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Abstract

This paper describes the development status

of a prototype supervised i ntelligent robot for

space application for purposes of (1) helping the
crew of a spacecraft such as the Space Station with

various tasks, such as holding objects and

retrieving/replacing tools and other objects from/

into storage, and (2) for purposes of retrieving
detached objects, such as equipment or crew, that

have become separated from their spacecraft. In

addition to this set of tasks in this low-Earth-

orbiting spacecraft environment, it is argued that

certain aspects of the technology can be viewed as

generic in approach, thereby offering insight into

intelligent robots for other tasks and

environments.

Candidate software architectures and their

key technical issues which enable real work in real
environments to be accomplished safely and

robustly are addressed. Results of computer simu-

lations of grasping floating objects are presented.

Also described are characterization results on

the usable reduced gravity environment in an

aircraft flying parabolas (to simulate weightless-

ness) and results on hardware performance there.
These results show it is feasible to use that environ-

ment for evaluative testing of dexterous grasping

based on real-time vision of freely rotating and

translating objects.

1. Introduction

Numerous facets contribute to achieving

robotic intelligence. This paper, based on a more

complete presentation in reference 1, describes

many of these facets anc_ attempts to relate them
to the central theme of a software architecture

that enables a sufficient level of robotic intel-

ligence and, thus, real work in real environments

under supervision by exception. Related work by
others is also outlined in reference 1. The essence

of intelligent systems is that they are capable of

collecting and applying knowledge of the situation

gained at execution time and correlating it with
other knowledge to take effective actions in

achieving goals. Intelligent systems are composed

of sensors for perceiving both the external and
internal environments, effectors for acting on the

world, and computer hardware and software

systems for providing an intelligent Connection
between the sensors and effectors. Part of the

processing by these computer systems is symbolic
in a nonnumeric sense and thus enables practical

reasoning, or the behavior which we humans call

intelligent. The intelligent system we will be
addressing, the Extravehicular Activity Helper/

Retriever (EVAHR), is a supervised, intelligent,
mobile robot with arms and end effectors (see

Figure 1). Intelligent robots of this nature are

required for long-term operations in space and are
mandatory for space exploration to improve

safety, reliability, and productivity while enabling

large cost savi ngs through mini mi zi ng logistics 2.
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Long-term space operations such as the Space

Station have requirements for capabilities for
rescue of extravehicular activity (EVA) crew and

retrieval of equipment. A space station cannot

chase separated crew or equipment, and other
vehicles such as the Space Shuttle will not usually

be available. In addition tothe retrieval of drifting

objects, another need is for robotic help to EVA
crewmembers in various tasks, such as holding

objects; retrieving and replacing tools and other
items from and into storage; performing inspec-

tions; setting up and dismantling work sites;

performing servicing, maintenance, and repairs;

and deploying and retrieving payloads. Modeling,
simulation, and analysis studies of space explor-

ation missions have shown that supervised
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Figure 1. Phase II Retriever.

intelligent robots are enabling for human explora-
tion missions3.a.

The U.S. economy can reap major benefits

from the development of supervised intelligent

autonomous robotic systems5,6, for such systems
foster productivity improvements that raise the

standard of living for everyone 7. The solutions to

the problems we will be solving to make the ex-

ploration of our solar system possible and practical

will apply to the many critical problems we have on

Earth which require operating in hazardous

environments and to improving human produc-
tivity in many fields.

The free-flying, supervised intelligent robot

called EVAHR is being prototyped as a potential
solution to the crew helper and detached crew and

equipment retrieval need. EVAHR is a technology
test-bed providing evaluation and demonstration

of the technology included for the following three
purposes:

1. Robotic retrieval of objects which become

detached from their spacecraft; e.g.,

astronauts adrift from the Space Station.

.

,

A robotic crew helper around a spacecraft;

e.g., inspector, "go-fer," holder, maintainer,
ser_/icer, tester, etc.

