
_0_'_ AIAA-94-1209-CP
N94- :30560

Object-Based Task-Level Control:

A Hierarchical Control Architecture for Remote Operation of
Space Robots

H.D. Stevens * E.S. Miles t S.J. Rock $

Stanford Aerospace Robotics Laboratory
Stanford, California 94305

R. H. Cannon §

Abstract
*t $§

Expanding man's presence in space
requires capable, dexterous robots
capable of being controlled from the
Earth. Traditional "hand-in-glove"
control paradigms require the human
operator to directly control virtually
every aspect of the robot's operation.
While the human provides excellent
judgment and perception, human
interaction is limited by low bandwidth,
delayed communications. These delays
make "hand-in-glove" operation from
Earth impractical.

In order to alleviate many of the
problems inherent to remote operation,
Stanford University's Aerospace
Robotics Laboratory (ARL) has
developed the Object-Based Task-Level
Control architecture. Object-Based Task-
Level Control (OBTLC) removes the
burden of teleoperation from the human
operator and enables execution of tasks

not possible with current techniques.
OBTLC is a hierarchical approach to
control where the human operator is able
to specify high-level, object-related tasks
through an intuitive graphical user
interface. Infrequent task-level
commands replace constant joystick
operations, eliminating communications

* Ph.D. Candidate, Department of Aeronautics and

Astrorrautics. Member AIAA. hdsteven@sun-

valley.stanford.edu

t Ph.D. Candidate, Department of Aeronautics and

Astronautics. esm@ sun-v alley.stanford.edu

:_ Associate Professor, Department of Aeronautics and

Astronautics. Member AIAA. rock@sun-
valley.stanford.edu

§ Charles Lee Powell Professor, Department of

Aeronautics and Astronautics. cannon@sun-
valley.stanford.edu

bandwidth and time delay problems.
The details of robot control and task

execution are handled entirely by the
robot and computer control system.

The ARL has implemented the OBTLC
architecture on a set of Free-Flying
Space Robots. The capability of the
OBTLC architecture has been

demonstrated by controlling the ARL
Free-Flying Space Robots from NASA
Ames Research Center.

1.0 Introduction

As NASA expands America's presence
in space, on-orbit assembly,
maintenance, and servicing must become
routine operations. The extreme cost and
risk of astronaut EVA dictate that

automation and robotics must play a key
role in providing such services in any
viable long-duration human-in-space
future. The enormous number of EVA

hours currently required to perform these
operations can be significantly reduced
by the timely provision of effective
human/robot teams. Such a team would

consist of a human in a safe haven, such
as on Earth or inside a space vehicle,
indicating at a high level the tasks to be
done, while robots in the space
environment execute the tasks with

quick proficiency.

To date, the operation of space robots
requires the user to manually control the
robot's actions directly by a "hand-in-
glove" method (i.e. teleoperation). Robot

performance is consequently
characterized by the fundamental
limitations of any system where human

control is intricately involved -- namely,

264

Copyright © 1993 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



time delay between the human and robot
due to long distance communications,
low bandwidth performance due to slow

human response characteristics, and
intense operator tedium and fatigue due
to the complexity of teleoperating
complex dynamic systems. Clearly,
these limitations call into question the
viability of teleoperated systems for the
extended, sophisticated on-orbit
operations for which they are intended.

Object-Based Task-Level Control
(OBTLC), an architecture developed by
Stanford University's Aerospace
Robotics Laboratory (ARL), removes the
burden of teleoperation from the human
operator, enabling execution of tasks not
possible with current teleoperation
techniques. OBTLC is a hierarchical
approach to control where the human
operator is able to specify high-level,
object-related tasks through an intuitive
graphical user interface. Occasional task-
level commands replace constant
joystick operations, eliminating
communications bandwidth and time

delay problems. The details of robot
control and task execution are handled

entirely by the robot and computer
control system.

2.0 THE OBTLC
ARCHITECTURE

In order to fully comprehend the
OBTLC architecture, it is first necessary
to have a clear understanding of the
terms "object" and "task", as they are
used in this paper.

