
N94. 32440

A HIGH-SPEED LINEAR ALGEBRA LIBRARy WITH AUTOMATIC PARALLELISM

Michael L Boucher

Dakota Scientific Software, Inc.

501 East Saint Joseph Street
Rapid City, SD 57701-3995

/

scisoft@welLsf.ca.us

(605) 394-1256 fax

(605) 394-9257 voice

ABSTRACT

Parallel or distributed processing is key to getting highest performance from the latest generation of high-

performance workstations. However designing and implementing efficient parallel algorithms is difficult and

error-prone. It is even more difficult to write code that is both portable to and efficient on many different

computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use

required of commercial software intended for use in a production environment. As a result, the application of

parallel processing technology to commercial software has been extremely small even though there are numerous

computationally demanding programs that would significantly benefit from application of parallel processing.
This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming

computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel
computation with a serial programming model that eliminates many undesirable side-effects of typical parallel

code. The result is a simple way to incorporate the power of parallel processing into commercial software without

compromising maintainability, reliability, portability, or ease of use. This gives significant advantages over less
powerful non-parallel entries in the market.

INTRODUCTION

Designing and implementing a parallel algorithm in a way that is both portable and efficient on a wide range of

hardware and software configurations is a task that is sufficiently difficult and time-consuming that it is rarely
done. Even when developing codes that require only a moderate amount of optimization, it is common to use

techniques that are specific to a particular machine and that are not easily portable to other hardware or software

architectures. As a program becomes more closely tied to a specific environment it requires more extensive

changes in order to adapt to changes in the environment. A predictable undesirable result of writing parallel

programs in a way that binds them to a specific hardware or software environment is that the "dusty deck" codes of

even morediffilcnlt rouse an d maintain than _e dus_ deck codes with which we have to deal

. e c,,,bl, .,._,,, v. u,c pa_c o, tecnno|ogy change is mat codes written today will require more frequent
updates to adapt, customize, and optimize them for the latest computer system. Therefore, we can expect the

maintenance phase to get even more expensive ff we continue present approach of requiring that programmers
customize programs for a specific environment in order to get acceptable speed. This paper first describes a

method of implementing parallelism that avoids many of the problems that inhibit writing portable parallel code,
then describes a library of parallel linear algebra subroutines that uses that approach.

Writing portable parallel codes is made difficult by a combination of factors listed below and expanded upon in theparagraphs that follow.

1. It is much more difficult to adequately test parallel code due to nondeterminism in the order in which
operations are performed and a lack of good analysis tools.

2. Faults and events, such as division by zero or overflow, tend to be masked, reported incorrectly, or
reported inconsistently from one run to the next.

3. Parallelization can slightly change the numerical properties of a given method.

161

4. Wide variations in the performance characteristics of different parallel and distributed architectures
make it difficult to write a single code that is efficient on a range of machine types.

5. Dependency on the run-time environment makes it difficult to write a single code that is efficient on a

single machine type under varying system loads.

Parallel algorithms, especially those that use medium- and coarse-grain parallelism, are almost intrinsically
nondeterministic in their execution. For example, the order in which synchronizing semaphores are accessed can

cause significant changes in the internal behavior of a program. It is possible that some, but not all, access

patterns to semaphores or other global data will work properly. It is therefore possible that a bug will go
undetected through even extensive structured testing. Few of the standard analysis tools such as static analyzers
have adequate support for parallel programs and so those tools are not as helpful with parallel programs as they are

with serial programs.

Virtually none of the available parallel systems report faults or events that take place on a parallel CPU. For

example, a division by zero or an overflow on a parallel CPU will generally go undetected by the host processor.
Virtually all of those systems that do report faults or events back to the host processor do so in a nondeterministic
manner. This can significantly complicate the task of debugging.

Parallelism may change some of the numeric properties of a code. There are many well-known examples of this
effect; one obvious example is that splitting a summation in different ways can generate different results.

Parallel and distributed architectures are available for all classes of machines ranging from PCs to supercomputers
and each of these architectures has widely varying performance characteristics. The parallelism on a given

computer system may be fine-, medium, or coarse-grain parallelism, or it may be any combination of those three
models. Fine-grain parallelism can take the form of an instruction pipeline or independent functional units in a
single CPU. There may also be multiple processor types in a single computer, for example independent CPU and
I/O processors or a CPU and an FPU. Medium-grain parallelism is typically loop-level parallelism between several
processors with a shared memory. Coarse-grain parallelism can occur between any two processors regardless of
whether they share a common memory. All of this variation makes it difficult to design a code that will run well

on many or all of the architectures.

Finally, variations in the run-time environment can make it very difficult to write code that is efficient even on a
single machine type but under varying work loads. For example, distributing a computation across workstations in
a cluster can be done efficiently when the workstations are available and the network is lightly loaded, but
inefficient when the workstations are busy or if the network is heavily loaded. Finally, changes in problem size can

significantly change the performance characteristics of a particular parallel algorithm.

BACKGROUND / EXISTING APPROACHES

We start by considering the systems for parallel and distributed processing that are widely available today. They
appear to fall into one of three categories: remote procedure calls, subroutines libraries that provide parallelism
primitives, and pre-parallelized subroutine libraries. The systems that we consider as the representatives of each of
these categories are UNIX TM RPCs as implemented by Sun Microsystems [8], Parallel Virtual Machine, and

LAPACK [1].

RPCs are a mechanism in which a UNIX programmer can run a procedure on a remote machine using the simple
semantics of an ordinary procedure call. When invoked, a synchronous RPC transmits the arguments to a remote
machine which then executes the procedure and returns the results. In this way, RPCs provide distributed

processing. A layer called XDR tries to hide from the programmer machine-specific details about byte ordering,
word length, and so forth by doing some of the data conversion necessary to make the data in the arguments
understandable to the remote machine and to make the result from the remote machine understandable to the host.

An asynchronous RPC is similar to a synchronous RPC except that the host does not wait for a result from a
remote machine after initiating a remote procedure. After initiating a remote procedure on one machine, the host

162

may make one or more other asynchronous RPCs and in this way the host achieves parallel processing. RPCs are

supported by _:pcgen, which allows a programmer to create RPC templates relatively easily. The strengths of the

RPC are its ease of invocation using standard procedure call semantics and its relatively easy portability among
UNIX operating environments.

