
J

NASA Technical Memorandum 109092
_R

Common Spacebome Multicomputer Operating
System and Development Environment

L. G. Craymer and B. F. Lewis
Jet Propulsion Laboratory, Pasadena, California

P. J. Hayes and R. L. Jones
Langley Research Center, Hampton, Virginia

(NASA-TM-IOQOQZ) COMMON
MULTICGMPUTER OPERATING

DEVELOPMENT ENVIRONMENT

34 p

SPACEBORNE

SYSTEM AND

(JPL)

N94-30197

Unclas

G3/61 00047b_

February1994

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

TABLE OF CONTENTS

1. Introduction .. 1

1.1. Objectives .. 1

1.2. COSMOS overview .. 1

2. Background ... 3

2.1. HYPHOS .. 3

2.2. AMOS .. 3

2.3. Merging HYPHOS and AMOS .. 3

3. System Requirements .. 4

3.1. Development Environment .. 4

3.2. Target Hardware .. 4

3.2.1. Message Passing ... 4

3.2.2 Operating System .. 4

3.2.3. System Clock ... 4

4. A Model of Implementation 5

4.1. Message Passing Model .. 5

4.2. Software Components 5

4.3. Computer Groups .. 5

4.4. Time Management ... 6

4.5. Memory Management .. 6

4.6. Non-dataflow Tasks ... 6

4.7. I/O Operations .. 6

4.8. Runtime Log .. 6

4.9. Process Execution ... 6

5. The COSMOS Programming Language 9

5.1. COSMOS Dataflow Graphs .. 9

5.2. Tokens .. 9

5.3. Arcs .. 10

5.3.1. [Non]Consumable Arcs ... 10

5.3.2. Unique/Update Arcs .. 11

5.4. Nodes 11

5.4.1. Code for Graph Nodes ... 11

5.4.2. Dataflow Node Granularity ... 11

5.5. Inputs ... 10

5.5.1. Firing Rule Summary ... 11

5.5.2. Data-independent Inputs ... 13

5.5.2.1. Normal Inputs ... 13

5.5.2.2. Voting Sub-groups ... 13

5.5.3. Data-dependent Inputs .. 14

o

•

•

5.6.

5.7.

5.8.

5.5.3.1. Round-robin Merge Sub-groups .. 14

5.5.3.2. Priority Merge Groups .. 14

5.5.3.3. Select Groups .. 15

Outputs ... 15

Simultaneous Multiple Node Instantiations .. 15

Token Consumption/Generation ... 15

5.9. Token Preservation .. 15

5.10. Simulated Node Execution .. 16

5.11. Special Operations ... 16

5.11.1. Anti-tokens ... 16

5.11.2. Partial Completion ... 16

5.11.3. Multiple Inputs from an Arc ... 16

Performance Optimization 1 7

6.1. Control Graphs ... 17

6.1.1 Properties of control arcs ... 17

6.1.2 Control arc merges ... 17

6.2. Operating Points ... 17

6.3. Miscellaneous mutable parameters .. 18

The COSMOS Programming Environment 19

7.1. Programming ... 20

7.1.1. The Text Editor .. 20

7.1.2. The Dataflow Graph Editor ... 20

7.2. Compilation ... 20

7.2.1. The Dataflow Source Code Filter ... 20

7.2.2. The Dataflow Compiler ... 20

7.3. Execution & Simulation ... 22

7.3.1. The Dataflow Tester .. 22

7.3.2. The Data_flow Simulator .. 22

7.4. Debugging ... 22

7.4.1. The Dataflow Animator ... 22

7.4.2. The Dataflow Debugger ... 23

7.5. Performance Analysis & Optimization .. 23

7.5.1. The Dataflow Optimizer .. 23

7.5.2. The Dataflow Analyzer .. 23

7.5.3. The Dataflow Modeller .. 23

7.6. Tool File Exchange ... 24

References .. 2 6

ii

APPENDICES

Appendix 1. Intercomputer Services... 27
AI.1. Mailboxes And Queues ... 27

A1.2. Event Flags .. 27

Appendix 2. Definitions and Acronyms 28

Figure 0.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7a.

Figure 7b.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

LIST OF FIGURES

Simplified Excerpt of Martian Robot Rover Program 2

Dataflow Control Structure ... 7

Basic dataflow graph .. 9

Dataflow Arc Properties .. 10

Code token inputs for graph nodes .. 11

Properties of node inputs .. 12

Input Hierarchy ... 12

Graph showing simplest use of voting .. 13

Graph showing a'iple modular redundancy and voting 14

Priority Merge Input .. 14

Round Robin Merge Input to a Priority Merge 14

Select Input .. 15

COSMOS Tools ... ,... 19

Example Dataflow Source Code ... 21

COSMOS Tool File Exchange .. 25

NOTE:

The use of brand names in this document is for
completeness and does not imply NASA endorsement.

111

Acknowledgements

The front cover lists the primary authors of this document, but there are many others involved in the
COSMOS effort over the years who have reviewed it, or who have edited it and made substantial

revisions and significant improvements to the document.

• Asa Andrews, CTA INCORPORATED

• Leon J Alkalaj,
• David Cummings,
• Steve Levoe,

• Don D. Meyer,
• Karl M. Schneider,

Jet Propulsion Laboratory
Jet Propulsion Laboratory
Jet Propulsion Laboratory
Jet Propulsion Laboratory
Jet Propulsion Laboratory

• Harry F. Benz,
• Steve R. Ruggles,

Langley Research Center
Langley Research Center

• Mahyar R. Malekpour,
• Sukhamoy Som,

Lockheed Engineering And Sciences Company
Lockheed Engineering And Sciences Company

• Rodrigo Obando,
• Jack Stoughton,

Old Dominion University
Old Dominion University

• Douglas Blough,
• Krishna M. Kavi,

University of California at Irvine
University of Texas at Arlington

The research described in this document was carded out by the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration

(NASA), and by the NASA Langley Research Center.

iv

•

COSMOS Technical Specification

Introduction

The purpose of this document is to describe the Common
Spaceborne Multicomputer Operating System
(COSMOS), a software operating system designed for
NASA flight missions. This document is preliminary.
Reader feedback is welcomed to help guide future
refinements.

1.1. Objectives

COSMOS has focused on the following issues:

• system fault-tolerance and long-term
survivability with graceful degradation;

• dynamic code-patching (i.e. software updating);

• real-time processing of spacecraft subsystem

operations;

• multiprocessing issues, such as load balancing
over a common pool of processors;

• an integrated programming environment with
software tools to reduce the cost and time for

the development and maintenance of spacecraft
applications.

Fault-Tolerance. COSMOS provides software-based fault-

tolerance in four ways. First, software voting may be
specified for critical processes. Second, COSMOS
maintains a consistent global state on each computer.
Therefore, any computer could execute an enabled process.
Third, COSMOS confines errors to process boundaries:

the global state of the system is not modified except at a
point where a process has successfully completed
execution. Fourth, COSMOS supports checkpointing
with subsequent rollback. This feature is useful for
missions with less stringent fault-tolerance requirements.

Dynamic Code Patching. The concept of code and data

migration is fundamental to the COSMOS design. This
provides inherent support for the incremental replacement
of application code.

Historically, the onboard software for unmanned spacecraft
has been patched during flight -- at communication rates
of as low as 10 bits per second. A reliable method for
incremental replacement of application code is a necessity.

R¢al-Time Processing. COSMOS supports both

synchronous and asynchronous scheduling of processes. It
is possible to specify fixed, deterministic execution
schedules. It is also possible to specify repetition rates
and times of initiation and termination. Times may be
mission elapsed time, relative to when the specification is
commanded, or relative to the start or completion of a
designated process. When such timing attributes are not
specified, scheduling is asynchronously based on the
availability of inputs and resources.

Multiprocessing Environment. The COSMOS

computing environment is a distributed set of
homogeneous and heterogeneous computers. These
computers may be located in spacecraft subsystems with
high data-rate instruments. Hardware modules can be
added or removed dynamically without system interruption
or shut-down. The COSMOS kernel is present on each

computer; each computer maintains a copy of the global
state and participates in the load sharing. There is no
central controller.

Programming Environment. COSMOS provides end-to-

end support for programmers with a variety of software
tools (see Section 7), including performance ehanccment
and debugging tools. COSMOS provides an easy to use
visual programming interface which gives improved
visibility into spacecraft program behavior and also
supports fault-tolerance features of COSMOS. See
Figure 0 and the next section.

1.2. COSMOS Overview

An application program -- such as the Mars rover control
program shown in Figure 0 -- is called a "graph." A
graph consists of boxes which are interconnected by arcs.
Data flows from a box output to an arc to a box input;

along the journey the data is packaged into what is called a
"token." The presence of a token on an arc is represented
by a filled circle on the arc.

The boxes in Figure 0 represent processes. Instantiation
of a process is possible when all inputs have tokens.
When an instantiation completes, tokens are placed on

outputs.

COSMOSTechnicalSpecification

Theprogrammer creates graphs by using a tool called
"The Dataflow Editor". The programmer literally draws
arrows on the screen to specify the flow of data from one

process to another. The programmer uses a conventional
language such as C to write source code for the processes.
Process source code must follow a few conventions in

order to be compau_)le with COSMOS.

COSMOS graphs may be decomposed into dataflow
graphs and control graphs (control graphs also follow a
"dataflow" paradigm, but the distinction between graph
types is convenient). Dataflow graphs are immutable:
only the tokens change over time. Dataflow graphs
represent the fundamentals of an application.