The notion of an object is fundamental to
the OBTLC architecture. An object is
any physical entity that the operator
wishes to manipulate and/or to which a
specific relationship with the
environment or other objects is desired.
An object might be something
independent of the robot, such as an
Orbital Replacement Unit (ORU), a
space truss member, a tool or a bolt; or it
might be a significant part of the robot,

such as a manipulator end-effector or
perhaps the entire robot.

A task is integrally related to this notion
of an object. Specifically, a task is a
manipulation of objects in the
environment (including robots) to match
a desired configuration of, or relation-
ship between, objects. Examples of
tasks include: "replace that ORU with
this ORU", "join these two truss
members together", "extract that bolt
with this wrench", and commanding a
free-flying space robot to "move from
point A to point B." In all of the above
task examples, one theme is constant:
task specifications directly correspond to
high-level desired object behavior, not
low-level details of robot manipulation
and control to achieve these tasks. This

approach to control is therefore referred
to as object-based control, and the
tasks performed are object-based tasks.

The objective of the Object-Based Task-
Level Control (OBTLC) architecture is

to provide the human operator with the
ability to specify directly, and in a
simple way, the object-based tasks he or
she wishes to execute. The details of
how these tasks are carried out are

handled autonomously by the robot, and
therefore do not burden the operator.
Thus, the human is free to concentrate

on high-level issues, such as devising
strategies and solving problems, while
the robot's computers perform the fast
calculations necessary to close control
loops precisely and autonomously. This
novel approach exploits the
complementary capabilities of robotic
control and human decision-making to
construct a powerful human/robot team.

Implementation of the OBTLC
architecture provides numerous
advantages over lower-level remote
teleoperation. First, the detrimental
effects of time delay are minimized
because the human operator is
eliminated from the low-level control of
the robot. Task level commands from

the human and responses from the robot
need only occur at infrequent intervals.

265



Second,operatorfatigue is significantly
reducedbecausethe humanis no longer
burdenedwith the low-level details of
teleoperating a sophisticated dynamic
system. Finally, this complementary
division of labor betweenhuman and
robot enablesthe human/robotteam to
perform morecomplicatedtasksthanis
possible with traditional teleoperation
approaches.

THE HIERARCHICAL
NATURE OF OBTLC

OBTLC involves the management of

three different kinds of information:

1) Infrequent communication between
human and robot(s) about tasks to be

performed.
2) Strategic information used by a robot
or shared between several robots to

break complicated tasks into smaller sub
tasks.
3) Low-level dynamic control
information used to close high-speed

control loops on each robot.

The OBTLC control architecture is

correspondingly divided into three
layers-- the User Interface, the Strateg!c
Controller, and the low-level Dynamic
Controller.

The USER INTERFACE maintains and

displays a world model, and receives
desired changes to the state of the world
from the operator. By manipulating
iconic images of objects in this world
model, the operator simply and
intuitively instructs the robot to perform
complex tasks. For example, insertion
of the icon of one part into another is all
that is necessary to instruct the robot
system to perform all actions necessary
to complete the insertion task.

The second layer, the STRATEGIC
CONTROLLER, is based upon a finite
state machine structure and embodies the

logic and decision-making capabilities
necessary for the robot to operate
autonomously. Examples include path-
planning, advanced manipulation and

assembly of objects, and multiple-robot
coordination. The Strategic Controller

monitors changes in the state of the
world, new commands from the human

operator, and low-level sensor infor-
mation, and uses this information to
devise and execute new plans and to

dictate changes in low-level control
behavior. It is also this layer that
identifies and sends to the user interface
indications of events or problems that

may require closer operator attention.

The third layer, the DYNAMIC
CONTROLLER, incorporates high-
bandwidth, sensor-based feedback
control to achieve precise, high-speed

dynamic performance of the robot
system. This layer renders all details of
robot control (i.e. position and force

regulation, coordination of dynamic
coupling, use of redundancy,, control
optimization, disturbance rejecuon, etc.)
completely transparent to the human

operator.

3.0 RELATED WORK

There are several control Architectures

designed for space operation. Lumia and
Albus proposed the NASA/NBS
Standard Reference Model for the
Telerobot Control System Architecture

(NASREM)[1]. NASREM is made up of
three six-level hierarchies for task

decomposition, world modeling, and
sensory processing. In the NASREM
system, the concept of an object at a high
level is lost. The architecture is focused

on controlling and coordinating
manipulators. Strategic control, as
defined in the previous section, is not
incorporated into the NASREM
architecture.

