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Abstract

Time scales have been constructed in different ways to meet the many demands placed upon

them for time accuracy, frequency accuracy, long-term stability and robustness. Usually, no single

time scale is optimum for all purposes. In the context of the impending availability of high-accuracy

intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of

time scales which use an algorithm to span interruptions of the primary standard.
We consider a broad class of calibration algorithms that can be evaluated and compared

quantitatively for their accuracy in the presence of frequency drifl and a full noise model (a

mixture of white PM, flicker PM, white FM, flicker FM and random walk FM noise). We present
the analytic techniques for computing the standard uncertainty for the full noise model and this

class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency

uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a

hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit

interlaboratory frequency transfer with a standard uncertainty of less than 10 -aS for periods of

30-I00 days.

Introduction: The Need for Eyaluating Algorithm Accuracy

For the near future, new primary (cesium fountain) frequency standards [1] [21 are likely to oper-

ate intermittently, rather than to operate continuously ms primary clocks. Other new frequency

standards of high potential accuracy, such as single-ion optical frequency standards coupled to a

divider chain [3], are also likely to operate intermittently, at least initially. More reliable secondary

standards of high stability (such as hydrogen masers) will be needed to span the gaps between

periods of operation of the primary standard. To evaluate the accuracy of time scales that are to

be calibrated with these new standards, one must address the question of how the random noise of

the primary standard, of its local oscillator, and of the secondary standards all combine to influ-

ence the accuracy of the time scale or its average frequency. We want to examine how these noise

sources affect the results of different interpolation and extrapolation algorithms, and to predict the

accuracy that could be delivered, in the presence of mixed typ_s of noise, to a local time scale or

to TAI. Our main interest is in the frequency accuracy of the secondary time scale after calibration
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using some algorithm, but many of the same ideas are also applicable to time accuracy around an
interval.

This is not a wholly new question. Intermittent operation of primary cesium frequency standards

was universal two decades ago. Continuous operation of these standards as primary clocks, first at

NRC [4] and then at PTB, waited until time laboratories had sufficiently evaluated their primary

cesium frequency standards and had improved their mean time between failures. Standard tech-

niques for analyzing frequency standards' stability and characterizing mixed types of noise were

adopted and refined [5] [6] [7]. A body of very useful guidance was developed [8] for extrapolation

in the presence of different (but unmixed) types of noise.

The main new element to be addressed is the quantitative estimation of accuracy for the mixed

types of noise which have to be faced for our problem, and which has not been needed for previous

standards where the dominant noise has usually been flicker frequency noise for primary and sec-

ondary standards. Simulations [9] could give the required guidance, but fully analytic techniques

are preferable, and are developed here for a widely used class of algorithms.

Metrics

In choosing and in judging accuracy of the "optimum" algorithm for a purpose, a metric should

be used for ordering possible algorithms and for guidance of minimal ambiguity. A priori, there are

many possible metrics.

The class of metrics of interest to us quantifies the difference between any two functions of time,

A(t) and B(t), sampled at a set of discrete times {ti}, i = 0..N during the time interval [to, tg]. A

metric expresses as a real number the difference between two vectors A and B in this N-dimensional

vector space: [[A - B[[, and permits the unambiguous ordering of the quality of a fit from "good"

to "bad". Any metric must meet the requirements that (1) [[A[[ >_ 0, (2) HeAl[ = la[HA[[, and

(3) [[A + B[[ < [[A[[ + [[B[[. A very useful subclass of metrics is the class of "Holder norms",

or np-norms (/9 >_ 1): ]]A - B[[ = [_]N 0 wi [ (Ai - Bi) [p](1/p). The weights wi are positive

definite. If the difference between Ai and Bi is a random variable zi distributed around Zi, and

is described by a probability distribution e-[_l(a-z,)]_], then the minimizing the corresponding

Lp-norm will give the maximum likelihood fit of A to B. When fitting an approximation to a

mathematical function, the norm (limp-_oo) is usually used, as the min-max norm, to minimize the

maximum error between the function and its approximation on the interval. The absolute-value

norm (p = 1) is occasionally used as an uncritical way of fitting to give minimum fitting weight to

erroneous outliers while formally retaining a metric. When fitting experimental data, where normal

(gaussian) distributions are common, p=2 is generally appropriate. It is appropriate for describing

our expected distributions, and we will concentrate on this type of metric.

When measuring the quality of a fit to the measurements at the N times ti, the value of the metric,

divided by the degrees of freedom (N minus the number of fitting parameters), is often used. For

a least-squares fit (p = 2) this measure of the quality of fit becomes the square root of the familiar

reduced X 2, and for unweighted least-squares fits (wi = 1) it is the even more familiar root-mean-

square residual. The residual is formally a metric in an N-dimensional vector space. As they are
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formally defined, weights can in principle be used to change the scale factor on each axis of the

vector space, and even to project the metric into a vector subspace. Minimizing such a reduced

metric rather than using the full maximum-likelihood weights can be advantageous: for example,

the 10-day average frequency of a commercial cesium clock can be better determined from only the

end points than by a least-squares fit to many points distributed across the 10-day interval [8].

