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ABSTRACT
1. INTRODUC'rlON AND BACKGROUND

The Hubble Space Telescope's fine guidance sensors

(FGSs) are unique in the performance levels being
attempted; spacecraft control and astrometric

research with accuracies better than 3 milliarc-

seconds (mas) are the ultimate goals. This paper
presents a review of the in-flight calibration of the

sensors, describing both the algorithms used and the

results achieved to date. The work was done

primarily in support of engineering operations
related to spacecraft pointing and control and

secondarily in support of the astrometdc science

calibration effort led by the Space Telescope

Astrometry Team. Calibration items of principal
interest axe distortion, sensor magnification, and

relative alignment. An initial in-flight calibration of
the FGSs was performed in December 1990; this

calibration has been used operationally over the past
few yeats. Followup work demonstrated that

significant, unexpected temporal variations in the

calibration parameters are occurring; provided good

characterization of the variations; and set the stage
for a distortion calibration designed to achieve the
full design accuracy for one of the FGSs. This full

distortion calibration, using data acquired in

January 1993, resulted in a solution having single-
axis residuals with a standard deviation of 2.5 mas,

Scale and alignment calibration results for all of the

FGSs have been achieved commensurate with the

best ground-based astrometric catalogs (root-mean-

square error ~ 25 mas). A calibration monitoring

program has been established to allow regular
updates of the calibration parameters as needed.

The Hubble Space Telescope (HST) began its

mission in April 1990. The ultimate scientific goals
require relative pointing accuracy of order 3 milli-

arcseconds (mas) for target objects within the

telescope's 0.5-degree-diameter field of view (FOV).

This high accuracyisachievedusingthe spacecraft's

fine guidance sensors (FGSs), manufactured by

Hughes Danbury OpticalSystems (I-IDOS),which

allow the spacecrafttomaintainpointingrelativeto

a preselectedsetof guidestats.The milliarcsecond-

levelpointingrequirementsdictateequallydemand-

ingrequirements for the FGS calibration algorithms

and procedures. Refs. 1 and 2 presented a summary
of the status of our calibration efforts as of mid-

summer 1991, at which time calibration results had

not yet achieved the design accuracy level. This
paper presents the results of our continued

calibration work throughthe time of the HST Hrst
Servicing Mission (FSM) at the end of 1993.

Besides a calibration error level an order of

magnitude above the design level, Refs. 1 and 2 also

repotted initial indications of unexpected temporal
variations in the FGS calibration parameters. The

variations, based on a comparison of data taken in
December 1990 and May 1991, were noted in both

optical field angle distortion (OFAD) of the

individual FGSs and the relative alignments of the
FGS FOVs. The OFAD changes were detected at

essentially the la noise level (~ 30 mas) of the

reference catalog used for the calibrations, whereas

the aligmnent changes were about a factor of seven

above the noise. Because of the low level of
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certaintyin the initial OFAD change detection,

precise differential analysis of apparent motions of
the same target stars from the preceding year was

performed in December 1991. This analysis, being

independent of the ground-based catalog, was able
to verify the previously detected OFAD change rate
at a level an order of magnitude above noise.

Section 5 discusses the results of our December

1991 and subsequent analyses of FGS calibration

variation. At the time of our verification of the

sensor changes, the HST Project System

Engineering Board (HPSEB) found the detected
level of variation significantly disturbing and

consequently established a special working group to

analyze, characterize, and, if possible, explain the
changes. Significant support for the efforts of the
FGS Working Group (FGSWG) was provided from

many sources. Besides the current authors, the

group consisted of, or received support from, HDOS

optical analysts and engineers, members of the

Space Telescope Astrometry Team (STAr), repre-
sentatives of the HI'SEB, and staff scientists at the

Space Telescope Science Institute (STScI). The
efforts of the working group over the past 2 years
have resulted in substantial advances in our

understandingof the functioningof the FGSs and

-ourabilityto maintaina preciselevelofcalibration
for them. We believe that this enhanced

understandingwillprove particularlyimportantfor

theoperationoftheHST duringthepost-FSM era.

Each of the various subgroups within the FGSWG

had its own area of particular concem. Not surpris-

ingly, these areas overlapped to a considerable
extent. The particular goal of the authors of this

paper was to establishan FGS calibrationprogram

adequate to meet the operational needs of the HST
mission as a whole. The calibration software used

for this work is part of the HST Payload Operations

Control Center (POCC) Applications Software

Support (PASS) system developed by Computer
Sciences Corporation (CSC); Ref. 3 documents the

PASS system requiremems. Analyses by the STAT
were analogous to our own but focused on the use of

the FGS system, and particularly FGS-3, as a tool

for doing high-precision astrometric science. To

distinguish our work from that of the STAT, we

refer in this paper to the results of the two groups as
the PASS and STAT solutions, respectively. HDOS

analysts provided technical expertise for under-

standing the hardware, both of the FGSs and of the

primary and secondary mirror structure of the
telescope. The calibration analyses performed by

the PASS and STAT groups were done in friendly

competition. The work was a competition in that
the details of the algorithms and software were

developed independently and thus could be used for
mutual verification. The competition was friendly

in that the verification and exchange of results were

done on a regular basis. Tiffs approach provided
valuable feedback for both groups, allowing early

detection of analysis errors and a more timely

arrival at our mutual goals.