The Modular Telerobot Task Execution

System (MOTES) [2], developed at JPL,
is another type of hierarchical robot
controller. The MOTES system is based
on a command interpreter similar to that

used in spacecraft. This approach differs
from OBTLC in that it only generates

plans that sequence pre-programmed,

266



User

Interface

Strategic
Controller

Dynamic
Controller

World

Model

Rule
Base

Data

Base

Dynamic
Model

Status

Monitoring

Command

Generation

Error Detection

Path Planning Sensor Fusion

Collision

Avoidance

Motion

Coordination

Trajectory
Generation

Event

Sequencing

Error Detection

Dynamic

Compensation

Feedback

Control

Sensor

Post-Processing

Actuator

Pre-Processing

Error Detection

Data Functions

Figure 1: The Object-Based Task-Level Control Architecture. The architecture consists
of a user interface, a strategic controller, and a dynamic controller. Occasional task-level

commands from the user interface to the strategic controller create a system that is
unaffected by communication delay.

open-looped macros and does not
incorporate any sensor based decision
making.

Another architecture which bears greater
similarity to OBTLC is Sheridan's

concept of supervisory control [3].
Indeed, at their most simplified level,

both supervisory control and OBTLC

involve human instructions to complex
systems, which are than translated into

actuator commands. In practice,
however, most researchers interpret
supervisory control to mean computer-
augmentation of human teleoperation
(i.e. incorporating control loops and

267



compensatorsin the system to make
teleoperationmore tractable). OBTLC
differs from this interpretationin thatthe
humaninput to the systemis at a much
higher level; in fact, human input is
absent at the lowest level. OBTLC
therefore representsan exploration of
Sheridan'sconceptin a noveldirection.

4,0 IMPLEMENTATION OF
OBTLC ON A FREE-FLYING

SPACE ROBOT

OBTLC has been implemented on
several experimental systems at Stanford
ARL, including several mobile and
stationary robots with cooperating
manipulators [4,5,7,8,10], and an
underwater vehicle [6]. The application
of OBTLC to a free-flying space robot
prototype [7,8] is particularly interesting
because of the complexity of the system.

ARL's space robotics facility features
three autonomous self-contained free-

flying space robots. A space
environment is simulated in two

dimensions using an air bearing over a
flat granite surface plate. In this
environment, the robots float on a
cushion of air approximately 0.003
inches thick, and they propel themselves
using on/off compressed air thrusters.
The space robot is equipped with an on-
board compressed gas supply, two two-
link SCARA configuration manipulators,
an on-board power supply, on-board
computing, wireless ethernet
communications, and local vision-
sensing capability.

These space robots are capable of a
variety of tasks including: capturing a
translating, spinning object, adaptively
identifying an objects mass and inertia
properties, cooperatively maneuvering
large objects, and assembling multiple
objects. All of the space robots are based
on the Object-Based Task-Level Control

paradigm, although each implementation
is slightly different. In this manner, the
OBTLC architecture continues to evolve

in response to new requirements.

EXAMPLE TASK: CAPTURE
THAT OBJECT

To fully explore the concepts involved in
OBTLC, one should examine, in detail,

what is involved in carrying out a
specific task. The task of capturing a
translating, spinning object with a free-
flying space robot is a particularly good
example. An object, called Scooter,
floats on the same granite table as the
robot and is not within the initial

workspace of the robot's manipulators.
The operator wishes to capture Scooter,

necessitating that the robot rendezvous
with and grasp Scooter. Figure 2 shows
the robot and object.

A global sensing system provides
position and orientation information for
the objects on the table (i.e. the robot
and Scooter) in real-time. This
information is used by both the user
interface and the strategic controller to
update the world model.

USER INTERFACE

One implementation of the user interface
uses the Virtual Environment Vehicle

Interface (VEVI) developed by the
Intelligent Mechanisms Group at NASA
Ames Research Center. The VEVI is an

interactive virtual reality user interface
which utilizes real-time interactive 3D

graphics and position/orientation sensing
to produce a range of interface
modalities from fiat-panel (windowed or
stereoscopic) screen displays to head

mounted/head-tracking stereo displays
[9].

