
AIAA-94-1185-CP

N94- 30535

Abstract

Confessions of a Robot Lobotomist

R. Marc Gottshall - Specialist Engineer

Boeing Commercial Airplane Group
Seattle, Washington

Since its inception, Numerically Controlled (NC)

machining methods have been used throughout the

aerospace industry to mill, drill, and turn complex shapes

by sequentially stepping through motion programs.
However, the recent demand for more precision, faster

feeds, exotic sensors, and branching execution have

existing Computer Numerical Control (CNC) and
Distributed Numerical Control (DNC) systems running at

maximum controller capacity. Typical disadvantages of

current CNC's include fixed memory capacities, limited

communication ports, and the use of multiple control

languages. The need to tailor CNC's to meet specific
applications, whether it be expanded memory, additional
communications, or integrated vision, often requires

replacing the original controller supplied with the
commercial machine tool with a more powerful and

capable system.

=

=

This paper briefly describes the process and equipment

requirements for new controllers and their evolutionary

implementation in an aerospace environment. The

process of controller retrofit with currently available
machines is examined, along with several case studies

and their computational and architectural implications.

Introduction

In response to the more complex machined shapes

demanded by modern aircraft, the Air Force sponsored

numerically controlled milling machine research at the
Massachusetts Institute of Technology's Radiation

Laboratory in 1949. The fusion of the then fledgling

digital computer technology with servo control
techniques allowed demonstration of a prototype NC
machine in 1953 1. Over the ensuing forty years, new

CNC capabilities have dramatically enhanced the way

airplanes are made. CNC computers have become

smaller, faster, and cheaper; through the use of
innovative sensors, automated work cells can both

monitor and control production processes as well as the

parts they create. Upstream systems can create and store
part programs, collect and analyze process data, and

monitor/diagnose individual machines. In general, the

processes being performed are more complex, highly

7632.----

/,o /0

precise, intolerant of delay, and are being automated at

an ever-accelerated pace.

When tailoring a controller for a machine tool

application, two critical considerations must be taken
into account: process complexity and life cycle cost. The

desire to improve product quality and reduce manual
labor has caused automated systems to become more and

more sophisticated. On the control side, automation

applications require ever increasing amounts of software

that execute on powerful computers with extensive

memory. On the process side, smart-sensor based systems

provide tighter control of production monitoring, quality,

and reliability by collecting massive amounts of data

during process execution. This data must be organized

for use by both the process control and upstream business

systems. Clearly, what was once a single computer

operation has now become a network of 5 to 10
intelligent computer subsystems, each of which is usually

a microprocessor-based smart box. The function of each

subsystem is unique yet all subsystems contribute to

producing a better product.

Examples of smart-sensor based subsystems include
machine vision for process inspection and statistical

analysis, and thermal scanning devices to monitor

material growth. Data transfer of part attributes,

quantities, and messages require networking capability to
disk storage, file management, and company business

systems. Further complicating the automation process is
the need for a host system which is flexible enough to

coordinate all subsystem information and make

adjustments to the process in real-time. The host must
also interface hardware and software to multiple

communication protocols.

Cost and Comolexit_

While issues regarding process complexity represent the

factory side of the automation problem, the business side
is concerned with controlling cost. The vast amounts of

software generated for application development,

programming, and software maintenance must be
structured in order to control life cycle costs. Because

these automation systems are multi-computer based,

organizing and directing in-process information

mandates complex decision making algorithms. For

Copyright © 1994 by the American Institute of Aeronautics and Astronautics, Inc. All Rights reserved.

63

example,manyprocessesrequirethesystemto adapt to

changes in the process based upon input data, factory

problems, and machine interrupts. To effectively

implement such complex process algorithms, application

software is usually developed using structured analysis
and design. Structure design tools benefit the software

life cycle in development, maintenance, and

documentation. However, it is not always possible to

take advantage of cost savings using structured design
tools unless the computer language can support such
development.