2. THE FINE GUIDANCE SENSORS

The heart of the HSTs pointing control system

(PCS) is the set of FGSs manufactured specifically
for use on the HST by HDOS. A description of FGS

design and operation is available in Ref. 4, with

indepth descriptions available in Ref. 5. We limit
ourselves here to a high-level summary needed as a

foundation for the results presented in the rest of the

paper. The FGS FOVs are restricted to the outer
4-arcminute annulusof the HSTs fullFOV. Each

FOS FOV is an arc with an azimuthal range of

82 degrees and a radial range extending from

I0 arcminutes to 14 arcminutes relativeto the

primary opticalaxis of the telescope. Figure I
illustratesthe FOVs of theFGSs asthey look out to

the celestialsphere. The axis labels (V2,V3)

indicatethe HST coordinateframe; the thirdaxis,

referred to as V1, corresponds to the optical axis and

points out to space. The visual magnitude (m v)
range for guide stars usable by the FGSs is

approximately 9 to 14.5 m v. The precision of the
FGS system, ~ 3 mas when fully calibrated, follows

from its design as an amplitude interferometer using

GS-I _ -3

_GS-2

Figure 1. FGS fields of view

(looking out to the celestial sphere)
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Kcester'sprismscombinedwith photomultiplier
tubes.Standardpointingcontrolprocedureduring
scientific observations is to use two of the FGSs to

maintain guidance of the spacecraft. The remaining
FGS is available for precise astrometric obser-

vations, the dim limit for astrnmetry being - 17 m v.

Figure 2 illustrates the coordinate system of an FGS

as it maps to the actual hardware and telemetry from
the spacecraft. Each FOS coordinate frame is

defined as a right-handed x/y/z system with the

z-axis pointed approximately along the HST optical
axis. Each FGS has a 5-atcsecond-by-5-arcsecond

instantaneous field of view (IFOV) that can be

commanded to a selected position within the total
FGS FOV. The instantaneous position of the center

of the n_ov is determined by the angles 0A and 0B

in Figure 2. The lengths of the "lever arms" 8A and

8B indicated in Figure 2 map onto specific aspects

of the hardware design; for the purposes of this

discussion the lever arms may be thought of as rigid,
hinged rods whose rotations move the IFOV about

in the total FOV. Using spherical trigonometry
(e.g., see Ref. 6), the equations that transform the

angles 0A and 0B into standard spherical polar
coordinate angles p and _ can be derived:

P = cos'l[ cos(8A) cos(_)

" sin(SA) sin(SB) c°s(eB" (0A-0A0)) ] (1)

_b -- (0A.0A0) + COS-I[ ( COS(_B )

- cos(8A) cos(p))/(sin(SA)sin(p))] (2)

where 0A0 isan offsetparameter tobe determined

via the calibrationprocess. (An analogous offset

parameter for 0B is not required because any

constantterm added to both 0A and 0B isobserva-

tionallyindistinguishablefrom a rotationof the

sensor; this can be absorbed in the subsequent
alignment calibration.)The FGS can detectstar

lightonly through the IFOV. A starimage failing

withinthe inner20 mas of the IFOV willproduce a

significantinterferometricsignal.The FGS issaid

to be in finelock (FL) when so measuring a star's

direction.Furthersphericaltrigonometricmanipu-
lationis needed to adjustfor the star'smeasured

position relative to the center of the IFOV.

Although included in our data analysis,these

complicationswillnot be consideredhere;ratherthe

coordinatesp and _bwillbe treatedas ifthey were

the coordinatesof the measured starpositionin the

FGS FOV. The equationsthattransform p and

y

]g

Pigure 2. FGS coordinate system

into the x and y Cartesian elements of an object
space unit vector are

x = sin(p/M)cos(0) (3)

y --- Sin(p/M)Sin(t_) (4)

where M, the magnification of the HST/FGS system,

is approximately 57.3. We have found that M may
be taken as fixed during calibration of the sensors,

with scale adjustments being introduced via changes
to the parameters 8A and 8B.

A second mode ofFGS operation,coarsetrack(CT)

mode, isalsoavailable.In thismode the centerof

theIFOV iscommanded tonutateabout thetruestar

positionin such a way thatthe edges of the IFOV

cut across the image of the starin a symmetric

pattern.The coordinatesp and _ are thenestimated

as the centerof the nutationcircle.The estimated

design accuracy of determiningstarpositionsusing
CT mode isapproximately 20 mas. Because CT

mode is less sensitiveto sPacecraft-jitter-induced

lossoflockthanisFL mode, itissometimes used in

observing situationsfor which extreme pointing
precisionisnot required.

3. CALIBRATION ALGORITHMS

3.1 Distortion and Scal_

The distortion and scale calibration of the FGSs is

divided into two phases. The first (also called

"mini") phase uses ground-based astrometric obser-

vations as reference information and is thereby
limitedby the accuracy of those data. The second
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(also called "full") phase goes beyond the
limitations of ground-based astrometric work, the

goal being to achieve the design precision of the
I_3S system. To date, full-OFAD calibration has

been performed only for FGS-3, the FGS selected
for use in astrometric science. A phase I scale

calibration for an FGS follows immediately as part

of a mini-OFAD calibration; the ground-based
observations serve to define the absolute scale for

the solution. Phase 2 scale determination, which is

planned to be based on asteroid observations and
associated precise theoretical ephemerides, has not

been performed for any of the F(3Ss as of the time
of this writing. Refs. 1 and 2 describe the algorithm

and procedures intended for that calibration.