The standard form of RPC/XDR has many drawbacks. First, XDR has a clear bias towards C programs running on
32-bit machines with IEEE floating point arithmetic and it has poor support for data types that are not common on

this configuration. For example, FORTRAN's complex data type (a data type not available in C), double precision
floating point on a Cray (a 64-bit machine that does not use IEEE arithmetic), and BCD (often supported on IBM
mainframes and 80x87 math coprocessors) are poorly handled by the standard XD1L While there is some

portability among UNIX operating environments, there is essentially no hope of easily porting an RPC-based

program to a non-UNIX environment. Synchronous RPCs do not allow parallel processing and the asynchronous
RPCs that do allow parallel processing are almost hopelessly difficult to use. Synchronous RPCs are also less

portable than asynchronous RPCs. RPCs do not duplicate the machine state of the host machine on the remote

machine so that special processing options selected on the host will not operate correctly on the remote machine.

For example, ffa program sets the IEEE rounding mode on the host then computations on the host will round

correctly and computations on remote machines will round incorrectly. Finally, RPCs have no fault tolerance. If a

temporary network glitch occurs or ffa remote machine crashes while an RPC-based program is running, then the
program will hang or crash if the user is lucky, or the program will return the wrong answer with not even a hint
of trouble ff the user is unlucky.

Parallel Virtual Machine (PVM) is the representative of the class of parallel and distributed processing tools that

are characterized by giving the user direct access to parallel and distributed processing primitives such as send,

receive, initiate task, synchronize, and so forth. Other systems that fall into this category are Linda, Express, and

the tasking mechanism built into Ada. PVM was developed by Dr. Jack Dongarra and his team at Oak Ridge
National Laboratory (ORNL). It is a library of subroutines that gives a programmer close control over the

parallelism employed by an application. PVM is more portable than RPC because PVM is not tied to a specific

operating system. Dongarra and his team are considerably more scientifically oriented than the designers of RPC

and so PVM correctly handles data types from languages besides C and machines with configurations besides 32-

bit CPUs using IEEE arithmetic. PVM is designed to allow parallel processing in addition to simply the
distributed processing capability of synchronous RPCs. Parallel processing with PVM is much easier than with
asynchronous RPCs.

PVM is generally superior to RPC, but it has some drawbacks. From the perspective of a computer scientist, the

power of PVM comes largely from the degree of control that the programmer can exercise over the process of

parallelization. From the perspective of an atmospheric scientist, the problem with using P'vqVl is the degree of

control that the programmer must exercise over the process ofparallelization. Many of the messy details of
interprocessor communication that were concealed with RPCs are now the programmers problem. Another

drawback to using PVM is that it requires that PVM-based programs be parallel or distributed programs. PVM-

based programs that are developed on a multiprocessor SPARCstation 10 TM will run beautifully, in large part due to
the extremely fast interprocessor communication that comes with shared memory. PVM-based programs that are

run on a network of SPARCstation IPXs will run poorly, in large part due to the extremely slow interprocessor

communication that comes with the Ethernet connection. Regardless of the extreme variations in efficiency

between these two operating environments, PVM forces the program to behave in exactly the same way in both
environments. Finally, PVM is slightly better than RPC at fault tolerance, but not much. Ifa fault occurs in a

network or on a remote machine while a parallel computation is in progress, the application probably will fail.

LAPACK represents the approach of using parallel subroutine libraries. In contrast to PVM, whose subroutines

allow the user to define the operations involved in building a parallel application, LAPACK is a library of
subroutines that may be supplied to a user after being optimized and parallelized. LAPACK includes subroutines

to perform many of the common operations in computational linear algebra including solving systems of linear
equations, matrix factorizations, eigensystem solvers, SVD, and similar operations.

163

Much of LAPACK is built on block operations, meaning that it divides a data set into subblocks that can be
processed independently. It then does operations on those blocks. These blocks are then mapped for processing to
the resources of a given machine. If there are multiple processors present then the blocks may be mapped to
processors. The blocks may also be selected to correspond to the size of a cache for efficient memory access. The
standard version of LAPACK as it comes from Oak Ridge National Laboratory is not optimized or parallelized, but
the block structure does make it simpler to parallelize than other subroutine libraries that perform similar
functions. LAPACK uses a subroutine called ILAENV to help it determine how each subroutine call should be
blocked and so it is possible for ILAENV to react to changes in the environment and adapt its parallelism strategy
accordingly. A major drawback to LAPACK with respect to its utility as a parallel programming environment is
the same as its major strength, which is that the programmer has no concern with or control over the parallel
processing. As a result, the programmer has no way to extend the parallel processing to get some capability that is
not built into LAPACK.

A PROPOSED SOLUTION: DSSLIB

We have developed a parallelization system named DSSLIB that will avoid many, though not all, of the pitfalls of
the available parallel programming systems. In particular, because it is a library, DSSLIB has the drawback
present in LAPACK that a user cannot extend it to perform computations'that are not build in. DSSLIB is based
on a combination of software programs transferred from a variety of US. Government agencies and projects. Some
of the software has been in wide use since 1979 while others have been introduced as recently as 1991.

Specifically, DSSLIB includes version 1.1 of LAPACK and the latest versions of LINPACK [3] and levels 1, 2,
and 3 of the Basic Linear Algebra Subprograms (BLAS) [6, 5, 4]. We intend this system for use in production
codes, including commercial software, users who are not sophisticated programmers of parallel or distributed
processing machines, and for any user regardless of sophistication who needs a significant speedup in an
application but does not have the resources to dedicate to a parallelization effort.

The choice of target users implies that the software must have at least the following characteristics:

1. most or all of the parallelization must be automatic
2. runs correctly and reasonably efficiently in a variety of hardware configurations
3. complete fault tolerance.
4. does not interfere with other software that may _ in use, possibly including other parallelization

systems
5. compatible with all of the standard tools such as debuggers, profilers, etc.
6. requires no changes to move among many different hardware and software configurations; retains all of

the characteristics listed above even as it is being used in a variety of configurations

DSSLIB satisfies the criteria above by presenting to an application a serial programming model even when it is

running in parallel. A serial programming model means that DSSLIB appears to an application to be a standard
library running on a single CPU. Some of the implications of choosing a serial programming model are:

1. for a given set of data, results will always be exactly the same regardless of how a particular
computation was parallelized on a specific run

1. standard tools such as debuggers and profilers continue to work in the same way that they always have
2. IEEE conditions are presented to an application in exactly the same way regardless of whether a

computation is performed serially or in parallel
3. DSSLIB always presents signals to an application in the same way every time

4. parallel machines or processors use exactly the same environment as the host machine

Given our choice of target users, one of the most important requirements is that all of the parallelization be

automatic. When an application calls one of the parallel subroutines then DSSLIB determines how many
processors to use, how to partition the data, and divides the work among the available processors. The number of
processors to use is computed based on the size of the computation, expected performance from the network,
expected performance from the other processors, and other factors. For a given computation, the number of

164

processorsassigned may vary as an application runs due to changes in the factors that influence the number of

processors assigned. However, DSSLIB partitions all computations in a way that guarantees that for a given
computation the answer returned from DSSLIB will always be bitwise identical, regardless of the number of
processors.