The VEVI displays the virtual reality
model of the world (robot, Scooter, and
table) with the position and orientation
of the objects updated at about 1 hz from
the global sensing system. The operator
simply manipulates the objects by
controlling a virtual hand icon with a 3D
mouse. To command a capture, the
operator places the hand in select mode
(using a button on the mouse) and

268



Figure 2: A Free-Flying
SpaceRobotandanobject.
The space robot uses the
Object-Based Task-Level
Control architecture. ARL's
Free-FlyingSpaceRobotsare
capableof a variety of tasks
including: capturing a
translating, spinning object,
adaptively identifying an
objects mass and inertia,
cooperatively maneuvering
largeobjects,andassembling
multipleobjects.

Figure 3: The Virtual En-
vironmentVehicle Interface.
The VEVI, developed at
NASA Ames Research
Center, provides a simple,
intuitive operator interface.
By manipulating iconic
images of the objects, the
operator simply and
intuitively instructs the robot
to performcomplextasks.

269



[[Operation
SystemInitialization
Rendezvousingwith Object
InterceptingObject
Tracking Dbject
StoppingOb ect
Holding Object
PlacingOb:ect

ControlMode
Joint
Endpoint(BaseRelative)
Endpoint(Inertial)
Endpoint(Inertial)
Object-Based(BaseRelative)
Oh ect-Based(BaseRelative)
Object-Based(Inertial)

Trajectory
Fifth Order
SetPoint
Fifth Order
Tracking
Fifth Order
SetPoint
Fifth Order

Error Law
PD
PD
PD
PID
PD
PD
PD

Table 1: ControlModesRequiredfor ObjectCapture.
Thistableliststhesetofcontrollerconfigurationsthatthestrategiccontrollertakesthesystemthroughin
theprocessofrendezvousingwithandcapturingafree-flyingobject.Inallof theseconfigurations,thebase
motioniscontrolledintheinertialreferenceframeusingbang-off-bangtrajectoriesandPDerrorlaws.

touches the object. The VEVI then
transmits the capture command, which
requires the object name, Scooter in this
case, as the only parameter. Figure 3

shows an operator's view of the VEVI.

It is this high-level of interaction that
enables low-bandwidth communication

and eliminates the effect of time delay.
The operator is now free to plan the next
task, contemplate the strategy, or just
watch the task execution.

ON THE ROBOT:
STRATEGIC CONTROLLER
and DYNAMIC CONTROLLER

Upon receipt of the capture command
the strategic controller begins a multi-
step process of intelligently carrying out
the capture task. The strategic controller
is implemented using a finite state
machine. As new events or stimuli

occur, the finite-state machine reacts,

depending on the current state of the
system, by either progressing to the next
phase of a multi-step procedure or by
initiating a new course of action.

A major portion of the strategic
controller's coordination involves the

switching of control modes in the
dynamic controller. There are seven
different control modes required to

complete the capture task. These seven
are listed in Table 1. All of these are

implemented in the dynamic controller.
A complete discussion of these low-level
control modes can be found in [8]. One

control mode of interest is the object-
based control mode. This control mode

is based on the theory of Object

Impedance Control [4,10]. This control
methodology carries the concept of

object down to the lowest levels of the
control architecture.

The capture command sets in motion the
finite state machine (FSM) to capture the

object. The topology of the FSM is
depicted in Figure 4. In the figure an
ellipse signifies a state in the finite state
machine, a rectangle signifies a state
transition procedure, and a phrase over a
line indicates the stimulus that causes the
transition from one state to another. State

transition procedures are similar to
subroutines that return a stimulus. Thus

each procedure completes some actions
and returns the appropriate stimulus.

To complete the capture, the strategic
controller determines if the object

requested is either in view (i.e. within
the range of the local sensing system) or
found (i.e. on the table, but not within
view of the local sensing system). In the
example, the object is found. The object
trajectory and robot base intercept
trajectory are computed and the proper
dynamic controllers switched in. The
dynamic controller is provided with the
proper intercept trajectory to follow. At

270



©
,a

(

©

\

Figure 4: Object Rendezvous Finite-State Machine Graph.
This is the portion of the Strategic Controller which is executed when a Capture command is issued by the

operator. Using the Finite-State Machine, the Strategic Controller is able to react, intelligently, to new
sensor information. This sensor based decision ability is the unique feature of OBTLC.