The algorithm used for OFAD calibration is a

constrained two-dimensional least-squares algorithm

based on the technique presented in Ref. 7. The
fundamental input data are FGS observations of

stars in an open cluster. The data axe taken over a

number of spacecraft pointings. Any given star may
therefore be observed in multiple locations in the

FGS FOV during the course of the entire sequence.
Before being processed through the calibration

algorithm, the data are corrected for the effects of
velocity aberration using a fully relativistic
formulation (e.g., see Ref. 8). The approach there-

after is to minimize a loss function, L, subject to

certain constraints applied to the associated state

vector. The loss function can be expressed as

L = Z {[Wij- D(Wij,S) -AjXi ]2 /oij2 } (5)

where

Wi j = object space position of star i in
observation set j (as determined

by equations I through 4)

D(Wij,S) ffi OFAD correction vector function
S ffiOFAD correctionfunction

parameter set

Aj = attitude transformation matrix
between attitude frame j and an

arbitrarily specified standard frame

Xi = "true" direction vector for star i in
the standard frame

= measurement uncertainty for

°iJ star i in set j

and the summation is done over all stars and frames.

(The term "frame" here refers to data taken in a

single orbit, during which a single pair of guide stars
is used to control the vehicle's attitude.) For HST

the x and y Cartesian projections of W; the set {S}

is the corresponding set of polynomial coefficients.

The state vector for a mini-OFAD calibration

(which can in principle be done with a single

spacecraft pointing and each star observed only
once) consists of the set {S, A, 8A, 813, 0A0}, i.e.,

the polynomial coefficients, attitude transformation
matrices, and three star selector parameters. The

vector set {X} is provided as a priori knowledge

from ground-based observations. It need be
accurate only differentially; anY systematic errors in

{X} will be absorbed in the matrices {A}. Three
constraints must be applied because any average

translation or rotation introduced into the function D

via changes to {S} would be indistinguishable from

a systematic rotation of the spacecraft applied to all
matrices {A}; without constraints, the associated

matrix inversion problem would be singular (or

nearly so) with a nullity of 3. To select a unique
solution from an infinite potential family of solu-

tions, we impose constraints on the elements {S}

such that the calculated change in D relative to an

initial estimate has zero translation and rotation

content when avergged across the FGS FOV.

The fuil-OFAD calibration procedure extends the

mini-OFAD procedure so as to include the vector set

{X} as part of the state vector, thereby eliminating
all errors associated with ground observations.

Because the reference flame for {X} is arbitrary,

one of the attitude matrices is eliminated by

selecting the associated observation frame as the
standard frame. Unlike mini-OFAD calibration,

full-OFAD requires multiple frames of data and

significant variation of the spacecraft attitude
between frames. In particular, the full-OFAD algo-

rithm requires that there be significant variation in

spacecraft roll to detect any shear effects in
distortion. It is by moving the various target stars

through locally different distortion variation in the
FOS FOV that the relative distortion across the
entire FOV becomes observable. Numerical simula-

tions performed by the STAT have demonstrated

that roughly 20 observation sets are required to
achieve milliarcsecond accuracy for the function D.

As with mini-OFAD computations, fulI-OFAD

calibration requires that constraints be applied to the

state vector. In addition to the three constraints

discussed for the mini-OFAD algorithm, two
constraints related to solution scale are used in the

PASS software. Because the set {X} is part of the
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statevectoroftheproblem, true scale is intrinsically
nonobservable to the full-OFAD algorithm. To first

order in the state vector elements, a change in the

scale of {X} (i.e., in the calculated angular distance

between cluster members) can be compensated for

by a change in the polynomial set {S} and/or the

star selector parameters { 8A,8 B } with no increase in
the loss function. To remove this second-order

singularity from the fulI-OFAD problem, one

constraint each is applied to the sets {S} and

{8A,5 B }. The constraint on {S} is applied in a

manner analogous to those used to prevent {S} from

introducing changes in translation or rotation; it

prevents D, when averaged across the FGS FOV,

from changing its scale properties. The constraint

applied to {SA,SB} is simply that the sum 8A+8 B

remain unchanged. These constraints are adequate
to allow the fuI1-OFAD algorithm to pick out a
unique solution.

Although the algorithm described in the previous
paragraph is able to select a solution that is both

unique and a minimum of the fulI-OFAD loss

function, the scale content for the solution so

produced is only approximately correct. This occurs

primarily because the unconstrained parameter 0A0
is capable of introducing both scale and distortion

contributions to the solution. Given that, to date,

astrometric ground-based catalogs represent the best

source of true scale information for the target
clusters that we have been using, we have chosen to

rescale our fulI-OFAD solution using the mini-

OFAD algorithm. The data are reprocessed with the

state vector restricted to the set {A, 8A, 813} subject

to the constraint that the ratio 8A/8 B remain

unchanged. With the set {IS}, (SA/SB)I fixed to

that found by the fuI1-OFAD solution, and the

rescaling introduced via the change to 8A+8 B kept

small, we find that this rescaling procedure
introduces a negligible change to the distortion

aspect of the solution. Finally, to produce a rescaled
catalog of star positions based on the FGS

observations, we rerun the fuI1-OFAD algorithm
using the restricted set {A, X} as the state vector.