Control graphs, on the other hand, represent artificial data
dependencies that change as the operating environment
changes. Control graphs mold the pattern of execution
within a dataflow graph to enhance predictability. They
are superimposed over dataflow graphs.

Section 6 provides further details on control graphs.
Further details on the COSMOS programming language
and environment are available in Sections 5 and 7.

i ili

 a i i i i i i i i iii i iiii !i!i ii!ii iiiiiiii iiiiiiiiiiiiiiiii!iiii iiii ii iiiiiiiiiiiiiiiiiiiiiii!iiiii!ii iiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiii!iiiiiii iiiiiiiii !iiiiiiiiii iiiiiii ii ii ii! i !i ii ii! i iii iii iiiii i! iii iiiii iii!i ii a } i

Signals to start other control functions
•

iiiiiiiili!ii i ! iii iiiii!ii!iiiiiii!iiiii

Figure 0. Simplified Excerpt of a Martian Robot Rover Program Written In COSMOS Dataflow.

o

COSMOS Technical Specification

Background

Sponsored by NASA's Data Systems Program of the
Civil Space Technology Initiative (CSTI), the COSMOS
design evolved from multicomputer spacecraft technology
developed by the Advanced Flight Computer Group at the
Jet Propulsion Laboratory (JPL) and the Multiprocessing
Technology Group at NASA's Langley Research Center
(LaRC). The operating system developed by JPL (called
HYPHOS) and the operating system developed by LaRC

(called AMOS) are both based on the dataflow
programming paradigm, although the reasons for this are
quite different. JPL was attracted to dataflow as a possible
solution to problems of spaceborne computing: fault-
tolerance (a dataflow system is "always" in a defined
state), code-patching, and minimization of hardware

redundancy by providing a common pool of processors
with transparent multiprocessing rather than the traditional

approach of replicated subsystems. I_aRC was attracted to
dataflow as a basis for predictable, reliable real-time
systems for control applications, and has focused on
optimizing performance of real-time control applications.
The concepts and strategies of each are merged to form
COSMOS.

2.1. HYPHOS

HYPHOS operating system development has been focused
on the general-purpose features needed by independent and
cooperating spacecraft subsystems operating
asynchronously on an event-driven basis.

The fault-tolerant operating system was developed for the

MAX general-purpose fault-tolerant multicomputer, also
developed by JPL. The first generation MAX was
developed as four interconnected computers based on
Motorola 68000 microprocessors. Ten computers are now
operational for the second generation MAX system which
was designed with space-qualifiability in mind. Each
computer uses two National Semiconductor 32032

microprocessors.

The HYPHOS system provides development tools to
design dataflow graphs, to diagnose execution traces, and
to ensure reliable software implementation.

2.2. AMOS

Preceding the design of the operating system, LaRC first
proposed an Algorithm To Architecture Mapping Model
(ATAMM), which is a Petri net based multicomputer
strategy for mapping graph nodes onto computers in a
manner which is predictable and deadlock free [_.]. It is

applicable to both data-driven and to data-independent

graphs 1.

The ATAMM Multicomputer Operating System (AMOS)
focuses on providing highly predictable and optimal real-
time performance of periodically executing large-grain
processes in a dataflow architecture, both with and without
dynamically changing the number of available computers.
For a given number of computers, an operating point
defines a schedule of dataflow execution. Such a schedule

is enforced by controlling the input data injection rate and
by using control arcs between graph nodes as necessary.
Control arcs force a specified execution sequence among
graph nodes, even when the nodes have no data
dependencies among them. Signal processing and control
applications are among the candidate applications.

The first generation of AMOS was implemented on the
Westinghouse 4-computer 1750A VHSIC Advanced
Development Model (ADM) 1"2]. A second generation
version of AMOS has been implemented on a 4-computer
GVSC development platform [3, 4,5, 6]. The GVSC
is also based on the 1750A instruction set architecture.

Both systems utilize a Parallel lnterprocessor (PI) bus.

AMOS provides various software development and
diagnostic tools. The ATAMM Environment Tools
include a Design Tool for analyzing and modifying

graphs, determining the optimum performance bounds
versus the number of computers, and determining specific
operating points for user-selected performance. The
Dataflow Modeller provides simulation of graph
execution. The Dataflow Analyzer plays back the results
of either simulations or actual hardware executions

(including the cases where the number of available
computers has changed during execution). The Graph
Entry Tool is used to draw and edit graphs.

2.3. Merging HYPHOS and AMOS

Neither HYPHOS nor AMOS alone meet all the necessary

requirements for embedded spacecraft control, command,
and data handling. COSMOS merges the general purpose
features of HYPHOS with the real-time predictability and
control of AMOS.

COSMOS, when implemented on suitable computing
hardware, provides a user-friendly algorithm design,
mapping and execution environment for a wide range of
spaceborne applications. Development is ongoing to
enhance performance predictability for combinations of
data-independent and data-dependent dataflow graphs.

1 Data-independent implies decision free Petri-nets (i.e.,
Marked graphs).

•

COSMOS Technical Specification

System Requirements

3.1 Development Environment

The COSMOS development environment will run on a
UNIX workstation which supports X Windows (Release 4
or later) and the Motif Window Manager (Release 1.1.1 or

later).

3.2. Target Hardware

COSMOS is designed to function on a wide variety of
multicomputer hardware platforms. Only one high-speed
intercomputer communication mechanism is strictly
necessary. For performance reasons it is desirable to have
two separate interconnection networks: one dedicated to
the fault tolerant broadcasting of operating system

synchronization messages, and the other for data
transmission.

Intended to address the needs of a wide variety of potential

customers, COSMOS can be implemented -- at some cost
in fault coverage -- on a shared memory multicomputer
system, a network of UNIX workstations, or even on a
single processor. There is probably a performance benefit
from a shared memory configuration, and the single
processor implementation sacrifices fault-tolerance but

gains in relative performance since interprocessor overhead
vanishes. However we will assume in this document the

presence of a loosely-coupled set of computers which
communicate by message passing.

3.2.1 Message Passing

The computers may be heterogeneous, but all computers
must use a common message passing mechanism. If the
system includes special purpose computers which are
unsuitable for running a COSMOS kernel -- such as high
data rate signal processors -- then it is assumed that these
will be controlled by general purpose computers.

The broadcast mechanism used by any particular

implementation of COSMOS will depend upon the
available communications hardware. To maximize fault-

tolerance, the broadcast mechanism should be "Byzantine
resilient" (see Section 4.1), and COSMOS assumes that
this is the case. However the Byzantine resilient bus may
be a physical or a virtual bus, depending on the target
hardware system. The operating system design is properly
segmented so that the message broadcasting software may
be easily changed -- in fact, a version of COSMOS is
currently being implemented on a UNIX workstation
network.

3.2.2 Operating System Kernel

COSMOS can be designed to execute on a bare machine,
provided the usual multitasking services listed below are

implemented.

• Multiple process threads.

• Priority controlled, event-driven process
scheduling.

Interprocess communication and syn-
chronization, e.g. mailboxes, queues, and
semaphores.

• Time management.

• Hooks for dynamic memory management.

• Interrupt handler services.

Priority-driven multitasking is important because it
allows rapid response to changing system demands.

Dynamic memory management is used to manage
memory for process code. It is also used for data tokens
whose memory is not statically assigned.

COSMOS can also be implemented on top of an off-the-
shelf kernel that supports these services. For example,
the HYPHOS system uses the VRTX kernel from Ready
Systems, Inc. This kernel is available for a wide variety
of microprocessors, including 1750A instruction set

processors.

The AMOS implementations have used the InterACT Ada
compiler for the 1750A Westinghouse ADM system and
the TLD Ada compiler for the GVSC 1750A system.
Both of these systems have used a modified Ada kernel.

3.2.3. System Clock

By default COSMOS maintains a global system time
without the use of a master clock, but a master/slave

clock synchronization procedure can be added to COSMOS
at the application level. Reference [7] addresses the
tradeoffs between the master/slave and the distributed clock

approach.

e

COSMOS T_hnic_l Sp_ificoti0n

A Model Of Implementation

This section describes the current implementation model

of dataflow management in COSMOS. The model
assumes Byzantine resilient message broadcast, allowing
each computer to maintain a consistent global graph state.

4.1. Message Passing Model

The two types of messages that are passed among the
computers are data messages (tokens) and synchronization
messages. Control tokens are included in the
synchronization messages.

Data Messages. Data messages are used to transfer data

between computers. If a computer needs data from another
computer, it opens a logical channel to that computer and
sends it a message requesting the data. The message
identifies the desired data with a handle rather than with a

physical address. This allows the receiving computer to
check the validity of the request before the data (or an error
message) is returned to the requester. The requester then
breaks the channel between the computers.

A computer requesting a data block will already know the
corresponding checksum value since that was broadcast in
the synchronization message that announced the token.
The data transfer mechanism does not need to be fault

tolerant, since data transfer errors are detected when the
message is received; the only restriction imposed is that
no computer be able to modify data in another computer
and that a path can be found to route messages from one
computer to another.

Synchronization Messages. Synchronization messages are

used by the operating system to coordinate the activities
of the computers. These messages are short, typically
about 30-40 bytes. Synchronization messages can be
broadcast to all computers or to a designated subset.