Thus the quality of the fit at the experimental points is not all that is required. Rather, since the

fitted function is used for interpolation to other values of t between ti and ti+l, or for extrapolation

to values of t outside [to, tN], it is the accuracy at these points which can be more important.

The accuracy of an algorithm is not uniform, but varies with t in a way which depends on the

set of fitting points {ti[i= 0..N}, the fitting algorithm and the random (and deterministic) noise.

Considering this type of problem from the perspective of the residuals seems to require the magic of

rotations into a different vector space. Interestingly, exactly this task can be done for the L2 norm

and a rather broad class of fitting functions, although the metric projection picture is unhelpful in

determining the fitting accuracy at an arbitrary time.

.The accuracy can be determined for any system experimentally by repeated cycles of measurements,

doing repeated fitting of one particular pattern of time samples and by statistical analysis of

residuals determined at unfitted points. Another approach would be computer simulation of this

process - if a sufficiently good description of the noise model is available; or it might be done

analytically. We show that a rather broad class of noise models and fitting procedures can be

treated analytically, to obtain an accuracy estimate for the interpolation or extrapolation of many

commonly used algorithms.

Modelling the Difference: Deterministic plus Random Noise

To describe the time-dependence x(t) of the time difference between the primary frequency stan-

dard's time scale and the secondary time scale, we model it with xm(t), and explicitly include a

random part xo(t) as well as a deterministic part. The deterministic part allows for a time offset,

a frequency difference, and a drift rate of the frequency of the secondary time scale with respect to

the primary standard.

xm(O = ak + bkt +  ckt 2 + zo(t).
2

(1)

The superscript k labels the uninterrupted intervals of operation of the primary standard. For each

interval, a new value of ak is required, and other values of bk and ck may (or may not) be used.

We will examine the accuracy of a class of fitting functions xp(t), fit on the interval k, linear in the

fitting parameters {dl}, and including a broad class of basis functions gl(t):

n

= +,t t + + (2)
1=4

In the random noise part, x0(t), we include the "full" noise model that is usually covered in discus-
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sions of frequency standard stability [5]: a sum of five noise processes, each normally distributed

about the mean (but with variances which depend on the time sampled in different ways) that have

spectral densities of phase noise (Sz(t)) that are power laws which range from flat to increasingly

divergent at low frequencies. Expressing the five terms in terms of the spectral density of the

mean-square of the fluctuations in _ (or yo(t)) at a frequency f, S_(f), each noise term is de-

scribed by an amplitude ha which is taken to be independent of any time translations (stationarity

and random phase approximations). The sum includes (a = 2) white phase noise in x, (a = 1)

flicker (l/f) noise in x, (a = 0) white frequency noise and random walk phase noise, (a -- -1)

flicker frequency noise and (a = -2) random walk frequency noise. The spectral density of the

mean-square fluctuations in xo(t) is Sz(t), and for this noise model

x-_2 h ea and S=(f) 2---- ---- _a=-2 • (3)

A Useful Tool

For many cases we might expect mean-square accuracy estimates to be calculable from the auto-

correlation function <xo(t)xo(t + T)). Although it is not easy to use, the autocorrelation function of

frequency-standard noise has been rather neglected in our view. It is divergent for four of our five

types of noise unless a low-frequency cutoff is applied, and even then can challenge the accuracy

and dynamic range capacities of classical computing. Analytic expressions for this autocorrelation

function are given in the Appendix for each type of noise, and modern arbitrary-precision com-

puter languages should routinely be able to cope directly with the autocorrelation function. In our

analysis of the uncertainty associated with any useful time algorithm we expect no divergences to

infinity, and so the combinations of the autocorrelation functions must have their divergent parts

cancel, with the algorithm itself acting as low-frequency cutoff. To simplify the numerical evalua-

tion of combinations of the autocorrelation, it can be useful to find an analytic expression for the

general two-interval covariance of the random noise model, that is the covariance of the time-scale

departure over the time interval [tl, t2] with the time-scale departure over the time interval [t3, t4]:

S /[xo(t2) xo(tl)][xo(t4) xo(t3)]) f[_ t, , ,,= - - = f_3 <yo(t ) yo(t )) dr" dr'. (4)

just (t2 - tl)(t4 - t3) times (y[$1,t2]y[t3,_:4]),the general covariance of the average frequency,This is

which is a generalization of the two-sample variance of the average frequency. The generalization

includes the possibility of an overlap of the intervals (as well as the possibility of a "dead time"

between the intervals), and incorporates the possibility of considering the frequency average over

two time intervals of different duration. Just as for the two-sample variance of y, and for the

autocorrelation function of x(t), the covariance separates into the five terms of the noise model.