3.2 Alignment Determination

To date, the relative alignment of the FGSs has been

determined only with an accuracy commensurate
with astrometric ground-based observations. Before

HST launch, plans had been made to eventually

perform this alignment calibration to the full design
accuracy of the sensors; Refs. 1 and 2 discuss the

algorithm intended for this purpose. As a conse-

quence of the fairly rapid temporal variations that

we have found in the relative alignments of the
FGSs, it has been decided that the effort that would

be required to achieve full FGS accuracy is

unwarranted. Rather,proceduresand softwarehave

been developed that permit monitoring of the

changes in the alignments as a function of time.

The approach begins with an alignment determi-

nationthatuses ground-basedobservationsof target

starsasfiducialpoints.With therelativealignments

specified,observationsfrom allthreeFGSs can be

used to constructa catalog againstwhich future

observationsof the same statscan be compared.

Apparent changes in angular separationbetween

stars observed in different FGSs during repeat visits
to the target cluster are then used to determine

relative alignment shifts between the FOSs.

As described in Refs. 1 and 2, there exists a

systematic offset for each FGS between a star's

position as determined using CT mode and that
found using FL mode. These offsets must be

accounted for during relative alignment deter-
mination if any of the data were taken with one or

more of the FGSs operating in CT mode. HST

operating conditions were sufficiently degraded

during the first year of operations as to mandate the

use of CT guidance during FGS calibration data
takes. Our fiducial data set for relative FGS

alignment determination was taken during this time
period and was corrected for the CT]F'L offset effect

with data obtained concurrently. Because the

20-mas accuracy level of coarse track guidance is
comparable to the best ground-based astrometric

catalogs, degradation of alignment results as a

consequence of using CT guidance is not severe.

4. REFERENCE CATALOGS

Two target clusters have been used for FGS

calibration work to date: the open clusters
NGC5617 (r.a.-217 o, dec.~-60 o) and M35
(r.a. ~ 93 o, dec. ~ 24o). An NGC 5617 astrometric

quality reference catalog based upon ground
observations was provided for mini-OFAD and

alignment calculations by the astrometry group at

Yale University (Ref. 9). An analogous catalog for
M35, based upon the observations of McNamara and

Sekiguchi (MS, Ref. I0), was provided to us by the
STAT. The estimated lo random error levels

associated with the Yale and MS catalogs are 30 and

24 mas, respectively, based upon an intercomparison

of results from separate plates. Both catalogs
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contain proper motion estimates for the included
stars. We used these estimates to correct for the

effects of proper motion when comparing any sets of

data taken on different dates.

One result of the FGS OFAD analysis over the past

few years is the discovery that the position
coordinates for the stars in both ground catalogs

were subject to significant magnitude and color

dependencies relative to the FGS data. The levels of

these systematic dependencies were such that the
standard deviations of residuals to mini-OFAD fits

were 70 and 41 mas for NOC 5617 and M35 data,

respectively. Because FGS data are intrinsically
more accurate than ground observations, the scatter
of mini-OFAD residuals should be essentially the

same as the estimated intrinsic catalog error level;

larger mini-OFAD residuals are an indication of

systematic catalog error. This effect was first
recognized for the Yale catalog a few months after
associated FGS observations were made in

December 1990. The Yale group subsequently

corrected its catalog, using the results of a

preliminary FGS full-OFAD calibration as a basis
for the correction. Theresulting standard deviation

for mini-OFAD residuals was reduced to 35 mas, in

reasonable agreement with the estimated intrinsic

random catalog error. The corrected Yale catalog

was used in the analysis reported in this paper.

As a consequence of the discovery of the magnitude

and color dependencies in the original Yale catalog,
the PASS system was augmented to include

software to compare star catalogs for relative

magnitude and position dependencies. The use of
this utility became a planned feature in the cycle of
mini-OFAD and fulI-OFAD calibration processing.

The first step is to produce preliminary mini-OFAD
and full-OFAD solutions based upon a completely

independent ground catalog. The catalog produced

as part of the fulI-OFAD solution is then used as a
reference against which the ground catalog may be

compared for determining magnitude and color

dependencies. Corrections for any so-detected

dependencies may then be removed from the ground
catalog, after which the cycle of mini-OFAD and

full-OFAD processing is repeated. This procedure

was applied during our analysis of observations of
M35, with the result that the standard deviation for

associated mini-OFAD residuals was reduced to

22 mas, in good agreement with the 24-mas estimate

from interplate comparisons. This corrected version

of the MS catalog was used in our subsequent

analysis.

The reader may reasonably ask how it is known that
the errors to be corrected are within the ground data

as opposed to the FGS data. As a first point, when

performing a mini-OFAD calibration with multiple
frames of data, we find that the postfit observation

residuals are strongly correlated in both size and

direction in sky coordinates for all observations of

any individual star, this indicates that the error
source is associated with the individual stars and not

with FGS FOV position. Second, with respect to
NGC 5617 data, the same correction relative to sky

coordinates was found for all three FGSs. Given

that the FGSs had different relative orientations on

the sky during the observations (seeFigure 1), it is

unlikely that the FOSs themselves could produce
such an effect. Finally, with respect to M35 data, a

single correction relative to sky coordinates is found

to be appropriate irrespective of spacecraft roll.
This eliminates both the FGS used for these

observations (FGS-3) and the HST primary and

secondary mirror system as possible sources of the

magnitude/color effects. For these reasons, we find

it appropriate to attribute the effects to the ground

catalogs.