As part of doing the automatic parallelism, DSSLIB records certain performance information about each

computation and continuously tunes itself as a program runs. In addition to making the automatic parallelism
more efficient, this has the interesting side-effect that large applications will tend to get faster as they run because
DSSLIB will have time to learn and adapt to the environment. For example, an application may learn that the
network is more lightly loaded than expected and that the cost of communicating with remote processors is less
than anticipated. As a result, it may choose to use more processors for future computations than it would have
chosen by default. To illustrate this property, we modified the LINPACK 1000xl000 benchmark to solve six linear

systems and record six times instead ofjust one. In that test, DSSLIB solved the sixth linear system 18% faster
than it solved the first system because it was able to apply to the sixth computation things that it had learned about
the environment while doing the earlier computations.

The fact that the parallelism is automatic allows DSSLIB to be incorporated into production code, even commercial

software. While it is possible for a researcher to SlXx:ifyin advance a detailed and possibly very narrow description
of the types of problems to be solved, a commercial sothvare package will be presented with a variety of problems
or varying sizes and shapes. The researcher writing a specialized code to solve a narrow set of problems may know
in advance a close estimate to the optimal number of processors, but a commercial package cannot have such
assumptions built in. The researcher may have available the luxury of being able to schedule a block of time on an
empty or nearly empty system. A production code may be run in such an environment, but it also needs to work

well in a shared environment. The automatic and adaptive parallelism in DSSLIB allows the flexibility required of
commercial or production software.

Of course, one of the characteristics of a serial programming model is that a program generally will not be
adversely affected by problems in the network or on other computers. To support this aspect of a serial
programming model, DSSLIB has been built completely fault tolerant. If one or more parallel machines crash due

to problems in hardware, software, or network then DSSLIB will detect the problem and automatically restructure
the computation so that it will complete correctly. Further, it will restructure the computation in such a way as to
guarantee that the answer from the restructured computation will be bitwise identical to the answer that would

have been computed under normal conditions. Of course, failures on the host machine can hurt the application,
but this also is consistent with the serial programming model. As with the automatic parallelization above, the
compensation for faults or errors is automatic and does not require any special code on the part of the user.

Detected errors or faults, such as IEEE conditions, are presented to an application in exactly the same way every
time regardless of whether a computation is performed serially or in parallel. For example, ff an application
attempts to solve a singular linear system then the subroutine DGESL will divide by zero. (This is standard

documented LINPACK behavior, not a DSSLIB problem.) Most other parallel systems will not return a divide by
zero indication to a user's application. DSSLIB will return divide by zero or any other condition to a user's

application exactly as ff it had been run on a single CPU. Also, DSSLIB always presents multiple signals to an
application in the same order every time. Consider a computation that will be performed in parallel in which one
parallel machine will divide by zero and another will get an overflow. DSSLIB guarantees that those signals will
always be presented to the user's application in the same order every time, just as they would be ff the computation
were performed on a single CPU. DSSLIB has no race conditions common in other parallel systems.

Parallel machines or processors use exactly the same environment as the host machine. For example, ffan
application changes the IEEE rounding mode to round towards zero instead of round to nearest then all parallel
machines or processors will round towards zero. Other parallel processing systems do not ensure that parallel
computations are performed in the environment requested by an application.

165

RESULTS

Of course, the acid test of any parallel or distributed system is speed. If it is not fast then none of its other

characteristics are particularly interesting. It is even more helpful if the system is fast on real applications, rather

than running well only on a selected set of benchmarks. DSSLIB is fast. Measurements on applications with run

times ranging from 90 seconds to 12 hours shows that it delivers a pleasing level of performance for a reasonable

variety of applications. Further, DSSLIB satisfies the requirement that it run well in a variety of hardware and

software environments with no changes required of the user.

The hardware configurations in which DSSLIB was tested for Otis paper include both parallel and distributed

processing where processors are defined to be parallel if they share a common memory. The shared memory
machine used for this paper was a dual processor SPARCstation I0 with a 40 MHz SuperSPARC processor.
Processors are defined to be distributed if they do not share a common memory but are linked via some network

such as Etbernet or FDDI. Distributed processing machines used for this paper were single processor

SPARCstation IPXs linked by a network. Networks used were the standard Ethemet and the SBUS FDDI product

from Network Peripherals.

Both fine- and coarse-grain parallelism was tested. Fine-grain parallelism was done by making best use of the

parallelism betwoen the floating point and integer CPUs, and also between the independent add and multiply units

in the floating point unit. On the SS10, additional fine-grain parallelism was measured by taking advantage of the

multiple instruction per cycle capability, though this was limited by the fact that floating point instructions launch
one at a time.

The software on which DSSLIB was tested included a matrix multiplication benchmark, a small image processing

program written in IDL I that has a run time of 90 seconds, an artificial neural network wri'_ten in FORTRAN 77
with run-times of 19 and 58 minutes for two data sets, and a discrete ordinate radiative transfer program [7]

written in FORTRAN 77 with a run-time of 12 hours.

We ran the matrix multiplication benchmark on a single-CPU SPARCstation 10 model 40, then again on a dual

processor machine. This benchmark simply generates 400x400 matrices and computes o_AB + [3C -, C. The

comparison below shows the speed of the standard form of DGEMM from netlib and the speed of the same
subroutine from DSSLIB. The DSSLIB subroutine is timed on one and two processors where the single processor

run takes advantage of only fine-grain parallelism and the two processor run takes advantage of all levels of

parallelism.

6O

6o

_n 4o
e_
o 3O

2O

10

Original DSSLIB DSSLIB with
2 processors

IIDL is an interpreted data modeling language from Research Systems, Inc. It appears to a user to be nearly

identical in most ways to PV-WAVE from Visual Numerics, and the results reported for 1DL are virtually identical

to the results of similar experiments with PV-WAVE.

