
N94- 32428

A HYPERTEXT SYSTEM THAT LEARNS FROM USER FEEDBACK

Dr. Nathalie Math_

NASA Ames Research Center 1

Mail Stop 269-2
Moffett Field, CA 94035

mathe@ptolemy.arc.nasa.gov

r

/

ABSTRACT

Retrieving specific information from large amounts of documentation is not an easy task. It could be facilitated if

information relevant in the current problem solving context could be automatically supplied to the user. As a first

step towards this goal, we have developed an intelligent hypertext system called CID (Computer Integrated
Documentation). Besides providing an hypertext interface for browsing large documents, the CID system
automatically acquires and reuses the context in which previous searches were appropriate. This mechanism utilizes
on-line user information requirements and relevance feedback either to reinforce current indexing in case of success

or to generate new knowledge in case of failure. Thus, the user continually augments and refines the intelligence of
the retrieval system. This allows the CID system to provide helpful responses, based on previous usage of the
documentation, and to improve its performance over time. We successfully tested the CID system with users of the
Space Station Freedom requirement documents. We are currently extending CID to other application domains

(Space Shuttle operations documents, airplane maintenance manuals, and on-line training). We are also exploring
potential commercialization of this technique.

INTRODUCTION

There is a need in NASA, and other governmental and commercial companies for rapid and effective access to
information in large documentation systems. Accessing and using information stored in such documentation

systems has become more and more difficult due to the increasing volume of documentation, the disparity of
information sources, and the frequent rate of change of such documentation during its lifetime. One of the main

problems in accessing information in large documentation systems is due to the lack of support for contextual
information retrieval. The relevance of information not only depends on its contents, but also on the particular user
and his/her current problem solving context.

Hypertext systems provide good support for browsing large amounts of documentation and for building associative
links between various parts of the documentation. While hypertext systems increase accessibility of information,
they do not provide any built-in selectivity mechanism. This increased accessibility may magnify an already severe
problem of selection [1]. For these reasons, knowledge-based systems technology can be very helpful in alleviating
the selection problem and the cognitive overhead of the user. Our approach on the CID project has been to develop
an intelligent context-sensitive indexing and retrieval mechanism which interacts with and learns from the user [2].
This mechanism lets users filter information by context of relevance, and build personalized views of the documents
over time. It also gives them the capability to share knowledge with other users.

RETRIEVING INFORMATION IN LARGE DOCUMENTS

We have analyzed uses of the Space Station Freedom (SSF) Program Requirement Documents. When looking for
specific information, users usually employ both the table of contents (hierarchical browsing) and the index of the
available documents to guide their search. Even then, however, the search is not very focused, and it is common for
users to examine several places in the documentation before finding the information needed. Moreover, the needed

information might be distributed in several locations, making it harder to exhaustively find all the relevant pieces. In
other cases, the information might not be in the document at all, but the user has to be certain of it before requesting
a change to the document.

1 Dr. Math6 is currently working at NASA ARC under contract 21-1614-2360 to San Jose State University.

55

While in a small document the user could use a simple sequential trial-and-error decision process (go to each section
mentioned in the index and read its text), this is not feasible in large documents. We observed that users prefer to

avoid reading pages of text, and apply an iterative filtering strategy: select a rough set of candidates locations in the
document, use high level information to decide which ones might be relevant, repeat this process until only a few
locations have been identified, then access and search the text at each location. If the information is not found, or

only partial information is found, then backtrack in the search by broadening the set of candidate locations. In such a

strategy, reading text is used in the last resort.

To avoid repeating this lengthy process each time, users develop cognitive representations of the organization and
content of the documentation. They build semantic descriptions of the locations already visited in the text, and
contextual information around the descriptors already used to access particular pieces of information. These

cognitive maps are thus context- and user-dependent. This memory however does not last very long unless the same
information is retrieved often under the same context.