5. CALIBRATION RESULTS

5.1 Distortion and Scale Results

5.1.1 Previous Results

Several unanticipated operational constraints siguifi-

candy affected the ability of HST in general, and the
FGSs in particular, to acquire FGS calibration data

during the first years of HST operations. Of these,
the most serious from our perspective was the

spacecraft jitter induced at day-night transitions by
the thermal flexing of the original solar arrays.

Jitter-induced loss-of-lock for FGS guide stars

remained a serious problem until a guide star

recentering algorithm was implemented in the flight
software in December 1992. As a consequence, all

FGS calibration data were taken using CT guidance

during the first 2 years of the mission. During this

period, peak-to-peak spacecraft pointing changes as
high as 100 mas were noted, although at a

sufficiently high frequency that averaging across the

1-minute observation periods for each astrometry

star significantly reduced the pointing error.

Maximum average displacements of the guide stars

during a single orbit were typically on the order of

10 mas, Using this level of performance, the first

reasonably successful mini-OFAD calibration was

completed in December 1990.
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In Refs. 1 and 2, we discussed calibration results for

data taken in December 1990 and May 1991,
reporting that the measured values for the distortion

coefficients agree reasonably well with their design

values for all three FGSs, but the parameter 0A0
differs significantly from its design value of zero for

both FGS-2 and FGS-3. 0AO is approximately 0.57 o

and -0.63 o for FGS-2 and FGS-3, respectively.
Prelaunch analysis indicated that ground-to-orbit

changes in 0A0 would be less than 0.1 o. The cause

of these large deviations remains unexplained.
A comparison of the OFAD results between

December 1990 and May 1991 indicated that

significant changes had apparently occurred during

the 5-month interval. Given the restricted accuracy
of the data sets, it was possible then to characterize

the change only to first order- and only as an

approximate scale change. The largest change was
detected for FGS-I, for which the effective scale

change corresponded to 100 mas over 14arc-
minutes. The estimated accuracy of the December

1990 and May 1991 mini-OFAD calibrations is

about 10mas over FOV regions separated by no
more than about 4 arcminntes and about 30 mas

across the whole FOV of any single FGS.

5.1.2 New Results

Since the writing of Refs. l and 2, three major
advances in our analysis of FGS distortion have

occurred. First, via differential studies of apparent
changes in star positions during repeat visits to the

calibration target clusters, we have been able to

better quantify the nature of the long-term "scale"

variations previously reported. Second, via repeat

observations of selected "check" stars during periods
of continuous astrometric observing, we have found
significant apparent changes in the effective relative

alignments of the FGSs over time periods short

compared with a single orbit. Finally, because of

the operational improvements in fine lock guiding
performance made possible by flight software

enhancements, a full-OFAD calibration observing
sequence for FGS-3 became possible and was suc-

cessfully executed in January 1993. The advances

in our understanding of FGS performance occurred

over a period of months, with improvements in each

area providing a better foundation for analysis in the

others. Although we discuss each area separately
below, their interdependence is readily apparent.

5.1.2.1 Long-Term Variations in Distortion

Our studies of the long-term variations of the FGS

distortion calibration are based on two sequences of

OFAD data sets. The first provided us with a 2-year
baseline starting with our original December 1990

mini-OFAD calibration observations of the star

cluster NGC 5617. As previously noted, the

accuracy of this initial calibration is estimated to be
about 10 mas over small regions of each FGS FOV

and about 30 mas over each complete FOV. To

take advantage of the relatively good calibration

accuracy over small FOV regions, we based our

analysis of calibration changes on differential

studies of apparent changes in star positions during

repeat visits at l-year intervals to the same target

cluster. The 1-year interval was dictated by space-

craft operational pointing constraints; spacecraft rot

relative to the sunline is constrained to prevent

illumination of the underside of the spacecraft. By
repeating the observations at 1-year intervals, we

were able to place the various target stars in

essentially the same position in the FOV as during
the initial calibration. After compensating for

proper motion effects, we determined the adjust-
ments to our December 1990 solution needed to

restore the original relative positions. We found, to

within the accuracy of our data, that the PUS

calibration changes are well modeled as changes to

the star selector parameters 5A and 0A0. Although

adjustment to both parameters is in general required
for good modeling at the data noise level, we find

that the FGS-I variation is greatly dominated by

changes to 0A0 (AOA0 ffi _0.044o over 2 years),

whereas that for FGS-3 is greatl4Y dominated by
changes to 8A (ASA/_A ffi 2.9"10- over 2 years).
The 2-year variation over baselines of about

12 arcminutes was roughly 200, 30, and 100 mas for

FGSs 1, 2, and 3, respectively.

Because of the long-term changes in distortion

calibration observed for all three PUSs, it was

decided that a high-accuracy monitoring program
should be established for PUS-3, the PUS selected

for astrometry work, as a companion activity to its

fulI-OFAD calibration. This long-term stability
(LTSTAB) program began 1 month before the

January 1993 fulI-OFAD observing sequence. M35
is the selected target for both the fulI-OFAD and the

LTSTAB calibration work. Because M35 is located

near the ecliptic plane, spacecraft roll constraints

dictate two possible principal roll orientations of the

spacecraft relative to the target. Using data from

any specific orientation, it is possible to conduct
purely differential studies of FGS distortion

changes; such studies are not subject to errors in a

specific OFAD solution or a selected reference

catalog. With only slightly greater error, a
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Figure 3. For FGS-3, long-term variation of parameter 8A as a function of time

combined LTSTAB study can be performed using

data from both orientations by taking advantage of

the resultsfrom a fuII-OFAD calibration;the OFAD

solution is used to correct for distortion, and the

FGS-generated catalog serves as an orientation inde-

pendent set of reference points. We have selected
the latter approach for the results presented here,

using our analysis of the January 1993 futl-OFAD
data set as our fundamental reference.