A "generic" prototype supervised, intelligent

autonomous robot (for planetary surfaces with
different mobility such as wheels or tracks and

for terrestrial applications with appropriate
adaptations).

Early supervised intelligent robotic systems
with initial capabilities to meet real needs are

beginning to emerge from laboratories and manu-

facturers. It is now possible, in our opinion, to

construct robots capable of accomplishing several
specific high'level tasks in unstructured real-world
environments.

The ability to acquire and apply knowledge

and skills to achieve stated goals in the face of

variations, difficulties, and complexities imposed

by a dynamic environment with significant unpre-

dictability is our working deft nition of "robotic

intelligence." This does not require a broad-based

general intelligence or common sense by the
robot. However, doing the work needed to accom-

plish goals does require, in general, both mobility

and manipulation in addition to reacting, or
deciding "intelligently," at each step what to do.

Further, supervised intelligent robots are required

for human-robot teams where supervision is most
naturally provided by voice.

Controlling supervised intelligent robots

having both mobility and dexterous manipulation

is a challenge t, as is integration of sensing and
perception into planning and control in a robust

way.

Certain aspects of the EVAHR technology,
which provide the capability for performing

specified tasks in a low-Earth-orbiting spacecraft

environment, can be viewed as generic in ap-

proach, thereby offering insight into intelligent
robots for other tasks and environments. This is

because the design of the software architecture,

which is the framework (functional decompo-
sition) that integrates the separate functional

modules into a coherent system, is dictated in large
measure by the tasks and nature of the environ-

ment. And because both the goal-achieving tasks
and the partially unpredictable nature of the

environments are similar on Earth and in space, the

software architecture can be viewed as generic- as
can many of the software modules, such as the AI
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planner, world model, and natural language
interface. Other software is bundled with certain

hardware. This leadsto the concept of a modular,

end-user customized robot put together from

modules with standard i nterfacesS-10 such as users

do with a personal computer, yet maintaini ng real-

time response.

2. Approach

The end goal for intelligent space robot

development is one or more operational robots as

part of human/robot teams in space. Prior to that,
an evaluation of performance in space will be

required.

Our approach to development of operational

robots as part of human-robot teams in space is a

systems engineering approach with iterative,

three-ground-phase requirements prototype
development, tested in both ground and aircraft

simulations of space, followed by evaluation test-

ing of a flight test article in space. We adapt and

integrate existing technology solutions.

The EVAHR ground-based technology

demonstration was established to design, develop,

and evaluate an integrated robotic hardware/

software system which supports design studies of a

space-borne crew rescue/equipment retrieval and

crew helper capability. Goals for three phases

were established. The Phase I goals were to

design, build, and test a retriever system test-bed

by demonstrating supervised retrieval of a fixed

target. Phase II goals were to enhance the test-bed

subsystems with significant intelligent capability
by demonstrating arbitrarily-oriented target

retrieval while avoiding fixed obstacles. Table 1
summarizes some of the characteristics of the

Phase II system. The objectives for Phase II1, which

is currently in progress, are to more fully achieve

supervised, intelligent, autonomous behavior by

demonstrating grasp of a moving target while

avoiding moving obstacles and demonstrating

crew helper tasks. Phase III is divided into two

parts. Phase IliA goals are to achieve real-time

complex perception and manipulator/hand control
sufficient to grasp moving objects, which is a basic

skill both in space retrieval and in accomplishing
the transition from flyi ng to attaching to a space-

craft. Phase IIIB goals are to achieve a software

architecture for manipulation and mobility, with

integrated sensing, perception, planning, and
reacting, which guarantees safe, robust conduct of

multiple tasks in an integrated package while
successfully dealing with a dynamic environment.

Our overall testing approach is short cycle

run-break-fix1 !=with increasing integration and
more relevant environments; such an approach

finds design and implementation problems early

when they are lowest cost to fix.

