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This paper describes research on the ARK (Autonomous

Mobile Robot in a Known Environment) project. The

technical objective of the project is to build a robot that

can navigate in a complex industrial environment using

maps with permanent structures. The environment is not

altered in any way by adding easily identifiable beacons

and the robot relies on naturally occurring objects to use

as visual landmarks for navigation .The robot is equipped

with various sensors that can detect unmapped obstacles,

landmarks and objects. In this paper we describe the ro-

bot's industrial environment, it's architecture, a novel

combined range and vision sensor and our recent results

in controlling the robot, in the real-time detection of ob-

jects using their colour and in the processing of the ro-

bot's range and vision sensor data for navigation.

1. Introduction

The ARK (Autonomous Robot for a Known Environ-

ment) Project is a precompetitive research project in-

volving Ontario Hydro, the University of Toronto, York

University, Atomic Energy of Canada Ltd., and the

National Research Council of Canada. The project

started in September 1991 and will be completed in Au-

gust 1995. The technical objective of the project is to de-

velop a sensor-based mobile robot that can autonomous-

ly navigate in a known industrial environment.

There are many types of industrial operations and envi-

ronments for which the mobile robots can be used to re-

duce human exposure hazards, or increase productivity.

Examples include inspection for spills, leaks, or other un-

usual events in large industrial facilities, materials handl-

ing in computer integrated manufacturing environments,

and the carrying out of inspections, the cleaning up of

spills, or the carrying out of repairs in the radioactive

areas of nuclear plants - leading to increased safety by re-

ducing the radioactive dose to workers.

The industrial environment is significantly different

from office environments in which most other mobile ro-

bots operate. The ARK project will produce a self--con-

tained mobile robot with sensor-based navigation capa-

bilities specifically designed for operation in a real indus-

trial setting. The ARK robot will be tested in the large en-

gineering laboratory at AECL CANDU in Mississauga,

Ontario (figure 1). This open area covers approximately

Figure 1. A view of the AECL industrial bay

50,000 sq. feet of space and accommodates one hundred

and fifty employees. Within the Laboratory, there are test

rigs of various sizes, mock-ups of reactor components, a

machine shop, a fabrication facility, metrology lab and

assembly area. There are no major barriers between these

facilities and therefore at any one time there may be up to

fifty people working on the lab floor, three fork lift trucks

and floor cleaning machines in operation. Such an envi-

ronment presents many difficulties that include: the lack

of vertical flat walls; large open spaces (the main isle is

400' long) as well as small cramped spaces; high ceilings

(50'); large windows near the ceiling resulting in time de-

pendant and weather dependant lighting conditions, a

large variation in light intensity, also highlights and glare;

many temporary and semi-permanent structures; many

(some very large) metallic structures; people and forklifts

moving about; oil and water spills on the floor; floor

drains (which could be uncovered); hoses and piping on

the floor; chains hanging down from above, protruding

Copyright © 1993 American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.
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structures,andothertransientobstaclestothesafemo-
tionoftherobot_

Largedistances,oftenencounteredintheindustrialenvi-
ronment,requiresensorsthatcanoperateatsuchranges.

The number of visual features (lines, comers and re-

gions) is very high and techniques for focusing attention

on specific, task dependent, features are required. Most

mobile robotic projects assume the existence of a flat

ground plane over which the robot is to navigate. In the

industrial environment this ground plane is generally flat,

but regions of the floor are marked with drainage ditches,

pipes- this requires sensors that can reliably detect such
obstacles.

The ARK robot's onboard sensor system consists of so-

nars and one or more ARK robotic heads and a floor

anomaly detector (FAD). The head consists of a colour

camera and a spot laser range finder mounted on a pan-

tilt unit 5 (see also figure 3). The pan, tilt, camera zoom,

camera focus and laser distance reading of the ARK ro-

boric head are computer controlled. The ARK project is

investigating different technologies for Floor Anomaly

Detection (FAD) to detect objects on the floor that cannot

be detected by the sonar system and are too large for ARK

to traverse. One technology that is being developed is a

laser based system built around the NRC BIRIS laser

head 1. A second approach is to use stereo vision to local-

ize potential floor anomalies. Unlike the classical ap-

proach to stereo, the stereo based FAD uses calibrated

non-zero torsional eye positions to warp the disparity

surface to simplify the process of detecting structures

near the ground plane 9.