Typical software maintenance costs for complex

automation applications can be excessive due to the

diversity of languages, controllers, and variety of

processes. For example, most NC, CNC, and DNC

machines utilize control language based upon ladder

logic. Other languages such as Allen Bradley's Siprom
are used in conjunction with ladder logic when

developing a machine application. Large multi-function

systems written entirely in ladder logic pose a formidable
maintenance task. The maintenance problem is

compounded further since robotic control systems often

use custom languages (such as Karel, Rail, V+, etc.).

Each of these unique languages must be supported by

programming staff. Factors such as language, processing
capability, interconnectivity, communications, and code

reusability must be weighed against what the company

can afford to spend throughout the software life cycle.

The issues of process complexity and software life cycle
are interdependent in the automation environment. The

interdependence can be examined by breaking down

these issues into further detail. First, process complexity
involves key factors such as programming,

communications, data transfer, control of input/output
functions, and motion control. Life cycle costs, on the

other hand, involve computer languages, maintenance,
training, upstream compatibilib,, and software
reusability.

Process sottware can be partitioned into six distinct

functional groups. Generalized categories include process

control, communications, file storage and transfer, digital
and analog input/output, motion control, and vision

processing. Of these categories, serial communications
has become a critical link for most automation

applications within Boeing.

Serial Communication,_

Many new applications utilize microprocessor-based
smart boxes which can control an entire section of a

process with little intervention from a host computer.

The ability to allocate tasks to multiple smart boxes
reduces the work load on the main controller. In

addition, it provides system modularity which can

reduce factory down time and part replacement. The

majority of these smart boxes provide serial ports for
communication. In order to reliably communicate with

multiple smart boxes, the system programmer needs to
have standard serial communication functions available

within the host controller's language. A set of common

tools might include full ASCII character recognition,
basic character input/output, and configuration of the I/O

port. Advanced features include data buffering, operating
system notification (via flags or interrupts), and the

ability to apply protocols such as Kermit, Xmodem, etc.

to data transfer. Many controllers do not allow much

control over a serial port, resulting in "kludging" the
existing software base to create a semi-functional

communications path.

Several aerospace applications require the use of thermal

scanners for monitoring temperature changes and part

growth the work cell. Interfacing and manipulating the
data provided from these scanners has proven to be a

programming challenge. Each controller has a unique
implementation of the RS-232 standard. Furthermore,

some controllers use restricted data formats, which limit

the flexibility of the system. Still other controllers require
special manipulation of the serial port hardware to make

the port functional. Consequently, special

communications software must be written after the serial

port has been studied through a network analyzer.
Compounding the problem is the lack of an RS-232

standard on the smart device. The result is the

communications software must not only conform to a
non-standard format at the controller side but also on the
sensor side.

Protocols such as Kermit, Xmodem etc. have been

successfully used in the computer industry for years. As
more embedded PC boxes sprout up in automation

applications, the need for a robust communications tool

set resident in both the host controller and sensor systems
is continually overlooked. In addition to serial

communications, smart boxes are synchronizing
communication with digital I/O. End effectors and

manual operator interfaces can use combinations of serial

communications, discrete digital I/O, and analog
input/output. End effectors can be considered as

completely independent machine processes. Smart

controllers are used with end effectors to control valves,

drill motors and part manipulators. Here again, serial
communication is used to set up the end effector and
control the process in real time.

64

Digital I/O Control

Assembly and manufacturing applications require

synchronization of multiple control relays and valves

using discrete digital I/O. Process control is dependent

upon the ability of a host controller to receive serial
information and/or discrete digital I/O, decode the

information, then make a decision affecting the next step

in the process. Programmable Logic Controllers (PLC's)
have been used for this task. The PLC is a cornerstone in

many Boeing automation applications due to its

"bulletproof" ability to control process I/O. Other benefits
include a large base of people who program and trouble

shoot in ladder logic.

In addition to PLC's, most control system manufacturers

provide both digital and analog I/O. These I/O's are
interfaced to operator control panels, process switches,

valves, and a multitude of sensors and indicators. While

I/O interfacing is somewhat standardized, tools for

developing I/O control algorithms are not. Programming
a PLC for interfacing to an operator control panel can be

difficult due to the lack of a rich language base.

Designing a system in which I/O's can be placed in

logical groups is dependent on where the grouping takes

place and how many I/O's are required.