As was the case for the NGC 5617 observations,

most of the temporal changes in FGS-3 distortion

are fairly well modeled by adjustments to the single

parameter 8A. Figure 3 presents a plot of the

change in 8A as a function of time, with 8A treated

as the only free distortion parameter. The plot
combines the results of the differential studies using

observations of stars from both NGC 5617 and M35.

Relative normalization of the two data sets was

accomplished by placing the NGC 5617 December
1992 data point on a smoothly interpolated position
within the M35 sequence. (The normalization is

consistent with the scale of both pound catalogs to
within their error levels.) The results suggest that

the variation of 8A is significantly nonlinear for

time scales between a few months and 1 year but

fairly linear for time scales of order 2 to 3 years.
LTSTAB monitoring of FGS-3 distortion will

continue for the indefinite future, with the results

being used for both engineering analysis of FGS

performance and correction of astrometry data

obtained with that sensor.

5.1.2.2 Short-Term Alignment Variations

The second area of analysis advancement pertains to

the apparent change in relative FGS alignments over

time periods comparable to a single orbit. For all of
our recent OFAD calibration data sets, and in

particular for the fulI-OFAD data obtained in

January 1993, the astrometry observing sequence
includes repeat observations of three weB-separated

stars during the course of each orbit. The function

of these "check" star observations is to detect any

systematic change in the astrometry FGS FOV with

respect to translation, rotation, or scale during the
course of a single orbit. With a perfectly operating

optical system, after compensation for velocity
aberration effects, all of the check stars would

maintain their angular separations relative to each

other and to the guide stars monitored by the other

two FGSs. (With an ideal pointing control system,

the star positions -- faot merely their angular separa-

tions- would also remain fixed.) In practice, the

angular separations do not behave as they should for

a perfect system; significant systematic motion of
the check stars relative to the two "fixed" guide stars

is regularly seen to occur. The effective change in

alignment during "a typical 40-minute observing

sequence is on the order of 10 mas, although one
orbit showed a change as large as 17 mas. Changes

in the effective alignment of the astrometry FGS

relative to the guiding FGSs over a single observing

period result in a motion of the astrometry FOV
relative to the background stars. If left uncorrected,

this effect would corrupt the OFAD calibration.

Investigation of the phenomenon of short-term FOV

motion has been undertaken from two perspectives:

(1) to model and remove the effect from FGS
calibration data (or astrometry science data, for that

matter) and (2) to understand the physical cause of

the phenomenon. Clearly the latter objective can be
an important intermediate goal on the way to the

former, but achieving complete success in that area
is not necessary to make significant first-order

corrections to the data. We have found that the

check star motion for FGS-3 astrometry orbits is

fairly well modeled as constant velocity translation
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of the whole FOV, the model being extremely good
for about two-thirds of such orbits. We have there-
fore used this model in conjunction with check star

data to establish FOV-motion parameters for each
orbit of our fulI-OFAD and LTSTAB data sets and

thereafter applied the model to correct all of the
remaining astrometry observations within each orbit.

The cause of this apparent motion of the astrometry
FOV relative to the FOVs of the guide FGSs is not
yet well understood. A conjecture was made a
couple of years ago that differential heating of the
secondary mirror support structures could cause the
mirror to move and produce focus and coma
changes that would result in the observed behavior.

Christ Ftaclas at HDOS has developed an optical
model for the implied effects for FGS observations
and found it to work well for about half of the
January 1993 OFAD calibration orbits. The motions
in the remaining orbits are incompatible with the

model, being either wrong in direction or containing
sharp changes. This may indicate the existence of
yet another mechanism. A PCS/FGS coupling study
has been initiated recently and may shed some fight
on this phenomenon. Evidence for secondary mirror
"breathing" has also been seen in the data from the

other HST scientific instruments (Sis). investigating
the conjecture that there is a thermal driver for the
effect, Pierre Bely of the STScI has shown that there
is a correlation between the temperature of HST's

forward light shield and the changes observed by
some Sis (Ref. 12). He further computed the
changes to secondary mirror position needed to
model these changes. Unfortunately, the amount of
secondary mirror motion needed to model the
changes in SI response is only about half of that

needed in the Ftaclas model to explain concurrent
apparent motions of the FGS FOVs. This difference
is being investigated. If no significant error is found
in either analysis, that may be taken as an indication
for the existence of some mechanism that has an

effect on the FGSs but not on the Sis. Again, the
PCS/FGS coupling study may resolve this question.

Within the context of the Ftaclas model for FGS

pointing changes, we find that the simplicity of our
linear-motion correction procedure for FGS-3
astrometry data is somewhat fortuitous. The model

predicts that effective rotation and scale changes
also occur in the astrometry FGS FOV, but these
effects happen to be below noise level for cases

when FGSs 1 and 2 are used for guiding.