The ARK robot navigates in its environment without help

from a human operator and with no engineering of the

environment through the addition of radio beacons or

magnetic strips beneath the floors. Also, modification of

the environment to include unique and easily identifiable

beacons is also not permitted. The robot uses naturally

occurring objects as landmarks. The robot relies on vi-

sion as its main sensor for global navigation, using a map

with permanent structures in the environment (walls, pil-

lars) to plan its path. While executing the planned path,
the robot searches the environment for known land-

marks. Positions and salient descriptions of the land-

marks are known in advance and are stored in the map.

The robot uses the relative position of the detected land-

mark to update its position. The robot's visual tasks in-

clude detection of landmarks and searching for known

objects. The robot avoids any objects in its path by using

the reactive part of its control system. These objects

could be stationary or moving, and do not have to be a

part of the internal representation.

In this paper we describe some recent research aspects of

the project. In particular we concentrate on environ-

mental path planning, the reactive control system, colour

based detection of objects and 3D scene segmentation

using the combined visual / range sensor.

2. Mobile Platform and Sensors

We are building two ARK prototypes: one at the Univer-

sity of Toronto and the other at AECL. ARK-1 (at

Toronto) is being jointly constructed by university and

industry personnel. We use ARK-1 to test the ideas, sen-

sors and algorithms that will ultimately be included in

ARK-2. The computing for ARK-1 is done mainly off-

board while that for ARK-2 will be done mainly on-

board. Both robots use visual data obtained through ac-

tive vision processes as a primary source of sensing for

the robot. They also use non-visual sensors such as in-

frared, sonar and laser range-finders. Both ARK robots

use the Cybermotion Navmaster platform as their mobile

base (see figure 2).

Figure 2. The ARK-1 robot

2.1. Mobile Platform

The main hardware components of the ARK-1 robot are:

the Navmaster mobile platform from Cybermotion, the

robotic head with sensors and a remote link to a host com-

puter network (figure 2). The platform consists of a base

with three wheels and a rotating turret. A bumper,

equipped with contact sensors, is mounted to the turret.

The turret was originally equipped with six sonars: two of

them face forward, two backward and two sideways.

Each sonar emits a cone shaped acoustic wave and can
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detect the reflected wave. The time required by the sound

to travel from the robot to an object and back gives a

measure of the object distance. We have experimented

with using additional sonars mounted on the turret or the

bumper to enhance the interpretation of the sonar data. 14

Multiple return signals were combined in a three dimeno

sional grid in robot coordinates using a Bayesian update

rule. Additional readings were obtained by small move-

ments (less than 1 m) of the robot. This approach helped

to map more accurately obstacles in front of the robot and

to reduce the influence of noisy return signals.

The ARK-1 robot communicates with a network of host

computers via the 8-channel remote serial link. The com-
munication between the robot and the host is on the level

of processed signals from sensors and commands sent to

the robot. The on-board computers collect the data from

various sensors, preprocess it and send it via the radio link

to the host computer network. The computers in the net-

work analyse this data, and generate commands for indi-

vidual units of the robot (platform, head, sonar con-

trollers, range-finder). The on board computers perform

time critical functions such as emergency stop, position-

ing the head and moving the platform. The host network

of computers consists of a multiprocessor SGI Power
Series 4D380 and several Sun SPARC 2 workstations, all

running under the Unix operating system.

In ARK-2, most of the computation, such as processing

and interpretation of data from various sensors and gen-

eration of control commands, will be done on board. The

communication link will be primarily used for exchang-

ing messages between the robot and the operator. The on

board computer will operate under control of a real time

operating system.

2.2. Combined Vision /Ran_

We have installed a special sensor (Laser Eye) on the

ARK turret. This sensor can provide colour images and

range data at distances up to 100 m which are typical for

the industrial environment. The Laser Eye is a combined

range / video sensor consisting of a camera and a laser

range-finder 5. The range-finder uses the time--of-flight

principle and provides a single depth measurement for

each orientation of the sensor. Measuring distances to ob-

jects in the scene requires pointing the sensor at each of

them in turn and reading their depth. The range-finder

uses an infra-red laser diode to generate a sequence of

optical pulses that are reflected from a target. The time re-

quired to travel to and from the target is measured to esti-

mate the distance. The laser is eye safe - this permits its

use in the presence of people.