COSMOS assumes that the broadcast of synchronization

messages is Byzantine resilient [8]. That is, each
computer must know whether or not all computers
successfully received a message. In addition, messages
must be received in the same order by all computers.
Each message must identify the broadcasting computer in
a way such that neither application software nor hardware
errors can cause a message to be mislabeled as coming
from some other computer.

In JPL's MAX multicomputer system, all computers are
connected to a redundant serial bus with Byzantine
resilience, called the Globalbus [9, 10].

In LaRC's ADM and GVSC systems, a PI-bus is used to
link computers which have a distributed memory. These
hardware systems are intended to be within a fault
confinement region. A computer performs operations

similar to a MAX synchronous broadcast by obtaining
exclusive access to the graph, updating the graph state in
all computers, and then releasing graph access. The
GVSC employs EDAC (error detecting and correcting)
memory and provides automatic retry in the case of
memory access failure.

A similar but more fault-tolerant approach is being used
in the 16-bit Advanced Spaceborne Computer Module
(ASCM) and in the 32-bit Advanced Technology Insertion
Module (ATIM) currently being space qualified by the Air
Force. These are VHSIC hardware candidates for future

COSMOS implementations.

4.2. Software Model

Processes represent the basic unit of concurrency in
COSMOS. Multiple processes may be scheduled for
concurrent execution. The graph of inter-process
dependencies is referred to as the dataflow graph, with each
process represented as a graph node. Dependencies
between nodes are represented by arcs connecting the
nodes. The dataflow graph also includes the specification
of various properties of the processes such as data sizes,
memory requirements, etc.

"Ihe execution of a dataflow graph is data driven: a
process is available for execution only when all necessary
inputs to the node are available. These inputs include data
tokens and control tokens. (Code for the graph node is
packaged in a specialized token, a "code" token.)

Each computer in a COSMOS system maintains a
description of the entire graph and its current state. All
changes to the graph state (e.g., process acquisition,
process completion and announcement of outputs) are

made in response to broadcast synchronization messages.
All of the computers, including the broadcaster, make the
graph state changes when the broadcast is successfully
completed. This ensures that a consistent graph state is
maintained among all computers 2.

4.3. Computer Groups

The computers in a COSMOS system are logically
divided into one or more "Computer Groups." These
groups may overlap (a computer may belong to more than
one group) and group memberships may be changed at
runtime by broadcasting synchronization messages.

2 Alternative approaches may be appropriate if shared

memory and/or single-bus multicomputer systems are
used.

CQSMQSTechnicalSt_cification

Computer groups are used to control the allocation of
processes to computers. Within the dataflow graph, each
process is assigned to a single computer group. Only
computers within the specified group may execute the

process.

If a process is assigned to a computer group containing
only one computer, the process is statically assigned to

that computer.

For redundant software voting, each instance of a process

is assigned to a different computer group. The different
computer groups for the process must not overlap.

In heterogeneous systems, different types of computers are
assigned to non-overlapping computer groups.

4.4. Time Management

By default COSMOS maintains a global system time
Without the use of a master clock. Each computer

regularly broadcasts a synchronization message containing
its version of the global time, allowing the computers to
converge on a consistent global time. Each computer
may also maintain a local time for managing services that
are strictly local to a computer such as program delays and
I/O time-outs.

For graphs that contain control arcs, it is possible to
specify the repetition rate of graphs, as well as times of
initiation and termination. Times may be the global time

(mission elapsed time), a time relative to when the

specification is commanded, or a time relative to the start
or completion of a designated process or graph.

4.5. Memory Management

A COSMOS dataflow process is not scheduled until
sufficient memory for its execution and output tokens can
be allocated. Static allocation of process execution

memory and/or output token memory may be specified in
the dataflow graph to avoid allocation overheads.

4.6. Non-dataflow Tasks

Dataflow and non-dataflow processes may coexist within a
COSMOS system. The non-dataflow processes are either

interrupt service routines or tasks managed by the
multitasking kernel. Such a process is statically assigned
to a single computer.

Dataflow and non-dataflow processes can exchange data
and control information using the global (intercomputer)
mailboxes and queues described in Appendix 1. If all of
the processes are statically assigned to the same computer,
local mailboxes and queues managed by the operating

system kernel may be used.

4.7. I/O Operations

I/O operations may be performed by dataflow functions
using the normal non-dataflow methods. Interrupt service
routines and handlers may be installed in the operating

system kernel. Processes may also manipulate I/O
directly.

Functions may be restricted to execution on a single

computer. Where fault tolerance is required, the I/O
hardware and the dataflow function(s) are duplicated on two
or more computers. The functions then vote on their
operations by comparing input tokens. I/O may also be
performed by non-dataflow processes.

4.8. Runtime Log

When a dataflow program is executed under COSMOS, a
user-selected set of events may be logged. Each log entry
is time-stamped. Loggable events include but are not
limited to:

• an acquistion of a node by a computer

• a completion of a node by a computer

• a transfer of data between computers

• an occurence of a fault

This log is used for off-line analysis of the performance of
specific applications and operating system overhead, as
well as post-execution animation of the dataflow graphs.

4.9. Process Execution

The control of dataflow execution is distributed among the

COSMOS computers. Each computer has a complete
description of the dataflow graph.

Within each computer, dataflow processes are controlled
by several COSMOS functions organized around a shared
data structure describing the graph and its current state.
Figure 1 shows the important data and control paths.

The dataflow control cycle begins when a graph node is
fireable; follows with acquisition, execution, completion,
and announcement of output tokens; and ends with the

distributed updating of the graph state.

A graph node is fireable when all of its data and control
inputs are available, its output arcs have room for its
output tokens, and any timing constraints (such as
starting time) have been met.

CQSMOS Technical Specification

When a graph node is fireable, the Process Requester on
each idle computer evaluates whether its computer has
sufficient resources and rights (e.g., is a member of the

node's computer group) to execute the corresponding
process. Load balancing is implemented in the Process
Requester.

Each Process Requester that decides that its computer
could execute a fireable graph node broadcasts a "request

for process acquisition" synchronization message
specifying the graph node.

The Graph Manager on each computer receives all
dataflow messages. When a process acquisition request is
received, the request will be granted if the graph node is
still fireable (it is possible that another computer is

granted rights to the process before this process
acquisition request is processed). All computers in the
system have the same information and will reach the same
conclusion about fireability. There is no need for an

acknowledgment message.

If the Graph Manager grants a process acquisition request,
it makes a note of the assignment in its copy of the Graph
State and evaluates the fireability of the node's next

generation. If the node is fireable again, it notifies the
Process Requester that there still are fireable nodes.
If the Graph Manager grants a process acquisition request
and if the request was broadcast from its own computer, it
schedules a "Dataflow Template" process that executes the
requested process. When the Dataflow Template process
starts execution, it asks the Data Manager to collect the

input tokens for the process.

The Data Manager controls the collection of copies of
tokens for a computer, taking care of Data Transfer
Network activities and of multiple requests for copies of

the same token. If the data part of a token needs to be
copied from another computer, the Data Manager sends a
request to a computer containing the data. The Data
Manager on that computer then returns a copy of the
token's data. After the tokens are collected, the Dataflow

Template process executes the code for the process.

When the code for a graph node has completed execution,
the Dataflow Template process broadcasts a

synchronization message announcing the process's
completion and identifying the output tokens produced, if
any. The actual token data is not broadcast, unless the

process all process
acquisition dataflow completion
messages messages messages

Process Graph Dataflow

Requester Manager Templates

Policies

Pre-emptability
Locality
Availabilit'

Fireable Dataflow Graph
Process Graph State DataManager

List

token I
data

Figure 1. Dataflow Control Structure

COSMOS Technical S_vecification

token data fits into a single long word. 3 For critical
token data, a mechanism does exist for storing redundant
copies on another module.

When the Graph Manager receives a process completion
message, it updates the process and token information in
its copy of the Graph State. The fircability of graph
nodes receiving tokens is reevaluated. If the Graph
Manager finds that one or more graph nodes become
fireable, it notifies the Process Requester that there are

fireable processes to be evaluated.

This completes the summary of the dataflow control
cycle.

3 The single-word broadcast feature is used to implement
the select control signal in a select group.

•

COSMOS Technical Specification

The COSMOS Programming Language

COSMOS uses a coarse-grained dataflow language
wherein each graph node represents a process. A node's

processing is commonly on the scale of an ordinary
application "subprogram".

By using the dataflow paradigm at the process level,
COSMOS gains several advantages:

• natural extraction of parallelism

• a solid framework for modular software

development

• fault containment at process and computer
boundaries

• ease ofruntime code patching

• ease of checkpointing and rollback -- a

COSMOS program is always in a defined state

• synchronization among tasks is defined
exclusively by the data and control

dependencies specified in the dataflow graph.

In the following sections, the COSMOS "dataflow"

programming language will be detailed.

Node Output Input

J A-- _

Figure 2. Basic dataflow graph.

5.1. COSMOS Dataflow Graphs

A dataflow graph consists of a collection of nodes, inputs,

outputs, arcs, and tokens. The nodes represent the
application processes and the inputs, outputs, and arcs
define how such processes exchange data and control
signals. Each node is connected to a set of inputs and to a
set of outputs.

Arcs connect outputs to inputs and show the only flow of
data among nodes. The presence of data packets is
represented by tokens on arcs. Nodes, inputs, outputs,
and arcs can each be assigned various attributes that affect
the operation of a dataflow application. These attributes
are specified in the dataflow graph.

