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ABSTRACT

Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety

of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands

are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to

teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical
parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An

improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to

transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric

technology, NASA is collaborating with the Limbs of Love Foundation, The Institute for Rehabilitation and Research,

and Rice University in developing improved myoelectric control of multifinger hands and prostheses. In this paper, we
will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with

myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

INTRODUCTION

Robotics is one of the critical technologies necessary for future space explorations. Future space robots will

require highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible

is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. The required robotic

hand teleoperation interface must be intuitive (requiring less operator training) and nonfatiguing (enabling longer shifts).

A current method of teleoperation uses an exoskeleton glove controller to detect finger motions. These glove controllers

are worn by an operator to control robotic hands located at a remote site. Glove controllers are usually bulky and heavy

and sometimes interfere with hand movements. Consequently, NASA Johnson Space Center (NASA/JSC) is investigat-
ing the feasibility of using myoelectric signals to control dexterous robotic hands.

While NASA is advancing dexterous robotic hand technology, the Limbs of Love Foundation, a foundation

dedicated to providing prostheses to handicapped children, is actively searching for ways to improve the state-of-the-

art in prostheses. In an effort to transfer advanced space technology to practical ground-based applications, NASA has

teamed up with Limbs of Love and a group of medical and prosthetics specialists, prosthetics users, insurance industry

representatives, and university researchers to identify research objectives in prosthetic hands [32]. As part of this effort,

the Automation and Robotics Division (A&RD) at NASAJJSC has been actively working with Rice University to

improve dexterous hand design and to develop a method for myoelectric control of multifinger hands.

This paper describes the collaborative research between NASA/JSC and Rice University in developing

improved prostheses. First, the paper reviews previous work in dexterous robotic hands, prosthetics, and myoelectric

controls, then it outlines the goals and objectives as well as the approaches we are taking in this joint effort. This paper
also reports progress we have made in the areas of dexterous robotic hand development and myoelectric control. Our

efforts in these areas have forced us to consider several difficult design issues which will be discussed. Finally, the paper
concludes by stating what our future work and expected accomplishments will be.
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PREVIOUS WORK

Over the past three decades, the myoelectric prostheses community reached a rough consensus that there are

five types of grasp important in a person' s daily activities: (1) three-jaw chuck or pincher grasp used to hold small objects;

(2) lateral grasp, most often called a key grasp because it is used to hold a key while unlocking a door; (3) hook grasp,

used to carry items such as books or a briefcase; (4) spherical grasp, where the thumb and fingers are wrapped around

a spherical object; and (5) cylindrical grasp, where the thumb and fingers are wrapped around a cylindrical object [28]

[40] [41 ]. Some consider the flattened hand (with thumb rotated completely out of opposition of the fingers) a sixth grasp,

as it is essential in supporting flat objects such as trays.

Current commercial prostheses have a two-jaw pincher arrangement of fingers and thumb which gives some

chuck and cylindrical grasping capability. More advanced prostheses, such as those described in references [12], [13],

[27], and [34], have incorporated chuck and key grasps with spherical and cylindrical grasp options being provided by

passive finger compliance. Weight, size, cost, and reliability of these advanced prostheses have been major reasons why

they never became commercial products; however, recent advances in miniaturizing hardware and lowering power

consumption and costs suggest that these problems may now be secondary to the control/user interface problem. In fact,

the longest (over 15 years) multifunction prosthetic hand project, the Swedish hand, ended with this conclusion [2].

In parallel with the prosthetics research effort, the robotics community has been developing the theory of

grasping and manipulation by multi fingered hands over the past decades. (See, for example, the books by Mason and

Salisbury [36] and Cutkosky [6]). Some multifingered robotic hands have been constructed. Hess and Li [16] provided

an overview of several existing dexterous robotic hands for space applications, with the most dexterous of them being
the Utab/MIT Dexterous Hand (UMDH) [23] and the Stanford/JPL Hand [36]. Based on their evaluations, Hess and Li

have concluded that a six degree-of-freedom (DOF) robotic hand has sufficient articulation for grasping various shapes

and providing some manipulation capability. Unfortunately, these early hands are too bulky and heavy to be feasible as

a prosthetic device.