THE COMPUTER INTEGRATED DOCUMENTATION SYSTEM

Retrieving specific information from large amounts of documentation could be facilitated if information relevant in
the current problem solving context could be automatically supplied to the user, in understandable terms and in a
flexible manner. As a first step towards this goal, we have developed an intelligent hypertext system called CID

(Computer Integrated Documentation) [3]. The CID system enables integration of various technical documents in a
hypertext framework and includes an intelligent context-sensitive indexing and retrieval mechanism. The CID
system has been used to help Space Station Level I personnel manage the Program Requirement Document for SSF.
A typical screen of CID windows is presented in Figure 1. It contains the CID control panel that allows the user to
control the entire library, and an example document. Both text and graphics capabilities are available within CID.

Structured Technical Documents

In existing technical documents, such as those common at NASA, information is structured hierarchically.
Designing a complex system like the Space Station Freedom is an iterative process. Its documentation system is
designed to handle a huge amount of information. It is organized around the Program Requirement Document
(PRD), which establishes the highest level requirements associated with the Space Station Program. Generally,
lower level documents expand upon the topics expressed in the PRD. For instance, Figure 1 shows the CID version
of the PDRD (Program Definitions and Requirements Document, one level below the PRD) Section 3 (Systems

Requirements), which contains about 900 pages, and uses 1.4 Mb of memory (without figures).

Each document includes several major nodes (e.g., change and revision notices, table of contents, a body of text

segmented into sections and subsections, tables, figures, various appendices.) There are references between
sections, or links in the hypertext "language", which are linear (section to next section) and non linear (reference to a
section other than the next one). There are references to other major nodes within a document and to other

documents.

In CID, we call descriptor 2 any word, phrase, or piece of graphics which provides a meaningful "starting point" for
a search in the documentation. A referent is the address of any part of text or graphics. In the current

implementation, a descriptor is typically a word in the index, and a referent a document section. Initial hypertext
links between descriptors and referents are automatically built by CID, and may be modified by the user. CID also
lets users index referents with concepts that are not necessarily words or term-phrases included in the text.

2 The concept of descriptor is very important in information retrieval [4]. Building such descriptors requires
expertise in the domain of investigation. We are using a technique developed by Mark Zimmerman [5] that allows
full-text extraction of words associated with their frequency in the text.

56

CID Control Panel

CURRENT USER PROFI.E...

PDRDSEC3REVL3.CID

3.2 FUNCTIONAL AND DESIGN REQUIREMENTS

3.2.9 ENVIRONMENTAL CONTROL AND LIFE SUPPORT

3.2.9.1 FUNCTIONAL REQUIREMENTS

The ACS shall provide for pressurization of the pressurized docklno
_. [NASDA]

APM atmosDh_c_ control and supply functions for repressurlzatlon

shall provide a method of monitoring and regulating the partial and
total pressure of _ in the pressurized element atmosphere. [ESA]

The requirements in this paragraph are not applicable to CSA.

Figure 1 Part of a typical CID screen. The upper-left window is the CID control panel. The lower-right window is a

CID document. The upper field includes the hierarchy of the displayed referent, the middle field is the actual text

and the bottom field includes the next referents in the hierarchy. Clicking on the Success or Failure button

automatically reinforces the displayed referent under the current user profile.

Context-Sensitive Retrieval

Contextual information characterizes the user, the types of task he/she is usually performing, and the type of

information he/she is looking for. For instance, let us assume that one wants to retrieve some very specific

information on the disposal of waste water in the Space Station. The first thing one may try is to browse the

documentation with the descriptor "waste water." If the retrieval context can be specified, e.g., "You are a future

scientific user of Space Station, and you want to know how experimental waste water will be handled," then a more

efficient search can be accomplished. The set of relevant referents will not be the same under another context, e.g.,

"You are an engineer and you want to know how waste water will be recycled in the Environmental Control and Life

Support system." Currently, in CID, the retrieval context is set by default on user log-on to one of the user's profiles,
and can be modified by the user at any time.

Retrieving information in documentation is generally handled using keyword search. People find this very difficult

in practice because keywords are used in a full-text search mode. Consequcntly, systems using keyword search come

up with either hundreds of references or nothing [4]. To overco,ne this selection problem, CID uses the current

retrieval context to filter down the number of referents for a descriptor that a user has to look at and thus narrows

down the search. When the user selects a descriptor in CID, a list of ordered referents pops up. These referents have

been found successfully in the same or similar context in past retrievals (the user can, however, access all the

existing referents at any time). The order of referents is based on the past success and failure rates of each referent in

this context. This is illustrated in Figure 2: the number of referents retrieved using the context filtering capability is
narrowed down from 26 (total number of existing referents) to 2.