Our robotic head has four degrees of freedom: two ex-

trinsic - head pan and flit, and two intrinsic - camera

zoom and focus (figure 3). The head can flit in any direc-

Figure 3. The robotic head with a combined

visual & range sensor (Laser Eye)

tion between 65 degrees below and 95 degrees above the

horizon and the panning range covers 360 degrees. The

head can rotate with speeds exceeding 180 degrees per

second. Figure 3 shows the first model of the head with

the Laser Eye sensor.

The range-finder measures distance to an object in the

centre of the camera field of view. The co-linearity of the

camera optical axis of and that of the range-finder is

achieved by using a hot mirror (one that reflects infra-red

and transmits visible light) placed in front of the camera

lens. The mirror transmits the visible light from the ob-

served scene to the camera with minimum attenuation.

The hot mirror reflects the transmitted infra-red beam

and sends it in the direction of the optical axis of the cam-

era. The returning pulse is reflected by the hot mirror

again and projected on a detector in the range-finder 5. A

single range measurement takes 0.12 - 0.5 second de-

pending on the selected accuracy. The time required to
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point the head in a new direction depends on the required
rotation.

3. Control Architecture

The ARK control system consists of two levels: a high
level and a low level reactive system. The high level is re-

sponsible for planning robot actions, global path plan-

ning, selecting landmarks for sighting and interactions

with the user. The low level, reactive component of the

control system, uses the on board obstacle avoidance sys-

tem of the platform to detect obstacles and to navigate
around them.

The path planner assumes that the low level reactive con-

trol saucture will safely execute segments of the plan in

the presence of unmodelled or unexpected obstacles. By

breaking the path planning process into a GOFAIR

(Good Old Fashioned AI and Robotics) task which can be

processed using classical AI tools, and a real time reac-

tive process which can be processed using a real time
safety critical system implemented as a subsumption

architecture, ARK takes advantage of the best of both

paradigms.

3.1. Position Estimation and Global Path Planning

The global navigation system uses visual landmarks to

update the robot position estimate. A dead reckoning sys-
tem on the platform measures the distance travelled and

provides the current orientation. The positional error in-

troduced by the dead reckoning system accumulates over

time and has to be reset by measuring the robot position

with respect to landmarks stored in the map. The map is

represented as a 2D floor plan that contains permanent

objects, semi-permanent objects entered by the user, ob-

stacles detected by the robot and landmarks. Each loca-

tion in the map is annotated with landmarks that are vis-
ible from this location. We use a Kalman filter to update

the current position estimate s

The global path planning process represents the world as

a two dimensional grid. We have experimented with vari-

ous path planning algorithms such as the shortest path,

the minimum cost, and the minimum uncertainty. The

shortest path minimizes the distance travelled by the
robot and the minimum cost minimizes the number of

grid cells visited by the robot. The minimum uncertainty

path planner uses the known position of landmarks to

choose paths that minimize the expected uncertainty

from the start position to the goal. By selecting such a

path, the robot may travel a longer distance but its posi-

tional error along the path will be much smaller as it can

update its position estimate more often.

Figure 4 shows a user interface displaying a map, robot

and a planned path. The interface facilitates the creation

of a map of the environment, as well as the planning and

execution of a path by the real or simulated robot. The
high level control system assumes the presence of a low

level reactive control system that can execute the path

created by the high level.

3.2 Reactive Control

The high level planner communicates with the reactive

subsystem through a very simple set of operations that as-

sumes the reactive phase of the planner will operate au-
tonomously and asynchronously; attempting to achieve

the current subgoa112. The low level control of the robot

is based around the subsumption approach described by
Brooks 2.

The robot is guided by a set of behaviours that operate in

parallel. Each behaviour maps a sensory reading from the
robot's environment into an external action of the robot.

Conflicting behaviours are arbitrated based on an abso-

lute prioritisation of behaviours. There are three basic be-

haviours that conlxol the robot: move, avoid, and escape.