Analytic forms for the five terms of the autocorrelation function of x(t) and for the five terms of

the general cross-correlation of _ are presented in as Equations 18 to 25 in the Appendix, derived

with only the usual assumptions about high and low frequency limits to the noise bandwidth. Some

comments are made on practical methods for computing values using these forms.
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Algorithms for Accuracy Evaluation

For many, but not all, widely-used interpolation or extrapolation algorithms, it is possible to use

the cross-correlation expressions and a knowledge of the noise to calculate the expected root-mean-

square (i.e. p = 2) standard uncertainty [10] of the time or of the mean frequency extrapolated

or interpolated by the algorithm. Based on the noise model (and a very large body of confirming

experiment), the distributions expected for deviations from the fit are normal, and so the root-

mean-square deviation calculated for the standard uncertainty is rigorously correct, and can be

used in the conventional way for predicting confidence intervals from normal distributions [10].

The fitting process yields parameters for a parameterized functional form of xp(t), which may be of

the general form (around the k_h interval of continuous operation) given in Equation 2. Nonlinear

fitting parameters are not considered.

The algorithm should satisfy two criteria. Firstly, the algorithm should be unbiased by the deter-

ministic part of the noise model: any change in a deterministic parameter (a k, bk or ck in Equation

1) should be taken up by the algorithm and not bias the final result. Note that it is the final

deviation which is to be unbiased, and some apparently biased forms for xp(t) may still be used in

ways that are unbiased. In addition to being patently desirable, this condition also removes any

need for considering cross-correlations between the deterministic and random noise parts of xm(t).

Secondly, the coefficients d_ must depend linearly on sums over differences in x(t). This includes

fitting functions that are constrained to go through one point: least squares fits of polynomials of

general order, and other functions with linear coefficients. It includes constrained weighted least-

squares fits, as long as the weights do not themselves depend on the values of xk(ti) or the variances

on the k th fitting interval. With this condition we ensure that we do not have to calculate any

higher-order correlations than the general covariances evaluated in the Appendix.

What algorithms does this exclude? The first condition would not seem to exclude any serious

contenders for fitting methods and fitting functions: if one is taking care to evaluate accuracy, then

presumably one also values an unbiased fitting form. The second criterion admits many algorithms

easily. However, to analyze rigorously the accuracy of a Kalman filter, where fitting weights depend

on past variances, appears to require a study of higher-order autocorrelations of the random noise,
at least to the level of identifying the magnitude of these corrections. We therefore exclude this

important class of algorithms from our present considerations.

Many extrapolation and interpolation algorithms that are useful for time-scale purposes are very

simple: for example, constrained to go through the last experimental point [8], or constrained to

go through both the first and last points on an interval. However, it is instructive to consider first

the most general least-squares fitting case for N points on a single calibrating interval.

Weighted Fits of General Functions with Linear Coefficients

The least-squares fit of the n parameters dl of a function of the form of Equation 2, to N + 1

points x(t_), each point being taken with a weight wi, is found by taking the partial derivative of

the weighted L2 norm with respect to its n coefficients. The resulting n simultaneous equations
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in n unknowns are of the form G_ = g, where G is an n x n matrix with elements Gqr =

_]N 0 W_gq(ti)gr(t,), and g is an n-dimensional vector with elements s'r = _]N 0 w2x,n(ti)gr(t,). Here

x,_(ti) is used to model x(t_), exactly as one might do in a numerical simulation. Simple inspection

shows that if gl(t) -- 1,g2(t) -- t and ga(t) = t2, and sr -- _]Now2xo(ti)gr(ti ), then Gd -- g_

where dis the vector of least-squares coefficients for the n functions, and dl = d_ - a, d2 = d_ - b,

d3 = d/3 - c/2 and dr = d_r for r >_ 4. Thus for any set of weights, the fit exactly absorbs the

deterministic part of the model function xm(t) and we have only to deal with the function xo(t).

We can replace any difference between x,_(t) and xp(t) (fit to the x_(ti)) with the difference between

xo(t) and the xp(t) (fit to the xo(ti)). The fitting coefficients vector d= G-lg. The form of this

equation is instantly quite revealing, for it shows that the least squares coefficients dr only involve

simple sums over the xo(ti)'s.

