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Measuring Attitude with a Gradiometer

David Sonnabend* Thomas G. Gardner?
Abstract

This paper explores an idea of S. Kant of Goddard -- can a gravity gradiometer measure the

attitude of a satellite, given that the gravity field is accurately known? Since gradiometers actually
measure a combination of the gradient and attitude rate and acceleration terms, the answer is far

from obvious. The paper demonstrates yes, and at microradian accuracy. The technique employed
is dynamic estimation, based on the momentum biased Elder equations. The satellite is assumed

nominally planet pointed, and subject to control, gravity gradient, and partly random drag torques.
The attitude estimator is unusual. While the standard method of feeding back measurement residuals

is used, the feedback gain matrix isn't derived fxom Kalman theory. Instead, it's chosen to minimize

a measure of the terminal covariance of the error in the estimate. This depends on the gain matrix,

and the power spectra of all the process and measurement noises. An integration is required over
multiple solutions of Lyapunov equations.

1 Notation 8z Units

Uppercase bold roman letters are 2 dimensional arrays; e.g., F. Lowercase bold roman or greek letters

are column vectors; e.g., r. Magnitudes of vectors are non-bold; e.g., r = Irl. Lowercase greek subscripts

are indices. The Einstein summation convention is used for repeated lower case greek indices. Overdots

signify time derivatives; e.g., Jc = dx/dt. A T superscript denotes transpose. Primes denote scaled
variables. Sines and cosines are denoted by s and c respectively.

A = constant matrix in Riccati equation

ae = fe/m = external non-gravitational acceleration on spacecraft
a/= inertial acceleration of the ith accelerometer

B = process noise state distribution matrix

C ---- vector of state concern values; Ct --- settling time concern value

D(w) -- matrix satisfying Lyapunov equation (72)

E(x) ---- expectation of x; eQ = unit vector along axis a in coordinate system x

F = plant matrix; fe = external non-gravitational force on spacecraft

G = universal gravitational constant = 6.67259 x 10 TM N_m2/kg2

g = gravity field vector at r; gi = gravitational acceleration at the ith accelerometer

H --- measurement partials matrix; h -----spacecraft pitch momentum bias

In ---- identity tensor of order n; J = overall spacecraft inertia tensor

K = filter feedback gain matrix; L --- HTM-1H in Riccati equation

kl-4 = constants defined in (23); k I = air drag force constant defined in (33)M combined " • ,,
----- eqmvalent white noise matrix defined in (80)

m --- spacecraft mass; also field source mass

N(w) --- matrix defined in (75); P_ = terminal covariance of the error of the estimate

Q(w) -- function of power spectra defined in (68); q = performance index; also dynamic pressure
R(r) = autocorrelation matrix with delay r; R(0) -- average power

r --- field position vector relative to m; rc_, = spacecraft center of pressure

S(w) -- general noise power spectrum; S_, S= = white noise spectra

s, t superscripts signify spacecraft and trajectory coordinates

t = time in seconds; t r ___tiC? = scaled time; ts = filter settling time

U = process noise measurement distribution matrix; u = vector of controls
V --- BSwU T - white process noise effect matrix
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Vo ---- satellite orbital speed
W = B - KU -- process noise effect matrix

w = process noise vector; Wd ----dimensionless air drag random process
X = F - VM -1H = linear term matrix in Riccati equation

x -- state vector; _ -- estimate of x; _ -- dx/dt'

y ___measurement noise distribution matrix
Z --- F - KH -- observer system matrix; z = vector of measurements

• = variation in spacecraft
/" _-- gravity gradient tensor; F0 --- Gin� r3 = gradient scalar due to mass m at distance r

_(Z) = eigenvalue of Z; a = _(;_) -- real part of eigenvalue
pe = Gme = gravitational constant of the earth ----3.98603 × 1014 m3/s2

= _ - x = error in the state estimate; 1"e = non-gravitational external torque
¢_ ___spacecraft angular velocity; _ --- angular frequency used in power spectra

_e = break frequency in power spectrum; wo ----orbital mean motion

Unless otherwise stated, the units used in this paper are ST. However, we have also followed common

practice in the field of gradiometry on the units of gravity gradient. The natural SI unit is (m/s2)/m, or
just s -2. Since gradient components at the earth's surface are on the order of 1.5 × 10 -6 s-2, and are
routinely measured to 10 -9 s -2, or better, this has proved unwieldy. There has now been world wide

acceptance of the EStvSs unit: 1 E = 10 -9 s-2. Here, the SI unit will be used everywhere in the formulas;

but E_tvSs units will be generally employed in the text.

2 Static Attitude Estimation

The gravitational potential due to a particle of mass m at a distance r is:

= -Gm/r (1)

The vector gravitational field at this point, due to m, is the acceleration of a free test particle there:

g = -V@ -- -Gmr-3r - -For (2)

Finally, the gravity gradient tensor field due to m, is:

f 3rrT - Iz) (3)r= vg= ro \-Tr-

Outside the earth, the fields are closely approximated by these formulas. If the test mass is a spacecraft,

in circular orbit about the earth at radius r, then the orbital angular velocity o_o is given by:

2_ Fo _d r3 (4)

in which /Je is the gravitational constant of the earth. The actual potential of the earth is complicated;

but differs from (1) by only about 1 part in 1000 in low earth orbit, less at higher altitudes. The variations

in turn are known to better than 1 part in 1000. Thus, if spacecraft attitude is actually inferred from

gradiometer measurements, this error in knowledge of the field would lead to corresponding attitude
determination errors on the order of 10 -° rad, almost surely not the worst error contribution. In any

case, the intent of the study is to find the accuracy with which a gradiometer can measure attitude, given

that the field is known; so the study neglects field knowledge errors.