Distributed I/O boxes aid in modularizing the system

design, but also complicate the system by the sheer
numbers of sensors being processed. The host controller

must have intelligent control over all I/O's both in

hardware and software. Many real-time processes require

high speed processing of sensors in order to avoid

catastrophic failure. This implies a group of dedicated

high speed I/O's in addition to simple valve and switch
control. The inherent nature of high speed data

acquisition demands computing power as well as robust
hardware. The problem is further complicated by the

diversity of cables and connectors required to interface

the sensors.

The basic process of reading a digital input or setting a

digital output is not complex. However, when that

process must be carried out at high speeds, the physics of
transmission lines cannot be ignored. Further, the host

controller may have to read several sensors at once,

perform numerical computations on the data, iterate a
decision tree, and execute a reactionary function. Adding

to the myriad of hardware interfaces are the variety of

timing requirements for data acquisition. Coordination of

the system I/O's together with the application complexity

generate huge amounts of control software.

Machine Motion

In many aerospace automation applications, the issues
discussed above are secondary to precise control of

machine motion. Machine motion is generally executed

in joint or world coordinate systems. The dominant

trajectories for machine controllers are joint or linear
interpolated motion. The end result is to cause the tool

tip attached to the machine to perform the required
movement. NC machines utilize RS274D code to perform

these movements. This standard was developed in the

1950's, before the application of matrix algebra in motion

control. Today, robotic controllers use forward and

inverse kinematics to drive multi-axis machines. Inverse
kinematics allow the controller to compute where the tool

tip is with respect to the coordinate base of the machine.
This function is not possible with most NC machines.

Manufacture of aerospace grade parts demands high

positioning tolerances on the part of the machine. NC
machines have been capable of this for years provided the

part being machined is always fixed in a specific position
in the tooling jig. The NC machine can probe the part

and account for offsets in the X, Y, and Z axes but it

cannot adjust for changes in yaw, pitch, and roll.

Preparation and assembly of parts such as fuselage panels

involve path motion and positioning along complex
contours. (This type of operation requires machines with

5 to 6 axes of motion.)

An NC controller can be programmed for complex

motion but cannot adaptively adjust during the process.

This is because RS274D code being executed by the

machine is spatially fixed to either the machine or the

part reference frame. Thermal growth affects machining
tolerances due to the large size of many aerospace parts.

The part, the tooling fixture, and the machine bed are

subject to different growth fluctuations due to the
materials they are built from. The goal is to produce a

part with very high machining tolerances yet an NC
machine cannot fully adapt to the dynamic growth

changes caused by thermal effects. Controlling motion

using kinematics has a distinct advantage by being able

to dynamically create new frames of reference.

The part program is spatially fixed but a robotic
controller can establish an offset reference frame in world

coordinates using probing techniques. This reference

frame can be used to transform the original part data to
fit the current orientation of the part and tooling jig.

Other processes require drilling of holes normal to the

part surface. The normal vector and position must be

computed just prior to drilling the hole. Again, this is not

possible without the use of kinematics to locate the tool

65

tip relativeto the pan. These operations require more

computing power from the machine controller as well as

the ability to store and transfer data generated by
establishing in-process reference frames.

Language and Compatibility

Transferal of process data leads into the area of company

business systems. The issue of upstream compatibility

relates to the machine controller communicating through
an established network protocol to a company data base.

Unfortunately, upstream communications is tightly
intertwined with the language used by the machine

controller. Some systems use a server type architecture

for communicating to the company database. This allows

greater flexibility when changes are made to the system
but the machine controller must still provide process

information to some other computer based system. The
focus of the next section is what role the machine

controller language plays in interfacing not only to a

server system but more importantly to the application
itself.

The computer language of a control system plays the

executive role in "gluing" application subsystems
together. The language must provide a rich set of

functions including input/output, file management,
mathematical, decision iteratives, and graphics. Another

important feature of the controller language is its ability
to reflect the language syntax as readable structured text.

It is extremely beneficial to be able to define and name

software variables using meaningful words. Moreover,
the extent to which the language lends itself to structured

analysis and design implementations has far reaching

impacts on costs incurred during the software life cycle.

Automation software development, modification, and

maintenance is a costly process within the Boeing
company.