Although these complex robotic hands may not be feasible for prosthetics applications, they do serve as valuable

tools to evaluate various grasping and manipulation strategies. These strategies usually involve complex algorithms and

require sophisticated sensors now unavailable. One promising approach has been suggested by Speeter [39]. He uses a
small set of basic grasping primitives, each of which is simple to program. This approach seems well-suited for

application to teleoperation using probably a small set of myoelectric signals. Since each myoelectric input signal
requires amplification, filtering, and processing, fewer inputs mean a less complex and less expensive user interface.

RESEARCH OBJECTIVES

Our review of previous work in dexterous robotic hand and myoelectric control has shown that to develop an

improved prosthetic hand, progress must be made in (1) increasing the articulation of prostheses beyond just a single

DOF, and (2) improving myoelectric sensing capability to recognize different muscle patterns and map them into various

grasp primitives. To achieve progress in these two areas, we must accomplish the following set of objectives:

• Design a robotic hand with human compatible functions, weight, and size.

• Develop electronics and algorithms for primitive-based hand control.

• Develop a myoelectric pattern recognition technique for muitifinger hand control.

The first objective will make a dexterous robotic hand feasible for limb-deficient persons. This may mean increasing the

number of active fingers and reducing weight and power consum_ion. The second objective is aimed at providing some
local automation so that the user can interface with the hand using primitive-level commands (such as chuck grasp, key

grasp, etc.). To differentiate one primitive command from another, we must be able to recognize the signature, or

myoelectric pattern, associated with that particular primitive. Previous attempts to develop more capable myoelectric

prosthetic hands have fallen victim to an inadequate myoelectric user interface. This is why the third objective is so
essential.
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By achieving these three objectives, both NASA and the prosthetics community will benefit from the results

of this effort. In space, electrical power is a precious commodity and weight is a major concern; by making the robotic
hands more compact and energy efficient, we are also making them more suitable for space applications. The electronics

and algorithms for primitive-based control will fit in well with a layered architecture that also supports artificial

intelligence technologies. If the third objective is also achieved, it will represent a breakthrough in teleoperation
technology since cumbersome exoskeleton devices will not be required to operate dexterous robotic hands.

APPROACHES

To achieve the three objectives, we are pursuing two parallel paths: JSC is focusing on developing advanced

dexterous robotic hands, and Rice University is concentrating on developing improved myoelectric signal processing
technology. In addition, we also solicit feedback from robotic hand experts, prosthetics users, and specialists to

continually improve our design. These two technology development paths will eventually merge in a test bed
environment where we can perform integrated evaluation of new prosthetics mechanisms and control.

DEXTEROUS ROBOTIC HANDS

We began dexterous robotic hand development by procuring and evaluating commercially available, state-of-

the-art dexterous robotic hands while developing in-house expertise. By understanding the features of existing hands,

we would not have to reinvent the technologies already developed by others. The results of our evaluation helped us to
understand the trade-off between function (dexterity, sensing) and form (size, weight).

To establish a reference point for our performance evaluation, we first examined conventional parallel jaw

grippers. Conventional parallel grippers are typically designed to execute a pinch grip. This type of grip depends heavily

on contact friction rather than contact geometry for stability. Most grippers today have only a single DOF; therefore, they

cannot perform manipulation or securely grasp objects of various shapes. Prosthetic hands today function essentially like
parallel jaw grippers, except that prosthetic hands generally have a more human-like external appearance.

For robotic applications, we took a minimalist approach in designing new hands. Instead of designing a highly
complex robotic hand right away, we increased the complexity slowly, hoping to achieve the desired functions at a

minimal cost. Our first attempt at robotic hand design resulted in the construction of the CTSD I Hand. (CTSD stands

for Crew and Thermal Systems Division, the NASA/JSC organization responsible for developing the hand.)