57

Users have the choice between filtering the list of retrieved referents based on previous reinforcements they have
done themselves, or based on reinforcements done by someone with a profile similar to their own current profile.
This second filtering option lets users with similar interests share their knowledge about the relevance of various

pieces of information in a document. In the same way, a novice user can immediately visualize reinforcements done
by a domain expert on the document, and shorten his/her training time.

Dsve Vsn Pelt

PDRD Review

User requirements

PDRDSEC3REVL3.ClD

Dock,docked,docking,mating

Dosage
Dosimeter

Drag
Dumping,dumps,exhaust,flush,gas

es,offgassing,outgassing,purge,pu

rging,venting,jettison,outside,ore

rboard,outlet,outlets

Eclipse phase,shade

Eclss,eclsssupport

are 2 referents linkedto this descriptor.You may select one...

3.2.9.1FUNCTIONAL REQUIREMENTS

3.2.11.3 EXTRAVEHICULAR ACTIVITY DESIGN AND PERFORMANCE

E.B°

Figure 2 Use of an index in context. Here, the context was characterized by the current user profile. The user
clicked on the descriptor "Dock". CID suggested two referents previously reinforced under this context.

(_ontext-Sensitive Reinforcement

In order to narrow down the search using the current retrieval context, CID automatically acquires contextual

knowledge from previous searches. This contextual knowledge is associated to the indexing links between
descriptors and referents. CID modifies existing relations between descriptors and referents by using on-line user
feedback to either reinforce or correct the system's knowledge in case of success or failure. This feature allows the

system to tailor itself to the user.

After accessing a referent from a particular descriptor, the user can select either "Success" or "Failure" (cf. Fig. 1) to
specify the relevance of this referent to his/her search. Using the current retrieval context, CID automatically updates
the contextual knowledge attached to this link, updating contextual conditions and their respective weights (cf. Fig.
3). When a failure occurs, the system attempts to obtain from the user the reason for this failure. This learning
mechanism enables CID to refine the indices over time to reflect their context of use.

58

PDRDSEC3REVL3.CID

TREEMODES
::'-,'-'-_-'_'L:i,," i{i,_i{i,_i}i{i.,'i

SERRCR MODES

mm
.IIiI

6Rilr i I C aCTS,

[l>l'IJlle I)rlltll;|l

L[ileS|(li-|Tree
TEliT RCTION$

Sri(Itt, iqef)

Link Info

Dock -> 3.2.g.I

FUNCT I ONfiL

REQUI REHENTS:

DaVe Uaff Pelt, 1;

PDRD Review, 1;
User

requirements, I

(Dock '_,),_

: DES Magnification

.4 3.1.3.1 NATURALENVIRONME I

.4 3.1.3.6 MICROGRAVITY ENVIRO I

"4 3.1.10.7 REDUNDANT PATH5 I
"4 3.1.16 ASSEMBLY SEQUENCE I

.4.3.1.18.6 MATINGIDEMATINGINI

-} 3.1.23.f_ INTERFACEHARDWA I
--{ 3.2.2.1 FUNCTIONALREQUIRE J

.4. 3.2.2.2 DESIGN AND PERFORM]

-{. 3.2.6,1 FUNCTIONALREQUIRE I

-} 3.2.7.1 FUNCTIONAL REQUIRE i

-C_

-C_

-C_

-C__

Figure 3 The graphical descriptor browser lets users visualize reinforcements (bold lines) and browse indexing
links. Descriptors are displayed as rounded nodes, and referents as rectangular nodes. Contextual conditions

associated to the selected link are displayed in the lower left corner. Clicking on a referent node displays the text of
this section in the CID document.

CID Graphical Browsers

We have found that explicit maps of the documentation are very useful for quickly accessing information. These
maps can be local ("where to go next?"), or global ("where am 1?"). They can also present either the hierarchical
structure of the documentation (local or global tables of contents), or the conceptual relationships between referents

via descriptors (local or global conceptual indexes). In CID, these maps are embedded directly in the hypertext or
accessible through graphical browsers.