We will study all the effects of algorithm at t, reacting to the noise through the fitting procedure,

by comparing xo(t) to the function fitted to the random part of the noise: d. _(t), where _(t) is
the n-dimensional vector of the basis functions evaluated at t. This fitted function can in turn be

transformed into a simple weighted sum over the N + 1 of the xo(ti) 's: d. g(t) = _--]_N0 Di(t)xo(ti),

and Di(t) 2 ,_ ,_ -1= wi Eq=l E_=I( G )q_g_(ti)gq(t).

The fitting algorithm and the noise model contribute a standard uncertainty [10] us in the least-

squares fitted time which is ([xm(t) - xp(t)]2>. This is the appropriate metric for judging the quality

of the fit at t (relative to the set of N + 1 specific fitting times {t_} ).

([xm(t) - xp(t)] 2) = ([x._(t)- _. _(t)] 2) = ([x0(t) - d. _(t)] 2)

= ([xo(t)--_]NoD, xo(t,)] 2) = _]N__l_]N__lDiDj(xo(ti)xo(tj)>,

(5)

when t is labelled as t-1 and D-1 -- 1 in the last equation. The sum over the (N + 2) 2 autocorrela-

tions simplifies since the autocorrelation depends on I ti - tj [. When the data are equally spaced,

"only" N + 2 different autocorrelations of xo(t) must be evaluated for a general value of t. The

autocorrelations for our noise model can be evaluated using the expressions in the Appendix for

T_(_'), if calculations can be done with sufficient numerical precision.

Constrained Least-Squares Fits

Fits constrained to go through one or more points can be considered as special cases in the above

analysis through appropriate choices of weights. However, there is an interesting computational

simplification which warrants explicit derivation: we can replace computations of the autocorre-

lation function of x(t) with the simpler to compute S of Equation 13. Consider using a weighted

least-squares fit constrained to go through one of the xm(ti)'s, for i = i_ in general - although this

might often be either end point: i -- 0 or i = N since we consider {ti} as being ordered so that

tj < tj+l. For a constrained fit, xm(t_) -- _. _(tio), determined by substituting _(ti_) for the first

row of G to obtain Go, and by substituting xm(ti¢) for the first element of g to obtain go. The

weight wi, is assigned the value 0. The constrained fit is also unbiased by the deterministic part
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of the noise model, satisfying the condition so that again we only have to consider the behaviour

of xo(t) when evaluating the accuracy of the constrained fit. The fitted function is de. _(t), where

dc -- G_-I_'_ and s'c is just _ with xo(t) substituting for xm(t). For this COlLstrained fit we can use

the equality of xm and Xp at ti_, or the equality xo(tic) = 0:

{Eq=, {9q(t)-gq(t,o)} {(G_-l)ql xo(t,c) '_ -1 =

/ - - N D i

(6)

where (b¢)j is just the reordered sum defined above for j = 1 to N, with (De)0 defined as 1.

Thus the constrained fit's standard uncertainty in time can be calculated more easily at a general

time t, using only our expressions in the Appendix for Z(T) rather than for _z(v) to evaluate the

standard uncertainty in time, which can done conveniently with 64-bit floating point calculations.

Note that this is also the mean square of the time interval error over the time interval [tic, t].

Standard Uncertainty in Average Frequency

In a similar way we can calculate our model's estimate for the unconstrained least-squares fit's

standard uncertainty [10] of the average frequency over an interval [t, t + 7-], up(t,T). We can

calculate u2(t, T) -= ([(xm(t + T) -- Xm(t)) -- (xp(t + "1")-- xp(t))] 2) /T 2 in terms of expressions using

only the function 2-(T). For convenience, we will define t-1 = t and tN+l = t +7-, neither restricting

the value of t to be less than to nor restricting the value of t + T to be greater than tN.

U_(T)7 -2 = ([(Xra(t + V)- xm(t)) -- (xp(t + r) -- xv(t))] 2) ----

:)

(_)

where Dj = Eg=j " 2 v-,,_ ,,wi _q=l Er:_(G-1)qrg"(ti)(gq( t + 7") -- gq(t)) and Dj = [/_j + 1] for j = 0 to N,
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and where both D0 and DN+I are equal 1. Again the uncertainty can be calculated conveniently

with 64-bit floating point calculations from the expressions in the Appendix for 2"(r) rather than

the more awkward T_z(_').

Multiple Calibration Runs

The time interval error that accumulates on an interval spanning m calibration runs is just the sum

of time interval errors (the difference between the evolution of x and the evolution of the calibrated

extrapolation xp) on the interval [tl,, trk ] around the k th calibration run. The calibrated time scale

is continuous, so that if the k th fit yields to the next fit (k+l) at a time trk = tlk+l, then _._:(trk ) =

_+1. _+1 (tlk+,). Thus, across the m runs, the time interval error of the algorithm reacting to our

noise model is

m m

k=l k=l

(s)

To show the general form, consider the set of {tv), with the index _/running in turn over the start

time, the fitting times and the stop time for each interval, from 1 to M - the grand total of points

(with N k measurable subintervals and two extrapolated subintervalsin the k th interval). To analyze

a fit on the k th interval that extracts information from other intervals, we consider the k th fit to

be from tLk to tRk , with zero weight at the unmeasured times t, where _ = lJ or rJ, j = 1... m.