The CTSD I Hand, shown in figure 1, has three fingers driven by a single DC motor. The three fingers are spaced
120 degrees apart, and they open and close simultaneously. Each finger contains three sections connected by joints. The

sections are coupled by direct linkages; therefore, the push-pull motion created by the rod inside the proximal finger
section will cause the other sections to move also. As the fingers begin to close, the distal finger section will bend around

the object and trap the object within the grip of the hand for a secure grasp. The motions of the three fingers are also
coupled by a cable-pulley system, so when any one finger is forced to stop, the other two will continue to close until all

three fingers have stopped. Although this hand is a step beyond the simple parallel jaw gripper, it still has some

drawbacks. The hand does not have enough independently controlled, articulated joints to allow alternate grasp
arrangements, and it lacks the human look that is highly desired in a prosthetic hand.
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Figure 1. CTSD I Hand.

CTSD II Hand

To improve the dexterity of the CTSD I Hand, we redesigned the fingers so they are modularized, each capable

of moving independently from other fingers. The redesigned hand, named the CTSD II Hand, also has three fingers.
However, there are several important differences. The fingers of the CTSD II Hand, shown in figure 2, are arranged in

a two-opposing-one configuration to provide parallel grasping surfaces. This finger configuration is able to adapt to

different shapes of objects better than the CTSD I Hand configuration. The modular finger design also allows additional

fingers to be added if necessary. Each finger is driven by a single DC motor contained within the finger module. We also
introduced tactile sensors and strain gauges on each finger to provide sensory feedback [ 16]. Silicon pads cover the tactile

sensors for protection and provide a compliant, friction surface for a more secure grasp. The maximum amount of force

each finger can exert is controlled by current-limiting circuitry in the control electronics. The CTSD II Hand contains

many functional improvements over the CTSD I Hand. However, for prosthetics applications, the CTSD II Hand lacks

adequate dexterity and a pleasing appearance.

Figure 2. CTSD II Hand.
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Utah/MIT Dexterous Hanoi

Our search for a robotic hand with human-like dexterity and appearance led us to evaluate the Utah/MIT

Dexterous Hand (UMDH) [24]. The UMDH, shown in figure 3, is the most dexterous hand in the spectrum of hands

available for our evaluation. It has 16 DOF arranged in an anthropomorphic configuration of three fingers and a thumb.

The fingers and the thumb each have 4 DOF. Thirty-two pneumatic actuators operating at pressures up to 80 psi provide

power to the hand. Tendons are used to transmit power from these pneumatic actuators to the joints through a system

of pulleys and hnkages called a "remotizer." Each joint is controlled by a pair of antagonistic tendons. Located inside

each joint is a linear Hall Effect sensor that measures the joint angles. Hall Effect sensors are also located in the wrist

to monitor the tendon tensions. A control box containing analog feedback control circuitry provides manual control of

each joint with an interface for computer control that can be used in lieu of manual control [ 16].

Figure 3. Utah/MIT Dexterous Hand.

It is obvious that the UMDH is not suitable for space robotics or for prosthetics applications. The pneumatic
power system requires an air compressor too large to be portable, and the overall dimension of the hand system is too

large to be mounted on a robot or a human user. However, the UMDH is a valuable test bed facility for us to evaluate

and develop various control algorithms and grasp strategies for space and prosthetics applications. Later in this paper,
we describe how the UMDH test bed is being used for prostheses development.

We also evaluated the Stanford/JPL Hand designed by Dr. J. Kenneth Salisbury of Massachusetts Institute of

Technology (MIT). The hand has 9 DOF in a nonanthropomorphic finger arrangement and a large envelope of excursion.

The hand has three fingers, each with three joints. The joints are driven by a set of steel cables that transmit mechanical

power from 12 remotely located DC motors equipped with position encoders. Located behind the proximal joint of each

finger are four strain gauges that measure the cable tensions. The tension signals may be translated into joint torque

signals which are used in servo control. The fingertips are made of a highly compliant elastomer that provides the friction

contact necessary for a secure grasp. Figure 4 shows the Stanford/JPL Hand and its remote motor package.
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Figure 4. Stanford/JPL Hand.

