnrn l(0) - beta(nl*Pnm2(0]:
Pnhm 1) := ep*nrdiag(n):
b (l) := xin(l)*ep*Pnml(l) - etn(l)* Pnm2(1):
Sumh-N := m(O)*Pn(l) Cn(0);
Sumgam-N := Pn(0) Cn(0) realln + 1);

if Max > 0 then
form in 2..nm2 loop

h (m) := xin(m)*ep*Pnm 1 (m) - etn(m)* Pnrn2(m):
end loop: --got all the Legendre functions now

Ctil (N) := Ctil(1) Ctfl INml) - S W (1) Stil (Nml);
Stil (N) := Stil (1) CU (Nml) + Ctil (1) SW (Nml);

ff N < Max then
Ltm := n:

else
Ltm := Max:

cnd if;
for M in 1 . . Llm loop

Mml := M - 1:
M p l :=M+ 1:
Npmpl := Rtal (N + Mpl);
Pnm := pn(m):
cnm := cn(m):
snm := sn(m);
ctmm 1 := ctil(mm 1);
stmm 1 := stil(mm 1):

Mxpnm := Real (m) Pnm:
Bnmtil := Cnm Ctil (M) + Snm Stil (M):
Surnh_N := Sumh-N + Wmpl) Bnmtil*zn(m):
Sumgam-N := SurngaxN + Npmpl Pnm Bnmw
Sumj-N := Sumj-N + Mxpnm*(Cnm*ctmml + SnmLsbnml);
S-N := Sumk-N - Mxpnm*(Cnm*stmrnl - Snm*ctmml);
end loop:
Sumj := Sumj + Reorn Sumj-N:
Sumk := Surnk + Reorn Sumk_N;

end ff;

---- SUMS BELOW HERE HAVE VACUES WHEN M := 0

Sumh := Sumh + Reorn Sumh-N:
Sumgam := Surngam + Reorn Sumgam-N:

end loop:

42 NASA CR- 166243 January 1993

Lambda := Sumgam + Ep Sumh:
G 11) := -Muor2 (Lambda Xovr - Sumj):
G (2) := -Muor2 (Lambda * Yovr - Surnk):
G (3) := -Muor2 (Lambda Zovr - Sumh);

end Gotpot;

procedure Gotpot (Gmd : in Gravity-Model-Data;
X : in Vector-3;
R : in Real:
Want-Central-Force : in Boolean;
Nax. Max : in Natural;
Pot : out Real;
G : out Vector-3:
Dgdx : out Matrix-3x3) fs --pot and dgdx

Ctfl, SW : gravity-array;

Ri. Xovr, Yovr, ZOM. Ep.Sum-Init : Real:
Muor. Muor2. Muor3, Reor, Reorn, Surnv. Gg, Ff, Dl, D2 : Real,
Sumh. Sumgam, Sumj. Sumk, Surnh-N, Npl, Lambda : Real:
SumJ. Summ. Sumn, Sumo. Sump. Sumq. Sumr, Sums. Sumt : Real;
SumLN. S-N, SurnkN, Sumo_N, SumpN. Su-N : Real;
Sumr-N. Sums-N. Sumt-N, Temp : Real;
SuX4iia~N. Sumj-N, Sumk-N, Mxpnm, Npmpl : Reak
Sumv_N, Amntil, Bnmtil, Pnmbnm. Anmtrnl, Bnmtrnl : Real;
Mml. Mm2. Mpl. Mp2, Nml. Nm2 . Ltm : Integer;
Pnm.Pnmpl .cnm.snm, ctrnml , stmrnl ,zgnmp 1 .cnO : real;
pn.pnrn 1 .pnm2 : gagtr:
cn.snm.upsnxin,etn : gagtr;

Rt :=l .O/R;
Xovr :=X (1) Ri:
Y m := X (2) Ri;
Zovr := X (3) Rt;
Ep := Zovr;
Reor := gmd.Radius Ri;
Reorn := %or:
Muor := grnd.Mu Ri;
Muor2 := Muor Rt;
Muor3 := Muor2 W