166

The neural network tested was part of a NASA project to classify cloud formations extracted from satellite data.

The large Landsat data set was first reduced to a set of feature vectors extracted during a preprocessing phase and
these feature vectors were used as input to the neural network. The neural network then classified the cloud

formations in the image according to the information found in the feature vectors. The graph below shows the

results obtained with a small data set. This data set is sufficiently small that it runs on a single CPU and so uses

only fine-grain parallelism. The graph shows wall clock run time, so smaller values indicating shorter run times
are better.

1200

.... 1000
o

800
v

o
E soo

,m

c 4oo

r,,, 200

Original DSSLIB

As one can clearly see from the graph above, the introduction of DSSLIB had a significant positive effect on the

performance of the program, even for modest-sized data sets. Based on these results, Logar and Corwin decided to

eliminate the data reduction in the preprocessing phase and send the raw satellite data directly to the neural

network. In its present form, the neural network is limited by the size of the main memory on the Sun workstation

rather than by the speed of the Sun CPU. The results below are for two Sun IPX workstations linked by an SBUS
FDDI card from Network Peripherals.

A

u

v

O
E

r-

iv

3600

3000

2600

2000

1600

1000

6OO

0

Original DSSLIB

DISORT is an application available used by NASA Goddard Space Flight Center to compute the thermal budget of
a two-dimensional multi-layer region of the Earth's atmosphere. Each individual horizontal layer is required to be

homogeneous, but different layers may have different characteristics. This program is dominated by eigenvalue
computations done with modified subroutines from EISPACK. It also uses a significant amount of CPU time on

LINPACK and various matrix algebra computations from the BLAS libraries. Because the EISPACK subroutines

had been modified, there is no safe way to replace them with LAPACK subroutines, which is what one would

usually do. However it is possible to insert a few BLAS calls into the eigenvalue subroutines and other places in

the program. We did this in a way that provided some speed improvement, but did not compromise the accuracy or
portability of the program. The results are shown in the following graph.

167

25000

"-'20000t_

v 16000
Q
E
'_ 10000
ee

ae 6O0O

Original DSSLIB

As one would expect from a program dominated by eigenvalue computation, parallelism provides significant

speedup, but the improvement is not a factor of two for two processors. Nevertheless, DSSLIB cut three hours

from a seven hour run using two processors. The customer is now able to make runs that would have been

prohibitively expensive before these changes.

SUMMARY

DSSLIB is a library built on a parallel processing system that presents to an application a serial programming

model. This serial programming model simplifies the development of a parallel application because it hides from

the programmer the difficult details of parallelization. It also allows DSSLIB to be incorporated into production or
commercial software because it is able to adapt to the variety of configurations and environments in which such
software is used.

BIBLIOGRAPHY

Anderson, E., Z. Bai, C. Bischof, J.W. Demmel, J.J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A.
McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide, Society of Industrial and Applied

Mathematics, Philadelphia, Pa., 1992.

Bernard G. et. al. Primitives for Distributed Computing in a Heterogeneous Local Area Network Environment.

IEEE Transactions on Software Eng., 15 (12), December 1989, pp 1567-1578.

Dongarra, J.J., C.B. Moler, J.l_ Bunch, G.W. Stewart. LINPACK User's Guide, Society of Indnstrial and Applied

Mathematics, Philadelphia, Pa., 1979.

Dongarra, J.J., J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subprograms, ACM

Transactions on Mathematical Software, 16 (1990), pp 1-17.
Dongarra, J.J., J. DuCroz, S. Hammarling, and 1LJ. Hanson. An Extended Set of FORTRAN Basic Linear Algebra

Subprograms, A CM Transactions on Mathematical Software, 14 (1988), pp 1-17.
Lawson, C.L., Hanson, R.J., Kincaid, D., and Krogh, F.T. Basic Linear Algebra Subprograms for FORTRAN

Usage, ACM Transactions on Mathematical Software, $ (1979), pp 308-323.

Stanmes, K., Tsay, S., Wiscombe, W., Jayaweera, K. Numerically Stable Algorithin for Discrete-Ordinate-Method

Radiative Transfer in Multiple Scattering and Emitting Layered Media. Applied Optics, 27 (1988), pp 2502-
2509.

Sun Microsystems, Inc. Network Programming Guide. Revision A, March 1990, pp 33-167.

168

HIGH-SPEEDDATASEARCH

JamesDriscoll
DepartmentofComputerScience

Universityof CentralFlorida
Orlando,Florida32816,USA

N94. 32441 -

/-

ABSTRACT

The high-speed data search system developed for KSC incorporates existing and emerging information
retrieval technology to help a user mteRigently and rapidly locate information found in large textual databases.
This technology includes: natural language input; statistical ranking of retrieved information; an artificial intel-

ligence concept called semantics, where "surface level" knowledge found in text is used to improve the ranking of
retrieved information; and relevance feedback, where user judgments about viewed information are used to
automatically modify the search for further information. Semantics and relevance feedback ,are features of the
system whichare not available commercially. The system further demonstrates a focus on paragraphs of information
to decide relevance; and it can be used (without modification) to intelligently search all kinds of document col-
lections, such as collections of legal documents, medical documents, news stories, patents, and so forth. The
purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic ira provcm ent, and relevance
feedback.

INTRODUCTION

Locating information using large amounts of natural language documents (text) is an important problem.
Examples at KSC are searching press releases and numerous other documents to quickly answer media questions,
accessing bulky manuals and schematics compactly stored on a CD via a laptop computer, and retrieving digital
images by means of their catalog descriptions.

The primary intent of our work has been to provide convenient access to information contained in the numerous

and large public information documents maintained by Public Affairs at NASA Kennedy Space Center (KSC).
The documents maintained by Public Affairs at NASA KSC consist of press releases, and other printed information
created at KSC, and other NASA offices using various wordprocessors. There are also documents from outside
contractors, such as Rockwell, which produces the "NASA National Space Transportation System Reference" more
often called the "shuttle manual." During a launch at KSC, about a dozen NASA employees access these printed
documents to answer media questions. The planned document storage for NASA KSC Public Affairs is around
300,1300 pages (approximately 900 megabytes of disk storage).

Current commercial text retrieval systems focus on the use of keywords to search for information. These

systems typically use a Boolean combination of keywords supplied by the user to retrieve documents. In general,
the retrieved documents are not ranked in any order of importance, so every retrieved documtm must be examined
by the user. This is a serious shortcoming when large collections of documents are searched.