271



regular intervals, the intercept trajectory
is recalculated to allow for new

information to enter the system. The
base motion and trajectory recalculation
continue until the object comes into view
of the local sensing system.

With the object in view of the local

sensing system, the robots manipulators
are commanded to begin slewing to the
object. Trajectories for each of the two
manipulators are computed, checked for
collisions, and executed as the object
comes within the workspace of the
manipulators. The trajectories place the
endpoints over the grip points for
grasping. The object is grasped, and the
motion of the object stopped using the
manipulators. Scooter has been
successfully captured.

The entire sequence of events described
above is initiated with a simple "capture

that object" command issued by the
operator. The operator has been
completely removed from the details of
robot motion and control modes required
to complete this capture. It is apparent
that the details of this operation, and the
speed at which they must be
accomplished, are daunting for the
human operator alone. It is quite possible
that a human operator with no help could
not even accomplish this task.

5.0 CONCLUSIONS

The OBTLC architecture is a powerful
new paradigm in the remote control of
robot systems where the operator
interacts with the system via an intuitive
interface. The system is commanded at
the task level, allowing the human

operator to focus on the strategic issues,
such as what to do next, while the robot
system carries out the desired tasks
quickly and deftly. This paradigm raises
the human/robot team to a level never
before possible.

Development of the OBTLC architecture
has been guided by the principles of
systems engineering and the desire to

enable humans to interact with a robotic

system at an intuitive level. This
architecture has evolved to the current

point only by the strict adherence to
these principles. As with any
architecture, OBTLC continues to evolve

enabling its application to a broad range
of problems.

6,0 ACKNOWLEDGMENTS

This research is supported by NASA
Grant NCC 2-333. The authors are

grateful to NASA for their continued
support of this research.

7,0 REFERENCES

[1] Ronald Lumia and James S. Albus.

Teleoperation and Autonomy for

Space Robotics. Robotics, 4(1):27-
33, 1988.

[2] Paul G. Backes, Mark K. Long,
and Robert D. Steele. The Modular

Telerobot Task Execution System
for Space Telerobotics. In
Proceedings of the IEEE
International Conference of
Robotics and Automation, pages
524-530, Atlanta, GA, May 1993.
IEEE Robotics and Automation

Society.

[3] Thomas B. Sheridan. Telerobotics,
Automation, and Human

Supervisory Control. Cambridge,
Massachusetts: The MIT Press,
1992.

[4] Stanley A. Schneider. Experiments
in the Dynamic and Strategic
Control of Cooperating
Manipulators. PhD thesis, Stanford
University, Department of
Electrical Engineering, Stanford,
CA 94305, September 1989. Also
Published as SUDAAR 586.

[5] Lawrence E. Pfeffer. The Design
and Control of a Two-Armed,
Cooperating, Flexible-Drivetrain
Robot System. PhD thesis,

272



[6]

[7]

[8]

[9]

[10]

Stanford University, Department of
Aeronautics and Astronautics,

Stanford, CA 94305, December
1993. To Be published.

Howard H. Wang, et all. Task-
Based Control Architecture for an
Untethered, Unmanned

Submersible. In Proceedings of the
8th Annual Symposium of
Unmanned Untethered

Submersible Technology,

September 1993.

Marc A. Ullman. Experiments in
Autonomous Navigation and
Control of Multi-Manipulator,
Free-Flying Space Robots. PhD
thesis, Stanford University,

Department of Aeronautics and
Astronautics, Stanford, CA 94305,

March 1993. Also published as
SUDAAR 630.

William C. Dickson. Experiments
in Cooperative Manipulation of
Objects by Free-Flying Robot
Teams. PhD thesis, Stanford

University, Department of
Aeronautics and Astronautics,

Stanford, CA 94305, December
1993. To be published.

T. W. Fong. A Computational
Architecture for Semi-autonomous

Robotic Vehicles. In Proceedings

of the AIAA Computing in
Aerospace 9 Conference, San
Diego, CA, October 1993. AIAA.

Stanley A. Schneider and Robert
H. Cannon, Jr. Object impedance
control for cooperative
manipulation: Theory and
experimental results. IEEE Journal
of Robotics and Automation, 8(3).
June 1992.

273