Case WanttCentraltralForce is
When true => Sum-Init := 1.0;
When false => Sum-Init := 0.0;

end case:

ctil(0) := 1.0; ctfl(1) := Xovr;
stil (0) := 0.0; stil(1) := Yovr:

January 1993 NASA CR- 188243 43

S u m :=Sum-Init;
Sumh := 0.0;
Sumj := 0.0;
Sumk := 0.0:
Sumgam := Sum-Init;
Summ := 0.0;
Sumn := 0.0;
Sumo :=0.0;
Sump :=O.O;
Sumq := 0.0;
Sumr :=O.O;
Sums := 0.0;
Sumt := 0.0;
Sum1 := 2.0 * Sum-Init;

p(l)fOl := sqrt3lep;
for N in 2 . . Nax loop
Reom := Reorn l Reor;
pn := p[n);
cn := gmd.c(n);
sn := grnd.s[n);
zn := zeta(n):
xin := xi(n);
etn := eta(n);
nml := n - 1:
nm2 := n - 2:
pnml := p(nm1);
pnm2 := p(nm2);
m(0) : = alpha(n)*Ep*Pnm 1(0) - beta(n)*Pnm2(0);
Pn(nm1) := ep*nrdiag[n);
Pn(1) := xin(l)*ep*Pnml[l) - etn(l)* hun2(1);
upsn := upsilon(n);
npl := real(n+l);
CnO := Cn(0);

S u m N := Pn (0) CnO;
SurnkN := Pn (1) CnO Ctn(0);
Sumrn-N := Pn (2) CnO*upsn(O);
Sumgam-N := Sumv-N Npl;
Sump-N := Surnh-N l Np 1 ;
SumI_N := Surngam-N [Npl + 1.0);

if Max > 0 then
for m in 2..nm2 loop

Pn(ml := ~(m)*ep*Pnml(m) - etn(m)* Pnm2[m);
end loop; --got all the Legendre functions now

44 NASA CR- 188243 January 1993

ctfl (N) := ctil (1) ctil (Nml) - stil (1) stil (Nml);
stfl [N) := stil (1) ctil (Nml) + ctil (1) SW (Nrnl);

if N < Max then
Lim := N;

else
Lirn := Max;

end if;

for M in 1 .. Lim loop
Mml := M - 1;
Mpl := M + 1;
Mp2 := M + 2;
Npmpl := Real (N + Mpl);

pnm := pn(m);
pnmpl := pn(mp1);
cnm := cntm);
snm := sn(m);
ctmml := ctil(mm1):
stmml := sttl(rnrn1):

Mxpnm := Real [m) + Pnm:
Bnmtil := Cnm CW (MI + Snm SW (M);
Bnrntm 1 := Cnm ctMm 1 + Snm stMm 1 ;
Anmtml :=Cnm*stMml -Snm+dMml;

Pnmbnm := Pnm + Bnmtil;
S-N := SLUXIV-N + Pnmbnm:

ifm < n then
zgnmpl := znlm)*Pn(mpl);
Sumh-N := Surnh-N + zgnmp 1 BnmW,
Sump-N := Sump_N + Npmpl z_PnMpl Bnmtil;
Sumq_N := Sumq_N + Real (M) z-PnMp 1 + Bnmtrnl :
S-N := Sumr_N - Real (M) z-PnMp 1 Anmtml :

end if;
Sumgam_N := Sumga-N + Npmpl + Pnmbnm:
Sumj-N := Sumj-N + Mxpnm*bnmtrnl:
Sumk_N := Sumk_N - Mxpnm*anmtm 1;
Suml_N := SumlN + Npmpl (Real (Mpl) + Npl) *pnmBnm:
SurnqN := Summ_N + Pn(Mp2) Bnmtil*upsn(m):
Sums_N := Surns_N + Npmpl Mxpnm Bnmtml;
Sumt_N := Sumt-N - Npmp 1 Mxpnm + Anmtml;
if (M >= 2) then

Mm2 :=M-2:
Surnn-N := SumqN + Real (Mml) Mxpnm

(Cnm ctil (Mm2) + Snm'stil(Mm2));
Sumo-N := Sumo-N + Real (Mml) Mxpnm

[Cnm stil (Mm2) - Snmbctil(Mm2)):
end E

end loop:

January 1993 NASA CR- 188243 45

Sumj := Sumj + Reorn Sumj-N;
Sumk := Sumk + Reorn Sumk_N;
Sumn := Sumn + Reorn Sumn-N;
Sumo := Sumo + Reorn Sumo-N;
Sumq := Sumq + Reorn Sumq-N;
Sumr := Sumr + Reorn Surnr-N;
Sums := Sums + Reorn Sums-N;
Sumt := Sumt + Reorn Sumt-N;

end if;

---- SUMS BELOW HERE HAVE VALUES WHEN M := 0

S u m := Sumv + Reorn SU-N;
Sumh := Sumh + Reorn Sumh-N;
Sumgam := Sumgam + Reorn Sumgam-N;
Suml := Suml + Reorn SurnLN;
Summ := Summ + Reorn Sum-N;
Sump := Sump + Reorn Sump-N;

end loop;

Pot := Muor*Sumv;
Lambda := Sumgam + Ep Sumh;
G (1) := -Muor2 (Lambda + Xovr - Sumj);
G (2) := -Muor2 b m b d a Yovr - Sumk);
G (3) := -Muon (Lambda Zovr - Sumh);

-- Need to construct second partial matrix-3x3
Gg := -(Summ Ep + Sump + Sumh);
Ff := Sum1 + Lambda + Ep (Sump + Sumh - Gg);
Dl := Ep Sumq + Sums;
D2 := Ep Surnr + Sumt;
Dgdx (1. 1) := Muor3 ((Ff Xovr - 2.0 + Dl) + Xovr - Lambda + Sumn):
Dgdx (2.2) := Muor3 ((Ff Yovr - 2.0 D2) Yovr - Lambda - Sumn) ;
Dgdx (3.3) := Muor3 ((Ff Zuvr + 2.0 Gg) Zovr - Lambda + Summl;
Temp := Muor3 + ((FY + Yovr - 02) Xwr - Dl * Yovr - Sumo);
Dgdx (1. 2) := Temp;
Dgdx (2. 1) := Temp;
Temp :=Muor3*((~f*Xavr-Dl)+Zovr+Gg*Xovr+Sumql;
Dgdx (1. 3) := Temp;
Dgdx (3. 11 : = Temp;
Temp := Muor3 ((Ff Yovr - 02) + Zovr + Gg Yovr + Sumrl;
Dgdx (2. 3) := Temp;
Dgdx (3. 21 := Temp:

end Gotpot;

BEGIN

for n in 2. .max-degree-and-order loop
form in 0 .. n-1 loop

num :r (2%- 1)*(2+n+ 1);

46 NASA CR- 188243 January 1993

den := (n+m)*(n-m);
~ (n) (rn) := sqrt(real(num) /real(den)):

end loop;
end loop;

for n In 2..max_degree_and_order loop
form in 0 .. n-1 loop

num := (2*n+ l)*(n+m- l)*(n-m- 1);
den := (n+m)*(n-m)*(2*n-3);
if num = 0 then

eta(n)(ml := 0.0;
else

eta(n)(m) := sqrt(real(num)/real(den));
end if;

end loop;
end loop;

for n in 2..max_degree_and_order loop
for m in 0 .. n loop

if m = 0 then
nurn := n*(n+l);
zeta(n)(O) := sqrt(real(num) /2.0);

else
nurn := (n-m)*(n+m+ 1);
if num = 0 then
zeta(n)(m) := 0.0;

else
zeta(n)(m) : = sqrt(real(num));

end if;
end If;

end loop:
end loop:

for n in 2..max_degree_and_order loop
for m in 0 .. n loop
ifm=Othen

nurn := nZ(n- l)*(n+ l)*(n+2);
upsflon(n)(O) : = sqrt(real(num) /2 .O) :

else
nurn := (n-m)*(n+m+ l)*(n-m- l)*(n+m+2);
if nurn = 0 then

upsilon(n)(m) := 0.0;
else

upsilon(n) (m) : = sqrt(real(num));
end if;

end if;
end loop;

end loop:

for n in 2. .Max_Degree-And-Order loop
p(n)(n) := sqrt(real(2*n+ l)/real(2Ln))lp(n- l)(n- 1):