3. Hardware Desiqn

The performance characteristics of the EVAHR
hardware enable (or defeat) the "intelligent"

behavior of the robot as "ani mated" by the soft-

ware. We are testing only a subset of the Phase IIIB

hardware in Phase IliA.

The hardware subset includes a 7-degree of

freedom (DOF) arm (Robotics Research K807i); a

5-DOF, compliant, force-limited dexterous hand; a

laser range imager (Perceptron); a stereo video

camera system (Teleos Prism 3); a pan/tilt unit; a

700 Megaflop computational engine employing

Intel i860s and transputers; and an Inertial
Measurement Unit (IMU) of accelerometers and

gyros.

4. Software Desiqn

During Phase Ilia we are using a subset of the

reaction plan architecture while we are exploring

two new approaches to the software architectu re
for Phase IIIB. The first is a version of the three-

tiered, asynchronous, heterogeneous architecture
for mobile robots 12-14 adapted to include manipu-

lation. The second is a version of the SOAR

architecture 15 applied to robots 16. SOAR is of

interest because of its capabilities in learning, in-

cluding recent work in situated, interactive natural

language instruction17. To be practical, the robot

"programming" bottleneck must be avoided by

using learning from experience and instruction to

acquire skills and knowledge. SOAR has also been
used to achieve resource-dependent behavior18

and to learn reactive, stimulus-response rules, in

addition to search control.

For each approach we are conducting evalua-

tion testing of minimal prototype architecture

implementations to obtain some evidence of thei r

strengths and weaknesses for our tasks before

selecting one for larger scale implementation in
Phase IIIB. We present our evaluation results on
SOAR in the section on results. We are not far

enough along on prototyping the three-tiered

architecture to have results yet.
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Table 1. Unique and Special Aspects of Phase II EVAHR.

• Prototype supervised, intelligent, autonomous robot

• Voice commands provide goals and directions

• Clips into space-worthy Manned Maneuvering Unit (MMU) which has flown from Shuttle

• "Flies" by propelling pressurized gas from MMU thrusters it controls

• Self-locating in analogy to space use of global positioning satellites where retriever uses camera,
gyroscopes, and accelerometers

• Builds its own internal dynamic knowledge of its environment based on continuous sensory
perception - No preprogrammed environmental model to which the environment must conform

• Planning/replanning based on goals and internal dynamic knowledge of its environment and
constraints such as flight rules

- Path planner for obstacle avoidance and rendezvous can reason in advance about the success
of the mission

- Actions are synchronized to events in the world through sensing of preconditions of planned
actions

- Deals with unpredictability by detection/replanning if needed

• Range image obstacle location and target tracking, orientation, and grasp location

• Acts to acquire knowledge about obscured target

• Maneuvers to optimize grasp success relative to target orientation

• Chooses between one-handed grasp and two-armed grapple, depending on target size it
perceives

• Uses dexterous grasping with proximity sensors, compliant grasp, and force-limited grasp
- Right hand has 5 proximity sensors

- Left hand has 3 proxi mity sensors and 9 tactile sensors (3 per finger)

• Uses pressure sensors on chest for two-armed grapple of large targets

• Uses fourteen 10-MIPS transputers, six 68020 controllers, and one 80386 processor in a
hierarchical, distributed architecture

Safety is a major issue in human-robot teams, 1.

especially in space. Since robotic motion control

programs cannot be considered safe unless they

run in hard real time, an approach which addresses
this issue in a different manner from that of the

three-tiered architecture is needed for compara-

tive evaluation. We are pursuing the development 2.
of one such approach19

The following discussion is due to

Schoppers 20. A statement of the pivotal problem

in successfully coupling symbolic reasoning with

the ability to guarantee production of a timely

response has recently been made: "The timing of

actions taken by a real-time system must have low
variances, so that the effects of those actions on

unfolding processes can be predicted with suffici-

ent accuracy. But intelligent software reserves the

option of extended searching, which has very high
variance"21

The AI community has responded to this

dilemma in roughly three ways22. When building a
system that must act in real time as well as

reasoning, one can choose to

Subject the At component of the system to

hard deadlines. This effectively embeds the AI

reasoner within the real-time system, and

under time pressure, results in loss of

intelligent function.