Compared to the UMDH, the Stanford/JPL Hand is more compact, and its electrical power system is more

compatible with space and prosthetics applications. While the size and weight of the Stanford/JPL Hand are acceptable

for space robots, they are not acceptable for a prosthetic hand. Also, the Stanford/JPL Hand is not as anthropomorphic
and visually pleasing as the UMDH.

Direct Link Prehensor

Our initial evaluation of the UMDH and the Stanford/JPL Hand showed us that a highly complex robotic hand

will most likely require a large actuator package. This is unacceptable for both space and prosthetics applications;
however, a smaller actuator package usually means less dexterity. Therefore, a compromise must be achieved between

dexterity and packaging. Our search for an optimal solution that takes both packaging and dexterity into account brought

us to the Direct Link Prehensor design.

The Direct Link Prehensor, as shown in figure 5, was originally developed by NASA Ames Research Center

and Stanford University to function as a space suit end effector that fits over the hand like a glove. The prehensor has

a total of 6 DOF in an anthropomorphic configuration. It has two fingers and a thumb, with the thumb opposing the two

fingers at a fixed angle to provide grasping capability as well as some manipulation capability. The mechanical fingers

are directly coupled to their human counterparts through a mechanical linkage system.

Figure 5. Direct Link Prehensor.
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The prehensor has been flown on the NASA KC-135 aircraft to evaluate grasping in a weightless environment using a
mechanical hand [25]. This evaluation showed the prehensor's finger arrangement to be a good compromise between

packaging and dexterity. A robotic implementation of the prehensor would require only six motors, which is substantially

less than the UMDH and Stanford/JPL Hand. Even with only 6 DOF, the prehensor is capable of grasping objects of

various sizes and shapes. It is capable of chuck grasps, pinch grasps, power grasps, hook grasps, and key grasps. Although
the thumb does not have abduction/adduction movement, it is mounted at a 45-degree angle to provide a motion with

a horizontal component. Despite lacking some important movements, we were able to twist open a bottle cap, manipulate
small flat plates, grasp balls and cylinders, and pick up luggage with the prehensor.

JH-3 Hanoi

After a fairly comprehensive evaluation of existing dexterous robotic hands, we selected the Direct Link

Prehensor design as the baseline for an in-house developed robotic hand. After several design iterations (JH- 1 through

JH-2), we arrived at the JH-3 Hand. (JH stands for Jameson Hand, named after the designer Dr. John Jameson.) As shown
in figure 6, the JH-3 Hand has an integrated hand-wrist-forearm package that approximates the combined size of a human

hand, wrist, and forearm. Seven DC motors are packaged in the forearm: one motor per each DOF and one that controls

the tendon tension. The wrist on the JH-3 Hand comes from a Remotec RM- 10A robotic arm. Power is transmitted from

the motors through a tendon-pulley system to each joint, much like the remotizer in the UMDH. This tendon-pulley

system allows the hand to move freely with the wrist. The encoders on each motor and the strain gauges in the hand

provide position and force feedback. Infrared proximity sensors were installed on the JH-3 Hand to provide autonomous

adaptive grasping capability. The entire hand package contains current drivers for the motors as well as signal amplifiers
for !he sensors. Although the overall weight and package are still not quite acceptable (15 lbs), the JH-3 Hand does contain

major improvements in packaging and sensing as compared to the UMDH and Stanford/JPL Hand.

Figure 6. JH-3 Hand.

To evaluate the JH-3 Hand, we mounted the hand on the EVA Retriever, an in-house developed, highly
autonomous, free-flying robot which operated on an air-bearing floor at NASA/JSC. From our evaluation, we arrived

at two key conclusions related to prosthetics development. First, the mechanism for "remotizing" the actuators tends to

add weight, bulk, and complexity to the overall system. Instead, local actuation requiring a minimum number of power
transmission components is desired. There is a design trade-off between remote actuation and local actuation. Remote

actuation adds to the overall weight of the system, but allows a more desirable mass distribution for moment reduction.