On the other hand, neglect of the known deviation from sphericity (mainly oblateness) would lead to

attitude errors on the order of 10 -3 rad, usually unacceptable. However, our intent is to determine

feasibility; so the form of the necessary oblateness correction is outside the scope. A real system would

also have to deal with eccentric orbits; but as the orbit is not solved for, the observability of the attitude

can't be seriously affected by eccentricity; and the spacecraft orbit is taken here as circular.

In general, coordinate systems are described by sets of right handed orthonormal base vectors e_, where

= 1, 2, or 3 denotes the axis, and x indicates the system. 1st, the spacecraft system e s. This is the
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physical system in the spacecraft to which all the accelerometer input axes, and all other instruments, are
aligned. For simplicity, it will be assumed that the origin of e s is at the spacecraft center of mass. The

term "spacecraft attitude" means the rotation that connects e s to a trajectory system e t. e t is defined as
the local upward vertical, through the origin of e a, and e_ is parallel to the orbital angular momentum.

e_ completes a right handed system, and is along the spacecraft velocity vector, e t rotates uniformly at
a rate coo about e_ relative to an inertial system that won't need to be identified further.

The connection between systems may be described by a matrix of direction cosines A:

= (5)

In this study, the spacecraft is assumed to be earth pointing; so A will be taken as a small rotation. It

then can be expressed in terms of small yaw (¢), roll (¢), and pitch (0) angles; about e_, e_, and e_,
respectively. In these terms, and to 1st order in the angles:

A = -8 1 ¢ (6)
¢ -¢ 1

The need for e t is that the earth fields g and T' are most conveniently expressed there:

gt_-r0re_--r0r[-1, 0, 0] T (7)

F t = Fo diag [2, -1, -1] (8)
and expressing these in e s, where the instruments reside:

g' = Ag t= ror[-1,o,-¢]T (9)

F*=AFtAT=Fo -30 -i 0 (10)
3¢ 0 -1

again to 1st order in the angles. Note first, that while pitch and roll turn up in these expressions, yaw
does not. Physically, this is because r is an axis of symmetry of the fields.

If we could measure either g or F in e ", we could infer both 0 and ¢. Alas, accelerometers don't

measure gravitational acceleration at all, and gradiometers are strongly perturbed by angular velocities

and accelerations (see below). What if dynamic effects could be removed? For example, if a spot
measurement of F_3 could somehow be made, the error in ¢ would be:

6¢ = _r/(3r0) + 3¢6r/_ (11)

Suppose an orbit altitude of 500 km. Then r = 6.867 × 108 m, and r0 -- 1231 E. A gradient measurement

accuracy of .01 E would then contribute 2.708 × 10 -8 rad to 6¢. The analysis of g0 is similar, given a

measurement of F_2. In each case, the 2nd contribution to the error comes from the uncertainty in the
knowledge of r. Supposing _fr = 10 m, and ¢ = 0.1 rad, this contribution to _f¢ comes to 4.37 × 10 -7 rad.

Since satellite tracking usually determines r rather better; and attitude control is typically much tighter;

the tracking contribution may be regarded as conservative, and won't be considered further. Thus, if spot
measurements of the gradient could be made at the .01 E level, then roll and pitch determination at the

microradian level would be possible. If this gradient measurement came from a pair of accelerometers,
with an 0.5 m separation and independent errors, their required accuracy would be

_a = 0.5(10-n)/21/2 = 3.536 x 10 -12 m/s 2

within the capability of the best room temperature accelerometers today, operating in space.

3 Dynamic Attitude Estimation

If gradiometers actually measured the gradient, then a model would be something like z = T' plus noise,
or a subset of its components. A least squares analysis would then yield the covariance of the errors

in the estimate of the desired ¢ and 0, for each discrete sample z. However, as any real gradiometer

measurement z contains functions of w and D, least squares analysis won't suffice; and we have to resort

317



to dynamic estimation. The plant equations consist of the Euler equations of more or less rigid body

motion, plus kinematic equations relating w to the attitude angular rates. Actually, as there is very little

process noise (external torque variations), these equations add considerable strength to the estimates;
thus turning a practical necessity into a virtue. These plant equations are developed and linearized below,

a process noise model is spelled out, a filter is synthesized, and it's shown how the terminal covariance
of the errors in the estimates may be determined. A few results are given.

A major variation from the earlier gradiometer dynamic estimation studies, [5] and [4], is that, instead of

treating gradiometers as measuring the intrinsic tensor (see below), this study follows [8] in treating the
instrument as an array of accelerometers. The measurement models consist of what each accelerometer
should measure, plus noise. One advantage of this is that the measurement noises are now uncorrelated,

avoiding the careful treatment needed in [5]. For simplicity, the spacecraft is supposed to be a box, with

edges la aligned along the e_. Supposing a uniform density p, the spacecraft mass is:

m = plll213 (12)

A typical density might be p -- 1000 kg/m3; and the principal moments of inertia are:

J,=m(l]+t_)/12 ; J2=m(Z_+l_)/12 ; J3='_(l_+I])/12 (13)

The orbit is assumed circular, at a radius r. Assuming an altitude of 500 km, r = 6.867 × 106 m,

wo = .0011095 rad/s, and F0 = 1231 E. Also, the spacecraft speed in orbit is vo = r_o = 7614 m/s.