Figure 2 shows a fragment of a dataflow graph. A node
may have several inputs and outputs. If a single output is
connected to several arcs, tokens generated by the output

will be effectively duplicated on each output arc.

A dataflow node is ready for execution (fireable) as soon as
all the required inputs are available, any timing constraints
have been met, and there is sufficient memory for its
execution and the output tokens.

The following sections describe the properties of tokens,

arcs, nodes, inputs and outputs.

5.2. Tokens

Tokens are used to encapsulate data structures that are
exchanged among graph nodes. _.

When an instance of a graph node is scheduled for
execution, the input tokens that the node process receives
are "reserved" for it. These tokens are not consumed until

the process successfully completes. Thus, if a fault
occurs, the input tokens are available for rescheduling of
the node's execution.

All data tokens contain a header and a data body. The
header describes the token attributes including its size, its

checksum, a tag representing the data packet number,
which arcs have consumed it, which computers have

copies of its data, and a time stamp. The data body
contains the actual data. Control tokens are represented

only by a count, except for merged control inputs where
properties of the control arc are involved and control
tokens are queued as references to control arcs.

The data body can contain either computational data or
executable code. The code for a graph node is supplied as

an input token to the node. This is done primarily to
simplify code patching, but also simplifies checkpointing,

9

COSMOSTechnicalSpecification

codemigration,and codepreservation.Thesame
mechanismsareusedtohandlebothcodeanddatatokens.
Whenoutputdatais announcedasa resultof a graph
node'sexecution,eachcomputercreatesatokenheaderto
describethedata. Initially, only thecomputerthat
executedthenodewillhaveacopyoftheactualdata.The
tokensonothercomputerswill havenull databodies.
Copiesof thedatabodieswill besenttoothercomputers
asneededforexecutionofprocessesreceivingthetokens.

5.3. Arcs

Tokens logically move on arcs between graph nodes.
Arcs are implemented as queues whose size may be user-
specified. An arc's queue size defines the maximum
number of tokens that may reside on the arc at any given

time. If any of a node's output arcs are full, the node
cannot be executed.

Initial tokens may be placed on arcs prior to the start of

graph execution.

More than one arc may emanate from a single output of a
dataflow node. When a token is generated on an output
connected to more than one arc, the token is effectively

replicated on each arc. The code implementing a graph
node has no knowledge of the arcs connected to its

outputs.

More than one arc may be connected to a single input of a
dataflow node to form a compound input. The properties

assigned to such an input determine how tokens are used
from the arcs. This is explained in the sections below on
Inputs.

An arc has user-specified attributes--consumability and
update/uniqueness--which affect its operating
characteristics.

If an arc is specified as consumable, tokens on the arc will
be assigned once and only once to the node receiving the
arc. The tokens will be assigned in order.

If an arc is specified as nonconsumable, the (logically)
oldest token on the arc will be available for every firing of
the node receiving the arc. A token on such an arc will be
removed if the node that produced the token subsequently
outputs an anti-token (see Section 5.11.1).

If an arc is specified as an update arc (not a unique arc),
there will be at most one unreserved token on the arc. If

such an arc already has an unreserved token on it when the
node supplying the arc outputs another token, the new
token will replace the older token. Thus, only the most
recent token will be available on the arc.

If an arc is specified as a unique arc (not an update arc),
tokens will remain on the arc until they are consumed by
the node receiving the arc (or until the node supplying the
arc outputs an anti-token).

These choices lead to four possibilities for both data and
control arcs, as summarized in Figure 3.

A normal arc is both consumable and unique, and carries
data tokens. The token data type must match the data
types of the input/output to which the arc is connected.

5.3.1. [Non]Consumable Arcs

If the arc has the consumable parameter, the next input
token on that arc is reserved when the next instantiation of

the receiving node is assigned to a computer, and the
token is consumed when the instantiation successfully
completes. The next instantiation of the receiving node
will use the next token on the arc.

The nonconsumable parameter is specified when tokens
from an arc are to be used in multiple instantiations of the
receiving node. When a token on such an arc is assigned
to a node firing, it is immediately available for a
subsequent firing of the same node. Nonconsumable
tokens are used for constants, code tokens and sensor data

that may be repeatedly used.

Unique Consumable Arc

Update Consumable Arc

Unique Non-consumable Arc

Update Non-consumable Arc

Normal first-in/first-out arc. Each token is used once and only once.

Only the most recent token is available. It will be consumed after it is
used once.

Not normally used. The oldest token is repeatedly used as input to the
node receiving the arc.

Only the most recent token is available. It will not be consumed after it is
used and will be available lor subsequent lirings of the node receiving
the arc. Used lor code and data constants.

Figure 3. Dataflow Arc Attributes.

10

COSMOS Technical Specification

5.3.2. Unique/Update Arcs

The update attribute specifies that an arc can have at most
one unreserved token. When a new token is announced on

the output supplying such an arc, any unreserved token on
the arc will be replaced by the new token. Tokens on the
arc that are already reserved for a node firing are not
affected until they are consumed (at which time they are

replaced by the new token). An arc with both the update
and the nonconsumable attributes is used for code tokens,
where an update implies a code patch. Similarly, when an

update arc is used for sensor data, new data replaces old
data so that only the newest data is available.

If the unique attribute is used instead, all tokens must be
used in order and cannot be updated or replaced. Tokens
accumulate on an unique arc in their order of creation.

5.4. Nodes

COSMOS dataflow nodes describe coarse-grain

functionality. A graph node has attributes such as
execution priority and memory requirements. The code

implementing a dataflow node is treated as an input token,
as described below. A graph node also has inputs and

outputs with attributes of their own, as described in
subsequent sections.

5.4.1. Code for Graph Nodes

When a COSMOS system is initialized, the code for each

node may be located on one, more than one, or all
computers, at the user's discretion. The executable code
that is used for a node firing is supplied as one of the

node's inputs. This allows for simple and reliable
replacement of code, i.e. "patching" while the program is

executing.

Treating code as an input to a node permits process
migration. If the code required by a node is not available
locally, the code token will be requested, just as other data
tokens are requested.

Code is normally supplied to a graph node from a
nonconsumable update arc. The arc is nonconsumable so
that when a code token is reserved for a node firing, it is

immediately available for the next node firing. If it is
required to replace the code for a graph node, a token
containing the new code is announced on the output
supplying the code arc. Subsequent firings will use the
new code token. However, nodes already scheduled (or

currently executing) will continue to use the old code.

Figure 4 shows the code token inputs for the nodes of a
simple graph. In this case the three arcs supplying code
tokens would in general come from different outputs of a
node that distributes code tokens. Such a distribution

Nonconsumable

Code token update arc

c ii!!i!

distribution

node

Figure 4. Code token inputs for graph nodes.

node might itself receive new code tokens from a

spacecraft command system. If two or more graph nodes
use the same code, their code token arcs come from the

same output of a distribution node.

To simplify the figures, the code token input to nodes is
not usually shown in COSMOS dataflow graphs.

5.4.2. Dataflow Node Granularity

In general, the dataflow paradigm may be used with a
range of code granularities or average execution times for
dataflow nodes. If the granularity is too fine, however,
the overhead of managing the dataflow execution becomes
significant compared to the average process execution
time. On the other hand, if the granularity is too coarse,
the benefits of the dataflow paradigm are reduced. An

optimum granularity depends on a variety of factors
including context switching overhead, fault-containment
boundaries, size of local memory (or cache memory for

code) and intercomputer communication delays.

In general, it is advantageous to select a uniform
granularity for all dataflow nodes within an application
since this simplifies load balancing.

11

COSMOS Technical S_t_ecificatioq

5.5. Inputs

The code implementing a dataflow node receives its input
data from tokens supplied by inputs attached to the node.
This section describes the pxoperties of such inputs.

The inputs to a dataflow node are arranged in a two-level
hierarchy:

Arcs are bundled into "sub-groups";

Sub-groups are bundled into "groups."

Each input sub-group terminates one or more arcs. There
are two types of input sub-groups: "Round-robin Merge"
and "Voting."

Each input group consists of one or more input sub-
groups. There are two types of input groups: "Priority

Merge" and "Select."

The purposes of the input groups and sub-groups are listed
in Figure 5. The input hierarchy is shown in Figure 6.

The priority merge input group supplies one token to each
firing of the dataflow node. A select input group supplies
two tokens to each fring of the dataflow node: a select
value and a selected token. A process has no awareness of

the input groups and subgroups which feed it tokens:
each input group is viewed as providing one (priority
merge) or two (select) token values.

The code implementing a dataflow node has no knowledge
of the node's input structure other than the number of
tokens supplied for each firing. Thus, if more than one
arc is connected to a priority merge input group the code
will have no way of determining which arc supplied the

group's token for a particular firing.

5.5.1. Firing Rule Summary

A datatlow node is ready for execution (f'ureable) as soon as
all the required inputs are available, any timing constraints
have been met, and there is sufficient memory for its

execution and output tokens. The required inputs are
available when all of the node's input groups are "ready."
This section summarizes the rules determining when an
input group is ready.

Priority Merge Group. Receives tokens from one or more

input sub-groups. Such a group is ready if at least one of

its sub-groups is ready. The sub-groups are given
priorities so that if more than one sub-group is ready
when the receiving dataflow node is fired, a token will be
taken from the higher priority sub-group.