On the other hand, local actuation tends to concentrate mass near the hand and amplifies moments about the elbow and
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shoulder. Second, the integrated hand-wrist-forearm design does not permit a simple integration of the JH-3 Hand with

commercial robotic arms. Since most commercial robotic arms already come with a forearm fully integrated, installing

a JH-3 Hand on these robotic arms requires redesign.

JH-4 Hand

Incorporating the lessons learned from the JH-3 Hand evaluation, we developed the most recent hand design:

the JH-4 Hand. This hand, shown in figure 7, contains two fingers and a thumb, each driven by two motors located right

behind the proximal joint. Instead of remotizing the motors and transferring mechanical power through tendons and

pulleys like the JH-3 Hand, motors in the JH-4 Hand drive the finger joints directly with a minimum number of gears.
In making the fingers truly modular, we also packaged the drive electronics (e.g. current amplifiers, motion controllers)

into each finger. An 80C 196 microcontroller provides each finger with some local intelligence and serves as a high-level
command interface.

Figure 7. JH-4 Hand.

The JH-4 Hand represents our latest effort in developing a modular dexterous robotic hand that satisfies the

stated objectives. The hand is near human-equivalent in terms of weight'and size, and provides a reasonable degree of

dexterity with its two fingers and a thumb. The microcontroller embedded in each finger provides a high-level command

interface for primitive-based hand control.

Rice Prosthetic Hand Prototypes

In parallel with these NASA/JSC dexterous robotic hand developments and with technical consultation from

NASA A&RD experts, Rice University engineers have begun developing prototype anthropomorphic prosthetic hands.
Two hands and one wrist unit have been built. Each hand has a thumb and four fingers with independent thumb and finger

motion. One hand has a single-axis thumb which allows the thumb to swing through a full range of opposition to the finger

tips and independent finger control on the index, middle, and ring fingers; the little finger is coupled to the ring finger.

The other hand has a two-axis thumb which can abduct, oppose, and flex at its base; an independent index finger; and

the remaining fingers coupled to complete grasps. Both hands can perform key, chuck, cylindrical, spherical, and hook

grasps as well as completely flatten. The wrist unit is capable of flexing and roll. We are now beginning our second design

iteration to simplify and strengthen the mechanisms to make them more reliable and easier to manufacture.
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MYOELECTRIC CONTROL

To achieve our third objective, we are investigating the feasibility of using myoelectric signals to control the

robotic hands. Our first efforts are exploring the remote control or teleoperation scenario. Myoelectric teleoperation of

dexterous robotic hands will require no mechanical parts, and may greatly reduce the bulk and weight now found in

dexterous robotic hand control devices; however, this teleoperation scenario requires advances in the state of myoelectric

control art. Improvement in myoelectric teleoperation of multifingered hands will also benefit the prosthetics users. For

example, the level of myoelectric control of a dexterous hand achieved by an intact teleoperator will establish an upper

performance bound for the amputee. Furthermore, some of the myoelectric signal processing techniques developed for
teleoperation will transfer into prosthesis control.

Research in using myoelectric signals (also called electromyographic or EMG signals) to control prostheses

dates from the late 1940's [35]. By the early 1970's, researchers were treating the myoelectric signals as an amplitude-

modulated signal whose amplitude was roughly proportional to the force developed in the muscle generating the

myoelectric signal. The consensus was that most of the information in a myoelectric signal was in the amplitude [18].

By the late 1970's, the model had matured to treating the myoelectric signal as amplitude-modulated Gaussian noise
whose variance was proportional to the force developed by the muscle [31] [37].