Avoid watches for an obstacle detected by the front sens-

ing sonar. If an object appears the avoid behaviour stops
the robot, and turns it to a new direction so that the robot

will not collide with the obstacle. The escape behaviour

watches for an obstacle directly in front of the robot, in

which case, it causes the robot to back-up and then to turn

to a new direction. The escape behaviour helps to get out
of certain deadlocks that may occur with the avoid behav-

iour when the robot gets stuck in a comer. The move be-

haviour steers the robot towards a precomputed goal
position.

Figure 5 shows the planned path and the reactive path ex-

ecuted by the robot as it moves through a doorway. The

robot starts in the right top position and moves until it ap-

proaches the doorway. At this point, the avoid behaviour
is triggered by the edges of the doorway.

4. Using Vision for Navigation

Computer vision plays a major role in the ARK project.
The ARK robot uses vision to detect and track landmarks

and to search for other known objects. Subsequent sur-

veys and preliminary vision testing have yielded many
potential candidates for ARK landmarks in the AECL

bay. It is important that these landmarks not only image
well but that their occurrence be frequent. Typical land-

marks within the AECL laboratory consist of alpha-nu-

meric location signs, fire extinguisher markers, door-
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Figure 5. Planned and executed path

ways, overhead lights, and pillars. The only criteria used

is that they are distinguishable from the background

scene by colour or contrast. These criteria allow the use

of both grey level and colour image processing algo-

rithms for landmark identification.

Vision provides important information where to point the

range-finder to obtain the most important information.

This location depends on the current task, for example,

detecting an obstacle or a passage between obstacles. It

Figure 4. Path planner interface

also depends on the state of a data processing and is

driven by an attention model. In two following sections

we present results of using vision to detect objects using

their colour and to select targets for range measurements.

O
5. Detecting Landmarks and Objects Using Colour

Visually searching for objects requires scanning the envi-

ronment or checking expected locations with a camera or

even moving a robot. In typical tasks of detecting visual

landmarks or searching for a target object, the object it-

self and its salient characteristic is known in advance.

When searching for a landmark the robot can predict

where to point the camera as it knows its own approxi-

mate location on the map and the coordinates of the land-

mark. Still, uncertainty of the robot's position requires

selecting a wide field of view for the camera. An attention

mechanism that selects some "interesting" locations in an

image or environment significantly speeds up and sim-

plifies the search. Features such as intensity, colour, high

contrast, motion and presence of significant edges are

often used to focus attention. Once candidate locations

have been selected, each of them is inspected closely to

verify presence of the target object.

We use colour to identify possible candidates in an

image. The colour classification scheme consists of an

off-line training phase and an on-line classification of

pixels on a real-time image processor 7. Colour informa-
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tionisusedforpixelwiseclassificationofimagesandas-
signingpixelsto possibletargetcandidatesor back-
groundclasses.Weapplyclassicalmethodsof pattern
recognitionforpixelclassification.Weachievethereal-
timeperformancebycreatinglookuptables(LUTs)dur-
ingthetrainingphaseandfastindexingduringtheon-
lineclassification.

5.1. Real-time Colour Classification

Classification of every pixel in the image is a computa-

tionally expensive task. Modern image processing sys-

tems are often equipped with large look up tables that

allow for real-time processing of every pixel. Combina-

tion of multiple data streams, for example RGB, into one

channel enables us to index into the LUT and achieve the

real-time performance of an arbitrary (non-linear) con-

version. The nature of this conversion is determined by

the contents of the LUT. The problem is how to create a

LUT that will effectively capture the important variabil-

ity of the data.

Resolution of the feature space can reach 224 (3 x 8 bit co-

lour bands) for standard colour cameras. Often it is suffi-

cient to operate on smaller arrays. There are hardware li-

mitations as well, for example, the Datacube MV20 ad-

vanced processor, used in the project, has a look up table

with a maximum of 64 k entries. The contents of look up

tables are often determined by manual selection. A more

systematic approach uses training by showing examples

and manually delineating the objects of interest. Cells in

colour space, corresponding to the feature combinations

present in the training set, are assigned to appropriate

classes. For low resolution of the feature space (200 cells)

such a technique is sufficient, as camera noise and blur

create dense clusters 13. For high resolution look up

tables containing, for example 64 k cells, this approach is

not reliable as insufficient training data creates "holes" in

the feature space. Such holes cause misclassification of

the data. Various heuristic techniques of filling the space

have been used to bridge the gaps l0

To overcome the problem of the gaps in the LUTs created

by limited number of training combinations, we use

classical statistical pattern recognition techniques to fill

the table. The brute force classification of all possible

feature combinations fills the LUT easily.