Utilizing multiple languages for an application has

several drawbacks. Many companies worldwide use

ladder logic as the standard for developing,

implementing, and debugging sequential steps in

automation and machining applications. Although newer
languages may be far simpler to understand, an

enormous base of people trained in ladder logic already
exists. Reeducating such a large and sometimes

unwilling work force is an immeasurable task.

Manufacturing companies have significant investments

in existing machineD,. Coupled to the machineD' are

support staff to maintain, operate, and reprogram
production applications. Training for most of these

companies is not economical. In addition, the choice of

which control system and which language to standardize
on is continually evolving.

Standardization of a subset of languages for applications

is nearly impossible. Each automation application has

specific requirements. These requirements cannot always
be met using one manufacturers control system. A new

system which fits the application may be purchased. This

usually means a new control language with a different set

of operating attributes and characteristics. Programming
for the application now requires a "learning curve" with

the new language, thus adding to software life cycle
costs.

The variety of control systems, PLC's, and motion control

cards used within Boeing are tied directly to the number

of languages requiring maintenance and support. Each

manufacturer has the "best" language for their
machinery. Thus, every machine has one or more

programming "specialists" intimate with that machine's
language. Many of these machines have restricted

language functionality.

Aerospace assembly applications require changes and
modifications to the software as improvements are made
in the process. When a controller with restricted

language and/or functionality is used, the controller
manufacturer must supply any customized software

routines. These unique software requirements can add as
much as 50% to the cost of the controller. Another cost

burden is the lack of reusability of process code.

A company may expend considerable sums on in-house

and customized software which cannot be transferred to

any other controller. Most code developed for PLC's is

application specific and cannot be migrated to future

applications. In addition to the PLC, the controller

language may not be portable to a similar controller.

These issues pose a formidable argument for finding a

single portable robust language for the entire application.

The diversity of applications within Boeing does not

allow for standardizing on a single language or

controller. However, a controller with a robust language
function base allows for immediate application of skills

used with other computer programming languages such

as Basic, C, Fortran, and Pascal. Computing iteratives
such as FOR, IF--THEN, WHILE, DO and CASE

provide high level syntax necessary for control of

complex processes. These factors are sought after because

they greatly reduce the maintenance costs by providing a

common set of characteristics already understood by
computer programmers. Another area of concern

involves connection through a network to company

66

business systems and storage facilities. The vast amounts
of process data being collected and analyzed by upstream
systems is transferred using many different network
protocols. To provide this function, a controller or host
computer must have memory for file storage and control
of one or more protocols for file uploading and
downloading. Some applications require data transfer
using custom protocols developed with the controller
language. Many of the older control systems support the
crudest of data input and output. This can slow the

automation process and also affect overall production
costs. The number of process and upstream computer

systems involved in the automation process continues to
grow resulting in increased layers of software. The
software development environment for each layer affects
the overall time to production. Software development for
the machine controller involves several phases.

After a structured design has been developed, the initial

coding phase of all machine functions takes place.
Following this phase is test and modification of the
software with or without the machine in the loop. At this

phase, all subsystem software is individually tested.
Integration phase involves debugging all subsystems
together with the machine controller. Once the
subsystems are connected, all languages must be able to
communicate through the main controller. The
debugging environment on the controller now becomes a
critical tool in testing the system operation.

Multiple modifications to the application software are
made by the system programmer during this phase.
Continual updating of the application software can be
very time consuming depending upon the efficiency of
the debugging and programming environments. For

example, a compiler based language may be more
powerful in terms of functional capability yet continuous
compilation, linking and perhaps downloading can be
extremely time consuming. On the other hand, an
interpretive language can be immediately modified and
tested without compilation, or linking. At this point, the
use of one language for all subsystems can significantly

reduce the programming complexity as well as the
manpower required to get the application on-line.

An area often overlooked during this phase of software

development is the end user or factory operator. While
the efficiency of the development environment plays a
significant role in bringing the process on-line, it must
also provide a rich graphical user interface (GUI.) Most
aerospace automation applications require one or more
operators in the loop to monitor the process. The
simplicity with which the process can be graphically
represented to the operator insures better participation

during part manufacturing. An efficient debugging
environment for graphic objects such as icons which

activate process functions is not available on many
control systems.