Today's commercial myoprocessors used in prosthesis control are based on only one dimension of the

myoelectric signal, the force level, and in a few cases, its rate of change. Researchers have successfully refined force

estimation from the myoelectric signal [3 ] [5] [ 19] [24] [30] [31 ] [37]. Parker' s work forms the basis of control multiple

functions using different force levels on a signal channel [37]. Hogan's work was particularly significant in eliminating

low frequency noise from the force estimates due to the spatio-temporal sampling artifact inevitable with skin surface
electrodes [ 18] [ 19]. Jacobsen [24] refined use of the rate of change of force in elbow control of the Utah arm. A version

of the Swedish Hand used rate of change of force to switch control functions [13]. Rice University researchers have

investigated these force estimation results in operating a proportionally controlled grasp force with a three-fingered
robotic hand.

These force-estimation techniques require a separable muscle contraction for each function commanded,

making simultaneous control of two or more joints very difficult. A number of researchers, beginning with Wirta and

Taylor [42], examined linear combinations of myoelectric force estimates from multiple channels to select different

functions. The Swedish Hand developers applied these methods to selecting wrist and grasp [ 1] [2] I15]. The Japanese

research team applied the technique to wrist control in the Waseda Hand 3 [27]. Jacobsen [22] and Jerard [26] formalized

the mathematics for this approach and applied it to upper limb above-elbow prostheses. These force-estimating

approaches require at least one electrode pair and signal processing channel for each muscle used, up to a dozen in some

above-elbow experiments. Furthermore, force-estimating myoprocessors can be used only on superficial muscles [19],

while most motions involve both superficial and deep muscles. In fact, any deep muscle activity reaching a force-

estimating myoprocessor is mistakenly interpreted as superficial muscle activity. Therefore, it appears to us that to obtain

multifunction sensitivity that is intuitively easy to use, all information in the myoelectric signal must be exploited, rather
than just the force estimate. In addition to using superficial muscles (to which force-estimation techniques are limited),

the deep muscles must also be used in myoelectric control systems.

Some researchers have considered shape and spectral characteristics of the myoelectric signal in addition to

force estimation. Recent findings suggest that there is considerable information in the myoelectric spectra, if we can
understand its coding. Examples include:

• Small muscles generally have fewer fibers per single motor unit (SMU) and therefore have power

spectra containing more high-frequency activity than larger muscles with larger SMUs [33].

• Tissue (including other muscles) between the active muscle and the measuring electrode

acts as a low pass filter to myoelectric signals, thus excessive low-frequency power densities may
indicate cross talk from adjacent muscles [33].

• Action potential conduction velocity decreases with fatigue, causing gradual shifts in power from
higher to lower frequencies during sustained forceful contractions [33].

• SMU recruitment order is stable for a given task [7]. Short-time spectra of myoelectric signals

associated with a given rapid movement does not vary as much as previously thought [ 14].
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The full spectrum of the myoelectric signal has been examined using techniques involving statistical pattern

and spectral analyses 18] [9] [10] [I 1 ] [29] [38]. Evidence of movements having distinct spectral signatures has been

reported by Lindstrom and Magnusson [33], DeLuca [7], and Hannaford and Lehman [ 14]. The spectral signature of the

initial muscular recruiting phase of arm motions to select up to six functions of an upper limb prosthesis from a single
myoelectric signal has also been exploited recently by Hudgins [20].

Hudgins' [20] use of spectra-related parameters, such as zero-crossing and slope changes, and the use of Short

Time Fourier Transforms by Hannaford led us to focus on the time-varying spectrum of the myoelectric signal in our

research. We have been studying the correlation between the myoelectric spectrum in the initial recruiting phase of a

motion with the type of motion. We are following the lead of Saridis [38], Doerschuk [8], Kelley [29], and Hudgins [20]

in using the traditional single-muscle signals. However, our work differs from previous work of other researchers in that

we are using the actual frequency spectrum to discriminate different grasping motions. Also, previous work has focused

on arm, not hand, motions and on parameters derived from the spectrum rather than the actual spectrum.

Myoelectric Experimental Setup

To evaluate various myoelectric control techniques, we developed a unique myoelectric data collection system

which enables us to capture up to eight myoelectric data streams while simultaneously recording the motion of the

subject's hand. Previous myoelectric researchers have had only limited, if any, capability to measure motion while

measuring myoelectric signals.