The QA system is a high-speed data search system developed jointly by NASA KSC, the University of Central
Florida, and Florida High Technology and Industry Council. It is a statistically based text retrieval system which
ranks retrieved documents according to their statistical similarity to a user's request. Statistically based systems
provide many advantages over traditional Boolean retrieval methods, especially for users of such system s, mainly
because they allow natural language input. These systems have been a research success for over twenty years [9].
However, the transfer of this retrieval technique into large operational systems has been very slow because, until
recently, there was no evidence that statistical ranking could be done in real-time on large document collections
[4]. There are only three commercial systems in the United States which allow natural language input and perform
statistical ranking of retrieved information [2].

The QA System incorporates two other features which are not available in any commercial text retrieval
system, but have been shown to dramatically improve the statistical ranking of retrieved information. The first is
an artificial intelligence concept called semantics, where "surface level" knowledge found in text is used to improve
the ranking of retrieved information. The second is relevance feedback, where user judgments concerning viewed
information are used to automatically modify the search for more information.

P_ PAGE BLAJ_K NOT FILMED 171

The QA System is very close to being a commercial product. It has been used to participate in a (fh-st) Text
Retrieval Conference (TREC-1) managed by the National Institute of Standards and Technology (NIST). Our

participation in TREC-1 was funded by the Defense Advanced Research Projects Agency (DARPA). Participation
m TREC-1 has enabled the QA System to be tested in an environment other than answering questions, and applied
to databases other than aerospace text collections [3].

Conventionalinformation retrieval using statistical ranking is demonstrated fast in this paper. Demonstrations
of improved statistical ranking due to the use of semantics within the QA System are then presented for comparison.
This is followed by a demonstration of relevancy feedback within the QA System. In all demonstrations, the focus
on paragraphs of information for retrieval will be evident. Finally, the issues of platforms and high-speed for the
QA System are d_ in the Conclusion.

CONVENTIONAL INFORMATION RETRIEVAL

Finding relevant text and ranking the retrieved documents is not new and there are commercial systems which
already perform this activity; we mention here an example of ranked, relevant text retrieval. For a demonstration
to NASA KSC, the 1000 page shuttle manual was used by considering each p:a_ragraph of the manual as a document:
This resulted in a collection of 5143 documents. A commercial hypertext IR system called SPIRIT [11] was useo
to automatically index the collection and provide natural language access. SPIRIT is a mainframe system. Running
on an IBM 4381, SPIRIT required three and one-half hours of clock time to index the collection of 5143 documents.

Figure 1 is a screen generated by SPIRIT for asking the natural language query

What are the dimensions of the cargo area in the shuttle?

Figure 2 is a screen generated by SPIRIT revealing a ranked list of 245 relevant documents with CLASS 1 being
the most relevant. Figure 3 is a screen generated by SPIRIT revealing the first document in CLASS 6, which
contains the answer to the query. This paragraph was found by reading the single paragraph in CLASS 1 fkst, then
the single paragraph in CLASS 2, and so on until the answer was read in the tenth paragraph.

NATURAL LANGUAGE QUERY ON THE SHUTTLE BASE

<1>: What are the dimensions of the cargo area in the shuttle?

EMFIN WORDS: What, are, the, of, the, in, the.

KEYWORDS: dimensions, cargo, area, shuttle.

Figure 1. Natural Language Query to the SPIRIT System.

CLASSES NB DOCS KEYWORDS
1 1 dimensions, cargo, shuttle.
2 1 cargo, area, shuttle.
3 1 dimensions, area.
4 2 dimensions, shuttle.
5 4 cargo, area.
6 30 cargo, shuttle.
7 12 area, shuttle.
8 7 dimensions.
9 40 cargo.

10 147 area.
BOTrOM OF LIST

Figure 2. Document Classes Generated by the SPIRIT System.

172

DOC 0005 BASE :doc 0005NCP:0/CPI:I/NBI:I+18 1K/1K
IDENTIFIER.:doc 0005
TEXT...... :

Thedmttle will transportcargo into nearEarthorbit100 to 217 nauticalmiles (115 - 250
statutemiles) above the Earth. This cargo (called payload) is carried in a bay 15 feet in
diameterand60 feet long.
BOTI'OMOF DOCUMENT

INFORMATIONALPAGE 1/1
WHAT DO YOU WANTTO DISPLAY?
> OR RETURN,<,>>,<<,DOC,END,DDQ,(?):

Figure 3. Document Display by the SPIRIT System.

Note that performance in this Question/Answer environment is measured by counting how many documents
were examined to f'mdthe document containing the answer. This is not the usualway of measuring theperformance
of IR systems, but it is very appropriate for a Question/Answer environment.

The underlying principles and algorithms of automated 1R systems like SPIRIT are well-known. Terms used
as document identifiers are keywords modified by various techniques such as stop lists (removal of useless or empty
words), stemming, synonyms, and query reformulation. Here, we present basic concepts associated with the cal-
culation of weighting factors.

The calculation of the weighting factor (w) for a term in a document is a combination of term frequency ((t),
document frequency (dO, and inverse document frequency (/dJ). The basic term definitions are as foUows:

t_ - number of occurrences of term T_in document D,

d_ = numberofdocumentsinacollectionwhichcontainT_

id)_- I ,whereN - totalnumberofdocuments

When anIRsystemisusedtoqueryacollectionofdocumentswithtterms,thesystemcomputesa vectorQ
equal to (%1, %2, %,) as the weights for each term in the query. The retrieval of a document with vector D_

equal to (diz,di2,..., d,) representing the weights of each term in the document is based on the value of a similarity
measure between the query vector and the document vector. A common similarity function which normalizes the
the similarity coefficient in case of different document sizes is the following:

sim ,D,) . Z:. .

It is importantto note that thecalculationof a similarity coefficient for eachdocumentand the rankingof the
documents relevant to a query is rather timc consuming. This is due to the summations that occur in the abovc
formula and the fact that every document that has a term in common with a given query must be considered. The
main problem with text retrieval using statistical ranking has been the time required to produce the document
ranking given a query. Consequently, query response time has been typically slow.

SEMANTIC APPROACH

Although the basic statistical ranking approach (as demonstrated by SPIRIT) has shown some success in
regard to natural language queries, it ignores some valuable information. We now know that these systems can be
further improved by imposing a semantic data model upon the "surface level" knowledge found in text.