Refuse to subject the AI component of the

system to hard deadlines, and have the real-

time subsystem "do its best" with whatever

commands the AI subsystem can generate in

time. This effectiveT_yembeds=the real-time

subsystem within the AI system, and under

time pressure, results in loss of timely control.

. Refuse to subject the AI component of the

system to hard deadlines, but let the AI

components "negotiate" with the real-time

subsystem to obtain a feasible schedule for
task execution. This does not embed either

subsystem within the other, and with proper
selection of the real-time executive's task

schedule, has the promise of remaining

functional under time pressure.
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The three-tiered approach is a category three

approach, whereas we interpret SOAR to be a

category two approach.

We can now summarize the state of the art.

Simple control systems can get away with seeming

to be "fast enough," but that approach becomes

potentially very dangerous in more complex sys-

tems, particularly in intelligent systems where the

set of tasks being executed changes over time. In a

system that may perform any subset of N possible

tasks, there are 2"N possible combinations of tasks,

and it becomes impossible to test the performance

of each combination by hand when N is large.

Therefore, it becomes imperative to have auto-

mated support for obtaining a guarantee that the

system can always perform in hard real time.

4.1 Three-Tiered Software Architecture

Combining all prior knowledge and knowledge

sensed during a task requires that planning in

advance can only be guidance, with control

decisions as to what to do postponed until such

time as the situation is being sensed and the task is

being executed. This is the essence of Agre and

Chapman's theory of plans-as-advice 23, and is a

design principle underlying the three-tiered

approach.

Several researchers 12-14 have developed the

three-tiered architecture to enable faster, more
efficient interaction with the world and to allow

the planner sufficient time to make intelligent
decisions. Decisions based on the details of the

local world are postponed and a "sketchy" plan is

passed on to the next layer. The three layers are

the planner, the sequencer, and the reactive
controller.

The responsibility of the planning layer is to
determine which tasks would accomplish the goal

and in what approximate order. Thus, the

planning layer forms a partially ordered set of

tasks for the robot to perform, with temporal

constraints. This plan is somewhat sketchy since

not every detail of implementation, which would

be determined by the current situation, is included.

The AI planner which we are evaluating for this

application istheAP Planner24. It may be possible

to use SOAR for this application.

The sequencing "middle" layer is responsible

for controlling sequences of primitive physical

activities and deliberative computations.

Operating asynchronously from the planner, yet

receiving inputs from that layer, the sequencer
takes the sketchy plan and expands it based on the

current situation. Thus, the hierarchical plan

expansion happens at execution time rather than
at the deliberative stage. To implement the

sequencer, data structures called Reactive Action

Packages (RAP's) are used to represent tasks and
their methods for executing/3.

At the lowest level, the reactive controller

accepts sensing data and action commands,
sensorimotor actions that cannot be decomposed

any further, from the sequencer. For example,
"move," "turn," 0r "grasp" aide all examples of

action commands that are passed onto the hard-
ware. The reactive controller also monitors for

success or failure of these commanded activities.

4.2 Phases IliA and IIIB Software Architecture

The EVAHR Phase IliA software is composed

of sensing, perception, world modeling, planning,

and acting. Figure 2 shows the relationship among
these elements for the on-orbit retrieval problem

where a free-floating target must be rendez-

voused with, grasped, and returned. As tasks are

added to the crew helper's repertoire in Phase IIIB,

additional elements must be added to support AI

planning, force feedback arm control, and voice
interaction with the crew.

Sensing software provides the low-level

interface to the hardware sensors, reading and

time tagging sensor data and providing pre-

processing to account for the effects of nonideal

sensors. Sensing software also provides an

interface to perception.