The training sets consist of images with objects of in-

terest in their natural environment and under different il-

luminations. Each pixel in the training set is described by

its three colour components (RGB or HSI depending on

the selected colour space). A clustering programme parti-

tions the three dimensional feature space and creates de-

scriptions for all clusters detected in the training set.

After clustering the user assigns individual clusters to

classes corresponding to the trained objects and the back-

ground. A classification programme uses the description

of clusters and their class assignment to process all the

pixels in a test image. The test image contains all the fea-

ture combinations for a given resolution of the feature

space and the resulting LUT will have all its cells Idled by

this process. Resolution of the LUT is limited by the

image processing hardware and in our case the LUT size

is equal to 64k (216). Decomposition of the 24 bit input

data into 16 bits can be constant and may always rely on

the same algorithm. Alternatively, it may vary depending

on the distribution of data in the feature space.

The on-line classification combines the colour compo-

nents of every pixel into one index to address an entry in

the look up table. This entry contains a label correspon-

ding to one of the trained classes.

5.2. Implementation and Results

We have implemented the training phase (clustering and

creation of the LUT) on a Unix host. The real-time colour

classification is being implemented on the MaxVideo 20

image processing system.

We trained the classifier to detect red and green circular

plates similar to the ones displayed on the wall in the

scene shown in figure 6. The training set contained mul-

Figure 6. An office scene with coloured objects

(luminance is shown only)

tiple plates located in various locations in the scene. The

illumination varied between locations. The original pixel
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valueswererepresentedintheRGBspace.Weusedthe
K-meansalgorithmtogroupthedataintoapproximately
20clusters.Theuserassignedclusterscorrespondingto
platestothreeclasses:red,greenandthebackground.
Thistechniqueisdescribedindetailin7.

Figure7 showstheresultsof pixelwiseclassification,

Figure 7. real-time colour detection and recon-

struction of object candidates from figure 6

filtering and reconstruction of large blobs representing

red and green classes. The results of this processing are

not perfect - both red plates have been detected but

among the four green candidates only one corresponds to

the target object. Also, detection of individual plates is

not perfect as regions in the shade or reflecting light are

misclassified. Different techniques could be used to de-

cide whether the detected blobs correspond to valid ob-

jects or not. At this resolution, however, it might be diffi-

cult to decide if the shape deformations are caused by

noise, particularly if the sensor is positioned at a difficult

viewing angle. It is much better to point the robotic head

at every candidate in turn and then acquire and process a

new set of images.

Each detected candidate is described by a set of para-

meters that define its position in the image, size and loca-

tion of its bounding window. The new orientation of the

head is calculated from a kinematic model of the head

that includes the pan, tilt and the initial size of the field of

view. The new setting for zoom is selected so that the blob

of interest is fully included in the new view but dominates
the field of view.

6. Using Vision and Range for Navigation

The robotic head with the Laser Eye provides colour

images and sparse range measurements at distances up
100 m. With the current version ofthe head we can obtain

sparse range measurements at a rate over 2 Hz. For the

real-time operation of the robot it is important to mini-

mize the number of measurements. We use image data to

plan where to point the range-finder 4, 5

6.1. Region Based Image Representation

We assume that nearly all significant depth discontinu-
ities in the scene coincide with the boundaries of detected

regions. This assumption requires that the initial seg-

mentation creates an over- rather than under-segmented

representation of the image. The under-segmentation

can cause potential problems as it requires additional

depth measurements to split the region along a depth dis-

continuity. The size of the regions should not be too small

as it is difficult to obtain reliable distance measurements

for small regions due to the finite size of the laser spot and

accuracy of the robotic head.