Each section in a document locally displays information about its parent and children sections, and users can directly
visualize in the text the words under which this section is indexed (cf. Fig. 1). These underlined words are active,

and let users jump to other sections indexed under the same words.

User also have access to global maps displayed in graphical browsers. The graphical descriptor browser shown in

Figure 3 lets users visualize reinforcements (bold line,s) and browse relationships between referents and descriptors.
In addition to browsing indexing links, they can ask for all referents similar to a given referent (sharing some

descriptor with it), and filter the resulting list by context. The graphical table of contents browser lets users visualize
the hierarchical structure of a document (cf. Fig. 4). In both browsers, all nodes are expandable and collapsible, and

any section can be displayed directly in the corresponding document by clicking on a referent node.

59

PDRDSEC3REVL3.£1D : TOC magniflcatlon

Figure 4 The graphical Table of Contents browser lets users visualize the structure of a document. Nodes can be
expanded and collapsed. Clicking on a node displays the text of this section in the CID document.

USER TESTING RESULTS

In order to evaluate the effectiveness of and user satisfaction with CID learning capabilities, we conducted a set of

user testing experiments [6]. Two domain experts from Space Station Level I personnel at NASA HQ used CID to
find information in the Space Station Program Definition Requirements Document (PDRD). Their main task is to
answer queries from future scientific users of the Space Station, regarding whether the current requirements fit the
scientists' experiments needs. We chose 15 queries received by these experts from scientists, and not answered yet.
Users were trained the previous week on CID for about half an hour. During each test session, we automatically
recorded all their actions in CID, and asked them to verbalize what they were doing (think aloud protocol).

Overall, users found CID very user-friendly and were very eager to use the relevance feedback mechanism. In fact,

they used it almost systematically each time they found some information they were looking for. With paper
documents, they usually put yellow stickers and highlight the text with a yellow marker, in order to later on compose

a report from the various pieces of information found in the document. With CID electronic documents, users only
need to set up their user profile once (containing information to be used to personalize their feedback), then to click
on the Success or Failure buttons whenever they want to give relevance feedback. Personalizing relevant

information with their user profile also lets them share information with other users.

60

Apart from these positive results, users also requested more capabilities to make a better use of the CID system,
including: better visualization of reinforcements directly in the document (highlighted sections, index terms, etc.);
being able to reinforce any references, and not only these accessed from the index search; better filtering and access
to previous reinforcements; being able to save reinforcements done for a qtiery (which may involve several index
searches or other types of searches) under one label; and means for transferring reinforcements done on a document
to new revisions.

We are currently redesigning CID reinforcement mechanism in order to satisfy these new requirements. In this new
version, users can reinforce any type of hypertext link, and have access to a broader type of queries, e.g., "show me
all reinforcements I have done", "show me all reinforcements John has done for this query", "show me all
reinfcar_"_rnents done yesterday", etc.

CONCLUSION

Besides providing an hypertext interface for browsing large documents, the ability of our system to automatically
acquire and reuse the context in which previous searches were appropriate is unique. The design of contextual links
to retrieve information is based not only on the way the documentation has been built, but also on user's information
requirements and feedback when they are using the system. Thus, the user continually augments and refines the
intelligence of the retrieval system. Context-sensitive information retrieval gives extended possibilities such as
providing search expertise from other users, e.g., "what would John Smith do in this situation?"

We have shown that tailoring of hypertext documents during usage has been very well received by users. The main
advantage is that it let them incorporate their knowledge and understanding of the content of a document over time,
without disturbing the task they have to accomplish. This mechanism is extremely useful for large documents used
by a large number of users, where the need for filtering information and building personalized views of the

documents over time is important, as well as the possibility to share knowledge between users (access tailoring done
by someone else, or a group of users).

Besides improving CID reinforcement mechanism as described in the previous section, we are extending CID to
support operations at the Consolidated Control Center for Space Shuttle and Space Station in collaboration with the
NASA Johnson Space Center. We are also studying the usefulness of CID for airplane maintenance electronic

performance support with on-line documentation and training. Finally, we are exploring the potential
commercialization of CID learning technique with computer software companies.

The current version of CID is implemented on a Macintosh in HyperCard and in C language. The CID software
package is available for distribution to US universities and companies.