5.1.2.3 Full-OFAD Calibration

With the phenomenon of short-term alignment
variation reasonably well modeled, and with the

problem of jitter-induced loss-of-lock solved, a full-
OFAD calibration at the level of FGS design
accuracy became possible. For reasons of economy
(i.e., because the amount of data required for the full
calibration of a single FGS is large), it was decided
to perform the calibration only for that FGS selected
for use in astrometric science. Twenty frames of

M35 observations for this calibration were acquired
on January 10 and 11, 1993. Analysis was restricted
to data obtained with all three FGSs in FL mode.

Each star vector was constructed as an average over
approximately 25 seconds of data. The observing
period for each flame was roughly 35 minutes. Data
from 2 of the 20 orbits were removed from
considerationbecauseof commanding and guidance
problems.

We processed the data for distortion calibration
using the algorithms discussed in Section 3. We
began with an FGS-3 mini-OFAD solution based on

data from the December 1990 and December 1992

observations of NGC 5617. The distortion portion
of the state vector for this solution was restricted to

the parameters (SA, 8B, 0AO), the polynomial coef-
ficients being held at their design values. Values for
the three star selector parameters were first
determined using the 1990 data; adjustments to

(8 A, 0A0) were then determined based upon a
differential comparison of the 1990 and 1992 data.
The star selector parameters alone were adequate to
define deviations from design distortion to roughly
the accuracy of the ground catalog (- 30 mas, lo),

whereas adjustments to (8A, 0A0) captured the

2.,year differential changes to within the accuracy of
the 1990 FGS data (~ 8 mas, lo).

Using the NGC 5617 mini-OFAD solution as an

initial estimate, we processed the M35 data through
the full-OFAD algorithm to generate an intermediate
solution star catalog with which to correct the MS
catalog (Ref. 10). The state vector for this solution
consisted of coordinates for the 91 observed stars,
3 star selector parameters, 14 polynomial distortion
coefficients (up to third order), and attitude Euler
angles. The single-axis standard deviation of
residuals for the fit was 3.3 mas. As described in

Section 4, we used the FGS-generated star coor-

dinates catalog to correct the MS catalog. (The
correction was dominated by the dependency on
magnitude, the size being 36 ± 6 mas / my. ) The
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correctedMS catalogand the 18 framesofl_S M35

data were then used in a mini-OFAD calculation.

The statevectorforthissolutionconsistedofthestar

selectorparameters,15 distortionpolynomial coef-

ficients,and attitude Euler angles. As described in

Section 3, three constraints were applied to the

distortion polynomial to prevent any meaningless

change in translation or rotation content. The

single-axis standard deviation for the postfit resid-
uals of this solution was 22 mas.

The state vector for the subsequent full-OFAD

calculation consisted of the 3 star selector param-

eters, 21 polynomial coefficients, 51 Euler angles,
and coordinates for the 91 stars. Five constraints

were applied: the four translation, rotation, and scale

polynomial constraintsand the single (8A+8 B)

constraint.The single-axisstandarddeviationof

residualsforthisfitwas 2.5 mas. (Afteradjustment

forthe dimension of the statevector,thistranslates

intoan estimate for the intrinsicroot-mean-square

FGS measurement errorof 2.8 mas.) As discussed

inSection3,rescalingof thisOFAD solutionusing

the mini-OFAD algorithm was required because

changes in 0A0 generatescalechanges as well as

distortionchanges. Based on the accuracy of the

MS catalogand the number of starsobserved,we

estimate the scale accuracy of our finalOFAD

solutionto be good to I part in 2.5"I05(roughly

3 mas over a 12-arcminutearc).A finalFGS-based

M35 catalog was then generated using the full-

OFAD softwarewith thestatevectorrestrictedtothe

attitude Euler angles and the relative star

coordinates. The 2.5-mas standard deviation of

residualswas preserved through this rescaling

process,verifyingthebasicvalidityoftheapproach.

Our final results agree well with the independent

calibration work performed by the STAT (Ref. 13),
which found a solution characterized by a standard

deviation of the residuals of 2.3 mas. The slightly

tighter residuals found in the STAT solution are

probably a consequence of the team's incorporation
into their algorithm of a spacecraft jitter correction

based upon observations of the guide stars at time

points coincident with the astrometry observations.
The two-axis root-sum-square error in a single

observation implied by the calibration results is

3.5 and 3.2 mas for the PASS and STAT solutions,

respectively, which agrees well with the prelaunch

expectation of 2.7 mas.

5.2 Al_memLR_,u_

Refs. 1 and 2 presented our early relative alignment
determination results for the three FOS FOVs. The

first determination was based on 17 frames of

NGC 5617 data taken in December 1990. Each

fxame contained observations of 2 guide stars and

about 10 astrometry stars, F(3S-2 being used for

astrometry. Corrections for velocity aberration,
distortion, scale, and CT/FL offset were applied

before determination of the relative FOV align-

ments. The Yale catalog was used to provide the

fundamental reference set of angular separations.

The postcalibration standard deviation of residuals
for the difference between measured and reference

star separations was found to be 35 mas, consistem
with the estimated accuracy of the reference catalog.

Subsequent observations in January 1991 and May

1991 indicated apparent relative shifts of the FGS
FOVs. The alignment change was manifest pri-

marily as motions in opposite directions parallel to
the V3-axis by the FGS-1 and FGS-3 FOVs relative

to FGS-2, the magnitude of the shifts being of order

200 mas after 5 months.