Equation 8 can then be combined over any overlap of the fits into a global weighted sum over the

differences [x0(t,) -x0(t,-l)], weighted by :Dv which sums over the fits which have used the _th

time interval. The mean square time uncertainty in the time scale algorithm over the total time

interval T -- )-']M_l[t _ --t,-1] is u_(T), the mean square of the sum over Ei. Since for any algorithm
of the class

E, E,E V,VC([x0(t,)- x0(t,-1)][x0(tc)- x0(t¢-l)l)•
_7=1(=1 _=1(=1

(9)

The full evaluation of all terms of this M × M cros_correlation matrix, £ (where £ij = EiEj)

is possible for any particular set of calibration runs. With M 2 terms to evaluate, an efficient

method for computing S is highly desirable. The method outlined in the Appendix will generally

suffice. Fortunately, there can be very significant simplifications: £ is symmetric, the main diag-

onal contributes most to the sum, the block-diagonal terms from the individual fits are the next

most important parts (together these would contribute the quadrature sum of the standard time

uncertainty u_ contributed across each individual interval, but neglecting interval-to-interval corre-

lations), and generally the matrix elements far from the diagonal will not contribute significantly.

Any regularity in the fitting times will also reduce the computational burden.
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Examples

We will apply the above methods to one of the simplest algorithms that might be used: a linear

fit constrained through two points, as shown in Figure 1. Here the mean square of the standard

uncertainty in time is [11]

2:2 (1+ )27(T)+<(l+ )Z(ta)-- I(t_+r)It x (10)

This expression can be separated into the standard uncertainty u_ for each noise type, as illustrated

in Figure 2. In this figure, u_ for each noise type has been normalized to equal 1 at the midpoint

of the calibration interval ta. The upper frequency cutoff w is 100/t_, and the lower cutoff _ =

10 -5 radians/second. To use a figure like this for a mixed noise model, recall that the standard

uncertainties of the different noise types must be added in quadrature, with appropriate weights.

The above example shows how an rms residual at a time offset v can be calculated, and that even

in the simplest case it varies with position in different ways for the different types of noise. Using

:Z-(T) it is calculable in a perfectly straightforward manner.

Figure 3 shows the time interval error that develops from extrapolation to both earlier and later

time_s than the calibration interval: from t_ earlier than the first point and to tr later than the

second fitted point. The standard uncertainty in frequency, uy(_-), on this extended interval of _- is

[14]

Uy : T-7
)

(11)

As an interesting application of this simple algorithm, we can show how the local oscillator limit

[12] might be circumvented for a pulsed cesium fountain. Consider the evaluation of different types

of local oscillator for a pulsed cesium fountain that employs this algorithm and hyperfine phase

differences [11] to span 0.01 s dead times between 0.99 s Ramsey times. The atomic polarization

is measured for each pulse of atoms, and attributed (after calibration) to the discrepancy of the

microwave phase compared to the primary hyperfine phase of the ensemble of cesium atoms. Thus

the frequency of the local oscillator is known across the 0.99 s interval, with an uncertainty that may

be limited by (among other things) atom shot noise in the ensemble. The average frequency from

the preceeding and following Ramsey time is used to estimate the frequency of the local oscillator

across the 0.01 s dead time between Ramsey pulses. If there is but a single ensemble "in flight"

through the cesium fountain at any given time, then the simplest algorithm is the only one worth

considering.

To analyze this system, we choose a symmetric interval centred on t,, the active time, and tt =

tr = td/2. Using the calibrated frequency from a single active interval for the two adjacent dead

time half-intervals is equivalent to using the average frequency from two adjacent active intervals

across any dead time. In this way we might hope to minimize the cross-correlations that need to be

evaluated between neighbouring active times. We can use Equation 11 for the first estimate, but we

should verify the size of the correction from neighbouring intervals. With a cycle time t_ + td = T,
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and N equal-length cycles, Equation 9 becomes

£j+I,j = Z(lT + T) + Z(lT - T) - 2(1 + [r]2)2"(/T) + [_12 {X(lT + t_) + Z(lT- t_)}

- 2 _ {2- (IT + ½IT + t_]) + 2- (lT - ½[T + t,]) - 2- (lT + ½[T - ta]) - 2- (lT - ½[T - tad }.
(12)

Fortunately, for l > 1, the off-diagonal corrections are negligible. Depending on a, the adjoining

term, ! = 1, gives corrections to the diagonal terms of either sign and of up to 50% in magnitude.