REFERENCES

1. Jones, W.P., "How do we distinguish the hyper from the hype in non-linear text ?," in Proc. 1987
INTERACT'87.. Holland: Elsevier Science, 1987.

2. Boy, G.A., "Acquiring and refining indices according to context," in Proc. 1990 Fifth AAAI-Sponsored
Knowledge Acquisition for Knowledge-Based Systems Wor_hop. . Banff, Canada: November 1990.

3. Mathr, N. and G.A. Boy, "The Computer Integrated Documentation Project: A Merge of Hypermedia and AI

Techniques," in Proc. 1992 Space Operations Application and Research (SOAR) Workshop.. NASA Johnson
Space Center, Houston, Texas: August 3-6, 1992.

4. Salton, G., Automatic Text Processing: the transformation analysis, and retrieval of information by computers.
Redding, Ma: Addison Wesley. 1989.

5. Zimmerman, M., TEXAS version 0.5, Technical Report. Silver Spring, MD: 1988.

6. Math_, N., "Tailoring Hypertext Documents in Context: First User Testing Results," Poster presented at the
1993 Hypertext conference. Seattle, Ca: Nov. 14-16, 1993.

61

P

N94- 32429

COIOION MODELING SYSTEM FOR DIGITAL SIMULATION

Capt Rick Painter, USAF

USAF Wright Laboratory/Avionica Directorate

Wright Pattorson AFB OH 45433

ABSTRACT

The Joint Modeling and Simulation System is a tri-service

investigation into a common modeling framework for the development of
digital models. The basis for the success of this framework is a

X-window-based, open systems architecture, object-based/oriented

methodology, standard interface approach to digital model

construction, configuration, execution, and post processing.

For years Department of Defense (DoD) agencies have produced

various weapon systems/technologies, and typically digital

representations of those. These digital representations (models) have

also been developed for other reasons such as studies and analysis,
Cost Effectiveness Analysis (COEA) tradeoffs, etc.

Unfortunately, there have been no Modeling and Simulation (M&S)

standards, guidelines, or efforts towards commonality in DoD M&S. The

typical scenario is an organization hires a contractor to build

hardware, and in doing so a digital model may be constructed. Until

recently, this model was not even obtained by the organization. Even

if it was procured, it was on a unique platform, in a unique language,

with unique interfaces, and, with the result being UNIQUE maintenance

required. Additionally, the constructors of the model expended MORE

effort in writing the "infrastructure" of the model/simulation (e.g.

user interface, database/database management system, data

journalizing/archiving, graphical presentations, environment

characteristics, other components in the simulation, etc.) than in

producing the model of the desired system. Other side effects

include: duplication of efforts; varying assumptions; lack of

credibility/validation, decentralization both in policy AND execution,

and various others. J-MASS provides the infrastructure, standards,

toolset, and architecture to permit M&S developers and analysts to
concentrate on the their area of interest.

J-MASS ARCHITECTURE and STANDARDS LAYERS

J-MASS has several architectural and standardization layers. This

paper describes J-MASS in terms of the Tool Interconnect Backplane

(IBP) layer, referred to as the Simulation Support Environment (SSE

IBP) the Simulation Runtime Agent (SRA) IBP layer, and the Model

Component/Object Standards layer.

65

IlnlaG_ BLANK NOT Ir'tLML_

MODEL COMPONENT/OBJECT STANDARDS

Each model component (or object) in J-MASS is structured compliant

with our Software Structural Model (SSM). The SSM evolved from the

Software Engineering Institute (SEI) work on the Object Connection

Update (OCU) model. Both the C-17 and B-2 weapon systems trainers use

a similar methodology for their object definition. The SSM, also

described in a document, enforces software structure and interface

standards for all levels of object decomposition. In this way, ANY

objects in the system can be syntactically "connected" with any other

objects in the system with guaranteed success. Semantically, the

connection may have no realistic "meaning", but syntactically they can

be connected ("Assembled", see discussion in Develop and Assemble

Modes under Tool Interconnect Backplane). J-MASS objects are

described in three layers: "Players", "Assemblies", and "Elements".