Sub-

Arcs arouos Groups Node

• •
• •
• •

r

v

;:::::::;:::::
,... ,....,

::::::::::::::
::::::::::::::

:.:,:,:.:.:+

i!iiiiiiiiiiii
:+:.:.:.:+

+:.:+:.:.:

iiiiiii!!!!i!!
i:i:i:i:i:i:i:

;iiiiiiiiiii;ii
iiiiiiiiiiiiii
:!:_:i:!3i:i

ii!!iiiiii!ii_

!iiiiiiiii!il

:iiiiiiiiilili_

 iiiiiiiiiiiiiiiiii
_!i!!!ii!ii!!!i!i!;!_i_

ii!iii!iiiiiii ii!iii
i!iiiii!_ii.:.'._ii'!ii_il
:!:_:!:!:!:i:i:_:!$_:!
.:.:.:,:.:.:,:.:.:.:.:.:

,:.:+:.:.:.:.:.:.:.:.:

;il;il;!i;iiiiii!i!iiii;

i!i?i!i!i!ii!ii!!iiiiiii

!iiiii!_iliiiiiiiii?iiii
ii!i!iiiiiiiiiii!'iiiii?

.:.:.:.:_.:.:.:.:,:.:.:

iiiiiiiiiiiiiiiiiiiiili

Figure 6. Input Hierarchy.

Select Group. Receives tokens from a selectable input

sub-group. Contains a "select control" input sub-group
and one or more "select body" input sub-groups. The arcs
connected to the select control sub-group must contain

Priority Merge:

Round-robin Merge:

Select:

Voting:

Used to receive tokens from multiple sources. Sources are prioritized.

Used to receive tokens from multiple sources. Sources are of equal priority.

Used to receive tokens from multiple sources, A control token determines which
source is used.

Used to check for an exact match between two or more sources of tokens.

Figure 5. Properties o! node inputs.

12

COSMOSTechnicalSpecification

tokenshavingintegervalues.Theselectbodysub-groups
areassignedindices:0,1,2 A select group is ready if
its select control sub-group is ready and if the select body
sub-group indexed by the select control token is also

ready.

Round-robin Merge Sub-group. Receives tokens from

one or more input arcs. Such a sub-group is ready if there
is at least one token on at least one of the arcs. After a

particular arc supplies a token for a node fn'ing, the other
arcs of the sub-group are checked for tokens that are
available for the next node firing. Thus, the arcs are

accessed with equal priority.

Vote Sub-goup. Checks for an exact match between two

or three input arcs. Such a sub-group is ready if at least
two of the arcs have matching tokens.

Normal Input. Receives a token from a single arc. It can

be considered a priority merge group fed by one round-
robin sub-group connected to one arc. A normal input is
ready when the arc supplying the input contains a token.

The following sections describe the input structures in
more detail.

5.5.2. Data-Independent Inputs

In the simplest case, the fireability of a dataflow node does
not depend on the values of its input tokens; it depends
only on the availability of inputs and resources. Graphs
or parts of graphs that use only these "data-independent"
rules will have predictable behavior in terms of execution
time, computer availability, and memory usage.

A graph node's firings will be data-independent only if all
of its inputs are normal inputs, with or without voting.

5.5.2.1. Normal Inputs

The basic input to a graph node is the "normal" input.
Only one arc may be Connected to a normal input. The
input is ready when the arc contains an available token.
When a node is executed, it will use one and only one

token from each of its normal inputs.

Depending on the consumability attribute of the arc
connected to the input, a token may or may not be reused

by a subsequent firing of the node.

5.5.2.2. Voting Sub-groups

COSMOS implements software "voting". Voting detects
faults which occur during the execution of critical
processes. Once detected, transient faults -- such as a bit-
flip caused by a stray cosmic ray -- will be corrected by
the operating system. Hard failures may require system
reconfiguration.

In COSMOS, a user can specify which processes shall be
voted -- only critical processes need incur any associated
overhead. Note how COSMOS differs from other

implementations where voting is obligatory. There must
be exactly 3 processes supplying voted inputs (i.e. exactly
3 "voters"). A simple example is shown in Figure 7a.
Figure 7b shows an example of triple modular redundancy.

Note that the code implementing the function of a node
with voted inputs has no knowledge of the voting;
COSMOS performs the proper voting and supplies the
code with correct data.

Triplicated Process

}!!iii ot, ng

Figure 7a. Graph showing simplest use of voting.

In the event one votcr disagrees with the other two,
COSMOS records the mismatch along with an
identification of the computer which produced it. All

processors are notified of the mismatch. A user-defined
fault-response process subsequently may deal with the

faulty module.

In the event all voters disagree, COSMOS initiates a user-
defined recovery process. This process may instruct
COSMOS to roll back to a checkpointed state and resume
exccution.

Although not apparent at the graph level, in two special
cases COSMOS actually performs a 2-way vote rather
than a 3-way vote.
• If the first two voters agree, there is no need to wait

for the third to complete in order to determine the
vote outcome (if the third vote turns out to be a

13

COSMOS Technical Specification

mismatch, the mismatch will still be logged
however). 5.5.3.2. Priority Merge Groups

• As an optional optimization, one of the voters may Priority Merge inputs (sub-groups) are given a numbered
be set to "shadow" status; as a "shadow", its relative priority beginning at 0, for the highest priority.
execution is not even initiated unless the first two Tokens from arcs in higher priority sub-groups are
voters both finish voting and disagree with each consumed firsL Tokens from arcs in lower priority sub-
other, groups will not be used until all higher priority arcs are

empty. Figure 8 shows an example of a Priority Merge
input. In this case there is one high priority merge input
(labeled with a "0") and one lower priority merge input

Triplicated Triplicated (labeled with a "1").

[node _ (node

Figure 8 Priority Merge Input

Figure 7b. Graph showing triple modular
redundancy and voting.

5.5.3. Data-Dependent Inputs

It is also useful to have data-dependent firing rules. Here,
a node may not require tokens on all input ares, and
sometimes (see "select groups") the value of a data token
determines which input tokens are used.

Each input arc may have any of the attributes described in
Section 5.3.

5.5.3.1. Round-Robin Merge Sub-Groups

A Round Robin Merge sub-group is perhaps the most
commonly used data-dependent firing rule. It is connected
to two or more arcs of equal priority. After a token from
one arc in a Robin Robin Merge is used, further tokens on
that arc will not be used until one token from each of the
other non-empty arcs is used. In other words, the first arc
will be used next if (and only if) all other arcs in the
Round Robin are empty.

Round-robln

sub-group

Priority merge
Input

Figure 9. Round Robin Merge Input to a Priority
Merge

14

COSMOS Technical S_tccification

Figure 9 shows another example of a Priority Merge
Input. The lower priority merge input consists of a single
normal input like in Figure 8, but in Figure 9 the high
priority merge input consists of two arcs connected as a
Round Robin Merge group. The combination of Priority
and Round Robin Merges provides a powerful method of
controlling token usage.

5.5.3.3. Select Groups

A select input group contains a "select control" input sub-
group and one or more "select body" input sub-groups.

The select body sub-groups are assigned indices: 0,1,2

The tokens received in the Select Control group must

have integer values. This value selects the
correspondingly numbered sub-group.

The code implementing the node will receive two inputs
when it is fired, the Select Control Input token and a
token from the selected sub-group.

Figure 10 shows an example of a select input. The token
produced by Q on the select control arc S (of node R)
must contain an integer value. Depending on this value, a
token from one of the three sub-groups 0, 1, 2 will be
selected. Note that the sub-group 1 is itself a round-robin
merge input.

Select

control

,:+:,:.:

!iiiiiiiiii
[] iii!i!iii!i!i!i! !

..........=........=

s
l _ili_i_i..........

v- 0 iiiiiiiiiiiiiiii.:
i:i:_:i:i:_:i:i:2i

_ 1 i:i:i:i:i.i.i.i=

_ i iiiiiiii..........

.........
Select

input

Figure 10. Select Input

5.6. Outputs

In general, a node firing may produce any number of
tokens on an output. However, for predictable behavior,
the number of tokens should be fixed for each output.
This number is normally specified in the graph description
of the output. The size of each output token is variable,
and can be specified with the output description.

5.7. Simultaneous Multiple Node
lnstantiations

COSMOS allows multiple instantiations of a dataflow

node to be simultaneously executed.

The maximum number of simultaneous instantiations is

limited by the availability of input data, the queue sizes of
the node's outputs, and the number of available
computers.

It is not required that multiple instantiations complete
execution in the order of firing. Each instantiation and the
output tokens it produces are tagged to identify the
instantiation's firing order. Effectively, tokens produced
by a particular instantiation are not placed on their arcs

until all previous instantiations have completed.

For predictable steady state performance, the operating
point specification predetermines the number of
simultaneous multiple instantiations needed for each node,
the arc queue sizes, the initial control tokens required for
each operating point, and the time between inputs for the
graph containing the node. These constraints control the

amount of parallelism that can be exploited for predictable
performance.

5.8. Token Consumption/Generation

When a node fires, COSMOS "reserves" the input tokens
for that instantiation and creates a "handle" that describes

the instantiation and its inputs. When the node
successfully completes execution and successfully
broadcasts the availability of its outputs, the handle is
replaced with the output tokens and the input tokens are
consumed. In effect, the input tokens are replaced with
the output tokens in a single transaction. Either the
replacement occurs successfully or no change is made.

Thus, if the node execution fails to complete, the node can
be re-executed on a different computer since the input
tokens and a description of the instantiation are still
available.