January 1993 NASA CR- 188243 47

nrdiag(n) := sqrt(real(2*n+ l)l*p(n- l)(n- 1);
num := (2*n+ 1)*(2*n- 1);
alphafn) := sqrt(real(num))/real(n);
num := (2*n+l):
den := (291-3);
beta(n1 := sqrt(real(num)/real(den))*real[n- l)/real(n);

end loop:

end Normalized-Gmvity-Model:

48 NASA CR- 188243 January 1993

A.4 Body of GenerslGravity-Gradlent

with trfgonometrfc_functions: use trigonometric~functions:

package body generaldravity-gradient is

function gravity-gradient-torque(~nass-tellsor, dgdx : matrix-3x3:
pitch,yaw,roll:real) return vector-3 is

torque : vector-3:
g, b : matrix-3x3 ;
sl,cl.s2,c2,s3.~3.~2s3,~2~3:real;

begin
sl := sinlpitch):
c l := cos(pitch);
s2 := sinkyaw):
c2 := coskyaw);
s3 := sin(rol1):
c3 := cos(r0ll):
S2s3 := S2 S3:
S2c3 := S2 C3;

g := b*%r dgdx b ; --Note: **tr results in transpose

torque(11 := g(2,3)*(mass_tensorl3.3) - mass-tensod2.2))
- g(1.3)' mass-tensodl ,2)
+ g(1.2)' mass-tensodl .3)
- mass_tensor(2,3)*@(3,3) - g(2.2)) ;

torque(2) := g(l,3)*(mass_tensor(l. 1) - mass_tensor(3.3))
+ g(2.3)* mass-tensodl .2)
- g(1 .21* mass-tensor(2.3)
- mass-tensor(1.3I+(g(l.l) - g(3.31) :

torque(3) := g(1,2I*(mass_tensor(2,2) - mass-tensod 1.1))
- g(2.3). mass-tensor(1.3)
+ g[1.3). mass-tensor(2.3)
- mass-tensodl.21+@(2.2) - g(l.111 :

return torque :

end gravity-gradient-torque;

end generaldravity~adient ;

January 1993 NASA CR- 188243

A6 Spec of Fast-Magne tic-Model

with Real-mes:
use Real-Types;
with Vector-Matrix-3;
use Vector-Matrix-3;

package fast-Magnetic-Model is

M-Magnetic-Model-Name-Length : constant Positive := 80:
rnax-degree-and-order : constant Positive := 20;

type Data-Coefficient-Array is
array [Natural range o, Natural range o) of Real:

type magnetic-array I s array(O..max-degree_and_order+2) of real:
type magptr is access magnetic-array:
type rnagnetic-ar~ay~2 1s arrayto. .max-degree-and-order) of

magptr;
type Magnetic-Model-Data is private;

function Create-Magnetic-Mode1 (Name-In : String:
G, H : Data-Coefficient-Array;
Radius : Real) return Magnetic-Model-Data:

...
procedure Maggot [Mmd : in Magnetic-Model-Data;

X : in Vector-3:
R : in Real:
Nax, Max : fn Natural:
B : out Vector-31: ...

private

type Magnetic-Model-Data is -- defaulted to point mass gem-9
record

Name : Strlng (1 . . Max-magnetic-Model-Name-Length);
Name-Length : Integer;
G : magnetic--2:
H : magnetic-array-2:
Radius : Real := 6-371-200.0: -- planet mean radtus (m)
Model-Max-Size : Natural;-- max slze current gravlty model data

end record: ..
< . . . 7 ' ..

end fast-Magneti~~Model;

50 NASA CR-188243 January 1993

b e Body of Fast-Magnetic-Mode1
with Extended-Range-Combinatori~~Functions;
use Extended-Range-Combinatori~~Functions;
with ExponentialLogarithm-Functions;
use Exp~nential~Logarlthm~Functiom;

package body Fast-Magnetic-Model is

Magnetic-Model-Narne-T~o~Long : exception:
bad-Magnetic-data : exception:
twonm 1 ,twonrn 1 on.nm 1 on : Magnetic-may:

P : Magnetic-amy-2 := (others => new Magnetic-array);

procedure Maggot (Mmd : in Magnetic-Model-Data;
X : in Vector-3:
R : in Real:
Nax. Max : in Natural:
B : out Vector-3) is

Ri. Xovr, Yovr. ZOM. Ep : Real;
Muor. aeon, Reor, Reorn : ~ e d ;
ctil. stil : Magnetic-may;
Sumh. Sumgam, Sumj. Sumk. Sumh-N, Lambda : Real;
Pnm.cn~.snm.ctmrnl .stmml : real:
SumgaxN, Sumj-N. SumkN, Mxpnm. Npmpl : Real;
l3nmtil.n-const : Real;
Mml, Mm2. Mpl. Mp2. Nml, Lim .nm2: Integer;
pn.Pnml.pnm2 : magptr;
m,Sn : mag-ptr;

Rt := l . O / R ;
Xovr := X (1) Rt;
Y m := X (2) Ri;
Zovr := X (3) Ri;
E p := Zovr:
Reor := Mmd.Radius Ri;
Reorn := Reor:
aeor2 := reoPreor:

ctil(0) := 1.0; ctil(1) := X m ;
stil(0) := 0.0; Qtil(1) := Yovr;

If Nax < 1 then
Sumj := 0.0;
Sumk := 0.0:
Sumh := 0.0:
Sumgarn := 0.0;

elsif Max > 0 then
Sumj := reoPmmd.g(l)(l):
Sumk := reor+mmd.h(l)(1):

January 1993 NASA CR- 188243 5 1

Sumh := reor*mmd.g(NO);
Sumgam := 3.0L(sumj * x m + sumklywr) + 2.0*(sumh*zovr):

else -- Max = 0
Sumj := 0.0;
Sumk := 0.0:
Sumh := reol-Lmmd.g(l)(O);
Sumgarn := 2.0*sumh*zovr: --note: ep and zovr are the same thing

end il;

p(1)(0) := ep:
for N in 2 .. Nax loop

n-const := twonm l(n);
nml := n - 1;
nm2 :=n - 2:
pn := pln):
pnml := p(nm1);
pnm2 := p(nm2);
Pn(nm 1) := epcPn(n);
Pn(0) := 'honmlon(n)*Ep*Pnm l(0) - Nm lon(n)*Pnm2(0):
Pn(1) := hzm2(1) + n-const * Pnrnl(0);
Reom := Reorn Reor;
cn := mrnd.g(n):
sn := mrnd.h(n):
SurnLN := Pn (1) Cn(0):
Surngam-N := Pn (0) Cn(0) real(n + 1):

if Max > 0 then
for m in 2..nm2 loop

Pn(m) := Pnm2(m) + n-const Pnm 1 (m- 1):
end loop;

Sumj-N := 0.0;
Surnk_N := 0.0;
nml := n - 1:

ctil (N) := ctil (1) ctil (Nml) - sffl(1) stil (Nml);
stll(N) := stil (I) ctil (Nml) +ctil (1) *sUI (Nml);

if N < Max then
Lim := N:

else
Lim := Max;

end if;
for M in 1 .. Um loop
Mml := M - 1;
Mpl := M + 1:
Npmpl := Real (N + Mpl):
pnm := pn(m):
cnm := d m) :
snm := sn(m);
ctmrnl := ctil(mrn1):
stmml' := stil(mrn1):

Mxpnrn := Real (MI Pnm;

52 NASA CR-188243 January 1993

Bnmtfl := Cnm ctil (M) + Snm stfl (M);
Sumh-N := Sumh-N + Pn(mp1) Bnmtil;
Sumgam-N := SumgamN + Npmpl Pnm Bnmtil;
Sumj-N := Sumj-N + Mxpnm * (Cnm*ctmml + Snm*stmrnl);
Surnk_N := Surnk_N - Mxpnm (Cnm*stmml - Snm*ctmml);

end loop;
Sumj := Sumj + Reorn Sumj-N;
Sumk := Sumk + Reorn SumkN:

end if;

---- SUMS BELOW HERE HAVE VALUES WHEN M := 0

S ~ m h := Sumh + Reorn Sumh-N;
Sumgam := Sumgam + Reorn Sumgam-N;

end loop;