Once these development phases are complete and the

application is on-line, the software maintenance phase is
activated. Inevitably, the process requirements change as

the product is improved. Modification forces changes in
the application software and usually reprogramming of
some of the process programs. Here again, the

development environment is critical to making rapid
changes in the process. A system which supports off-line
development and test can be extremely cost effective in
the factory environment. Conversely, stopping production

to modify and test application code can be costly.

Control S_stem Requirements

The issues of process complexity, control system and

language, life cycle costs, and previously successful
projects are considered during the planning and design of
an automation application, Because of the complexity of

aerospace manufacturing, the control system is usually
the host in orchestrating a process. There are many

simple operations being performed at Boeing requiting
PLC's and/or rudimentary control systems. The wide

range of complexities of applications forces Boeing to
choose different controllers for different applications.
Alternatively, standardization of control systems would
reduce the level of automation manufacturing by limiting

applications to the technological capabilities of the

control system.

Advanced applications may require a system which
controls 1 or more multi-axis robots and several

dependent/independent axes of motion. Dynamic
coupling of axes in some applications may also be a
requirement. Simultaneous control of serial
communications and digital I/O information may be
essential. Advanced applications may use machine vision

for inspection or vision guided motion. Moreover, a
prioritized response to critical interrupts during process
execution is usually mandatory. These pre-requisites

place a formidable load on any controller.

Factors such as multi-tasking capability, task

prioritization, and time slice assignment become
fundamental criteria for the controller's operating system.
Without these capabilities, the control system cannot

effectively perform complex automation tasks. In
addition to operating system performance is the

efficiency and reliability of internal coupling between
hardware and software in a machine controller. The

67

operating system running underneath the language is

usually hard coded to motion control boards, digital I/O

interfaces, hard disks, and emergency stop circuitry.

Multiple microprocessor systems controlling trajectory

generation, digital closed loop servo control, external

communications, graphics, vision, and power
management are all interdependent.

The application complexity determines which of these

factors are required to implement the process. Another

consideration in controller selection is the number of

axes and type of motion required. An application may not
have any motion control or it may be a multi-axis

machine with vision guided motion. This implies two
controllers with very different sets of functional criteria.
Thus another key factor in controller selection is the

configurability of the system. A control system which can
accept a number of optional subsystems to meet different

requirements provides a cost effective application
solution.

Collecting the topics and issues discussed in this paper
provides a general outline of problems which exist in the
manufacturing environment. There are still more

problems and new solutions being developed today in
factories around the world. This paper is not intended to

be a catch all of automation issues, but an insight into the
growing complexity of factory automation. The next

section discusses four case studies of systems currently
in use within the Boeing company. The general system
block diagrams are presented with a discussion of some

problems and solutions related to each system. The exact

details of the application are omitted in order to protect
any proprietary information.

Case Studies

,,System 1

System 1 uses an Allen Bradley 9/260 series controller to

perform processes on stringers and stringer clips. The

system executes RS274D coded programs and controls

two axes of motion using incremental encoder feedback
for positioning. Figure 1 depicts the hardware block

diagram for this system.

The operator control panel is part of the control s'ystem

This controller has two serial communications port,: one

for DNC downloading of part programs from a file
server, the other retrieves data from a thermal scanner. A

specific DNC protocol had to be adhered to in order to

AB 9//260 RS-232 /

t Control RS-Z3Z
Pane i Remote I/0

t Wiring

[End Effector 1

File Server

Thermal tScanner

Figure 1

Number of axes

Number of I/O's

Number of serial ports
End Effector

Languages
Lines of code

60-70

2

1

PAL_ SIPROM
800-1000

Table 1

transfer program files. A network analyzer was used to re

document and debug the transfer protocol. Only one RS-

232 port can be used at a time, as the second port is not a
fully functional RS-232 port. The communications

protocol is specific to AB. Different ASCII characters

sent to this port cause predefined functions to occur.

Thus, the limitations of the communications set reduced

the overall flexibility of the system while increasing
development time.