In [4] it's shown that the Euler equations of rigid body motion, when modified to include an arbitrary

bias momentum hw, can be written as:

J& = (Jw +hw) × w + rgg + re (14)

in which the external torque has been separated into the gravity gradient torque 1-gg and the nongravita-

tional torque l"e, the latter mostly due to air drag. Note that the derivative is the rate of change as seen
in e _. Control torques could be included in l"e; but as they would thed reappear in the filter structure

equations, they cancel out in the covariance study. Unfortunately, this system is nonlinear in w. Since
we are analyzing a nominally earth pointing satellite, the nominal value of w is woeS. However, because

of the body derivatives, a much simpler procedure is to define the variation e by:

¢_ = woe_ + e (15)

Another simplification comes by arguing that, in an earth pointing satellite, bias momentum, if any, is

usually confined to the pitch axis: (16)
hw = he_

Additional wheels for control aren't precluded; it's only required that their nominal momentum is zero.

Substituting these relations into (14), and deleting quadratic terms in e, yields

J_ = wo(Je) × e_ + Wo(Je_) × (woe_ + e) + he_ × • + 1"gg + "r, (17)

We also need vgg. The well known formula in e t may be put in the form:

' = 3Foe_ × (Jte_) (18)
I"99

Since only js is readily available, and as what we really need is r_g, we need to work out

= -- + J23¢ + J12

Note that, while nothing depends on ¢, there is a yaw torque, arising from off diagonal components of J.

These also produce bias torques in roll and pitch. That's why, for earth pointing satellites, it's generally
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preferableto point some principalaxisup. Moreover, by making thisaxis (e_) have the leastJ, "rggis

restoring.Here, where the main issueisobservability,it'sassumed that thisconditionismet, when

J'= diag[J1, J2, Ja] (20)

In the examples, it's further assumed that J1 < J2 < J3, known to be the best configuration for gravity
gradient stabilized satellites. With the principal axis assumption, the torque reduces to:

: _';g -- 3F0[0, (J1 - J3)¢, (J1 -- J2)8] T

On putting this into (17), and expressing it in standard form, the Euler equations become:

_1 = kle2-{- J_lrel

t2 = k2el -{-k3¢ -{-J2-1ve2

t3 ---- k40%j_'lre3

in which the constants are defined as:

('21)

(22)

kl : [wo(J2-Ja)-h]/J1 ; k2 = [Wo(J3-J1)d-h]/J2 ; k3 = 3Fo(J1-J3)/J2 ; k4 -_ 3ro(J1-J2)/J3 (23)

If the gravity gradient and other external torques are neglected, then el and e2 decouple from _a in (22),
resulting in a harmonic oscillator with frequency WN given by:

_ = -k_k2 (24)

This isthe naturalnutation frequency,arisingmainly from the momentum biash.

To complete the plant equations we must add the kinematical relations.With the same linearizing

assumptions, these are easilyshown to be (seeforinstance [4]):

= _, + _,o¢ ; _ = _ -_,o¢ ; _ = _3 (25)

We now have a linear system of plant equations of 6th order in _, ¢, ¢, and 0.

The random process appearing in the Euler equations (22) is the external non-gravitational torque re.
At 500 km, this is largely due to air drag; and the random component is largely from variations in air

density pa. For gradiometer studies, a flat earth barometric model was adopted in [4]:

p°(,.+ _,.)= p,_(,.)_-6,-/h. (26)

where ha is the density scale height. At 500 km, [9] lists Pa = 1.905 x 10 -12 kg/m 3, ha : 83,000 m, and

a mean free path of 25,000 m. These numbers are, admittedly, quite shaky. In any case, the dynamic
pressure then comes from the speed:

q= pav2o/2 (27)

and with the above numbers, q = 1.106 x 10 -4 N/m 2. Since the speed is along e_, and the spacecraft
attitude is not far from nominal, the steady force from air drag is very nearly:

fe : --qlll3CDe_ (28)

Because the mean free path is much larger than the spacecraft, drag is essentially Newtonian, with a

coefficient CO : 2. However, since some inelastic, oblique, and diffuse scattering of air molecules is

likely, this CD may be high, and Co : 1.5 is adopted. We should also consider radiation pressure.

Corresponding to q is Is�c, where Is : 1360 w/m 2 the mean insolance outside the earth, and c is the

speed of light. Thus, the mean "radiation dynamic pressure" is 4.54 × 10 -s N/m 2, well below q; and as

the variations are much slower than for air drag, radiation pressure is ignored. [4] goes on to develop a

statistical model. It supposes that Pa is actually the mean of a distribution, to which a random component
is added:

Pr = paWd(t) (29)
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wd(t) is a dimensionless, zero mean, random function of position and time. At satellite speed, the spatial
variation dominates. Suppose that wd(t) has a standard deviation aw. Still, we need a power spectrum.

Physically, we are looking at dynamic variations in density, with scale lengths of order hs, plus the
orbital frequency variation due to solar heating of the atmosphere. The latter, while reaching substantial

amplitudes, is confined to such low frequencies as to have little effect on the attitude estimates, and is

ignored. As for dynamic variations, we can imagine variability on all length scales, but petering out
below distances of order hs. This situation led to the development of the cubic power spectrum in [2]:

S(w)-- _R(O) 1- w 1+ (O<_w<_2wc) (30)
cd c

and zero otherwise. Suppose the autocorrelation of variations falls by half at a distance ahs. The time
to travel this distance is A = oh,/vo, and [2] shows that, for the cubic spectrum, we should choose:

7rvo (31)
wow----2A 2ah_

We must alsopick Rw (0)and _. The best informationpresentlyavailableto us isan analysisofCACTUS

data in [10].Accelerometer data over approximately 800 s intervalswas analyzed at altitudesbetween
270 and 320 kin. Density variationsof _ 4%, peak to peak were typical;risingsometimes to _ 15%,

during severemagnetic disturbances.The correspondingaw valuesare.014 and .05.A reasonablebalance

between these valueswould be _ .02;but, allowingfora bit greatervariabilityat higher altitudes,we

have taken aw = .025. Then, as these time seriesmeet the oversampling conditionsdiscussed in the

Appendix, R,,(0)= a2w = 6.25 x 10-4. As for c_,[I01doesn'tshow a power spectrum, but does give

representativetime seriesofa normal and a disturbedinterval;and statesthat the apparent wavelengths

concentratein the range of 700 to 1500 kin. Examination of the time seriessuggests that R(r) fallsto

0.5 at r ,-_50 s. Translatingto our altitude,the corresponding distanceis381 krn,when a = 4.6.Since

for a sinusoid,R(r) fallsby halfat 1/3 of a wavelength,thesenumbers are at leastconsistent.Again, to

allowfor a bit more variabilityat 500 kin,we have taken a = 4,leadingto wct_= 0.03606 rad/s.