Semantic Modelin_
v

Semantic modeling was an object of considerable database research in the late 1970's and early 1980's [1].
Essentially, the semantic modeling approach identified concepts useful in talking informally about the real world.
These concepts included the two notions of entities (objects in the real world) and relationships among entities
(actions in the real world). Both entities and relationships have properties.

173

The properties of entities are often called attributes. There are basic or surface level attributes for entities in
the real world. Examples of surface level entity attributes are Size, Color, and Position. These properties are
prevalent in natural language. For example, consider the phrase "large, black book on the table," which indicates
the Size, Color, and Position of a book.

Inlinguisticresearch,thebasicpropertiesofrelationshipsatediscussedand calledthematicroles.Thematic
rolesarealsoreferredtointheliteratureasparticipantroles,semanticroles,and caseroles.Examples ofthematic
rolesareBeneficiaryand Time. Thematic rolesareprevalentinnaturallanguage,theyrevealhow sentencephrases
and clausesaresemanticallyrelatedtotheverbsina sentence.For example,,considerthephrase"purchasedfor
Mary on Wednesday" which indicateswho benefitedfrom a purchase(Beneficiary)and when a purchaseoccurred
(Time).

Consider the following query:

How long does the payload crew go through training before a launch?

The basic statistical approach dismisses the following words in the query as empty: "how", "does", "the", "through",
"before", and "a". Some of these words contain valuable semantic information. The following list indicates some
of the thematic roles triggered by a few of the words in the above query:

long _ Duration, Time
through ,,, I.acation/Space, Motion With Reference To Direction, Time

before ,_ Location/Space, Time

As another example, consider the query in Figure 1:

What are the dimensions of the cargo area Inthe shuttle?

The kcyword "dimensions" indicates the attribute General Dimensions and the kcyword "area" indicates both the
thematic role Location/Space and the attribute General Dimensions. It would be reasonable to expect that the
document that answers this query would have words in it that fall in the category of General Dimensions.

The primary goal of_e QA System has been to detect thematic and attribute information contained in natural
language queries and documents. When the information is present, the system uses it to help find the most relevant
paragraph to a query. In order to use this additional information, the basic underlying concept of text relevance
was modified. The major modifications include the addition of a lexicon with thematic and attribute information,
and a modified computation of the similarity measure given in (1).

The Semantic Lexicon

The QA System uses a thesaurus as a source of semantic categories (thematic and attribute information). For
example, Roget's Thesaurus contains a hierarchy of word classes to relate word senses [5]. For our research, we
have selected several classes from this hierarchy to be used for semantic categories. We have defined thirty-sLx
semantic categories as shown in Figure 4.

In order to explain the assignment of semantic categories to a given term using Roger's Thesaurus, consider
the brief index quotation for the term "vapor":

vapor
n.

V.

fog 4O4.2
fume 401
illusion 519.1

spirit 4.3
steam 328.10
thingimagined 535.3
be bombastic 601.6
bluster 911.3
boast 910.6
exhale 310.23
talk nonsense 547.5

174

Thematic Role Catesories

Accompaniment
Amount

Beneficiary
Cause

Condition

Comparison

Conveyance
Dearee

Destinstior_
Duration

Goal

Instrument

L£_tionfSpace
Manner

Means

PurDog¢

Ran2e

Result

Source

Time

Attribute Categories
Color

External and Internal Dimensions

Form

Gender

General Dimensions

Linear Dimensions

Motion Conjoined with Force

Motion in Oeneml

Motion with Reference to Direction
Order

Physical _operties
Position

State

Temocmture
Use

Variation

Figure 4. Thirty-Six Semantic Categories.

The eleven different meanings of the term "vapor" are given in terms of a numerical category. We have developed
a mapping of the numerical categories in Roget's Thesaurus to the thematic role and attribute categories given in
Figure 4. In this example, "fog" and "fume" correspond to the attribute State; "steam" maps to the attribute
Temperature; and "exhale" is a trigger for the attribute Motion with Reference to Direction. The remaining seven
meanings associated with "vapor" do not trigger any thematic roles or attributes. Since there are eleven meanings
associated with "vapor," we indicate in the lexicon a probability of 1/11 each time a category is triggered. Hence,
a probability of 2/11 is assigned to State, 1/11 to Temperature, and 1/11 to Motion with Reference to Direction.
This technique of calculating probabilities is being used as a simple alternative to a corpus analysis. It should be
pointed out that we are stiU experimenting with other ways of calculating probabilities.

Extended Computation of the Similarity Measure

The probabilistic details of a semantic lexicon and the computation of semantic weights can be found in [13].
A detailed explanation of the manner in which the QA System combines semantic weights and keyword weights
can be found in [12].

EssentiaUy we treat semantic categories like indexing terms, and the probabilities introduced by a semantic
lexicon mean that the frequency of a category in a document becomes an ex.t_cte¢ frequency and the presence of
a category in a document becomes a _ for the category being present. This means that the document
frequency for a category becomes an ext_ect_ document frequency, and this enables an inverse document frequency
to be calculated for a category.

So the computation of a similarity coefficient as shown in (1) can be used, but now the summations in the
formulas include semantic categories in the documents as well as terms in the documents. In other words,

sire (,Q,Di) . _'_"' w¢l "dil + r 2_*.',., w,j . dit

where s .. 36 is the number of semantic categories, and Tand B are scaling factors for adjusting the blend.

175

SEMANTIC IMPROVEMENT

The QA System has demonstrated a noticeable semantic improvement using the similarity function in (2).
Consider the same document collection and natural language query shown in the commercial system example of
Figures 1, 2, and 3. Using the commercial system SPIRIT, ten paragraphs were read in order to find the answer
to the following query:

What are the dimensions of the cargo area in the shuttle?

Considering the OA System, Figure 5 is a screen generated for asking this same natural language query. Figure 6
is a screen generated by the QA System graphically showing to the user the importance of the keywords found in
the query. Figure 7 is a screen generated by the OA System graphically showing to the user the importance of

semantic information found in the query. Notice the "importance" of the semantic catego_ General Dimensio .ns
in the screen shown in Figure 7. This long bar means that the semantic category General Dimensions _s present m
the query and there are very few documents retrieved (using keywords) having this type of semantic content. Hence,
the importance of the category.

Finally, Figure 8 is a screen generated by the QA System revealing the second paragraph found by proceeding
through the ranked list of documents retrieved by the QA System for this query. The semantic information found
in the query and displayed in Figure 7 is the reason the QA System ranked the answering paragraph second instead
of tenth as did the SPIRIT system. Notice that the answering document in Figure 8 has several words in it which
trigger the semantic category General Dimensions. We have lots of data like this and several technical papers
which reveal a significant performance improvement due to semantic modeling in the NASA KSC Question/Answer
environment.