Players are the "top" level objects responsible for synchronization

with the simulation runtime engine and comply the software interface

is standard to all objects at that level. Additionally, the interface

between the "player", and its subcomponents, "assemblies" and

"elements", is also standard. This interface is similar to but NOT

exactly like the player to runtime engine interface. Figure 1

represents the J-MASS SSM implementation.

Sy.ch_i_'T

f Services IBP

J

FIGURE 1

\

OPEN ARCHITECTURE - TOOL INTERCONNECT BACKPLANE

At the Tool Interconnect Backplane (IBP) layer, known in J-MASS as the

Simulation Support Environment (SSE) IBP, several backplane

methodologies were considered, including the HP Softbench, IEEE P-1175

"Toaster Model", the Atherton Backplane, and, significantly upon the

Common Object Request Broker Architecture (CORBA) from the Object

Management Group (OMG). In J-MASS terminology, a cul-du-sac model is

employed, where each cul-du-sac represents a tool, or potentially a

collection of tools or capabilities, referred to as "agents". Each

"tool" or "agent" (a software capability), can register as a

client/server with the backplane, indicating the service/message

traffic of interest. The backplane maintains the knowledge of the

other tools that have registered that can either provide the service,

or will request the service. This concept is knows as message

brokering and is powerful for de-coupling the tools from knowledge of

other tools on the system. J-MASS has implemented a prototype of its

design for this backplane in C on Unix workstations, currently SUN

Sparc series, and Silicon graphics. Other platforms in progress

include the IBM RS6000, and HP 9000 series, with DEC Alpha, and

VAXstations in the plans. Reference Figure 2 for a graphical
depiction of this concept.

J-MASS SSE Architecture

Infrutructuro

AgQnta

Model
Cul-de-Sac

AppIcatlon= Sknulatlon Suppo_ Environment (SSE) Inlecoonnecl Bm_q_lm,m (IBP)

Agent=

• Infrastructure Agents

- Agent Wlth Specific Responsibilities

- Always Installed And Available

• Application Agents
- Connect Directly To SSE Interconnect

- Register Own Services

- Request Services To Be Performed

- Are Loaded / Removed Dynamically

- Communicate Via SSE Interconnect Message Language Grammar

FIGURE 2

67

User Modes.

J-MASS has five conceptual "user modes" associated with it. These are

"functionally" oriented modes, namely: Develop; Assemble; Configure;

Execute; and Post-Process. Each represents a capability that a model

developer and/or simulation analyst requires to build, configure,

execute, and analyze simulations. Each of these modes can be viewed

as an instance of the cul-du-sac methodology. The next series of

charts (2 thru 6) depict an instance of the backplane at the tool

interconnect layer for each of the J-MASS modes.

Develop Mode/Assemble Mode.

Develop Mode and Assemble Mode provide the model developer with visual

mechanisms for constructing model objects/object hierarchies, with

data flows represented. Control flows (not currently implemented)

will also be depicted so that model developers can separate

control/activation of objects from data flow. The graphical

information is then translated to ascii "dot" notation, referred to as

.DSC (description) files. These .DSC files are then read by an

automatic code generator, which generates source code compliant with

the Software Structural Model (SSM) in various languages (currently

Ada, C++). The SSM is discussed further in the Model Component/Object

Standards section. At this point, the algorithms for the lowest level

objects in the decomposition must still be described (currently, in

the native language thru an editor). The code can then be compiled,

linked, loaded and executed. A semantic tool, or "template" editor,

is provided to build the semantic "template" information that

describes "normal" assembly of the model components, which is done in

"Assemble" Mode. Here in develop, the template semantics are

generated. See Figures 3 and 4 for a graphical depiction of Develop

Mode. Assemble mode permits the connection of the model objects built

in Develop Mode visually. The "templates" are populated with actual

object instance selections. All of the model components are stored in

the modeling library, an object oriented storage mechanism which makes

the information about the objects in J-MASS available to all other

agents on the backplane.

68

Application Agents Supporting
Develop

-O00A
-Documentdcn

•eeMvlor(Cocb)
.Coetnd

•Code Gen

-co._,
.Unk

,F_xKule

•V_w ResuCts

Odvera

FIGURE 3

69

Application Agents Supporting
Assemble

•Sok)¢tAlternative
Componem
•Defa_ Con_

-Co._s
.ExecLdo

•View Ro_IIs

•Devolop Drlvem

•Code OIn

-Commie
-Unk

FIGURE 4

Configure Mode.