Itremains to convert thisto torque.The overalldrag forceisvery nearly:

f, = -ki[1 + wd(t)le_ (32)

where
ks - pav hhCD/2 (33)

Supposing a center of pressure at a location r_p in the spacecraft, the torque due this is:

We = rcp X fe = kS[1 -I- Wd(t)lIrcp3, O, --rcpl] T (34)

Note that there a deterministic bias force and torque, which must be treated correctly in the filter. Also,

while our box structure has no torque along e_, an actual spacecraft would likely have a small propeller

torque on this axis. To allow for this below, a component rcp2 replaces the zero in (34).

4 Measurement Model

In [5] and [3], the instrument was modeled as measuring elements of the "intrinsic" tensor:

T = F + w213 -- _T + t_' (35)

where • is the 3-index permutation symbol. The quadratic w terms are centrifugal effects. Because

the instrument is fixed in e', there is no eoriolis. Here, the instrument is dissolved into its component

accelerometers, partly to avoid the noise correlations required in [5] and [3], but mainly to prepare for

later studies. The gradiometer is taken as an array of 3 axis accelerometers, with input axes aligned

s For entering symmetrical arrays, it's convenient to identify a "center" of the instrumentalong the e a.
re, relative to the origin of e s. Then, the ith accelerometer will have a position rai, relative to the center.

Thus, its location _elative to the center of mass is:

ri = r_ + r_, (36)
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For a perfectly circular orbit, the center of mass is subject to -w_re_. As for rotation effects, e s is

rotating at a rate w, relative to an inertial frame e". So, purely due to rotation, the inertial velocity of

the ith accelerometer is (the superscripts indicate the frame in which the derivative is observed):

d" d s

i'_ = _-r_-- _r, + w x r_-- u_ x r_ (37)

the latter because r_ is invariant in e s. Going to the next derivative

d n " d n

i:i=-_-r_=dtxriTc_x _-rl----d3xriTw x (wxri) (38)

Note that & is the same, whether viewed from e" or eL Finally, on including the external non-
gravitational acceleration a_, the ith accelerometer is subject to:

2 t (_ xr_) +& x r_ +aea_ = -wor % + _ x (39)

On the other hand, the gravitational acceleration of the ith accelerometer is gt plus the correction at r_
due to the gradient. From (7) and (4), this comes to:

2 t
gi = --worel + Fri (40)

Actual accelerometers measure only non-gravitational acceleration; i.e., the difference between inertial

and gravitational acceleration. These are identical in free fall, when an accelerometer measures zero.

Conversely, an accelerometer on a table on earth measures the acceleration imposed by the table that
keeps the instrument from falling through the floor. Thus, the ith accelerometer model is:

zi = a_ - gi + vi (41)

where vi is the noise in the 3 measurements. On substituting from above this becomes:

z_ = u_ x (_ x r_) + & x r_ - Fr_ + ae + vi (42)

Note that the acceleration of the center of mass has dropped out. The next step is to linearize this using
(15). On neglecting the quadratic terms, and recalling that D is the same in e n and e s, we get:

z_ = wo (_oe_ + _) x (el x r,) + woe_ x (E x ri) + & x ri - rr, + a_ + v_ (43)

We'll work this out term by term, in the form of matrices of constants times the state variables, plus
whatever is left over. Starting on the left:

e_ x (e_ x ri) = rzae_ - r_ = -[r,1, r{2, O]T (44)

ril ri2 0 _3

0 0 0 e3

The _ term can't be expressed directly in the state variables; however, from (22), there follows:

_xri=
k2ri3 0 k3ri3 -k4ri2

0 -klri3 0 k4ril

-k2ril klri2 --k3ril 0 J21ri3re2- J31ri2re3 J
+ j_lrilre3 - Jllri3rel

Jllri2rel - J21rilre2
(47)

The/" term comes directly from (10):

Fr_ = 3Fo
I ri 3 --ri 2

0 --ril

r,l 0

+ £o
[ 2r_l ]

--ri2

--r_ 3

(48)
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and on combining all these, and substituting from the process noise model:

Zi _--- (k3 + =o),'.3 0 -2,,.,o,'. 0 (k3 - 3ro),',3
0 (Wo -- kl)ri3 --2Wori2 0 0

(Wo -- k2)ril (kl + wo)ril 0 0 -(k3 + 3Fo)ril

(3Fo - k4)ri2

(k 4 + 3Fo)ril
0

+ Fo + k! -J31rilrcpl - dllri3rcp3 - m-I
ri3 Jllr*2rcp3 -- J2 lrilrcP 2

[1 + wd(t)] -I- v,

_3

0

(49)

This completes the descriptionofthe accelerometers.There is1such 3 vectorforeach accelerometer.The

noise depends criticallyon instrument design;but as we are interestedonly in feasibility,no particular

instrument isused. Since a power spectrum isneeded even fora genericinstrument, a cubic spectrum

similarto (30) isassumed. The Appendix shows how the averagepower R_(0), and the break frequency

c_¢_,are determined from the rms accelerationerrorand the averagingtime r of the measurement.