Lambda := Sumgam + Ep Surnh;
B (1) := aeon (Lambda Xovr - Sumjl;
B (2) := aeon (Lambda Yovr - Sumk.);
B (3) := aeon (Lambda Zovr - Sumh);

end Maggot;

function Create-Magnetic-Model (Name-In : String;
g. h : Data-Coefficient-Array
Radius : Real) return Magnetic-Model-Data is

Gmd : Magnetic-Model-Data;
Coef : Real;
n-max : Integer := g'Last (1);

begin
if n-max < 2 then raise bad-magnetic-data; end If;

gmd.g := (others => new Magnetic-array);
grnd.h := (others => new Magneticcarray);
-- UnnormaJize gravity model coefficients
for N in g'Range(1) loop

forMinO..Nloop
ifM=Othen

Gmd.C (N)(O) := G (N, O)*l.Oe-9 ;
Gmd.H N (O) := 0.0;

else
Coef := Sqrt(2 .OTactorial-RatidN - M,N + M))* 1.0e-9;
Gmd.C N[M) := Coef C (N. MI;
Gmd.H [N)(M) := Coef H (N, MI;

end if;
end loop;

end loop;
Gmd.Radius := Radius;
Cmd.Name-Length := Name-InZength;
if Gmd.Narne-Length > Mrur_Magnetic-Model-Name-Length then

raise Magnetic-Model-Name-Too-Long;
end if;

January 1993 NASA CR- 188243 53

Gmd.Name := (others => Ascfl.Nu1);
Gmd.Name (1 .. Gmd.Narne-Length) := Name-In;
Gmd.Model-Max-Sfie := n-max:

return Gmd;
end Create-Magnetic-Model;

begin --Initfallze constant values
--

p(O)(O) := 1.0; p[O)(l) := 0.0; p(0)(2) := 0.0;
p(l)(l) := 1.0; p(1)(2) := 0.0; p(1)(3) := 0.0;
for n in 2..Max_Degree_And_Order loop

p(n)(n) := p(n- l)(n- l)*real(2+n- 1);
p(n)(n+l) := 0.0;
p(n)(n+2) := 0.0:
twonml(n) := real(2*n - 1);
twonm 1 on(n) := twonm 1 (n)/real[nl;
nm lon(n) := real(n - l)/real(n):

end loop:

end Fast-Magnetic-Model;

54 NASA CR- 188243 January 1993

1 T I

Numerical Data &

Speed Comparisons

January 1993 NASA CR-188243 55

B.1 4 x 4 Gravity Model Tert C u e from Ref. 121
Position vector = 5489 150.0 , 802222.0 . 3 1409 16.0 (meters)

Gravity Model Data - Gem- 10 (See Ref 1141)

m3 p= 398-600.4739-. re= 6-378-139.0 m. Degree and order = 4
s2

**** standard gravity model (As given in Ref. 121)**** Run Time: 2.70 Seconds

Gravitational acceleration from acceleration only call
-8.442692 12018857E+00 - 1.233936337854853+00 -4.846593523466143+00
Gravitational acceleration from acceleration plus dgdx
-8.442692 12018857E+00 - 1.233936337854853+00 -4.846593523466 14E+00

Potential = 6.253598434407953+07

Analytic dgdx
1.87779 19164782 1E-06 4.992707413204393-07 1.965 15882331 1553-06
4.99270741320439E-07 - 1.465 199954933253-06 2.872 14 1 128 133073-07
1.965 1588233 1 1553-06 2.872 141 128133073-07 -4.1259 196 15449533-07

+ fast gravity model * Run Time: 2.22 Seconds

Gravitational acceleration from acceleration only call
-8.442692 120 18857E+00 - 1.233936337854853+00 -4.846593523466 14E+00
Gravitational acceleration from acceleration plus dgdx
-8.442692 120 18857E+00 - 1.233936337854853+00 -4.84659352346614E+00
Potential = 6.253598434407953+07

normallzed gravity model 'norm-II" ***I Run Time: 2.39 Seconds

Gravitational acceleration from acceleration only call
-8.442692 120188573+00 - 1.233936337854853+00 -4.84659352346614E+00
Gravitational acceleration from acceleration plus dgdx
-8.442692 12018857E+00 - 1.233936337854853+00 -4.846593523466 14E+00
Potential = 6.25359843440795E+07