Configure Mode permits the M&S developer/analyst with the capability

to determine simulation characteristics. Model component objects

attribute values are populated with values thru a graphical configure

tool. Additionally, geographical laydowns, raster maps, etc. are made

available to set up the scenarios of the model objects stored in the

model library. J-MASS "teams" are formed, whereby player classes are

defined, and actual player instances are populated for the teams.

This "distribution strategy" is totally configurable by the user. If

"legacy" simulations exist, the configure mode will permit the

modeler/analyst with the capability to catalogue those

models/simulations, and have data passed back in forth sequentially.
Eventually, real time synchronized communication between J-MASS

compliant and legacy simulations will be achieved. Additionally, if a

Distributive Interactive Simulation (DIS) Protocol Data Unit (PDU)

generation is desired, the user is able to configure a J-MASS team

(collection of players into a single executable). The entire team

will then generate PDUs, and the J-MASS spatial system will create

"objects" for the incoming DIS entities. The software that provides

this capability is the DIS_manager software, and is de-coupled from

the standard J-MASS objects, so as not to perturb that interface.

Figure 5 depicts the architecture backplane instance for Configure
Mode.

7O

Application Agents Supporting
Configure

-' 9Y '
r+ _ _.,.,_,_ e,_,.,,, 7

•Rayer Placement _1 ol Runs
•Player Movement -Parame(d¢

Var_lone

•AltdbuteValues

•Journal Meta Deta -DIsMbutk)n Info • LlnlkVwlallons

FIGURE 5

7]

Sexocuto Modo.

Execute Mode simply executes the selected simulation. Currently,

visualization is accomplished in the Post Process Mode. If the DIS

manager software was invoked due to configuration selection, then

using "magic carpet" software, the PDUs can be displayed in real time.
In work is a real time display of the simulation as it occurs. Figure

6 depicts the architecture instance for the Execute Mode.

Application Agents Supporting
Execute

.Mcwt,glor

.Ccmtr,ol

FIGURE 6

72

Post Procosm Mode

Post Process Mode is a visualization, both static and dynamic, of the

information of interest to the user. This mode includes graphical

plotting tools, and animated playback capability. The extraction tool

converts the binary journalized data into ascii information. The

filter mechanism then prepares it in the appropriate format for the

display tool requested. Figure 7 describes the backplane instance for

the post process mode of J-MASS.

Application Agents Supporting
Post-Process

Infrastructure

Age.as

•Select Data -Perk_m Stal_ttcd/

•Journal O, =_¢ =10peratlonQ
•Exte-n,d Oat= ..._¢,1_ (B=k_h)

• Cr vide Flier o _ldewliCtfVO

• Generato PP RJo

•Sele¢_ 01:_era_m
.Sta_e¢=I

.O,,ph_,J
•Idon_fy Ore D,da

•Propme Repots
•/kJlom0ng¢ Text

•Identley Roeu_t= to
Inoorp_=to

FIGURE 7

73

SIMULATION RUNTIME AGENT (SRA) ARCHITECTURE

The J-MASS Simulation Runtime Agent (SRA) architecture is depicted in

Figure 6. The SRA is "expanded" in this view to show its own

architecture. In fact, any agent on the SSE backplane may in fact be

another recursive instance of the SSE level. Notice the SRA has its

own backplane. The SSE level and SRA level backplanes could in fact

be the same. In our current implementation, they are not, but both

are distributed in nature using standard Unix (TCP/IP) socket message

passing mechanisms. What is important to note in the SRA is the

encapsulation of the spatial object, synchronization object, data

management object, journalization object, and others away from the

model objects. Thus, a true "plug and play" architecture is achieved

because any given object may be replaced in the architecture without

perturbing the other objects. In the SRA, each team is a single

executable using a shared memory implementation, providing

significantly faster communication than "inter-team" communication,

which uses Unix sockets. Just as the SSE level architecture is

distributable, so too are the "teams" within any given SRA. A J-MASS

system may in fact have more than one SRA, each communicating over the

SSE level backplane. In fact, we plan to demonstrate an Ada SRA with

Ada model objects communicating with C++ SRA and C++ model objects

over the SSE IBP mechanism. "Players" communicate with each other by

placing information on each others "ports" facilities. Players do NOT

require apriori knowledge of what team the other player is on, the

team synchronizers work with the SRA synchronizer to "locate" the

appropriate port. Again, the model objects remain "un-perturbed" with

this approach. Journalization of output is accomplished by the

journalization object, using state information maintained in the Data

Management Package (DMP). In this way, non-intrusive journalizaing

occurs. Figure 8 represents the expanded view of the SRA.