Thus correlations are significant in this case even though we tried apply our algorithm in a way

to minimize the correlations. Figure 4 shows the standard uncertainty in frequency due to the
local oscillator noise for three local oscillators. The curvature reflects some of the effects of cor-

relations. The Allan deviation predicted [12] for the same three local oscillators in a conventional

frequency servo is also shown (with a modulation frequency of 0.5 Hz). Clearly this hyperfine phase

measurement plus post-processing algorithm is an interesting possibility as a replacement of the

conventional servo, at least in some applications. It is crucial to have full confidence in the analysis

of the complete effects of the interaction of the noise and the algorithm: our analysis is complete
within the constraints of the noise model.

In the initial period of operation of a cesium fountain frequency standard, after having been eval-

uated as a standard, there might be a hour per day devoted to calibrating a time laboratory's

secondary standards. In the case of NRC, this would mean the use of our new hydrogen masers

[14], [15]. A crucial question in designing a cesium-fountain frequency-standard project is to choose

the desired level of accuracy which might be used, either transferred to another laboratory or used

to compare the frequency of two configurations of the cesium fountain which cannot coexist. The

answer to this question can be obtained by our method for secondary frequency standards with well

understood noise. As always, common mode noise between similar frequency standards is difficult

to rule out - but the intent of these considerations is to establish a goal for an initial working

standard that is not overbuilt, considering available frequency transfer characteristics. We present

the analysis of a possible frequency-transfer budget at NRC.

The main question is the frequency transfer capabilities of our hydrogen masers. The Allan devi-

ation of our two new masers has been measured with respect to each other. Attributing the noise

equally to the two masers, we can calculate the best case for frequency transfer from one hour

out to a day or so [14]. We again use the symmetric linear extrapolation from the end points. In

this example, additional information will be available during the interval, but the "best case" for

our noise types comes from using the end points [8]. By using the symmetric extrapolation, the

frequency transfer will not be biased by any constant drift of the maser frequency [13].

Figure 5 shows an estimate for the standard uncertainty in frequency due to a hypothetical cesium

fountain [11],[15], and the modelled Allan deviation one of the new NRC hydrogen masers [14].

The random-walk FM rise at large times is a somewhat pessimistic (or realistic ?) guess - the

masers have not operated for a long enough time to properly evaluate their long-term stability

ay(r > 30 days). Also shown is the calculated standard uncertainty of the average frequency of the

fountain-plus-maser for the extrapolated frequency on an interval T for a calibration run of 3000 s.

Using Equation 12, we can again evaluate cross-correlations for a regular series of runs (daily in

this example). However, in this example there are no corrections larger than 1% to the N -1/2 trend
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line. At eachendof r weincludea two-waytime transferuncertaintyof 2 ns (1 - a per transfer)

as a realistic estimate of the state-of-the art (and including 0.2 ns as a worthwhile objective). The

daily recalibration trend line gives the noise limit to the standard uncertainty for cesium fountain

frequency transfer to another laboratory. It is encouraging in that the noise limit is well below
10-15 for an ambitious but realistic cesium fountain calibration schedule for the hydrogen masers.

The estimated standard uncertainties for the a.s-transferred average frequency may facilitate the

acceptance of the new standards, for example for the judging or steering of TAI. The predicted

level of residual fluctuations will need to be experimentally verified to be fully confident that some

significant common-mode noise source (random or deterministic) has not been missed, but even

here having a baseline prediction will be very helpful in planning the evaluation level which is

appropriate for any given frequency-transfer program.

Conclusions

We have developed, calculated and applied some useful metrics for judging the accuracy of algo-

rithms extrapolating time and average frequency in the presence of noise that can be represented

by a rather general noise model which includes all common types of power-law random noise as well
as deterministic noise. For many algorithms the (rms) standard uncertainty in time, u_(t), and the

(rms) standard uncertainty in average frequency across r, up(t, r), both can be calculated in terms

of the noise model power law coefficients. This significantly enhances the attractiveness of standard

uncertainties in time and frequency metrologs' where techniques for measuring the coefficients are

widely used. The metrics can be used for guidance in the choice of algorithms and procedures (how

often to recalibrate, and for how long), but a larger role can be played by these two 'h-netrics", for

rigorously judging the noise floor of different hardware and potential hardware used in novel ways.

The calculated standard uncertainty in time, ux(t), might also play a very useful role in the calcu-

lation of a reduced X 2 for a set of experimental data for which one wishes to judge the adequacy of
the fit and noise model. Conventionally, X 2 1 _N=l[x(ti) _ xp(ti)]2/{2[ux(ti)]2}, where N - n

• -- N-n

is used for the degrees of freedom: the number of (independent) data points minus the number

of (independent) fitting parameters. Since we would be able to compute the cross-correlations

between data points, it should also be possible to determine a better estimate of the degrees of

freedom for the fit.