Analytic d g h
1.87779 19164782 1E-06 4.9927074 13204393-07 1.965 15882331 1553-06
4.9927074 13204393-07 - 1.465 199954933253-06 2.872 14 1 128 133073-07
1.96515882331 155E-06 2.872 141 128133073-07 4.1259 19615449533-07

Note that the answers are identical to those in Ref. 121.

56 NASA CR- 188243 January 1893

B.2 5 x 5 Gravity Model Test Cme from Ref. 121
Position vector = 5489 150.0 . 802222.0 .3 140916.0 (meters)

Gravity Model Data - Gem-10 (See Ref I1411

rn3
p= 398-600.4739-, re= 6-378-139.0 m. Degree and order = 5

s2
I* standard gravity model [As given in Ref. [2]) ** Run M e : 3.82 Seconds

Gravitational acceleration from acceleration only call
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00
Gravitational acceleration from acceleration plus dgdx
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00

Potential = 6.253586939824503+07

Analytic dgdx
1.877732305031903-06 4.992593749544803-07 1.96507472 1 125573-06
4.99259374934480E-07 - 1.465 135648953593-06 2.8720884453 17963-07
1.96507472 1 125573-06 2.8720884453 17963-07 4.125966560783053-07

**** fast gravity model **** Run Time: 3.17 Seconds

Gravitational acceleration from acceleration only call
-8.442606335554723+00 - 1.2339324305 18343- -4.846524863326083+00
Gravitational acceleration from acceleration plus dgdx
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00
Potential = 6.253586939824503+07

**** normalized gravity model 'normRnIIa *'** Run Time: 3.38 Seconds

Gravitational acceleration from acceleration only
-8.44260633555472E+00 - 1.2339324305 18343+00 -4.84652486332608E+00
Gravitational acceleration from acceleration plus dgdx
-8.442606335554723+00 - 1.2339324305 18343+00 -4.846524863326083+00
Potential = 6.253586939824503+07

Note thqt the answers are identical to those in Ref. 121.

January 1993 NASA CR- 188243 57

B.3 Gravity Gradient Torque Test Core

A comparison of general gravity gradient torque. computed with degree=2 order=O.

with Roithmyar (Ref. 151) 52 only model is given below.

Gravity Model - Gem- 10 (See Ref 1 1411

Position vector = 5489 150.0 . 802222.0 ,3140916.0 (meters)

The rotation matrix from body to inertial is derfved from

pitch = 20.0 degrees
yaw = 30.0 degrees
roll = 40.0 degrees

Mass tensor = ((477.0 . 63.0 .0.0),
(63.0 . 770.0. 0.0 I,
(0.0 . 0.0 . 821.0 1);

gravity gradient-torque from general gravity model (Spherical 0x0)
-7.3839 160 15 193823-05 -6.34664808264096E-04 3.5 17470502376063-04

gravity gradlent-torque fiom general gravity model (2x01
-7.354301830663303-05 -6.340499798450333-04 3.52 179052 15 12853-04

gravity gradient-torque from Roithrnayr 52 model
-7.3543018306633D-05 -6.3404997984503D-04 3.52 179052 15128D-04

gravity gradient-torque from general gravity model (4x41
-7.354905924014393-05 -6.34 1023 124490053-04 3.522096103700633-04

Note that the torque changes slightly as more terms are included.
The major impact is expected to be control where the effect of
forces that are longitude dependent will be included.