Visual sensing software is the primary module

for acquiring information about the environment

via optical sensors such as the 10 image/see laser

scanner and the 30 dual-image/see stereo vision

system. Software for voice and data reception

(Phase IIIB) handles speech recognition, Global

Positioning System (GPS) decoding, and design and

operations knowledge support system (DOKSS)

interfacing. Software for force/torque sensing,

proximity sensing, and tactile sensing provides

data acquisition and time tagging.

Our proprioceptive sensing software reads

and time tags the IMU accelerometers and gyro-

scopes, GPS, position sensors on the manipulators

and hands, thruster firing sensors, position sensors

on the pan/tilt unit, fault sensors throughout the
hardware, and robot resource status sensors.
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Figure 2. EVAHR Phase IliA Flight/Simulation Software Architecture.

Perception software extracts understanding

of the environment from preprocessed sensor and

voice recognition receiver data.

Visual perception is carried out through a

combination of various visual functions. Visual

functions that have been implemented in software

include search, tracking, and pose estimation.

Othervisual functions, such as those for object

recognition, will be integrated in the near future.

Pose estimation is calculating the orientation of an

observed object in a given image. Our approach to

pose estimation is known as image-based (or

multiview based) pose estimation2S.

Natural language understanding processing

(Phase IIIB) starts with a symbolic representation

that Retriever can interpret and act upon, return-

ing an appropriate response. Such systems are

practical when limited to a specific domain and a

well-defined application.

In general, our world model stores internal

state representations of the external world at a
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high level of abstraction, which allows the implicit

predictions associated with the state (that it will

remain valid for some time) to more likely remain
valid for the lifetime of the internal state 26. For

moving objects, however, we use world model

state estimators to bring the past measurements of

motion descriptors up to the present time.

Planning enables the EVAHR to take a high-

level goal and decide which subtasks must be

accomplished to move the system to the goal. This

selection and ordering of subtasks becomes very

challenging, particularly if the system is monitor-

ing the consequences of actions, replanning, or

juggling multiple goals with changing priorities.

The vision system planner has been described

previously27.

A mobility planner is responsible for deter-

mining an optimal positional and rotational

trajectory for the robot's body. "Optimal" usually

implies (1) obstacle avoidance between the points

of departure and arrival and (2) minimization of

time, distance, and/or fuel consumption. In orbital

scenarios (e.g., Space Station) fuel is at a premium,

although with astronaut rescue, time is more

critical. For this purpose, a trajectory planner/

controller was developed based on the Clohessy-

Wiltshire equations. This planner provides a

minimum fuel or time trajectory between two

moving bodies in orbit.

All of the tasks in Phase Iit require moving the

manipulator in the presence of obstacles. Because

many Phase III problems involve moving objects,

potential field methods28, which are very fast, are

employed.

In Phase IliA, the work for grasping a moving

object is divided into two basic levels. A low-level

high-bandwidth controller attempts to track a

virtual grasp frame on the objects- but it steers

clear of joint limits, obstacles, and singularities. A

higher level grasp planner continually selects

(heuristically) the best virtual grasp frame on the

object to track. In Phase IIIB, the controller will be

expanded to include guarded moves (where

contact with a fixed object is expected), force and

impedance control, and position control with their

hybrids.

Speech planning software starts with an

unambiguous message created from the internal

representation and attempts to construct a mean-

ingful sentence in response. This is then sent to

speech synthesis hardware. Several general-

purpose single-sentence generators of natural

language are moving toward full-scale commercial

strength29 and real-time generation30, with the
latter a candidate for EVAHR use.

Acting software provides low-level controllers

of motors and other actuators. One important

feature in EVAHR's acting software is visually

directed sensing. Sensor parameters such as the

field of view (FOV), the focus of attention (via

pan/tilt devices), or the data acquisition rate can be

dynamically selected in order to acquire richer

information about the environment or objects of
interest31.