5 Filter Structure

The Iststep incalculatingthe terminal covariancein a dynamic estimationproblem isto determine the

structureofthe filter.This startswith identifyingthe set ofstatevariablesthat appear in the plant and

measurement equations.From (22) and (25),it'sclearthat we should choose:

x = [_1, _2, E3, ¢, ¢, o]T (50)

Following [7], it's conventional to consolidate the plant equations in standard linearized form:

= Fx+ G(u) + BN (51)

Here, F is the plant matrix, u is a vector of controls, G(u), a possibly nonlinear vector function, distributes

the controls, w is a vector of independent process noises, and B is the process noise state distribution

matrix. The matrices are readily identified. From (22) and (25), we find:

F=

0 kx 0 0 0 0

k2 0 0 0 k3 0
0 0 0 0 0 k 4

1 0 0 0 Wo 0

0 1 0 -wo 0 0

0 0 1 0 0 0

(52)

As for the control and process noise terms, it's convenient to separate the deterministic process noise bias

from the random components, and combine them with the actual controls, if any, to produce the G(u)

used here. Since these terms will eventually cancel out in the analysis below, the actual controls have no

effect on filter performance, and there is no need to spell out G(u). Finally, by identifying w with wd(t)

in (34), and including propeller torque, we have:

B = kf[rcp3/Jl, rcp2/J2, -rcpl/J3, O, O, 0] T (53)

Turning now to the measurement model, the direct appearance of the process noise in each of the ac-

celerometer measurements requires a modification of the usual standard model:

z = Hx + Yv + Uw + zB (54)

Here, H is the measurement partials matrix, developed above. From (4g), this is:

[ (k3+_o)ri3 0 -2wor'l 0 (k3-3F°)ri3 (3F°-k`)r'2 ]
Hi = 0 (Wo -- kl)ri3 -2wori2 0 0 (k4 + 3ro)rix (55)

(_o- k2)r,_ (k_ + _o)ri2 0 0 -(k3 + 3ro)_ 0
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andthe complete measurement partials matrix is:

H = [H T, H T, ...]T (56)

For example, if there are 7 vector accelerometers, H will be a 21 x 6 matrix.

For measurement noise, it's assumed that each axis of each accelerometer has separate independent noise.

Thus, v(t) has one element for each element of z, and Y is just an identity. A more elaborate model may
be found in [1]; so Y is retained in what follows. The spectral properties of v(t) were developed above.

As for the process noise term, having established that w is wd(t), U comes immediately from (49):

J2 ri3rcp2 + J3 ri2rcpl

Ui k! -_ -1 -1
= --J3 rilrcpl -- J1 ri3rcp3 -- m (57)

-1 -1
J1 ri2rcp 3 -- J2 rilrcp2

The overall U is a column vector with 3 such elements for each accelerometer. The remaining terms in
(49) constitute the bias zB. As it doesn't affect the covariance analysis below, it's not spelled out.

An observer based on these models starts with an estimate _ of the state x. This is caused to follow the

deterministic parts of the plant equations (51), corrected by feeding back the residuals, i.e., the actual
measurements z minus the measurement model (54). The filter structure then takes the form:

f¢ = F_ + G(u) + K(z - HE - zB) (58)

Note that this structure assumes that the control and bias terms are known, and available to the filter.

The issue buried here is that G(u) is accurately modeled, and that the biases have been accurately
determined by some sort of in flight calibration. Pursuing these points is beyond our scope.

6 Terminal Covariance

The performance of a dynamic filter is generally examined by determining the statistics of the error in
the estimate, defined by:

_-i-x

The evolution of _ comes from subtracting (51) from (58):

: Z_ + KYv(t) - Ww(t)

where the observer system matrix and the process noise effect matrix are defined by:

Z=F-KH ; W-=B-KU

(59)

(60)

(61)

There's lots to learn from (60). 1st, x, _, and all the control and bias terms have disappeared. Thus,

the quality of the estimate doesn't depend on the controls, even if they fail to stabilize the plant --

the "Separation Theorem" in the controls business. 2nd, filter stability requires Z to be stable; i.e.,

all its eigenvalues are in the left half plane, a standard requirement in any negative feedback system.
Filter theory puts this differently: if a K can be found such that Z is stable, then the state x is said

to be observable by the measurements z. 3rd, the diagonal elements and the eigenvalues of Z have the

dimensions of inverse time; and filter settling time is essentially given by the inverse of its least negative

eigenvalue. This is used below to insure that the "optimal" filter has a reasonable settling time. Finally,
since the noises are unbiased, so is _(t).

Various measures have been proposed to study the quality of the estimate. Here, and generally in the
references, attention has centered on the covariance of the error:

P_(t) = E[_(t)qT(t)] (62)

where E is the expectation operator. The idea that, in a stationary system, PC(t) would have a terminal

or asymptotic value, has been around a long time, but finding it could be quite tedious, if the settling time
was long. About 4 years ago, William McEneaney, in unpublished notes, showed that this terminal value
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P_ could be calculateddirectlyfrom the structuralinformationand the noisestatistics.On generalizing

to arbitrarypower spectra,his ideasled to [6]and [7].

The present problem differsfrom [7]primarilyby includingprocessnoise in the measurement model.

Also, [7]dealt with the autocovariancesof allthe noises,and ithas since been found much easierto

work with power spectradirectly.Since none ofthisappears inprint,the algorithm forcalculatingP_ is

derivedhere. To begin,itmay be supposed that the filterhas been running for allpast time;when the

initialconditionshave settledout. Then (60)issolvedfor "now" in thisform:

_(0) =/o °° eZziKYv(#) - Bw(/_)ld_ (63)

where the dummy variable # may be interpreted as past time. Strictly, the noise terms should be v(-_)

and w(-#); but, as only the statistical properties of _ matter, it makes no difference. An apparently

graver problem is e zz -- the dimensions of Z/_ depend on those of x, thus calling into question the

validity of the formal expansion. However, from (60), the dimensions of the vector tZx are just those of
x. Thus, all terms of the form/_iZix have the same dimensions, and if the exponential is merely viewed

as shorthand for the formal expansion, there are no dimensional difficulties.