Figure 8 is a block diagram of the data capture system. We use the Dexterous Hand Master (DHM), an

exoskeleton glove manufactured by EXOS, Inc., of Cambridge, Massachusetts, to measure the subject' s joint angles. The

DHM glove, also used by NASA/JSC as a master to teleoperate dexterous robotic hands, measures parameters related

to joint angles for four joints on the thumb and each of three fingers (index, middle, and ring) [43].

We use the Grass Instruments (Quincy, MA) Model 12 amplifier to measure myoelectric signals. It consists of

a differential amplifier, a high-pass filter (with roll-off frequency adjustable from 0.01 to 300 Hz) to block DC and motion

artifact, a low-pass filter (adjustable from 30 to 20,000 Hz) to limit aliasing, an adjustable gain amplifier stage, and an

isolation to protect the subject from the electric shock hazards of power supply and computer equipment. This sequence

amplifies the differential myoelectric signal from skin-surface electrodes (around 1 millivolt in amplitude) to several

volts. Differential input reduces the 60 Hz interference (typically much larger than the myoclectric signal) from lights
and equipment.

human hand

Command

I

I
Data

Transfer

. on Disk I
I MATLAB

80_ I_ running on

- IwoS Loo

,
I Correlation

Data

Figure 8. Mvoelectric data capture system.
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Both DHM and myoelectric amplifiers are connected through Burr-Brown MPV950S analog-to-digital
converter (ADC) boards to 68020-based Ironics IV3204 and IV3201 microcomputers. These capture up to 32 channels
of data at 1000 samples per second per channel. An 80386 Radix PC transfers data to MATLAB format disk files. The

ADC and Ironics and Radix computers are on a VME bus and do double duty as the control computer for the UMDH,

with which we plan to demonstrate myoelectric teleoperation. We used Math Work' s (Natick, MA) MATLAB software,
Version 4.1, for off-line data analysis and plotting.

Based on our early findings in the myoelectric spectra, Rice University also developed a real-time myoelectric
control implementation test bed consisting of miniaturized myoelectric amplifiers with fixed 20 to 500 Hz bandwidth

and a personal computer incorporating an Elf-31 (TM) board and signal processing development software by Atlanta

Signal Processors. The Elf-31 includes high-speed analog-to-digital conversion and digital signal processor (TMS 320C31 ).

With this system, we can capture multiple myoelectric signals, compute their spectra on the Elf-31, and process the

spectra into a grasp selection using the personal computer, all in real time. NWorks (TM) software by Neural Ware, Inc.
(Pittsburgh, PA) facilitates development of neural networks for the classification of the spectra, if the user chooses a
neural network approach.

Preliminary_ Myoelectric Resulls

Our first use of these systems investigated direct use of the myoelectric spectrum to differentiate the key and

chuck grasps. The key and chuck grasps differ in thumb position relative to the fingers. The thumb opposes the side of

the index finger in the key grasp, while it opposes the tips of the index and ring fingers in the chuck grasp. Anatomy

suggests that differentiating between these grasps requires measuring intrinsic thumb muscle activity in the hand and

extrinsic finger and thumb activity in the forearm. We restricted measurements to the forearm, however, to keep the

teleoperator's hand free of movement-encumbering hardware and increase our work's applicability to the prosthetics
community.

We used the NASA/JSC data collection system (mentioned earlier) to capture myoelectric data during these two

grasps. The human subject did a series of key and chuck grasps with the lateral side of the forearm resting on a horizontal

surface or hanging vertically. We made no attempt to control the starting position (a relaxed posture) or grasp precisely.

The subject was the judge of consistency in these positions. We later used DHM finger trajectory data to check for

consistency and correctness of the grasp and to locate the initiation phase of the corresponding myoelectric signals.