5. Phase IliA Results to Date

Results from Phase II have been reported

previously32. Some preliminary results from Phase

IliA have also been reported25, 33-38. Results from
Phase IliA consist of evaluations of software

architectures such as SOAR, along with computer

simulation results of various portions of the soft-

ware capabilities, including results allowing an

estimate of the central processing unit (CPU) and

communications requirements to achieve realtime

grasp of floating objects. Results from KC-135 tests

of unintegrated hardware and software

subsystems are also given.

5.1 SOAR Evaluation for Phase lllB

SOAR 16was selected for study as a promising

candidate system for the EVAHR planning system.

SOAR is a symbolic AI architecture which empha-

sizes problem-solving, planning, and learning. It

has been applied in numerous fields, such as edu-

cation and training. As a production-based system,

SOAR starts with an initial state of the problem

and applies operators which make changes to the

problem state to reach the goal state. Finding the

sequence of operators to apply to the current

problem state is the major challenge in its

planning.

One major advantage of SOAR is its ability to

learn by taking a new experience and saving the

sequence of stepstothe goal as a "chunk." This

chunk is in the form of a set of production rules,
and if the same scenario is encountered in the

future, the associated chunk will execute without

having to search for the correct sequence as it did

initially.

From our experience with Hero-SOAR, a
subset of SOAR for a Hero robot, we know that the
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reactivity of SOAR is an important capability

needed to respond to the environment quickly.

SOAR may be seen as a system with a planner,
which plans in the traditional sense, yet with no

actual data structure produced; a mechanism to

execute the plan; and a fast replanning ability.

5.2 Phase Ilia Computer Simulation Results

Software modules for grasping of free-

floating objects in a zero-g, 6-DOF environment
have been described in previous sections. Results

of performance testing of these modules as sub-

systems are described in this section. The modules

have also been integrated and tested in the orbital

and KC-135 simulations 39, and these results are
also descri bed below.

5.2.1 Phase IliA Computer Simulation
Results- Uncluttered Search

The search is the first visual function to be

performed when there is no knowledge about the

location of an object of interest. It is carried out as

follows40, 41, EVAHR's front hemisphere is divided

into concentric "rings," and each ring is further
divided into sectors, each of which is enclosed by

the FOV of the sensor. Each search starts from the

center ring and spirals outward until an object is

found. If an object is found, the search is termi-
nated and the esti mate of where the object is

located is iteratively refined by adjusting the

sensor gimbals toward the object and reducing the

FOV until the object is centered and large in the

image.

5.2.2 Phase IliA Computer Simulation
Results - Pose Esti mation

Algorithms for image- based pose esti mati on

have been implemented. Several objects were

chosen for testing. These objects include some

orbital replaceable units (ORU's), a star tracker, a

jettison handle, and some wrenches.

To test the robustness of the software, 500

tests were run on each test object with actual poses

of the object randomly oriented using a random

number generator in (simulated) images. Noise

was added to the "range" corn ponent of the

image to test the sensitivity of the algorithms to
noise. There were two indications from the test

results: (1) Most estimation errors are less than

5 degrees (with up to 3-percent noise in range).

(2) The performance of the pose estimation

software gradually degraded with increasing noise

in range measurements.

5.2.3 Phase Ilia Computer Simulation
Results - State Estimation

The rotational state estimator uses inter-

mittent delayed poses from the pose estimator

software to provide the arm trajectory planner

with current estimates of the target's rotational
state at the rate of 100 Hz. The estimator utilizes

an extended Kalman filter because of the inherent

nonlinear nature of rotational dynamics. The

effects of varying various parameters on the

performance of the standalone rotational state

estimator have been reported34. Testing on the

integrated rotational state estimator shows it con-

verges within four pose estimates (about 4 sec) and
maintains error estimates of less than 3 degrees,

which meets requirements.