The application language for this system is ladder logic
(PAL). The development environment consisted of

separate software packages provided by Allen Bradley.
PAL code was developed off-line on a PC using an AB
editor package. The software was then downloaded to the

AB 9/260. Debugging was accomplished by running the
PAL programs while monitoring the process on a remote

PC. The application code could not be single stepped for
debugging. The monitor process can be started and

stopped only. Motion parameters include: gains for P, I,

& D, gain break-point parameter, following error limit.

There are no pole or zero adjustments for the digital
closed loop servo control.

68

System 2
System 2 uses conventional cutters mounted in an electric

router to trim the periphery of composite parts for

aircraft. Figure 2 depicts the hardware block diagram for

this system. The part periphery are defined to tooling

edges where a robot slides a router bushing. This system

uses a CimCorp CimRoc4000 controller to perform all
robot motions. In addition, the router motors have

controllers to perform all router sensing and control of

the electric routers. Material handling shuttle tables are

controlled by PLC's based on digital signals from the

robot controller. There are over 128 digital input and

output points defined and three serial ports for the

printer, router controller and position probe. Software

was developed in C, running under DOS.

the network card and communication cards needed to

direct the motion control cards in the real-time back

plane.

System 3
System 3 utilizes an AB 8600 controller interfaced to a 7-

axis JOBS Jomach 16. This controller manipulates the
Jomach 16 as well as various end effectors used in

fuselage assembly processes. Figure 3 depicts the

hardware block diagram for this system.This application
also uses 3 PLC's, one for interfacing to a tool

storage/retrieval rack, and two others for controlling the

position of tooling headers. All three PLC's are connected

to a host AB8600 using "Data Highway". Each of the
PLC's uses "Remote I/O" for inter-PLC communication.

RS-232

RouterController]
Cimroe

4000 Dig.

[Dig. I/O I/0 [Route,'{

-1
[_i Point to point wiring

Shuttle Tables

RS-232

emote I/O

PLC 5

PC

os/z

 -C]Data.i hway 'PLC 5]
I I

Panel View] Panel View

Figure 2 Figure 3

Number of axes

Number of I/O's

Number of serial ports
End Effector

Languages
Lines of code

7

200

1

Multiple
C

30,000+

Table 2

The DOS/C development environment made use of

existing skills to efficiently implement a number of

operator security functions. Graphical user interfaces

were developed with the aid of a commercial graphics

package and libraries for serial communications and

ISAM databases were used extensively.

The most severe limitations were associated with the use

of a single tasking operating system (DOS). Minor
difficulties were encountered with network

communications owing to interrupt collisions between

Number of axes 9

Number of I/O's 200

1Number of serial ports
End Effector

Lan_uases
Lines of code

Multiple

PAL, SIPROM

6,090+

Table 3

This system required dynamic coupling of axes during

end effector drop-off and pick-up. The controller

provided this capability through hardware partitioning of

the axes. Memory on the 8600 CPU was also partitioned

and used for up to 5 different tasks. Dynamically coupled

motion was achieved using Allen Bradley's Axis

Manager software.

The complexity of the application required the use of

PLC's in addition to the system digital I/O blocks.

Because of the difficulty in programming the PLC

69

interfacewiththeoperatorconsole,twoAllenBradley
"PanelView"systemswereused.ThePLC'suse"Remote
I/O"tocommunicatewiththeoperatorconsoles,and
discreteI/Otoactivatemotioncontrolcards.

ThesystemintegratorusedSipromandladderlogic
languagesto implement all process functions. The serial

communications protocol used by the AB8600 is specific

to the controller, and it was necessary to use a network

analyzer to determine how to implement reliable

communications with the AB8600. Programming tools

for graphics display were inflexible and poorly
documented. All GUI's and interfaces with the 8600 CPU

card cage were controlled via a PC.

Since the response times for probe contact were

inconsistent, programming custom probe routines for

probing normal to a surface was particularly difficult.

Machine motion in some applications was not as smooth

as expected, due to the length of the SIPROM code and

the loop execution time.

To interface a thermal scanner in this system required a

usable serial port. Further, coding of customized M-codes

routines in SIPROM were required for retrieving and

computing the thermal data.