The terminal covariance may now be found by substituting this into (62):

• T v

P_ =/o °° _o eZ_{KYE[v(I_)vT(v)IyTKT + WE[w(/_)WT(v)IWT}eZ d.dv (64)

This supposes that the expectation and integration operators may be commuted, and uses the assumption
that w and v are independent and free of bias. On recognizing the autocorrelations of the noises, this is:

p_ = /0 °° _0°° eZ.[KYl_(.- v)yTK T + WR,_(/_ -v)WTleZTVd" du (65)

Well, autocorrelations and power spectra are Fourier transforms of each other. Using the one sided

spectra of [6], these relations for any noise component are:

/01 /o °_ S(_)c(rcJ)dw " S(_:) = 2 n(_l)c(wr)dr (66)R(_) =

After using the former in (65), and interchanging the order of integrations, there follows:

p, = l _o°° _o°C _oC_ eZ_q(_)eZ" vc[w(/_ _ v)]d#dvdw (67)

in which:
Q@) - KYS_(w)yTK T + WS_(w)W T

Considerable progress can now be made by a change of coordinates:

8_+v ; _--v

(68)

(69)

the double integration region is now the quadrant surrounding the +8 axis, so

[L /;1 _0 °° eZv/2 eZe/2q(w)eZre/2dOe-Z n/2c(_})dT/P_ -- 2,r ,7

+ _oCCeZn/2_°°eZe/2q(w)eZre/2dOe-Zrv/2c(wzl)d_l] dcJ
(70)

Now, it's not hard to establish that

eZe/2Q(w)eZre/2dO = 2eZe/2D(w)e zre/2 + constant
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where D(w) satisfies the Lyapunov equation:

ZD(w) + D(w)Z T = Q(w) (72)

Putting this into (70), setting ,7 ---. -7 in the 1st integral, and evaluating at the required limits, a
considerable simplification results:

p_ 1: [D(w)j_0 °° ZT_ r°°eZ,lc(w#)d_D(w)]= - e c(_)d,i + ]0

when another analytic integral has surfaced:

°° z
0 _ 'c(_,)d_ = -(Z +_Z-I) -1

leading finally to:

d_ (73)

(74)

p_ = 1 /_7 [N(w) + NT(w)]dw ; N(w) _= (Z +w2Z-1)-lD(w) (75)

It may be noted that this analysis would break down in several places but for Z being stable. Once again,

especially in (74), the dimensions may look flaky. However, letting ui represent the dimensions of xi,

it is readily shown from the differential equations that the expressions Zqt, Zq/w, and wZ_ 1 all have
the dimensions uJuj. By extension, the ijth element of (74) has the dimensions tui/uj. This work has

established the forward procedure. For a given K, Z and W are computed from (61) and (61). A set ofw

values is chosen to cover the region where any of the noise spectra are nonzero, with reasonable density.
Q(w) is then determined over this set from (68). Each Q(w) yields a corresponding D(w) by solution of

the Lyapunov equation (72), and a corresponding N(w) from (75). P_ is then found by integrating (75).

7 Optimal Feedback Gains

Having found how to compute P_ from K, we still need to find the K that yields optimal filter perfor-
mance, whatever that means. While P_ certainly contains the necessary information, in this 6th order

problem there are 21 independent matrix elements; so some sort of scalar measure of P_ is needed. The

software used here is based on a performance index q, constructed from the weighted trace of P_:

q = P_a°/C_a (76)

In this technique, known as "Bryson weighting", each C_ is the "level of concern" for the error _i. For

example, if xi were a position, the level of concern might be C_ --- 1 m. Ci = 10 m would show less

concern, and cause the optimization to put less weight on the variance of _i- Note that the Bryson

technique has the virtue that q is the sum of dimensionless terms -- it doesn't add apples and oranges.

A further concern can be added to the performance index -- filter settling time. If the K that minimizes

(76) leads to a Z with a small (though negative) eigenvalue, then we may see from (60) that the settling
time of the filter will be long, perhaps excessively so. To avoid such a problem, a term may be added to

(76) penalizing the filter settling time. To see how to do this, consider the behavior of the filter evolution

equation (60). If As symbolizes the eigenvalues of Z, and ao - _(A,_), then the filter response to initial

conditions or perturbations may be regarded as a set of n exponentially decaying modes, with individual
settling times -1/as. Since all n modes decay simultaneously, the overall settling time is:

= - (77)

Now suppose we introduce a concern level Ct in seconds for the settling time ts. Then the overall
performance index may be taken as:

q = (P_o,,/c_) + t,/c, (78)
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The added term serves another function. The stability boundary for Z is that all aa < 0. Thus, as some

aa "* 0 from the left, t, _ _. So, adding the ts term erects a barrier against Z going unstable. If

we have picked the concerns C_ and Ct, and have a K, such that Z is stable, then P_ may be found as

detailed above, and q computed. Next, each element of K is varied, to get a 6q. Taken together, these
constitute a Vq, relative to the elements of K. A minimum q is then found by searching along -Vq.

This whole process is iterated until q bottoms out. The final K is the "optimal" feedback gain, and the

final P_ and to comprise the filter performance at that gain. However, this result could just be local.