The procedures outlined here could be automated. Standard uncertainties could be used routinely

in time and frequency metrology, for many common fits to a set of data points, in the presence of

a general noise model. In all fields of inetrology, where the use of standard uncertainties is now

recommended [10], the very valuable techniques (such as the use of the modified Allan deviation)

developed for analysing power law noise of frequency standards could be applied in other fields to

give rigorous results for the standard way of reporting uncertainties.
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Appendix: Autocorrelation Functions and General Interval Co-

variance for Power-law Noise Spectra

Consider two time intervals that may (or may not) overlap, and are not necessarily of equal duration.

The general interval covarlance of the random part of the time scale difference accumulated on the

time interval [tl, t2] with that accumulated on [t3, t4] is

S = ([xo(t2) -- xo(tl)] [Xo(t4) -- xo(t3)]) ---- (xo(t2)xo(t4)) + (xo(tl)xo(t3))
-- (Xo(t2)xo(t3)) -- (Xo(tl)xo(t4)). (13)

where (xo(t)xo(t-T)) is the autocorrelation function: T¢_(_) = f_°Sx(f)cos2Trfrdf. We use

the usual [5] upper-frequency limit f_ = w/(2_r) and low-frequency limit fl = e/(21r). The sharp

upper cutoff is an artifice, although one which could be implemented with a digital filter applied

to the output of a phase comparator. The lower frequency needs to be low enough so that it

does not perturb the low-frequency rolloff supplied by the fitting function. A too-low value for (

will exacerbate the numerical precision problems in calculating and using Tiz(t), which diverges as

--* 0. For the usual noise model of Sx(f) = _]_=-22 _ we have(2_)2 ,

wr 2

2 haT(l-a) _r Ua-2T_(T) = _ (21r)_+1 cosudu= _ R,_(T). (14)
o_= --2 or= --2

It is possible to express S as a sum over the functions P_(_-)'s, or as a sum over functions of similar

form Ia(T)'s that are less divergent as e ---*0:

S

where Z(_-) is

= -[T_(t4- tl) + T_(t3- t2) - 7_.(t4- t2) - T_(t3- tl)] (15)
= I(t4 -- tl) d- Z(t3 -- t2) -- _-(t4 -- t2) -- Z(t3 -- tl),

2 h_rO-_) fjTTz(,): Z (2 )o+1
2

u _-2 {1 - cosu} du = y_ I_(v). (16)

With the help of mathematical tables or a symbolic algebra program such as Maple V, the integrals

for Ra(T) and Ia(T) can be done analytically for our values of a.

h2 _ sin (WT)t } (17)

h2 {1 sin (wr) "_ (18)j

are the integrals for white phase noise (a = 2). 12 is proportional to the high frequency cutoff w,
as is the Allan deviation.
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hi {Ci(co'r)- Ci(_'r)} (19)
Rl('r)- (2_)2

hi

Ii('r)- (27r)2 {3'-t-ln(co'r)-Ci(co'r)}
(20)

are the integrals for flicker phase noise (a = 1). Ci(x) is the Cosine Integral function, which can

be easily approximated by using numerical approximation as in Abramovitz [16] for arguments

greater than 1, or by direct numerical integration of the expression between brackets (see end of

this Appendix). The time interval "r tempers the logarithmic dependence on the frequency cutoff.

n0('r)=-_ t co'r-- + s_(co'r)- __os_'r(_'r)si(_'r)} (21)

ho {cos(co'r) - 1 }lo('r) = 2--_'r co'r + Si(co'r) (22)

are the integrals for white frequency noise (a = 0). Si(x) is the Sine Integral function, which can be

treated in the same way as the Cosine Integral for arguments greater than 1, or by direct numerical

integration of the definition of Si(x) for small arguments. This term depends linearly only on the

time interval "r, and not on value of the high frequency cutoff.

R-l('r) = h-l-_ (co'r)2 + COT Ci(co'r) - - (_T) 2 + e'r Ci(e'r) (23)

"r2[I-l('r) = h-1--_- 1.5 - 3' - in (e'r) - { 1-cos(co'r) sin(co'r) }](co'r)_ +--co'r ci(co'r) (24)

are the integrals for flicker frequency noise (a = -1), where 3' is 0.57721..., Euler's constant.