The relative translational state estimator used

for the KC-135 experiment does not use an inertial

coordinate system. The equations describing the

dynamics are nonlinear. Therefore, the estimator

design is based on an extended Kalman filter. The

results of its performance in the KC-135 simulator

show an accuracy similar to that for the orbital
case42.

5.2.4 Phase Ilia Orbital Computer Simulation

Results - Graspinq Movinq Obiects

Integrated software testi ng in the orbital sim-

ulation has concentrated on and produced results

in two areas: (1) determining the overall system

performance against grasping different targets
with random initial states and (2) determining the

computational requirements for the pose estima-
tion software, using rate and delay as parameters.

In those tests, the following constraints hold: The

target remains stationary in an optimal location

for grasping; a grasp must be achieved in 15 sec.

Grasp impact dynamics calculations are made to

verify that the target is not knocked away during

the grasp or by a prior collision with the arm. The
EVAHR inertial state is assumed known. In the

random initial state test suite, the target rotates in

3 DOF starting from a random initial orientation

and velocity. Under these conditions, the system

has achieved a >70-percent successful grasp rate

for both objects tested. The state estimates have

less than I inch and 5 degrees of error. An average

time line of events in a typical successful grasp test

is given in Table 2.
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Table 2. Grasp Test Time Line.

Time from
Event

start, sec

Translational state
estimation initialized

Rotational state estimation
initialized

Grasp command issued

Pose estimator feedback
initiated

Grasp successful

0.21

4.67

4.78

5.73

10.91

The command to grasp is issued when the

task sequencer sees that the rotational state has

been initialized. The "pose estimator feedback"

refers to predictions made by the state estimators

which are used by the pose estimators to calculate

the poses faster.

In the second suite of tests, the pose

estimation rate and delay were varied. Figure 3

shows a snapshot from one of these tests. Results
from this same set of tests show that pose estima-

tion rate and delay also have a direct effect on the

time-to-grasp in successful tests. Assuming pose

estimation rate and delay of 0.1 sec, we were able

to estimate that six i860 processors would be
sufficient to achieve these rates and delays.

5.3 Aircraft Reduced Gravity Environment

Some microgravity research can be conducted

inside an aircraft simulating space by flying vertical

parabolic flight paths, but only for very limited
amounts of time. During Phase Ilia we are flying a
subset of the EVAHR Phase IIIB hardware and soft-

ware aboard the NASA Reduced Gravity Program's

KC-135 aircraft. This aircraft flies a series of para-

bolic trajectories resulting in approximately 15 sec

of near microgravity (< .01-g) in the cabin during

each parabola. The robotic arm, hand, vision

sensor with pan/tilt system, and IMU of accelerom-

eters and gyroscopes are attached to the floor of

the aircraft. During microgravity, an object is

released, tracked by the vision system, and grasped

by the hand.

The objects to be used for grasping onboard

the KC- 135 aircraft range from simple to highly

complex, but are limited to spheres or polyhedral

surfaces. Some are lightweight mockups of actual

objects used on orbit. Two of the objects are basi-

cally dumbbell-shaped objects with polyhedron-

shaped masses at the ends. The more complex

objects represent a battery from an Extravehicular

Mobility Unit (EMU), a star tracker, and an ORU.

All of these objects have a complex construction

with multiple graspable points.

Figure 3. Orbital Simulation of EVAHR Grasping the "Backside" Handhold of Object.

429



On several KC-135 preliminary flights, data

characterizing the reduced gravity was collected

from an IMU placed on the cabin floor. Video

recordings also were made of objects floating
during the reduced gravity interval. The vertical

acceleration fluctuated significantly about zero-g.

Fluctuations between 75 mg and -75 mg were
commonplace. These fluctuations caused the

released object to accelerate toward either the

ceiling or floor of the airplane. Lateral accelera-
tions were also observed and were due to air

turbulence, flight path corrections, or other
effects.

An evaluation of 38 parabolas was per-
formed, and the trajectory duration determined.