C4,_,e weight the variances in the attitude angular errors. Since our sponsor feels that 5 x 10 -5 rad is
a reasonable goal for 0 and ¢, these are the adopted concern levels, with .001 rad for ¢. As for C1,2,3,

an uncontrolled gravity stabilized satellite might sway by .05 rad at frequencies of order 2Wo. Thus, the

actual rates ¢ would be N 10-4 rad/s. If we needed to know them to, say, 1%, our level of concern

would be 10 -8 tad/s; and this is taken as the concern level. However, an unusually stringent rate jitter

requirement, would shrink the rate concern levels.

There is one serious loose end -- the starting K must yield a stable Z. The method we use is based

on Kalman theory. Suppose each noise component S(w) is replaced by a flat bounded spectrum with

the same average power R(0), and with cutoff frequency f_ where S(w) vanishes for good. This level is

S ----7rR(O)/fl. The white noise "equivalent" to S(w) has level S out to infinity. Replacing all the noise

components with these "equivalents" causes Q, and thus D to be independent of _. This allows P_ to
be integrated analytically, leading to P_ --- -D, when there is a clean connection between K and P_. On

reorganizing with the help of (61) and (61), so as to make the dependence on K explicit, we have:

KHP_ + P_H TKT - FP_ - P_F T = KMKT - KvT -- vKT + Bs_BT (79)

where: (80)
M --- YSvY T + UswuT ; V - BSwU T

Since an optimum P_ is necessarily stationary relative to variations in K, (79) may be expressed in

components, and differentiated relative to each K_v, leading to this sta_ionarity condition for P_:

KM : P_H T + V (81)

While this can't be used directly to eliminate either K or P_ from (79), we need only assume that some

noise contaminates every measurement component to insure that M is non-singular. Thus:

K = (P_H T + V) M-1 (82)

which, except for the V term, is a staple of Kalman theory. When this is substituted back into (79), an

equally well known algebraic Riccati equation emerges:

A + XP¢ + P_X T -- p_HTM-IHp_ -- PeLP_ (83)

where: , (84)A - B(Sw - S,_UTM-1US,_) BT " X-- F - VM-IH

All this reduces to Kalman theory when the measurements don't depend on w(t); i.e., U = V = 0. In

the software, (83) is solved for P_, and K is computed from (82). While this K is far from optimal for

real power spectra, it does guarantee a stable Z to start the iteration. A potential difficulty is that the

Riccati equation has many solutions; but it's known that at most 1 yields P > 0.

This is quite a large optimization. For example, if the gradiometer is composed of 4 vector accelerometers,
K has 72 elements, all of which must be determined. Such problems are touchy, and the difficulties are

aggravated by poor conditioning in P_ or Z. Some sort of scaling is usually applied to alleviate this.
Here, a natural scaling already exists -- the Bryson concern levels. On the hypothesis that the variance

P_i is on the same order of magnitude as C_, consider scaling the state variables and time:

' = z_/C_ " t'= t/Ct (85)
X i
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which are non-dimensional. Recall that, in the convention adopted in this paper, summation is only over
lower case greek indices. The covariance of the scaled variables is then:

P_ij t !
= E(x,xj) = pOj/(C_Cj ) (86)

The real virtue of such a scaling is that the eigenvalues of P_ should be much closer together than those

of P_, with a corresponding improvement in the condition number. To carry out this scaling, (85) is
substituted into (51), leading to:

k' --- F'x' + G'(u) + B'w (87)in which

F'j = FijCtCj/C, ; B_j = B,jCt/C_ ; G; = GiCt/Ci (88)

It's not hard to show that the scaling makes all these arrays dimensionless. While it's not necessary to
scale the measurements, in the model we must set

from which

The filter structure then becomes:

Hx --- Hlx t

H_j = CjH,j

= F'i' + G'(u) + K'(z - H'_' - zz)

in which the derivatives are with respect to t', and

(89)

(90)

(91)

and the error in the estimate

evolves as

where

' = Ki3C,/CiKij

At t

%'= Z'_' + K'Yv(t) - W'w(t)

W'_=B'-K'U ; Z'=F'-K'H'

In components, these matrices are related to the unscaled versions by:

W,_ = W,_C,/C_ ; Z,_ = ZijC, C_/Ci (96)

Note that the matrices Y and U, and thus M aren't affected by scaling. From the determinant relation
for eigenvalues, it's not hard to show that those of Z' obey

I I

_" : c,_o _ Oo= c,_° =_t, = to�c, (97)

On substituting these scaling relations into (78), q becomes rather simple:

q : T_(P_) + t', (98)

The modified iteration starts by forming B' and F'. Then, the transformed algebraic Riccati equation is

' , l ,V , , ,

A' + X P_ + P_X = P_L P_ (99)

in which A', X', and L' are computed as above, except that F, B, and H are replaced by theirprimed

equivalents.Note that V --,V', but no scalingofM isrequired.Solving thisleads to a startingvalue
P_ for the main iteration. Applying the scaling everywhere, the iteration becomes:

Q'(w) --K'YSv(w)yTK,T + W,Sw(a,)W, T (i00)
The Lyapunov equation isthen:

Z'D'(w) + D'(w)Z 'T = Q'(w)

whose solution leads to N' and P_.
unscaled values are

(101)

Finally, when q has settled, yielding the terminal K' and P_, the

C ' • i

P_,j =- ,CjP_ij , K,j = C,K,j/Ct (102)
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8 Results
The calculationof the terminal covariancefor a given set ofinput data requiresthe exerciseof several

programs insequence, allmore orlessinteractive.The programs are allwritteninAPL, and implemented

on a 486DX 33 Mhz computer. A typicalrun requiresseveralhours,almost entirelyforthe minimization

of q,but includingallthe interactiveinput and output routines.All the resultscitedhere are based on

the numbers in the text. The spacecraftdimensions are 2.0,0.7,and 0.5 m; with a mass of 140 kg. A

momentum bias of 10 N-m--s isadded, yieldinga natural nutation frequency of 0.48458 rad/s. From

the air data in the text,_cwd = .036046rad/s. For numerical integration,63 points were used in the

w vector;but a couple ofruns were repeated with more points,to insurethe accuracy. The instrument

consistsof 4 accelerometersat the cornersof a regulartetrahedron,whose circumscribed sphere has a

radius of0.25 m. The noiselevelsranged from 2 × 10-I° to 10-s m/s2- The averagingtime was 1 s,for

_c_ = 62.832 rad/s.The C_ are as in the text;Ct = I0 s.