58 NASA CR- 188243 January 1993

B.4 Magnetic Field Vector
The position vector was (meters)

8 = (5489150.0 , 802222.0 ,3140916.0)

Degree and Order = 10

The resulting magnetic field vector was mesh)

B = [-3.75259753018348E-05, -6.16002442001094E-06. 1.35 12 1 172654619E-05)

The mean radius of the earth was 637 1.2 km

The (10x10) harmonic data were taken from [11] Table 11, IGRF 1985

January 1993 NASA CR- 188243 58

Execution Timss for Fast, Normalized & Ref [2] Gravity Models
Tim w Drarec I Wrr

This comparison show the relative efficiencies of the various hnplementations. Note that
the normallzed models. while less efficient than the unnormalized model, are none the
less more eaRcient than the Refl21 model. This is a result of the data structures and the
precomputing of all possible derlved Legendre functions. The simple normallzed model
(norm-Il and the normalfied model (norm-II], which uses the recursion relationship
from 131, have very similar speeds. In the next plot, norm-I is not shown. Note also, that
the 'fast' model is approximately 20% faster than the Ref121 model.

60 NASA CR- 188243 January 1993

Figure 8.2

This plot. which was generated using the 50x50 GEM-T3 model 1151. shows relattve effi-
ciency as degree & order increase. The difference in the run times compared to those in
Flg B1 are a result of uslng a faster computer (Sun Sparc 11 instead of Sun Sparc I). Note
that past degree and order 27 the normalized model is slower than the algorithm in [21.
This is a result of the extra multiplication that must be done in the normalized methods
Anay. overcoming the benefit of precomputing some of the data. The 'fast" model is
always faster than 121. It is worth noting that, at 50x50, and zero latitude, the gravita-
tional acceleration vector computed using the simple normalized method (norm-I) dif-
fered from the other three in the last three (out of 16) places. The benefit of the recursion
relationship from 131 is begfnning to make itself felt. The other three agreed to 15 places.
The slight kinks in the plots are the result of tlmer noise and not some sudden change in
computation speed.

January 1993 NASA CR- 188243 61

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

-

- -- - -- -

Public reporting burden for this collection of information is estimated to average 1 hour wr response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other a m of thts collection of information.
including suggestions for reducing this burden, to Washington Headquarters Se~ices. Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington. VA
22202-4302, and to the Otfice of Management and Budget, Paperwork Reduction Project (07046188). Washington. DC 20503.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MCDonnell Douglas Space Systems
16055 Space Center Boulevard
Houston, Texas 77062-6208

Lyndon El. Johnson Space Center I Houston, Texas !77058

'

1 . AGENCY USE ONLY (Leave blank)

8. PERFORMING ORGANIZATION
REPORT NUMBER

1 9 SPONSORING 1 MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REP((NASA CR :

10. SPONSPRING l MONITORING

L
1 1 . SUPPLEMENTARY NOTES

2. REPORT DATE
February 1993

>RT NUMBER
188243

3. REPORT TYPE AND DATES COVERED
Contractor Report

4. TITLE AND SUBTITLE
Fast Gravity, Gravity Partials, Normalized Gravity, Gravity
Gradient Torque and Magnetic Field: Derivation, Code and
Data

- 6. AUTHOR(S)
Robert G. Gottlieb

Subject Category 46

5. FUNDING NUMBERS
NAS9-17885

12a. DISTRIBUTION /AVAILABILITY STATEMENT
Unclassified - Unlimited

/ 13. ABSTRACT (Maximum 200 words)
I

Derivation of first and second partials of the gravitational potential is given in both

12b. DISTRIBUTION CODE

normal i zed and unnormal i zed f orin. Two di f fereni recursion f ohul as are coki dered.
Derivation of a general gravity gradient torque algorithm which uses the second partial
of the gravitational potential is given. Derivation of the geomagnetic field vector is
given in a form that closely mimics the gravitational algorithm. Ada code for all
algorithms that precomputes all possible data is given. Test cases comparing the new
algorithms with previous data are given, as well as speed comparisons showing the
relative efficiencies of the new algorithms.

14. SUBJECT TERMS
Gravity, Magnetic Field, Gravitational Acceleration, Gravity
Gradient Torque, Normal ized Gravity

I I I
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18
298.102

15. NUMBER OF PAGES
64

16. PRICE CODE

20. LIMITATION OF ABSTRACT
Unl imi ted

17. SECURITY CLASSIFICATION 18. SECURITY CLASS~F~CAT~ONURITY CLASSIFICATION
OF ABSTRACT
Unclassified

OF REPORT
Unclassified

OF THIS PAGE
Unclassified