5.9. Token Preservation

When a node instantiation announces its output tokens,
the actual data values of the tokens reside only on the

15

COSMOSTechnicalSpecification

computer that executed the instantiation. This computer
has the initial "preservation responsibility" for the data.
Other computers request copies of the data values as
requited and may discard them when no longer needed.
The computer with preservation responsibility for a
token's data must not discard the data until all dataflow

nodes using the data have successfully completed.

It is possible to specify that critical data be duplicated and
preserved on a second computer as soon as the data is
available. The output specification names a computer

group that is responsible for the duplication.

5.10. Simulated Node Execution

A facility is provided that allows non-dataflow tasks to
announce tokens into a graph as if a graph node had
executed.

These simulated executions are normally used to introduce
code and data tokens into a graph. This happens when the

graph is f'wst created and when code patches are made.

In a flight system, a command-processing task would
perform the simulated executions when a command is
received to patch or load a graph. In a development
environment, simulated executions are announced by the

Dataflow Debugger when loading tokens into a graph.

5.11. Special Operations

Normally COSMOS requires assignment of input tokens
when a node fires, and announcement of all output tokens

only when node execution completes.

However, COSMOS does support 3 special operations

which permit the user to bypass this requirement. The 3
special operations allow graph nodes to receive inputs and
to announce outputs without completing execution. An
advantage to this approach is that arcs can be treated as
"pipes" connecting processes. The price paid is the loss
of some important fault tolerance features, including the
ability to re-execute a failed node on a different computer.
Therefore, any use of these special operations should be
carefully considered.

5.11.1. Anti.tokens

An "anti-token" is a special type of data token used to

flush previously announced tokens from all receiving arcs.

When an anti-token is announced on a node output, all
tokens from previous node firings are deleted, except for
tokens that have already been reserved for node firings.

Tokens already generated by the early completion of
subsequent node firings will not be affected.

5.11.2. Partial Completion

The code for a graph node may request that one or more
sets of tokens be announced before node execution

completes. Each such announcement is a partial
completion.

If an anti-token is announced on an output, all previous

tokens are deleted, including any produced by previous
partial completion of the current instantiation.

5.11.3. Multiple Inputs from an Arc

The code for a graph node may request assignment of
further tokens to specific inputs via a "New Input"
facility.

If a new token is available, the token previously assigned
to that input is consumed and the new token is assigned in
its place for the node firing.

If a new token is not available, the token previously
assigned to that input is not affected and the code receives

an appropriate status flag and continues execution.

16

.

COSMOS Technical Specification

Performance Optimization

COSMOS supports several performance optimizations for
the dataflow graphs described in the previous section.
Dataflow processes may be assigned priorities. One of a
triad of voting processes may be labeled a "shadow"
process which fires only if the two primary processes
disagree. In order to regularize execution patterns and
impose timing constraints, a control graph may be used
(by superimposing it over the dataflow graph).

A set of optimizations will be relevant only to a specific
hardware configuration and operating environment. These
optimization sets are termed "operating points"; the active
operating point will change as either the hardware
configuration changes--as one computer fails or another is
brought on-line, for example--or the operating
environment changes.

6.1. Control Graphs

COSMOS control graphs serve to regulate interprocess
timing relationships between the nodes of a COSMOS

dataflow graph. Like COSMOS dataflow graphs,
COSMOS control graphs consist of process nodes,

outputs, arcs, and inputs. Control tokens are passed from
control output to control arc (control edge) to control
input.

6.1.1 Properties of Control Arcs

Control arcs have three principal properties: generational
offset, delay time, and arc enable. Generational offsets
specify that a control token of generation n will be used to
enable a generation n + generational offset target process.

Delay time specifies a minimum interval between the
enabling of an instantiation of a process and the
announcement of tokens by that instantiation. If a
process has multiple DELAY arcs feeding it, then these
arcs are treated as a merge. The ENABLE attribute

specifies which control output will receive tokens as the
result of a process firing. The ENABLE attribute is used
in conjunction with the DELAY attribute to implement
scheduling decisions.

6.1.2 Control Arc Merges

Each process may have a single merge input, in addition
to its normal control inputs. The merge is a temporal

merge: control tokens are used in the order that they are
received. All input arcs with the DELAY attribute are

merged.

6.2. Operating Points

In data-independent graphs which can be performance-
optimized with the ATAMM rules, maximum
performance can be assured by dynamically altering the
graph, primarily by placement of control arcs. The
operating point parameters can be predetermined by
analysis of the COSMOS dataflow graphs to be executed
and then stored in a table of operating points for
COSMOS to dynamically apply.

The operating point for a single graph or for a set of
graphs determines values for TBI, TBIO, TBO, and R.

• TBI is the time between inputs to a graph.

TBIO is the time between the input of a data
packet to the graph and the generation of the
corresponding output result from the graph.

• TBO is the steady state time between
successive data outputs from the graph.(1/TBO
represents steady state throughput).

• R is the number of available computers which
can work on the graph.

Given a number of available computers, the desired
combination of TBO and TBIO values is ensured by the
use of control arcs, arc queue sizes, initial tokens, and the
number of simultaneous node instantiations.

A desired combination of TBO and TBIO values is ensured

by controlling the time between inputs (TBI) accepted by
the first node in the graph. This equals TBO in steady
state. Control arcs, arc queue sizes, initial tokens, and the
number of node instantiations allow user-specified
tradeoffs between TBIO and TBO over a range of available

computers.

For multiple graphs being executed simultaneously, each
operating point consists of a value of TBIO and TBO for
each graph and one value of R. There can be a number of
operating points for each value of R.

The choice of operating points can be used to favor certain

graphs in specific situations. A predetermined strategy
may be developed to favor certain graphs as computers fail
(graceful degradation) and/or to provide predictable user-

selected performance for specific graphs for a dynamically
changing number of computers.

17

_QSMQS Technical SpecificatiQn

COSMOS dynamically shifts to a different operating
point whenever the number of available computers
changes or mission requirements change. When such an
event happens, an operating point change is made and the
user's application is notified, and a further operating point
change may result. A shift in the operating point will
generally involve the insertion and deletion of control
arcs, the number of multiple instantiations of a node, the

queue sizes on arcs, and the injection interval TBI.
Additionally, a miscellany of other characteristics are
subject to change.

6.3. Miscellaneous Mutable Parameters

As a result of an operating point change, a variety of
optimization parameters may change in value. At the
process level, the range of modules (module groups) on
which a process is allowed to execute may change; the
maximum number of concurrently executing

instantiations of a process may change; and a voted
process may become a shadow process. Process priorities
may change. The length of time that replicated token data
is kept on a module for a given output may change, as
may the queue size for a given output.

18

(_QSMQ$Technical Specification

7. The COSMOS Programming Environment

A suite of tools are included in COSMOS to assist the

programmer in design, testing, debugging, and
performance enhancement. Figure 11 shows an overview
of the COSMOS tool set. Figure 13, at the end of this
section shows the exchange of data files among these

tools.

For developing code for a particular hardware target,
COSMOS would be used in conjunction with a

commercial high-level language (e.g. C) development
environment. This environment must include a text
editor, as well as a compiler for the high-level language

that is used.

The remainder of this section describes the COSMOS tool
set in more detail.

Compilation

Graph Ada/C
Compiler

Target
Hardware

System

Optimization

Dataflow
Optimizer

Analyzer

Figure 11. COSMOS Tools

19

COSMOS Technic',d Spe_ifi_:ation

7.1. Programming

The programming environment consists of a commercial
text editor and a dataflow graph editor.

7.1.1 The Text Editor

Any existing or commercial text editor which can output
an ASCII text file may be chosen by the programmer --
"vi" or "emacs" will suffice, for example.

The text editor is used to enter and modify a high level

language function for each graph node. For example, the
software implementing a graph node currently can be
written in an extended version of C. Support for C++ and

Ada is also planned, as the particular choice for a high-
level language in a specific COSMOS implementation
will depend on the availability of compilers and associated
development tools for specific target hardware.

The extensions to C (which have been implemented as C
macros) add dataflow-related keywords for referring to

input and output tokens, initialization behavior, and the
like. A dataflow function begins with definitions of the
data structures for input and output tokens. Then the
names and types of the inputs and outputs are declared,
followed by the body of the function. Refer to the
example of Figure 12. The function cannot have any
"side effects" such as updating a global variable.

7.1.2 The Graph Editor

Dataflow graphs are created with the COSMOS Graph
Editor. This graphical tool allows graphs to be drawn and
allows the attributes of nodes, inputs, outputs, and arcs to

be specified.

The Graph Editor can output 2 types of ASCII text files
suitable for input to the Dataflow Compiler and the
Dataflow Optimizer; one file describes the connectivity
and attributes of the nodes, while the other file describes
the initial token values. In addition, the Graph Editor can
both save and open a third type of file, a "working" file

which fully describes the graph picture; unlike the files
output for the Dataflow Compiler, it is possible to restore
on screen a previously saved graph from the "working"
file.

7.2. Compilation

The compilation tools generate code for the target system,
the Dataflow Tester, and the COSMOS Simulator. The

principal tools are the Dataflow Source Code Filter, the
Dataflow Compiler, and a compiler for the application's

language.

7.2.1. The Dataflow Source Code Filter 4

The Dataflow Source Code Filter pre-processes certain
COSMOS language extensions (see the description of the

Text Editor and Figure 12) into the application's native
language. The resulting source code is compiled 5 and
linked into an object module. The object module must be
relocatable, either as a fully relocatable object module or
as a loadable object module which can be bound to an
arbitrary address.