In allcases,q was dominated by t,;although thisdominance wanes athigher measurement noiselevels.

Our interpretationisthat ¢ isobservableonly through roll-yawcoupling in the kinematic equations,at

a natural frequency Wo, and thus causeslong settlingtimes. As the noiseincreases,so must P_; and ts

risesto maintain the concern balance. Presumably, a filtersimulationwould show that rolland pitch

would settlemuch more quickly.This behavior isseen inthe followingtable:

109xrmserr°rmlsI02 1i5Ii056. 1.9134.5 51.0 22.8 82.1
a yaw-/_rad 3.04 I 3.33 I 7.06 32.0 20.1 72.5a roll- #rad
a pitch- prad 4.18 I 2.92 I 3.74 16.7 34.5 138

t_- s 223 I 315 I 336 670 695 1378

The progressionto higher noise seems rather erratic. We believethat thisis due in part to the t,

dominance, but much more tothe A(Z). In the 2nd and 3rd runs,tscomes from complex twins. The Ist

and 4th run produced triplets,I ofwhich was real;while the last2 runs yieldedquadruplets,composed

of2 complex pairs.In most cases,coalescencesignaledthat furtheriterationisunproductive. In allcases

there were dramatic improvements from the Riccatiequation startingK tothe finalvalue.Clearly,there

isa greatdeal ofroom forfurtherresearch;and many more runs are planned, varyingother parameters.
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Appendix -- Averaged Measurement Noise
The instruments studied here are modeled as measuring the acceleration of their case, plus noise. In

practice, they generally average the analog output for some time interval r, and deliver a digital result
after each interval. The study considers only analog instruments, and thus takes r = 0. On the other hand,

the instrument manufacturers often characterize their devices as delivering "samples" (really averages)

every r seconds, or alternatively, at a sample rate of 1/_ Hz. The noise associated with these averages is

then specified by a standard deviation a. This appendix deals with relating this type of specification to

the parameters of the assumed cubic power spectrum. This situation was examined in [11], where it was

found that for an arbitrary noise power spectrum S(w), the variance of the averages is:

a2 = 2-2_- 0J_ S (cv) [1 - c(_'w)] _'_2
7_T 2

Assuming the cubic spectrum (30) for the analog noise, the variance can be put in the form:

R(0)fs(  c)

(103)

(lo4)

where, in terms of the sine integral function:

f,(x) = 2-Si(2x) + _-_ z + cx - (1 +s2x)
(105)
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in which:

j_o y SZdz y3 y5si(_) = - = v- + .... (106)z _ 57_!

The function looks ghastly for x << 1; but it actually behaves quite well:

x 2

f,(_) = 1 - -- + o(_ _)9 (lO7)

This is the oversampling limit; i.e., if a time series is very frequently measured, but is long enough to cover

many cycles of the highest noise frequency, then R(0) is the variance of the samples, and the distinction

between sample and average disappears. Actually, this limit holds for any S(w). The other limit, x >> 1

is also clean: Si(x) ---, n/2 and f,(x) _ 7r/x. Overall, fs(x) is a monotonic decreasing function, whose
behavior can be seen from the table:

• 101lo 100f_(x 1 0.99956 0.99823 0.98901

• i 10t 01f_(x) 0.50907 0.28422 0.14958 .061632

0.95740.84917

1 Io 1 10
When a was measured by the manufacturer, the repetition frequency 1/r was probably chosen about an

order of magnitude below the half power frequency wc/(27r). Adapting this reasoning, we can pick:

we = 207r/r (108)

so that rwc -- 20n = 62.832 rad; and R(O) = .0492401a 2. This assumed structure has been used to
determine the measurement noise power spectrum in the study.

References

[1] D Sonnabend, "A Simple GRADIO Accelerometer Model", JPL EM 314-495, 1-24-91.

[2] D Sonnabend, "Cubic Power Spectra", JPL EM 314-507, 6-18-91.

I3] AM San Martin, "SGGM In Flight Calibration", JPL IOM 343-90-601, 11-3-90.

[4] D Sonnabend, "Realistic Gradiometer Dynamics", Proc. IUGG Meeting, Vienna Austria, 8-91; also
JPL EM 314-508, 7-26-91.

[5] D Sonnabend & WM McEneaney, "Gravity Gradient Measurements", Proc. IEEE Meeting on De-
cision and Control, Bierman Memorial Symposium, Austin TX, 12-88.

[6] D Sonnabend, "Who Needs Markov?", JPL EM 314-478, 6--8-90.

[7] D Sonnabend, "Terminal Covariance", JPL EM 314-481, 6-11-90.

[8] D Sonnabend, "Locating a Free Mass", JPL EM 314-465, 9-17-90.

[9] CW Allen, "Astrophysical Quantities", 2nd Ed., Athlone Press, 1963.

[10] F Barlier & C Berger, "Rapid density variations -- Statistical analysis; Applications to gradiometry",
CIGAR CERGA 140/CMTR/s, 6-12-88.

[11] D Sonnabend, "Time Averaged Noise", JPL EM 314-494, 12-12-90.

329