The logarithmic term looks as if it will diverge to infinity for a low frequency cutoff as c ---* 0,

but in combinations like in S normally the combination of terms using 1-1(7") is such that the

terms multiplying 1.5 - 3` will cancel out, as will the logarithmic divergence with e, leaving a term

depending only on the square of the time interval and a geometric structure factor that depends

on the logarithm of ratios of the time intervals concerned: for the Allan deviation this is In(2) as

and for S it is In --(/t'-tl)It3-e_/_expected,
\ (t3 tl)(t4 t_)]"

R-2('r) = zrh_2-f + _T + -
(25)

I-2('r) = Trh-2_ [3 - {2 1-cos(co'r) sin(co'r) cos(co-r) }](co"r)_ + -(co'r)---r-+ --_ "r + s i (co"r) (26)
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are the integrals for random walk frequency noise (a = -2) for a low frequency cutoff e -_ 0.

As expected, this expression will diverge to infinity in the limit e _ 0, but the combination of

terms will cancel that divergence in many of our accuracy prediction problems, since our fitting

procedures will act as an effective low-frequency rolloff for the residuals of the fit. In practice,

the low frequency cutoff will depend on the observation (active) time and is always some value

greater than zero. In our analysis of uncertainty, we should use the same value of e that was used

in determining h-2 from measured Allan variances of the standard in question.

Using standard expansions for the Sine and Cosine Integrals [16], it is easy to compute with

enough accuracy the values needed for arguments greater than 1. For arguments smaller than

one, numerical integration can be done easily for Si(x). For Ci(x), the following transformation is

helpful, since the second integral is easy to do numerically for small arguments:

Ci(x) = "y A- lnx - f_ 1-c°SUdu = "7+lnx - f_ _du (27)

In debugging any code written to evaluate T_(T) or 2-(v), it is worthwhile noting that the two-

sample variance or Allan variance is

a2(r) = -41%(r)+3_,(o)+_,(2_)r2 _- 4Z(T)-Z(2T)_, where (28)

2_) hi w _ h-l, -2 h-22r(e_ 3 w_3) 'T_::(0)- (--a(W-e)+_-_lnT+ (E-l-w-_)+--_-te -w-2)+ 3 " -

which should reflect the traditional expressions [5] when the typographical errors have been cor-

rected (their equations 101 through 105 have had the term I' + ln(2_rfhT), where 7 is Euler's

constant, incorrectly typeset as 2 + ln(2_rfhr) ). Some approximations used to obtain their tradi-

tional expressions have not been made. The expressions given above for I,_(r) are correct for all

even for wcr < 1, so that differences are to be expected if calculations are made for T near to or

less than 1/(27rfc), where fc is the upper frequency cutoff or bandwidth of the phase measurement

system used to measure x(t): the expressions above give the correct results.
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extrap.olatlon: T > 0

interp°lati°n: z'-<O i I i _

I
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I

I
, I I

-t, 0
Figure 1. A simple algorithm: linear extrapolation or interpolation from a line constrained to lie through two

points on x(t), separated by a time ta. Its standard uncertainty in time, Ux(T), can vary with extrapolation time _', as

shown in Figure 2.
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2
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I

random walk FM "
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White FM

-- _d f
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white phase
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Figure 2. The standard uncertainty in time, Ux(r), developed by the algorithm of Figure 1 for an extrapolation time _.

It is shown separately for the five types of noise, each normalized to 1 at the midpoint of the fitting interval ta. In
this example, COb= 100/ta.
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Figure 3. A simple algorithm: linear fit constrained to lie through two points on x(t). The variation in frequency

from the calibration interval ta is illustrated. With h = tr, this is the basis for Figures 4 and 5.
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Figure 4. Local oscillator contribution to the standard uncertainty of the average frequency for a pulsed-ensemble

cesium fountain, with a cycle time of 1 s and a dead time of 0.01 s. The light lines show the classical stability limit

of the threc oscillators, and the heavy symbols show the pulsed-ensemble result using linear extrapolation in phase

to bridge the dead time. For each type of servo, the top curve is for an Oscilloquartz 8600-3 (h.1 =8x10 "26,

hi = 8x10 "27,h2 = 5.6x10-29), the middle curve for a Wenz¢1500-03475 100MHz &5 MHz (h-i = 8x10-26,hl = 1.6x10 "30,

h2 = 1.3x10"34), and the bottom curve is for a JPL-type 77K sapphire X-band frequency discriminator (h.1 = lx10-27).

Optimally used, their noise corresponds to a shot noise of 700, 8x104 and 6x106 atoms/s respectively.
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Figure $. Cesium fountain's standard uncertainty of average frequency over an interval 1-,due to random noise.

The maser noise model's Allan deviation is also shown as the heavy curve. A cesium fountain with a Uy(t)= 10"14l"1/2

is operated for 3000 s, calibrates a maser, the standard uncertainty of the extrapolation from one calibration is

indicated by the light curve that rises abruptly at t = 3000 s. The other curves show what can be done with current

(2 ns) and a possible future two-way time transfer at the ends of the interval l". The dots show what can be done if a

3000 s calibration run is performed every day.
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