For the MAX hardware target, it was necessary to

compile the code into assembler format, convert that to
relocatable form, assemble and link the result, and finally
convert the linked module to a downloadable ASCII

format. Not all processors support relocatable object
code, however. For some target processors, it may be
necessary to incorporate a loader into COSMOS to
convert code tokens from a relocatable format to one
which is linked to absolute addresses. The details will

vary depending on the language and compilers used, as
well as the processor architecture.

The Dataflow Source Code Filter also generates a file

describing the dataflow inputs and outputs which is used
by the Dataflow Compiler to ensure consistency with the
graph description.

7.2.2. The Dataflow Compiler

After a dataflow graph has been created and its code has
been filtered and compiled, the Dataflow Compiler
combines them into a form ready for downloading to the
target COSMOS platform. The reader may find it easier
to think of the Dataflow Compiler as a linker rather than
as a compiler.

The Datafiow Compiler takes as inputs a graph
description file, the object modules for code tokens, the
token description files, the optimization files, and
subsidiary files used for consistency checking. The
Dataflow Compiler checks for consistency of the code and
the graph. Input and output data types specified in the
graph are verified as being identical to the types specified
for the object modules, and the number and size of output
tokens are also checked.

4 For simplicity's sake, the Dataflow Source Code Filter,

and the files it produces, are not shown in Figure 11 or
Figure 13.

5 The word "compiled" here means compiled by a
commercial target hardware compiler -- not compiled by
the Dataflow Compiler.

2O

COSMOSTechnicalSpecification

Theprimary output of the Dataflow Compiler is a file
suitable for download to the target hardware system. This

output may include a description of the entire graph, a

complete set of operating points for the graph, code and
other data tokens, or a combination of these elements.

i_iiiii!ilNPUT_ !SQUARES a" Declare the dataflow _ln

Figure 12. Example Dataflow Source Code.

21

COSMOS Technical Specification

7.3. Execution & Simulation

The primary execution tool is the COSMOS operating
system itself. In addition, 2 simulators are available that
execute the actual application code. The Dataflow Tester

provides functional testing and verification of dataflow
applications. The Dataflow Simulator provides a detailed
simulation of all aspects of COSMOS operation,
including interprocessor communication.

7.3.1. The Dataflow Tester

An important feature of COSMOS is that the code for a
graph node may be tested in isolation. Since side effects
are not allowed, the functional properties of a node are

completely specified by the relationship between its
inputs and its outputs.

The Datallow Tester supports the separate testing of code.

The programmer provides test vectors for a node in the
form of a series of input tokens. The Dataflow Tester
then executes the node in a simulated dataflow

environment and records the generated outputs. A
verification file is produced that describes the inputs and
the resulting outputs. The Dataflow Tester operates in
any C or Ada environment independent of the target
hardware.

The inputs to the Dataflow Tester are the dataflow graph
and the dataflow code for the nodes. When testing
individual nodes, it is not necessary that the code for all

nodes be present, i.e. it can be used for incremental

development. The Dataflow Tester also performs all of
the consistency checks that the Dataflow Compiler

performs.

The Dataflow Tester may also be used to test the free
running execution of a whole graph or any part of one.
Since it implements the dataflow rules and is provided the

graph description, it can pass tokens produced by a node to
those nodes that use them as input.

7.3.2. The Dataflow Simulator

The Dataflow Simulator provides a complete functional
simulation of an application running on COSMOS in a
multicomputer system. The simulator can be easily
ported to any 'C' environment.

The simulator includes the complete COSMOS operating
system code, excepting that which deals with relocatable
code tokens and that which is hardware-specific. Input to

the simulator is the compiled source code for graph nodes
and the graph description for the application to be
simulated.

The Dataflow Simulator will simulate execution on any
desired number of computers to provide a detailed
simulation of an application's execution behavior.

The hardware environment is fully simulated:

the given number of computers;

the topology of the data transfer network;

the synchronization network;

serial I/O ports.

The underlying multitasking executive on each computer
is also simulated, as is the passage of time. Simulated
execution times can be attached to most system events, so
that the simulator can be "tuned" to match different
hardware environments and so that simulation behavior is

faithful to the behavior of the targeted hardware. The
macros which support simulation of time can be replaced
by ones which measure time for a COSMOS kernel
running on a target system.

Ideally, the Dataflow Simulator or the Dataflow Tester
could be used to generate estimates of node execution
times which could be used as inputs for the design tools.
Unfortunately, microcomputer and workstation platforms
rarely support the fine-grained timing required, and the
actual target hardware often differs from the development
platform in terms of instruction sets and other
characteristics. Node execution times can be refined when

the code is actually run on the target hardware.

7.4. Debugging

The Dataflow Animator and the Dataflow Debugger give

visibility into the behavior of a program (but not
performance -- see section 7.5 for that). A programmer
will most likely use both the Dataflow Debugger and the
Datafiow Animator to debug a COSMOS program.

The Dataflow Debugger provides a user interface for
COSMOS. Through it, the running behavior of a
COSMOS system can be observed, faults injected, and a
variety of debugging parameters may be set or cleared.
The Dataflow Animator is useful for detecting bugs at the

graph level.

7.4.1. The Dataflow Animator

The Dataflow Animator displays the graph as entered into
the Dataflow Editor and shows the flow of tokens among
the graph nodes, the computers executing each node firing,

22

COSMOSTechnicalSoecification

andthedata traffic. Graph execution may be replayed
forwards or backwards in time.

The Dataflow Animator operates on log Ides that describe
dataflow events which occur during an application's
execution. The COSMOS runtime system, as well as the
Dataflow Simulator, Dataflow Tester, and Dataflow

Modeller, can generate these log files.

7.4.2. The Dataflow Debugger

The Dataflow Debugger provides interactive debugging
with COSMOS, the Dataflow Tester and the COSMOS
Simulator. It is often used in conjunction with an

existing commercial debugger.

The Dataflow Debugger can examine and control the
execution of a dataflow application. It has features such

as single-stepping through a graph's firings, examining its
tokens, reporting the current graph state, and examining

all operating system tables and states.

The Debugger works with the COSMOS operating
system, the Dataflow Tester and the Dataflow Simulator.

When a dataflow program is executed on real hardware or
in the Dataflow Simulator, a runtime log may be produced
if desired. This information can include which nodes

executed on which computers and what data was transferred
between computers. While usually used as input to the

Analyzer or Animator, the Debugger can print such logs
in a readable form.

In a ground-based development environment, the full
debugger is installed in the COSMOS system. In a flight
application a streamlined version would allow a spacecraft
telemetry system to interrogate and control dataflow
execution.

7.5 Performance Analysis And

Optimization

The Dataflow Optimizer, Analyzer, and Modeller all work
together to provide performance analysis and optimization.
The goal is to determine graph operating points and
resource requirements.

7.5.1 The Dataflow Optimizer

The Dataflow Optimizer automates the analysis of data-

independent graphs and determines the necessary resource
dependent graph modifications necessary to optimize
performance. These graph modifications serve to optimize
resource usage by an application.

The initial graph input is generally provided from the
Graph Editor as a description of the nodes, node execution
times, and data arcs.

The tool models dataflow graphs so that optimum
performance and sufficient resource requirements (number
of computers) can be predicted. Information gathered from
this tool can guide the decomposition of algorithms and
determine the operating strategies required for different
runtime condition levels, e.g. computer availability and
input data rate.

The design process enables the user to provide control arcs
and control tokens for all possible hardware

configurations, thereby allowing automatic selection of
operating points in response to a change in hardware
configuration for real-time response; the application
programmer is also given the tools to change operating
points for fine-tuning of a running application.

The Optimizer's output is a description of the performance
bounds for the group of graphs to be executed. Also, an
operating point table is produced to enable dynamic
performance optimization in the event the number of
available computers changes. The operating point table is
incorporated into an optimization file suitable for input to
the Dataflow Compiler.

The necessary phasing of graph nodes and graph inputs
needed to attain the desired performance can be determined.
This phasing is generally different from that required only
for the flow of actual data.

7.5.2. The Dataflow Analyzer

This tool analyzes program performance. It displays
timelines showing each computer's activity, each node's
activity, resource utilization and system overhead. [:1.1]
It also calculates computational performance metrics,
including the average throughput in million instructions
per second (MIPS).

The Dataflow Analyzer operates on log files that describe
dataflow events which occur during an application's
execution. The COSMOS runtime system as well as the

simulators (Dataflow Simulator and Dataflow Tester) can
generate these log files.

7.5.3 The Dataflow Modeller

The Dataflow Modeller provides architecture-independent
modeling of dataflow graph behavior, serving to quickly
verify the performance predictions and graph optimizations
proposed by the Dataflow Optimizer. In addition, typical
graph-operation parameters such as delays imposed by
shared-resource contentions can be modeled. Accounting

for these added delays, which are not modeled by the

23

COSMOS Technical S t_cification

Dataflow Optimizer, ensures that added overhead can be
accommodated for a given number of processors.

The Dataflow Modeller output is a log file of graph-
operation events to be retraced and evaluated by the
Dataflow Analyzer or the Data/low Animator.

7.6. Tool File Exchange

Figure 13 shows the primary files exchanged among the
COSMOS tools.

Code files are ASCII text files generated by an editor of
the user's choice. These files contain the source for each

graph node.

Graphs and tokens are described in text files 6 generated by
the Graph Editor. Optimization files describe the
operating points, control arcs, and associated graph
parameters.