For another example of semantic improvement, consider the shuttle manual and the query:

How fast does the orbiter travd on orbit?

This query is interesting for two reasons. One is that the words "orbiter" and "orbit" are rather frequent words in
the shuttle manual so lots of paragraphs are retrieved. The other reason is that the word "fast" is used for reference
to velocity or speed.

Figure 9 shows the number of paragraphs one must read to f'md a particular answering paragraph to this query
for both a small and large collection of documents. In the small collection, the word "fast" does not occur at all
and for the large collection, the word "fast" never occurs in an answering paragraph. Consequently, keyword only
statistical ranking is never very good. But by using semantics, the word fast causes a similarity to paragraphs using
the words velocity or speed. Consequently, semantics improves the statisti_l ranking of an answering paragraph.
Different blends of keywords and semantics are shown using the similarity/unction in (2).

RELEVANCE FEEDBACK

It has been pointed out that conventional IR systems have a limited recall [6]; only a few relevant documents
are retrieved in response to user queries if the search process is based solely on the initial query. This indicates a
need to modify (or reformulate) the initial query in order to improve performance. It is customary to search the
relevant documents iteratively as a sequence of partial search operations. The results of earlier searches can be
used as feedback information to improve the results of later searches. One possible way to do this is to ask the
user to make a relevance decision on a certain number of retrieved documents. Then this relevance information
can be used to construct an improved query formulation and recalculate the similarities between documents and
query in order to re-rank them. This process is known as relevance feedback [7,8,9,10] and it has been shown
experimentally to improve the performance of the retrieval system.

The basic assumption behind relevance feedback is that, for a given query, documents relevant to it should
resemble each other in a sense that they have reasonably similar keyword vectors. This implies that if a retrieved
document is identified as relevant, then the initial query can be modified to increase its similarity to such a relevant
document. As a result of this reformulation, it is expected that more of the relevant documents and fewer of the
nonrelevant documents will be extracted.

The automatic construction of an improved query is actually straightforward, but it does increase the com-
plexity of the user interface and the use of the retrieval system, and it can slow down query response time. Essentially,
the terms and semantic categories for documents viewed as relevant to a query can be used to modify the weights
of terms and semantic categories in the original query. A modification can also be made using documents viewed
as not relevant to a query. Experimental results show a very promising improvement for relevance feedback within

the QA System.

176

QA SYSTEM Prototype 4.0 Query Sy_m STS_X

I IWhat are the dimer_ions of the cargo aRa in the shuttle?

Suggestion:
1. Dmcdbe w_ you want to know.

Foe example - Vel_.'!y or speed of the shuttle oa odoR.
Z _ wo_.you wotua ex _p__.m see.

rot example - lne vab is 525 feet tall.

Figure 5. Natural Language Query to the QA System.

QASYSTEMPrototype4.0 KeywocdSummary SI'SFIX

I KEY IMPORTANCE USE I

shLlttl Illllllmlll NO
a_ Imnggmamnmmei|m

IIIIIIIIInlllnlllnlll NO
BimBB_iaHNNiiHImBHBBHOBBMBBBBBBli NO

Pre_ <FI> for help
Press<ENTER> to acceptchangm H Incren_nt II

<ESC> togo back

Figure6.Keyword Summary bytheQA System.

QA SYSTEM Prototype 4.0

ROLE

MCo_yeyance
ion WRT Direct.

Ord_
Time
PositioG
Locatl_
F_a't/lnt Dimermiom
Linear Dimensions
Coodition
Duration

G_Pt_ Dimermions

Semandc Summa_ STSHX

IMPORTANCE USE

a NO
imBB _O

illli NO

lillliil NO

nllllilnl NO

lnllnllla NO

Iommooomoooonlm NO

omooolemommMmmmo NO

oBimooomBoooBmoooolmeaB NO

moomloolooelloooeoooooooomooo NO

Iolloolmooomoooooooooioomloomloollooo NO

iaooloomlloooolaooooloooomliBmoooolooomool NO

oooloooBaomBoolooBeommooooemBiooooloomoolooool NO

Pre_ <FI> forhelp

Press<ENTER> toacceptchanges
Press<ESC> togoback

Figure 7. Semantic Summary by the QA System.

Docummt: 0005 Page: I RH.L_ANT DOCUMENT #2

_arm.,rus--rio (_ledpay[oa__-carriedina bay] _00*'I°-217L_--'-c_I---mil_^(llS" to 250Italulte miles) abovetheII

IEnd of _,-x_!

Page Up, Page Down, Old Page Up, C.rtl page Down, Del, E_¢

Figure 8. Document Display by the QA System.

177

T -B - 1.10206 T -B - 8.0
Blend of Blend of

Ke_nlOrds Ke ords Keywords..ywcq
y and Semantics and Semantics

First 26 pages of
the shuttle manual 19 4 2

(160 documents)

The entire
shuttle manual 145 126 14
(5143 documents)

Figure 9. Number of paragraphs read to find a particular answering paragraph for:
How fast does the orbiter travel on orbit?

Figure 10 provides an example using the first 26 pages of the shuttle manual and the query:

How fast does the orbiter travel on orbit?

Recall from Figure 9 that 19 paragraphs were read to fred an answering paragraph. The document identifiers for
these 19 paragraphs are shown in the left column of Figure 11 along with the notes that Document #13 and Document
#16 were considered relevant to the original query, and Document #14 answered the query. All the other viewed
documents were not relevant to the query.

If relevance feedback is selected within the QA System and the system is told to display two documents and
then reformulate the query, then the documents shown in the right column are viewed. Each document viewed
must be tagged as relevant or not-relevant. Document #14 shows up earlier in the statistical ranking primarily
because Document #13 was tagged as relevant to the original query.

It is interesting to note that if one tags Document #14 (which answers the query) as relevant, then Document
#87 is retrieved and it almost exactly answers the query. Document #87 would never be retrieved using just
keywords without feedback because it has no keywords in common with the original query. Documents 13, 14,
16, 69 and 87 are shown in Figure 11. The keywords that these documents have in common with the original query
are underlined. Clearly, Document 69 is not relevant to the original query.