This interval started when the target was released
and continued until the target hit the inside of the

airplane fuselage, was touched by personnel, or
left the FOV of both video cameras. The results are

presented in Table 3.

Table 3.- Duration of KC-135 Parabolas.

Duration of Number of parabolas
parabola, sec

7-8

6-7

5-6

4-5

3-4

---3

2

5

6

2

2

21

6. Conclusions

The need for crew help and retrieval of de-

tached crew and equipment in space has been

identified. Evaluation of the practical realization

of a potential solution has passed several successful

milestones but is still ongoing, with many of the

critical developments yet to come. The potential

solution described here is an initial attempt to

build and understand a prototype of a supervised

intelligent robot for use in space. It is also poten-
tially useful in terms of the software architecture

for many U.S. economy-related robot applications
on Earth.

From our Phase II experience with both the
interleaved sense-perceive-plan-act software

architecture in a stationary environment and the

reaction plans architecture in a dynamic, un-
predictable simulated environment, we have

concluded that (1) the success of the reaction plans
approach argues for such a mechanism in an intelli-

gent robot architecture to provide the capability

for an appropriate quick reaction whenever per-

ception understands the situation to provide an
index into the correct reaction plan; (2) robot

control architectures should be heterogeneous

(different computational structures for planning
and control); and (3) putting the AI planner at a

high level of abstraction, which provides plans as
goal-seeking guidance rather than direct control,

and into an asynchronous mode are steps toward
an intelligent robot architecture that can deliver

safe behavior as well as goal-achieving behavior in

a supervised intelligent robot. Our Phase IliA

experience to date in simulated real-time complex
These results, especially the trajectory perception and grasping Supports the reaction

durations, do not match we|| with the extrap0: ......... pian viewl Away to appropriateiy integrate the

lation to the KC- 135 of time-to-grasp results from two elements, AI planner and reaction plans, is
the orbital simulation presented above. ..... needed which Controls both. The three-tiered

5.3.1 Phase IliA Results- Hardware

Evaluation From a KC-135 Fliqht

In a separate flight of the KC- 135, we exer-

cised the unintegrated hardware subsystems

(except the stereo cameras) independently. All of

the hardware is designed to operate in a 1-g

environment and might behave differently in the

KC-135 in microgravity or after the 1.8-g pullout at

the bottom of the parabolas. Motions and opera-
tions representative of those that will be used in

later object tracking and grasping evaluations

were used in these tests. All equipment was deter-

mined to operate without measurable changes in

behavior from that expected.

architecture may offer such an approach. Both the

three-tiered architecture and SOAR are practical

implementations of the mathematical theory of
intelligent robots43.

Both our Phase II and Phase IliA results

demonstrate that manipulation requires greater

accuracy of sensing and perception than does

mobility. Integrated testing with our Phase IliA

computer simulation has not only shown that we

have a workable software design, but it has also

afforded us systems engineering analyses support-

ing computer hardware design for achieving real-

time complex perception processing (sensor to

percept) and grasp control (percept to action) for
freely moving objects.
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Our future plans are first to complete the

metrology of the manipulator and joint calibration

of both vision-system-manipulator pairs. We are
recoding the laser scanner pose estimation soft-

ware to run in real time on the i860 network44.

The tracker and translational state estimator are

currently running in real time on i860's. The

manipulator trajectory controller and grasp

planner are running in real time on the transputer

network. Grasp testing using targets mounted on

the object-motion unit are being conducted in

preparation for the KC-135 vision-guided grasping

flights. Then, we have several moving object grasp

evaluation flights to conduct. Phase IIIB develop-
ments are dependent on the selection of a final

software architecture from the preliminary

prototyping efforts which are underway using a

set of crew helper tasks, scenarios, and computer

simulation environments with human-injected,
unpredictable events to assess the value of the

many goal-planning and real-time reaction aspects

of the supervised intelligent robot design.
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