Log files record the execution of an application. They
include the timing of all dataflow events, the identity of
the computer executing each node firing, and can record
network traffic in systems with data transfer networks
and/or synchronization buses.

6 A separate document, entitled The COSMOS Text
Graph Language, describes the file format in detail. As of
this writing it is still in progress.

24

COSMOS Technical Specification

ii!!i!!iiiiiiiiiiiiiii!i!i!!iiiiiiiiiiiiiiii

a;

o

m

U.

o
0

0

0
o

,m

u.

25

COSMOS Technical Specificatiotl

8. References

[1] R. R. Mielke, John W. Stoughton, and Sukhamoy
Sore, Modeling and Performance Bounds For Concurrent
Processing, NASA Contractor Report 4167, Grant NAG 1-
683, 1988.

[2] P.J. Hayes, R.L. Jones, H.F. Benz, A.M. Andrews,
J.W. Stoughton, R.R. Mielke, M. Malelqaour, and P.R.
Appleget, VHSIC Multiprocessor Implementation of the
ATAMM Strategy, GOMAC9111991 Digest of Papers.

521, 1991.

[3] R. Mielke, J. Stoughton, S. Sore, R. Obando, M.
Malekpour, and B. Mandala, Algorithm to Architecture
Mapping Model (ATAMM) Multicomputer Operating
System Functional Specification, NASA Contractor
Report 4339, Cooperative Agreement NCC1-136, 1990.

[4] S. Sore, R. Mielke, R. Obando, J. Stoughton, P.J.
Hayes, R.L. Jones, Throughput Enhancement by Multiple
Concurrent Instantiations in the ATAMM Data Flow

Architecture, Proceedings of the ISMM International

Symposium on Computer Applications in Design.
Simulation. and Analysis. 71, Las Vegas, NV, 1991.

[5] R.L. Jones, P.J. Hayes, A.M. Andrews, S. Som, J.

W. Stoughton, and R.R. Mielke, Enhanced ATAMM for
Increased Throughput Performance of Multicomputer Data
Flow Architectures, Proceedings of the IEEE NAECON

91. Vol. 1,238, Dayton, OH, 1991.

[6] P.J. Hayes, R.L. Jones, H.F. Benz, A.M. Andrews,
and M.R. Malekpour, Enhanced A TAMM Implementation
on a GVSC Multiprocessor, GOMAC92/1992 Digest of

_kWff.l, 181, 1992.

[7] D. Blough, L. Alkalaj, and B.F. Lewis, Clock
Synchronization in the Common Spaceborne
Multicomputer Operating System, Technical Report ECE-
93-05, Department of Electrical and Computer
Engineering, University of California (Irvine), 1993.

[8] B. Chor and B.A. Coan, A Simple and Efficient
Randomized Byzantine Agreement Algorithm, IEEE

Transactions on Software Engineering. Vol. SE-I 1, No.
6, 1985.

[9] R.D. Rasmussen, G.S. Bolotin, N.J. Dimopoulos,
B.F. Lewis, R.M. Manning, Advanced General Purpose
Multicomputer for Space Applications, Proceedings 1987
Conference on Parallel Processing, 54, 1987.

[10] B.F. Lewis and R.L. Bunker, MAX: An

Advanced Parallel Computer for Space Applications,
Second International Symposium on Space Information

tf, m, 769, 1991.

[11] R.L. Jones, J.W. Stoughton, and R.R. Mielke,
ATAMM Analysis Tool, NASA Contractor Report
187625, 1991.

26

COSMOSTechnicalSt__cification

Appendix 1. Intercomputer Services

The operating system kernel provides the basic multitasking services available to a single computer. Built upon the
kernel are intercomputer services to allow processes and interrupt service routines on one computer to communicate with

processes and interrupt service routines on other computers. However, allowing a process thread to cross computer
boundaries is not supported in COSMOS.

The basic intercomputer services are mailboxes, queues, semaphores, and event flags.

1.1. Mailboxes and Queues

Intercomputer mailboxes and queues are objects that can hold data records (or messages). Queue lengths may be

predef'med. A mailbox is a degenerate queue holding at most one item.

Software on any computer can post data to an intercomputer queue by allocating a local memory area for the data,
supplying the data, and then posting the data to the desired queue. Once the local data area has been posted to a queue, it
can no longer be accessed by the software that posted it. The actual queue will contain a handle identifying the posting

computer and the local memory area within that computer.

When another (or the same) piece of software pends on the queue, COSMOS will allocate local memory on the pender's

computer, copy the data there, and delete it from the poster's computer after successful copying. The pending software
will receive a pointer to the copy of the data on its computer. If the pender and the poster are on the same computer, no
copying is required and the pender receives a pointer to the original data.

An intercomputer mailbox or queue is generally resident on a single computer. However, redundant copies can be
maintained on different computers for increased fault tolerance. The mailbox or queue could be identified by a handle,

without regard to its residency.

1.2. Event Flags

Intercomputer event flags are objects distributed by synchronous messages. If software on one computer broadcasts a
message modifying an event flag, all computers will record the change. Any number of processes can pend on an event

flag or a logical combination of event flags.

27

Appendix 2.

COSMOS Technical Specification

Definitions and Acronyms

ASCII

ATAMM

AMOS

COSMOS

computer

control arc

fire

h_e

HYPHOS

JPL

I.aRC

MAX

node

pend

post

process

processor

reserved token

task

VHSIC

- American Standard Code for Information Interchange

- Algorithm to Architecture Mapping Model

- ATAMM Multicomputer Operating System

- Common Spaceborne Multicomputer Operating System

- a processor in the multicomputer system; a central processing unit with local memory; "computer"
and "processor" are used interchangeably in this document

- an arc which has no data and is typically used for control purposes only; may be associated with
timing information.

- status of a node when all input arcs and output arcs meet the requirements for firing and execution

- carrying out the function of a graph node; this includes the reading of data, consumption of input
tokens, functional computations of the node code, writing of the output data, and depositing of
output tokens

- the beginning of execution of a graph node when the node is bound to a computer and the input data
tokens become reserved

- a logical name

- a dataflow operating system developed by JPL (not an acronym)

- Jet Propulsion Laboratory

- Langley Research Center

- a multicomputer architecture developed by JPL; contains both a control bus and a data bus for
intercomputer communication (not an acronym)

- a functional block of code in a data flow graph

- accessing data such as that existing in a queue

- depositing data such as that into a queue

- a function to be executed; represented by a graph node

- a computer; see "computer"

- a token representing a data packet which has been assigned to a computer for graph node execution

- a function defined formally in the Ada language

- Very High Speed Integrated Circuit

28

Form Approved
REPORT DOCUMENTATION PAGE o_m _o.0zo4-olas

Public re_ning t_n:lefl for tht$ collecuon of information is esumuted [0 averacje I hour Der resoOn_e, inclucllng the time foe reviewing ihSU'lJC_lOrt$. _eerchmg ex,stlng dlta Iour .c_.

gathering an d mmntalnmg the data needed, and completing anD rev,ew,ng the collec_loll o.r InTormBtl(_,. _fl_ commeflts rc,_aroing this burden estimate o.r any other asO_'t of this
collect:tOn Ot infofmetlOn, illcJudlrig Suctions for reducln9 this burden, to Wasmngton _eaaquar_e_ _ervlce% bqre_orate tot" mTOrmltlon U!DefBtiOh$ arl_ Re_, 1215 JL_'_e/_ofl

Dirts HKjhway. Suite 1204. Artin(JtOrl. VA 22202-4]02. and to th_ Office of Management and Budget. Plperwor_, Reductlofl Pro c'_t (0704-01N}, Washington. 04: 20rJ03.

1, AGENCY USE ONLY (Leave blank) 2. REPORTFebfuaryDATE1994 3. REPORTTcChnlcajTYPEANOM_d,lrI1OATESCOVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Common Spaceborne Muldcomputer Operating System and 233-01-03
Development Environment

G. AUTHOR(S)

L. G. Craymer and B. F. Lewis (JPL)
P. J. Hayes and R. L. Jones (NASA LaRC)

7. PERFORMINGORGANIZATIONNAME(S)ANDAOORESS(ES)
Jet Propulsion Laboratory
Pasadena, CA and
NASA Langley Research Center

Hampton, VA 23681-0001

Ig. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)
Nalional Aeronautics and Space Administration
Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

JPL Report #D- 11525

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA TM- 109092

11. SUPPLEMENTARY NOTES

121. DISTRIBUTION / AVAILABILITY STATEMENT

Subject Category 61
Unclassified- Unlimited

'12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A preliminary technical specification for a multicomputer operating system is developed. The
operating system is targeted for spaceborne flight missions and provides a broad range of real-time
functionality, dynamic remote code-patching capability, and system fault tolerance and long-term
survivability featm'es. Dataflow concepts are used for representing application algorithms. Functional
features are included to ensure real-dine predictability for a class of algorithms which require
data-driven execution on an iterative steady state basis. The development environment supports the
development of algorithm code, design of control parameters, performance analysis, simulation of
real-time darzflow applications, and compiling and downloading of the resulting application.

14. SUBJECT TERMS Mmuprocessmg, datatlow, parallel processing, operm]ng
system, real-time computing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

uOF_REPQRT , OF THIS PAGE OF ABSTRACT
nclassmeo Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

33
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-891
Pr._criOed t_' _NSI S(d Z39-_8

29_-102