The initial segmentation creates an image tessellated into

primary regions of homogeneous image properties (in-

tensity, colour, etc.). The segmentation method adopted

for the project consists of smoothing, morphological

edge detection and the watershed transform. This has

been described in detail elsewhere 4. Large numbers of

closed regions of similar image properties are created as a
result.

In the image of AECL bay, shown in the figure 1, depth

varies from approximately 3 m to 100 m. Figure 8 shows

regions detected in figure 1 by the segmentation algo-

rithm. A range map corresponding to this scene can be

Figure 8. Image from figure 1 segmented into regions

created by selecting target points for each region and
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pointing the sensor at each of them. The number of targets
required for each region depends on the world model and

the required robustness. In a simple example, a single

range measurement per region yields an approximate
range map. Orientation of a planar surface in 3D can be

recovered by measuring the distance to at least three

points for each region and fitting a plane in Cartesian

coordinates. Further processing uses the distances to

targets and properties of regions and curves. The result of

this processing is a 2 1/'2 D representation of the scene.

6.2. Attention Driven Target Selection

In the example shown, the initial segmentation created

almost two hundred primary regions. Assuming the

simple model with one range measurement per region,

creation of the complete range map requires almost 200

range measurements. By applying the above technique

we have been able to reduce the number of range

measurements required to create the dense range map
from 64k samples (sampling every pixel in a 256x256

grid) to a much more manageable number of 200 to 1000

samples (200 regions x 1...5 targets per region). This has

been achieved if the initial over-segmentation of the

image identified intensity discontinuities and that they
account for nearly all the depth discontinuities. For the

mobile robot, operating in real-time, this may still be too
slow. If we look at the intensity image ourselves, it seems

that a few range measurements, taken at the "right"

orientations, could provide the essential information es-
sential for a specific task. We decided to look to models of

human attention for inspiration.

The attention scheme, used here, depends on three com-
ponents 6:

i. a priori information,

ii. selection of salient features,

iii. a given task and previous results of attentive proces-
sing.

The a priori information is encoded as a function biased

to look at specific parts of the image. This function repre-
sents preferred behaviour (directional sensitivity) of the
system, for example, data in the centre or below the hor-

izon might be more important than at the periphery of the
camera image.

Representing the segmented image data as a graph allows

easy access to underlying regions and boundaries in the

graph and for access toadjacent ones. The regions are de-

scribed by features such as intensity, colour, texture des-

criptors, and their size and shape. The boundaries be-

tween adjacent regions are described by their size, shape,

orientation and contrast between regions on both sides.
Detection of winners, in the Winner Take All scheme 3,

uses a combination of these features and is biased by the

specific task performed by the roboL

For example, looking for a passage might involve search-

ing for a dark region in the image. Depth discontinuities

are likely to occur at boundaries between contrasting re-

gions. If the task is to provide a qualitative range map,

then selecting large regions first will enable faster cover-

age of the image by range data. Results of previous range
measurements can influence the selection of the next

target. This selection is task dependent. For example,

when searching for an obstacle, if a depth discontinuity is

detected, then the next ranging operations should con-

centrate on recovering the full extent of the closet object

and not the distant one. If such a discontinuity is detected

while searching for a passage then the successive ranging

operations should concentrate on objects further away -
the opposite strategy.

Figure 9 shows the attended receptive fields and the path

of 10 saccadic movements between regions of high inten-
sity. The initial bias is uniform and contributions from all

Figure 9. Bright regions selected by a uniformly
biased attention model

receptive cells (pixels) are treated equally and, as the re-

sult, large bright regions are attended first. Edges of high

contrast are likely locations for depth discontinuities.
Boundaries between regions now serve as salient fea-

tures. Pointing the range--finder at a boundary is not

practical so two regions on both sides are selected for

attention. Figure 10 shows a sequence of saccades be-

tween contrasting regions with a bias to the central part of
the image. To minimise the number of measurements,

each region is attended only once even if it is selected by
two different boundaries.
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Figure 10. High contrast regions selected by
a centrally biased attention model

7. Discussion

The ARK robot relies on its combined vision and range

sensor to navigate through the industrial environment.