File operations have some minor restrictions.

Downloading of files is limited to 6 ASCII characters for

file names. Formatted file lengths are limited to 255

records (132 characters per record). This forces new data

files to be created each time the 255 record boundary is

filled. Also, any formatted file read by the 8600 CPU

cannot be larger than 255 records. The record size

constraint creates further overhead in uploading data files

from the AB 8600 to company business systems. NC part

program files are unformatted so they can be as large as

memory allows. Deletion of files requires a manual key

insertion and editing privileges. Thus, operator lockout

was not possible, so data integrity could not be assured.
ie; operator can modify production files.

Software maintenance is difficult and costly due to the
structure of SIPROM code and the size of the PAL code

running on the PLC's. The single biggest problem with

this system is lack of memory. The machine controller is

running at maximum capacity. Because additional

memory is unavailable, no new process can be added to

this system. For example, adding another RS-232 port

would require memory to set up a serial communications

structure. Any modifications to existing code is very

difficult. On the other hand, this system is currently

exceeding production goals in the factory.

The retrofit system consists ofa 5 axis JOBS Jomach 16

with a sixth W feed axis, and a spindle. This system is

interfaced to an Adept A-series IC controller. The

purpose of the retrofit system is to provide a test and

feasibility workcell for various automation processes

under development within Boeing. Figure 4 depicts the

hardware block diagram for this system. The system goal

was to be extremely flexible, accommodating diverse

applications.

F _s-zzz_ 4

[ADEPT IC_.__ I !

Pamux bus L._

Binary I/0]] ,
]Expansion box _1 I

1 t
Binary I/O

iExpansion box]/2[

PC
File Server

End Effeetor]

Thermal]Scanner

AB Aux Console !-- Control Panel J

Figure 4

Number of axes 7

Number of I/O's 100+

1Number of serial ports
End Effector

Languages

Lines of code

Multiple
V/V+

15,000+

Table 4

The system uses 4 serial communications ports. One is
connected to an external PC for file transfer. Another is

connected to an operator control console (OCC). The

third is connected to a thermal scanner, and the last is

used for communicating to an end effector control

system.

The system uses more than 100 digital I/O's for process

control. Most of these are used in control of spindle

operations. Digital I/O is split into three groups: input,

output, and interrupt functions. Each of these groups can

be subgrouped into banks of 8 discrete I/O's for

partitioning in software. The interface to the OCC uses

both RS-232, interrupt, and digital inputs. Because cycle

start and cycle stop functions are critical to NC

operations, a non-maskable interrupt is used to

acknowledge input form the OCC.

70

The Adept controller provided many functions used in
serial communications. For example, file transfer
functions from the PC to the Adept are buffered.
Although an in house transfer protocol is used, Kermit or
Xmodem could have been applied. Because the amount
of data read from the thermal scanner is small compared
to file transfer, communication is done asynchronously

without buffering.

The retrofit project benefits from using one language
capable of controlling I/O's, interfacing to an operator
console, defining serial communication formats, and
developing decision paths for the application software.
The language is efficient in supporting variable
definition. For example, a program must perform
automatic range changing of the spindle drive gearbox.
The application code was written using variables such as

sp.in.rng.l, and sp.in.gearl.i to define the spindle gear
range and state of the gear 1 input sensor.

The tools for graphics were used extensively in
developing user interface screens. Features such as
buttons, icons, window and scrolling were implemented
in most of the application software. The language also
supported structured techniques which allowed for
modularizing the application code. Because of this, many
code modules are being reused in other applications
currently under development. On the other hand, the

language V+ is proprietary to the controller and required
some training before programming could begin. The
controller fully supported RS-232 and file transfer
functionality but was not equipped with protocols such as
Ethernet, SNA, or MAP. This shortcoming provided
difficulty in interfacing to company business systems.

Maintenance and life cycle costs of the software are
difficult to determine because code is always being
developed for new applications. It should be noted that by
developing modular functions and meaningful variable
definitions, most of the application code is understood by

reading it directly. Electrical maintenance of the system
is undetermined because the machine has not broken

down yet. Mechanical functions remained the same after

the integration.