74

J-MASS A rchitecture

Simulation Runtime Agent
(SRA) Detail

FIGURE 8

COMMERCIAL POTENTIAL

The J-MASS concepts and philosophies are not entirely original. The

backplane methodology, message brokering mechanisms have been espoused

by OMG and others. However, J-MASS has applied these concepts to a
generalized Modeling and Simulation System.

J-MASS brings the idea of standards for digital simulations, both in

structure and interface. This guarantees "plug and play"

philosophies, both from model components and architecture components

point of view. J-MASS espouses the idea of "plug and play" throughout

the architecture to include tools, objects (model components), etc.

The J-MASS notion of graphical tool environment coincides with

standard commercial technology as well. Expanding that concept which

permits (automated) standard compliance with specified standard

structures is another potential benefit to the commercial world.

J-MASS itself does NOT prescribe what objects or systems are modelled

with its architecture. For example, the object repositories could

represent traffic objects, manufacturing objects, weather objects,

organizational objects, utility objects, etc. The system is designed

so that the M&S communities build object hierarchies and behavior
appropriate for the particular domain.

75

76

77

78

, I_. /

ANALYTICAL DESIGN PACKAGE - ADP2
A COMPUTER AIDED ENGINEERING TOOL
FOR AIRCRAFT TRANSPARENCY DESIGN

J.E. Wue_'er, PDA Engineering
M. Oran,WrightLaboratory

T.W. Held, University of Dayton

N94- 32430

ABSTRACT

The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless
Transparency Program (VI'P). ADP2 is an integrated design tool consisting of existing analysis codes and
Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated
design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The
application of this methodology will generate high confidence for achieving a qualified pan prior to mold fabrication.

ADP2 is a customized integration of analysis codes, CAE software and material databases. The primary
CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open
architecture of P3/PATRAN allows customized installations with different application modules for specific site

requirements. Integration of material databases allows the engineer to select a material and those material properties
are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four

independent schemas: CAE Design, Processing, Testing and Logistics Support.
The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with

a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e.,
analysts, designers, materials experts and managers. The final version of the software will be delivered to the Air
Force in January, 1994. The Analytical Design Package (ADP2) will then be ready for Iransfer to industry. The
package will be capable of a wide range of design and manufacturing applications.

1 INTRODUCTION

ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Enginering
(CAE) software. The objective of the ADP2 effort is to develop and confn'm an integrated design methodology for
frameless aircraft transparencies. ADP2 analysis capabilities include: aerodynamic heating, transient thermal
response, static and dynamic structure response, optical ray trace, injection molding process simulation, and an
aircraft transparency related material properties modeling and databank system. The design process is to be iterative
and capable of producing frameless transparency designs, information needed for the design of integral aircraft
interfaces, and information needed to support the design of injection molding tooling and the specification of
molding process parameters for specific materials.

ADP2 is a second generation analysis system. The initial ADP development was initiated in 1989,
References 1, 2 and 3. Since the inception of the original ADP, significant developments in both CAE and design
support software relevant to aircraft transparency design have evolved. In addition, certain current design

requirements, e.g., optics analysis and material properties modeling, were not addressed in the original ADP.
Finally, significant advances in computing hardware have occurred making it possible to perform the required
computations on workstation systems as opposed to mainframe platforms.

Recent developments in CAE design tools have inlroduced the ability to integrate special purpose and

commercial-off-the-shelf (COTS) software in a user friendly (intuitive/interactive) environment. That is, to have a
single user interface serve the primary analysis functions, specifically:

1. Modeling

- Geometric Modeling (construction and modification)

- CAD and IGES File Import

- GraphicsManipulation

80