This sensor is unique as it operates at large distances that

are typical for the industrial setting. Such distances are

not covered by other available techniques used by mobile

robots: stereo and active triangulation. Long distance

sensory data allows the robot to detect landmarks, search

for objects and possible paths well in advance. Early

detection of such situations allows the robot to modify its

trajectory or to change the plan without the need for an

exhaustive search of the environment, Our work concen-

trates now on extending the reactive, subsumption based,

control architecture by implementing additional behav-

iours. At present, we are moving now with our experi-

ments from the university laboratories to large open

spaces of the AECL industrial bay.

One of the strengths of the ARK project stems from the

close working relationship between the industrial partici-

pants and the researchers from the University of Toronto,

York University and the National Research Council.

8. Acknowledgements

Funding for this work was provided, in part, by the ARK

(Autonomous Robot for a Known environment) Project,

which receives its funding from PRECARN Associates

Inc., the Department of Industry, Science and Technol-

ogy Canada, the National Research Council of Canada,

Technology Ontario, Ontario Hydro, and Atomic Energy

of Canada Limited.

9. References

1. Blais F., Rioux M., Domey J.: "Optical Range Image
Acquisition for the Navigation of a Mobile Robot".

Proc. of IEEE Int. Conf. on Robotics and Automation,

1991.

2.Brooks R.: "A Robust Layered Control System for a
Mobile Robot". IEEE Trans. on Robotics and Automa-

tion, 2(1), 1986, pp. 14 - 23.

3.Culhane SM, Tsotsos JK: "An Attentional Prototype

for Early Vision". ECCV-92, pp. 551 - 560.

4.Jasiobedzki P.: "Active Image Segmentation using a

Camera and a Range-finder". Applications of Artifi-

cial Intelligence XI: Machine Vision & Robotics. Or-
lando, Florida, April 1993, p. 92 - 99.

5.Jasiobedzki P., Jenkin M., Milios E., Down B., Tsotsos

J., Campbell T.: "Laser Eye - a new 3D sensor for ac-
tive vision". Intelligent Robotics and Computer Vi-
sion: Sensor Fusion VI, Proc of SPIE, vol. 2059, Bos-

ton, Sept. 1993, pp. 316 - 321.

6.Jasiobedz_ki P., Service J.: "Recovering Depth by Sac-
cadic Movements of an Active Rangining System".

Conference on Vision and Pattern Recognition, CVPR
94 (submitted).

7. Jasiobedzki P., Down B., Service J. Wu V.: "Active ob-

ject detection using colour and shape". 8-th Canadian

Conference on Computer Vision, Signal and Image

Processing, Vision Interface 94, Banff, May 1994 (sub-
mitted).

8. Jenkin M., Milios E., Jasiobedzki P., Bains N., Tran K.:

"Global Navigation for ARK". Proc. of IEEE/RSJ In-
tenational Conference on Intelligent Robots and Sys-

tems, IROS'93, Yokohama, Japan, July 26-30, 1993,

pp. 2165-2171.

9.Jenkin M., Tsotsos J.: "Active Streo Vision and Cyclo-
torsion." Conference on Vision and Pattern Recogni-

tion, CVPR 94 (submitted).

10. Massen R., Volk G.: "Real-time colour classifica-

tion for preprocessing photogrammetry images". SPIE
vol. 1395, Close--Range Photogrammetry Meets Ma-

chine Vision, pp. 283 - 290.

11. Nickerson B., Jenkin M., Milios E., Down B., Jasio-

bedzki P., Tsotsos J., Bains N., Tran K.: "ARK - Auton-

omous Navigation of a Mobile Robot in a Known Envi-
ronment." Proc. of International Conference on Intelli-

gent Autonomous Systems: IAS-3, Pittsburgh, PA,
February 1993, pp. 288 - 296.

12. Robinson M., Jenkin M.: "Reactive Low Level Con-
trol of the ARK".8-th Canadian Conference on Com-

puter Vision, Signal and Image Processing, Vision In-
terface 94, Banff, May 1994 (submitted).

13. Swain M., Ballard D.: "Color Indexing." IJCV 7:1,

pp. 11-32.

14. Wilkes, D., Dudek, G., Jenkin, M., and Milios, E.,
"Multi-transducer sonar interpretation". IEEE Int.
Confi on Robotics and Automation, Atlanda, GA,

1993, vol. 2, pp. 392 - 397.

20