NC Translator Apl)lication

In addition to the four previous case studies, there was a
requirement to develop an NC translator which could
read NC code developed for system 3 and execute it on
system 4. The application required exact replication of
NC motion with a control system using kinematic

trajectory generation. The Adept controller uses built-in

kinematics during trajectory calculations. The kinematic
definition of the machine includes link lengths, joint

angles, joint configurations etc. The NC translator
application required encoding the NC joint positions into
WORLD coordinates for use by the control system's

trajectory generator. An NC controller moves the
machine joints to locations using linear or circular
interpolation. The G-codes being executed by the NC
machine determines the type of interpolation employed.
Conversely, a robotic controller uses kinematics to
compute trajectory points for driving the tool tip. The
robotic controller can then use linear or joint
interpolation to drive the machine in WORLD, TOOL or

JOINT space.

Path motion created unique problems with respect to

accuracy. A path may be represented by a series of
consecutive points. As the tool tip moves through these
points several events occur. The tool tip moves toward
point 1 while the control system is computing a trajectory
for point 2. As the tool tip approaches the target point 1,
it may move through that point or come close to it as it
moves towards point 2 in the path. The controller looks

ahead 1 point in the path and computes a trajectory to
that point. At some time in the trajectory, the tool tip

begins to move towards point 3 and so on. The velocity
and acceleration values directly affect the accuracy of the
tool tip in following the prescribed path. In machine
routing, the smoothness of the motion over a path is
critical to the quality of the new surface left behind by the
router blade. A constant velocity is required to make a
smooth cut.

The controller allows for tuning envelopes around

endpoints in motion but did not allow for definition of a
tolerance envelope around path points. A solution
required close spacing of path points in the NC program.
During path motion execution, the next point in the path
was broken down into a series of smaller constant

velocity moves. The machine structure of 5 axes together
with path slicing computations produced two wrist
configurations for the same point. Additional software
was written to assure wrist configuration was maintained

during path motion. The result allowed the machine to
follow paths dictated by RS274D G-codes even though
the trajectories were computed using forward and inverse
kinematics.

The NC translator requirements included simultaneous

execution of the following functions: a graphics display
including which NC block was currently executing; real
time monitoring of an auxiliary operator control console;
preparation of path points for tool trajectory; executing
proper motion as defined by RS274D G-code standards.

71

Theapplication required the use of 3 tasks and several
internal software flags for inter task communication.

The multitasking capability of the operating system was
invaluable in coordinating the 3 application tasks.
Software was used to set task prioritization and optimize
stack sizes. This application is currently used to test NC
programs for developmental assembly concepts.

Future Work

If robots and machine tools are to realize their full

potential, controllers must improve their computational
performance, support reusable software and provide for
system extensibility. Open architecture controllers based
on accepted industry standard hardware, operating
systems, and application languages are arguably the best
way to support these improvements.

Machine controllers are typically two generations behind
the best available microprocessors. This performance lag
occurs due to lack of portability of control software as
well as robot and machine tool suppliers using
proprietary high level and assembly programs to
implement unique mini-kernels in lieu of a conventional
operating system. Control software written in ANSI C
with careful conformance to POSIX standard system calls
can be ported to new processors in a matter of days. The
use of standards further encourages software re-use, since
application code can often be re-compiled in the new
environment and linked into higher level software
designs.

Robot system extensibility demands a computing

hardware environment that enjoys high volume use and a
spirited development community to ensure an
uninterrupted stream of hardware to support emerging
requirements.

Boeing, in support of this approach, is developing open
architecture controllers and motion control libraries in

cooperation with several commercial vendors. The robot

controllers are VME based, programmed in ANSI C and
are POSIX compatible. Extensions to this work will
provide retrofit software applications to ease the
adaptation of open controls to new machines. Servo
tuning tools, simulation systems, calibration applications,
and upstream system interface libraries will be
developed during the next year or two.

The author would like to thank the following dedicated
automation and robotics engineers at Boeing for their
experienced input: Craig Battles, Rich Morihara, Stan
Munk, and Scott Muske.

[l]

References

Reintjes, J. Frances. 1991 Numerical
Control: Making a new Technology,
New York. Oxford University Press.

72