The repeat visits to NC-C 5617 in December 1991
and December 1992 have allowed a continued

monitoring of the long-term changes in the relative

alignments of the FGSs. Specification of the
changes in the relative alignments of the FGSs is

coupled to the assumed form of any changes to the

individual responses of the FGSs. Different

effective alignment shifts are seen depending on the

model used to represent distortion changes. Our

decision to represent distortion changes using the

parameters 8A and 0A0 influences our alignment

change results significantly, but ultimately only at a

level of order 10 percent of the detected alignment

change. Our differential method for determining the
relative alignment changes from December 1990 to
December 1991 and December 1992 is discussed in

Section 3. The December 1991 data were acquired

in a repeat of 4 of the previous year's alignment
determination orbits; the December 1992 data were

acquired in a repeat of 3 of the December 1990
OFAD determination orbits, with each FGS in astro-

merry mode once. The_cember 1991 (AV2, AV3)

shifts in effective coordinate grids for FGS-1 and

FGS-3 relative to FGS-2 were (110,-160) mas and

(370, 690) mas for F(3S-I and FGS-3, respectively:
the December 1992 shifts were (120, -660) mas and

(530, 1030) mas for FGS-1 and FGS-3, respectively.

Roll changes were small and have not been included
here. The standard deviation for the residuals in
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these differential fits was about 10 mas. The rela-
tive shear between FGS-I and FGS-3 increa_d from

about 850 mas in December 1991 to nearly 1700
mas in December 1992.

The physical cause of this continued change in the
relative alignments of the FGSs remains under

investigation. Some significant progress has been
made by HDOS optical engineers via a study of data
taken using the internal test source (ITS) for each
l:g3S. Ideally, the coordinates of each ITS should
remain fixed with time. HDOS has found that the

ITS coordinates are changing and that appropriate
differences between the coordinate changes for
FGSs 1 and 2 and for FGSs 3 and 2 are strongly
correlated with the changes reported for the relative
alignments of the FGS FOVs. (Three of the four

comparable coordinate differences agree to within
about 20 percent for the two different procedures.)
This suggests that the effective alignment changes
are occurring as a result of changes intemal to the
individual FGSs. As part of its general effort to
characterize the on-orbit changes in the HST/FGS
system (Re(. 14), HDOS conducted an optical
sensitivity study that indicated that motion of the
FGS asphere could cause relative alignment changes
of the detected size. The physical mechanism that
drives the motions remains unclear.

6. SUMMARY

This paper has presented a review of the procedures
and algorithms used for the calibration of the HST
FGSs, as well as a discussion of the results obtained

through the end of 1993. Despite the well-
publicized problems with HST discovered shortly
after launch in April 1990, significant progress has
been made in calibrating the system to achieve good
pointing performance. Design-level (~ 3 mas)
distortion calibration for FGS-3 was achieved with

data taken in January 1993. Distortion calibration at
the 30-mas level has been achieved for the

remaining two FGSs. Long-term trends in distortion
variation have been measured and characterized for

all three FGSs, and a long-term stability monitoring
program has been put in place for FGS-3. Short-
term (intraorbit) variations in the effective
alignments of the FGS FOVs have been observed
and adjusted for in the distortion calibration for
FGS-3. Relative alignment calibration for the FGSs

has been achieved at the 30-mas level. Systematic
long-term changes in the relative FGS FOV
alignments with rates on the order of 0.5 arcsecond

per year have been found. Continued monitoring of,

and adjustment for, these changes in FGS distortion

and alignment calibration will be an important
feature of routine HST engineering calibration
maintenance as HST scientists strive for fell design
performance from the telescope during the post-
FSM era.

A great many individuals and organizations have
been involved in the efforts that ultimately resulted
in the successful calibration of the HST FGSs.

Besides those already alluded to in the body of this
paper, we would like to explicitly acknowledge the
efforts of two individuals. Paul Davenport
(GSFC/CSC) served as lead system engineer for the
HST operations management system through the
years of its development before launch; his analytic
insights provided the basis for, or extensions of,
many of the algorithms in the PASS system. Keith
Kalinowski (GSFC) served as the chief

representative of the HST project office to the
FGSWG. His dedicated efforts and technical

insights were invaluable to all aspects of the
FGSWG investigations, but particularly with respect
to the selection and preparation of the M35
observing scenarios used for the OFAD calibration.

The work reported in this article was supported in
part by NASA contracts NAS 5-31500 (Welter),
I-IB80FA940N (Abramowicz-Reed), NAS 5-31786
(Guha), and NAS 5-31000 (Kimmer), which enable
CSC, HIX)S, AKG, and ATSC to provide systems
engineering, analysis, and operations support to
NASA/GSFC.
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optical field angle distortion

POCC Applications Software Support

pointing control system
Payload Operations Control Center
scientific instrument

Space Telescope Astrometry Team

Space Telescope Science Institute

G. Welter, CSC, 1100 West Street, Laurel MD 20707

L. Abramowicz-Reed, HDOS, 100 Wooster Heights Road, Danbury CT 06810

A. Guha, AKG Inc., Post Office Box 10135, Silver Spring MD 20914

L. Hallock, Code 512.0, Goddard Space Flight Center, Greenbelt MD 20771

E. Kimmer, ATSC, Code 519.1, Goddard Space Flight Center, Greenbelt MD 20771

122