CONCLUSION: PLATFORMS AND THE ISSUE OF HIGH SPEED

Originally, the QA System was restricted to an IBM compatible PC platform running under the DOS operating
system and without the use of any other licensed commercial software such as a DOS extender. The QA System
is implemented in Borland C and one version uses B+ tree structures for the inverted fries. We felt the speed of
the system and its storage overhead was not efficient so a hashing scheme was added to eliminate the use of B+
trees and provide codes for keywords. We expected this second version to have improved indexing time, storage,
and retrieval speed.

Experiments revealed that indexing time of the QA System did not improve much. We were not surprised
because the QA System is restricted under the PC DOS platform. This platform has a serious memory addressing
restriction which results in memory page swapping and this seriously affects the speed of processing, especially
during creation of the hashing table and index structures. The improvement in storage, however, was very
impressive. It is very much matched to our objective which is to make our storage ratio of indexes to text, around
0.5. This is comparable to the ratio of very efficient, retrieval systems using statistical ranking.

Addressing the high speed issue, we now have the Borland C compiler for OS/2 so we expect to have a very
high speed QA System running under OS/2 very soon. We are also in the process of converting the QA System
to run in the UNIX environment. Figure 12 reveals achieved and projected run-time performances of the QA
System on different operating system platforms. The DOS, B+ tree version of the system is shown in the upper
left comer. Below (diagonally) are shown the OS/2, UNIX B+ tree and hashing versions of the QA System for
different amounts of RAM. Indexing and typical query response time.s are shown for both a small (2.4 megabyte)
and a large (1.2 gigabyte) document collection. Data for this chart was obtained in part from experiments performed
for TREC-1 [3].

178

160 Documents

Answer can be found in Document 14, 87

Keywcx-ding

I 69
2 13 Relevant
3 82
4 15
5 123
6 106
7 85
8 124
9 21

10 23
11 24
12 83
13 31
14 26
15 16 Relevant
16 84
17 11
18 12
19 14 Answer

aever get 87 (no query wot'ds in 87)

Relevance Feedback (view 2)
m

1 69
2 13 Yes

-3 82
4 107

-5 85
6 124

m

7 16 Yes
8 14 Yes, Answer

- 9 87 Yes, Answer

Figure 10. Relevance Feedback Improvement for the Query:
How fast does the orbiter travel on orbit?

Document 13

The two orbital maneuvering system engines are used to place the orbiter on _ for major
velocity maneuvers on orbit and to slow the orbiter for re-entry, called the deorbit maneuver.
Normally, two _ maneuvering system engine thrusting sequences are used to place the orbiter
on orbit, and only one thrusting sequence is used for de,orbit.

Document 14

The _ velocity on orbit is approximately 25,405 feet per second. The de.orbit maneuver
decreases this velocity approximately 300 feet per second for re-entry.

Document 16

For de,orbit, the orbiter is rotated tailfirst in the direction of the velocity by the primary reaction
control system engines. Then the orbital maneuvering system engines are used to decrease the

velocity.

Document 69

- Atlantis (OV- 104), after a two-masted ketch operated for the Woods Hole Oceanographic Institute
from 1930-1966, which travel_____more than halfa million miles in ocean research.

Document 87

Entry interface is considered to occur at 400,000 feet altitude approximately 4,400 nautical miles

(5,063 statute miles) from the landing site and at approximately 25,000 feet per second velocity, i

Figure 11. Documents 13, 14, 16, 69, and 87. Keywords in
common with the original query are underlined.

179

J
I OOS_T,ml

8MRAM 2.4M 1.2G

I blCR .5ll_ _. 4h 1004
| quwy_). 3 m 100 h

J
32 MRAM

rndec_ MAh->
qmy -,,--,_>

__T_
i 16M P,AM 2.4M 1.20

i kdm141_ o 0m 160h

[qumymmmm> 110 O.3h

2AM 1.20
? 75h
? ?

kldiKO4MA1,,_ 2"m Mh

quer/------=> 2S| 8m

J
08_ UNO((B+T_

84 kl RkM

Indls 64M_ _,

query,-,-,,--)

I l Indlm"" _"1_10h
L..,,,._ query_,,,,,,=,,,_ ? ?

¢

_'m_l i _'_u_ ° , ,0h
le 20m I,,_qu_/-,,,,,,,,-_> _s 20e

LEGEND
h heum
m mln_

m

Figure 12. Run-Time Performance of the QA System.

References

[1] C. Date, An Introduction to Database Systems, VoL I, Addison Wesley, 1990.

[2] Delphi Consulting Group, 1991, Text Retrieval Systems: A Market and Technology Assezsment, 266
Beacon Street, Boston, MA, 1991.

[3] J. Ddsc_u_ J. Lau_ensch_ager and M. Zha__ _T_e QA _ystem__ Proc. _f the First Text Retrieval C_nference
(TREC-I), NIST Special Publication 500-207 (D. IC Harman, editor), March, 1993.

[4] D. Harman and G. Candela, "Retrieving Records from a Gigabyte of Text on a Minicomputer Using
Statistical Ranking," JASIS, Vol. 41, pp. 581-589. 1990.

[5] Roget's International Thesaurus, Harper & Row, New York, Fourth Edition, 1977.

[6] G. Salton, Automatic Information Organization and Retrieval, McGraw-Hill, 1968.

[7] G. Salton, The Smart Retrieval System--Experiments in Automatic Document Processing, 1971.

[8] G. Salton, E. A. Fox, and E. Voorbees, "Advanced Feedback Methods in Information Retrieval,"JASIS,
Vol. 36, pp. 200-210, 1985.

[9] G. Salton, Automatic Text Processing, Addison-Wesley, Reading, MA, 1989.

[10] G. Salton and C. Buckiey, "Improving Retrieval Performance by Relevance Feedback," JAMS, VoL 41,
pp. 288-297, 1990.

[11] SPIRIT Version 2.1 User's Manual, SYSTEX Company, Ferme Du Moulon, 91190 Gff Sur Yvette,
France (French Edition), May 1986.

[12] D. Voss and J. Driscoll, "Text Retrieval Using a Comprehensive Semantic Lexicon," Proceedings of
ISMM First International Conference on Information and Knowledge Management (CIKM.92), Balti-
more, MD, November 1992.

[13] E. Wendlandt and J. DriscoU, "Incorporating a Semantic Analysis into a Document Retrieval Strategy,"
Proceedings of the Fourteenth Annual International ACM/SIGIR Conference on Research and Devel-
opment in Information Retrieval, Chicago, IL, pp. 270-279, October 1991.

180