We are now testing various myoelectric signal processing schemes on these data streams. One was an adaptation

of the approach by Hudgins et al., [20] at the University of New Brunswick, where they computed mean absolute value,
mean absolute value slope, zero crossings, and waveform length on biceps and triceps in 40 ms windows in the fast 240

ms of arm motions, such as elbow flexing and humeral rotation. A multilayer Perceptron neural network used these

features to classify the arm motions with 70 to 98 % accuracy, depending on the human subject. Our initial implementation
of this scheme yielded a maximum of 80% correct accuracy for our grasping test set. We believe that the decreased

accuracy may be due to (l) increased difficulties in detecting the grasp start (since the myoelectric signal amplitude is
smaller) and (2) differences in the way muscles used in fine motion control (such as grasping) and coarse motion (such

as arm motion) are recruited. Inaccuracies due to the latter may be reduced by reoptimizing window size and

characteristics. More algorithm experimentation and trials on more human subjects are needed to confirm this, however.

We have also tested several schemes which use the myoelectric signal's magnitude spectra directly. The most

successful of these have used the upper portion of the myoelectric spectrum, the 75 to 250 Hz range. Muscle fiber length,

diameter, and action potential conduction velocity as well as distance to the electrode dominate this portion of the

myoelectric spectrum. A multilayer Perceptron receiving inputs of the 75 to 250 Hz spectrum in six 40 ms windows (as

in the UNB scheme) from the distal channel in figure 9 classified the test set signatures 93% correctly.

We have also experimented with multiple channel configurations. Figure 9 shows our dual channel electrode

configuration; the distal electrode pair (DI and D2) measure extrinsic thumb muscle activity while the proximal pair (P1

and P2) measure finger flexion and extension activity. Computing 6 values of the 75 to 250 Hz spectrum in larger (240

ms) windows on both channels during the motion's initiation phase yields a set of 12 features that a multilayer Perceptron
can classify 86 to 91% correctly, depending on the human subject. We implemented this approach in real time on our

Real-Time Myoelectric Control Implementation Testbed and used it to teleoperate the Rice-developed prosthetic hands
described previously.
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Figure 9. Dual channel electrode configuration.

While still below our grasp discrimination goal of 100%, these early results refute the long-held assumption that

myoelectric signals from the forearm are inadequate for differentiating thumb motions.

We have begun experimenting with the 3 to 75 Hz portion of the myoelectric spectrum, which is dominated by

muscle recruitment dynamics. Theoretically, task-specific SMU recruitment should show up in this portion of the

spectrum, and this may be the key to increasing grasp selection accuracy above 93%. To date, we have not been successful

with direct use of the magnitude spectrum in this region, in spite of the implied usefulness in references [7], [14], and

[20] and the results of the adaptation of the UNB scheme, which implicitly used the entire spectrum. The UNB scheme

has phase information embedded however. Since we expect the recruitment portion of the spectrum to be much more

time-varying, it will be especially sensitive to window characteristics. We are continuing experiments with varying

window size, overlap, and type.

CONCLUSIONS AND FUTURE WORK

This ongoing joint research effort between NASA/JSC and Rice University is entering its third year. In the past

two years, we have made significant progress in accomplishing the three stated objectives. We have evaluated several
commercially available dexterous hand designs and gone through several iterations of our own in-house designs. We

made progress in reducing weight and packaging of dexterous robotic hands while maintaining an acceptable level of

dexterity, and realized the current design in the JH-4 Hand. We have begun development of prosthetic hands that

incorporate lessons learned from robotic hand design and control.

Meanwhile, we also made significant progress in understanding myoelectric control theory. We have developed

a unique myoelectric data collection system featuring recording of joint motion, and developed a test bed for evaluating

various signal processing techniques. Initial results of over 90% correct grasp discrimination suggest that myoelectric

commanding of grasp primitives is feasible. Eventually, we plan to evaluate the feasibility of myoelectrically controlling

individual fingertips to augment grasp primitives.

If myoelectric control of dexterous robotic hands can be made both intuitive to operate and repeatable, a myriad

of opportunities in both space robotics and prostheses development will open up.
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