
Overview of the
MSTI 2

Processor-In-The-Loop Simulator

Christopher A. Rygaard

N94- 35631

Integrated Systems, Inc.

Abstract

To thoroughly test the on-board software for the MSTI 2 spacecraft, it was necessary to generate an envi-
ronment for the software which accurately simulated the on-orbit conditions of the spacecraft. To achieve
this, the MSTI 2 Processor-In-the-Loop (PIL) high-fidelitysimulator was developed. The entire development
was completed in 3 months, and required 4 man-months of effort. This paper describes the design and
development of this simulator, and the methodology employed.

Introduction

Thorough testing of the MSTI 2 on-board software required that the software be placed in an environment
which accurately reproduces the conditions which the software will encounter while it is on orbit. This was
achieved by using a flight processor with flight I/O boards, in conjunctionwith an AC-100 real-time simulator
(see Figure 1). The unmodifi_ed on-board software was loaded onto the flight processor and the I/(2)boards
were utilized in their flight configuration. The AC-100 captured the output s gna s from the I/O boards,
updated its simulation accordingly and emitted the input signals to the flightprocessor. This process
occurred in rea t me.

MSTI 2 PIL

I spacecraft I

models I SSModel __

[Gyro Model

t l Prop Model

I

AC-100 Flight Processor

ASBX

ASBX

!
ASBX] GPC Board

[(2)

ASBX,,, J VCC Board

I

ASBX _1 GPCBoard(2)

M

i Pulse Train

_ TTL I

I Pulse Train

L___

F-

VME Chul4s

CPU

_'4 SEI Board

I_ IVI Board

I_ RWI Board

m

VME

Figure 1

ThiSp_paper.discusses the design of.the PIL, includingan architectural overview, and the development of the
IL, mcludmgthe methodology which was employecl for rapid development. This paper focuses on the

PNf,l_,,,li,O,if_ PAGE BLANK NOT FILMED

331

real-time simulator, running on the AC-100, which emulated the on-orbit environment. The flight processor
and the on-board software are not discussed in detail in this paper.

Overview

The MSTI 2 PIL provided a real-time simulation of.the s._.acecraflenvironment for.test!ng th.e^on:boa.n:l _
software running real-time on the flight processor. {see t-lgure ".z)...Ine p.nma.ry[aSK O.I.me M_/l_o.n_,Doaro
software was attitude control, so the PIL was limiteo pdmarity Tomose runc,ons re_a,ng is me _n,uuu
Control System (ACS). The subsystems which were emulated by the AC-100 include attitude dynamics,
ACS sensors and actuators, and orbit dynamics.

PIL Architecture

CX3MMAND GENERATOR

• Exercbn command dstabsse

SOFTWARE DEVELOPMENT• Executes TARTAN software /

• Supports Download and debugging sotustor - I_
nmman I/

.,,_tuator MOOelS _ _ --I "
...................._ /I Sensor Modelz _ _ _TI

H.-p"_'T_] / r _Dacectarl L/'VrJarrltcl m _.
H I __ f" 1

_. . , IW Sensor
................... U ^c-lo0 =o I r d=,

AC-100 HOST COMPUTER SIMULATION coMPUTER
R

• Displays slmulatlon outputs • Runs flal-tlme epsosofdt
• Control= elmuladlon slrnulatlon

• Accept= actustlon comm=nds
• Outputs sensM rf_ilsurements

Slmuslted

Figure 2

%
llm

) Iml
i i

i

'ER

Telemetry
Readout

* Runs flight code
. Computes actuator commands

based on sensor readings
• Outputs telemetry
./k_ ground ¢ommsncl=

The PIL was designed to provide a realistic environment for the on-board software which accurately emu-
lates the interactions between the processor and the rest of the spacecraft. The interfaces between the
pArocessorand the AC-100 were restrictedto the ACS sensors and actuators, because these are the only

CS interfaces on the spacecraft available to the flight processor. The AC-100 intercepted those com-
mands generated by the flight processor which were intended tor the ACS actuators, and passed these
commands to the spacecraft models. These rnodelsprocessed the commands, and the propagated
dynamical subsystems, in order to generate realistic ACS sensor data. This data was passed along to the
AC-100 output hardware, which emulated the electrical characteristics of the sensors.

The simulator hardware includes the AC-100 off-the-shelf real-time simulator, the custom I/O boards for the
AC-100, and the host workstation. The simulator software includes the development environment, the
automatically generated software, and the handwritten C code. In addition, a dynamics analysis software
program, AutoLev, was used to develop the attitude equations of motion and generate the attitude dynam-
ics subroutines.

The AC-100 System

As indicated in Figure 2, the hardware in the PIL consists of the AC-100 real-time simulator, the host work-
station, and the custom I/O electronics boards in the AC-100. The PIL software consists of the
Matrixx/SystemBuild development environment, the automatically generated C code, the custom hardware

332

interface routines, and the C code reused from other projects.

Matrix_/SystemBuiid is a single program which provides two environments: Matrixxand SystemBuild.
Matrix_provides a commandline environment for numerical design and analysis, while SystemBuild is an
envi.ro.nmentwhich a!lows the user to model systems with block diagrams, and then simulate the systems
aarecuyvrom me DlocKaiagrams• The results of the simulations can be analyzed inthe Matdxx environment•

As an example, Figure 3 shows a block diagram from the earth sensor subsystem. The data flow is indi-
cated by the interconnectlons between the blocks, and the operations on the data are indicated by the
blocks. Figure 3 shows gain blocks, data path switches, logic blocks, trigonometricb!ocks, and others..
Many other blocks are available in the SystemBuild environment. The block labeled ES Blanking Logic is
a Superblock, and within it is an entire subsystem, which is in rum builtof blocks and superblocks. The
superblocks can be nested in this way without limit.

AutoCode converts the block diagrams developed under SystemBuild directly into real-time executable C
code, which can be downloaded to the AC-10Oreal-time processor, or any other real-time processor. IA is
a graphical environment which allows the user to build control panels to provide real-time interaction with
the stmulations executing on the AC-100•

The development of the PIL simulator software began under the Matrixx/SystemBuild environment, starting
_i_ah_;LMSwT/_lePilnLthir_se_Sir/n tmh_Senvironment, the various S/C subsystems were modeled using block

• era, nnaavnauausuosystems, or me entire spacecraft model, couldbe simu-
lated non-real-time• Because the block diagrams could be simulated on the host workstation, it was
possible to develop and debug the spacecraft models without needing to develop source code, and without
porting the software to the AC-100 platform.

333

II f the s acecraft models were in block diagram form. The orbitdynamics models and the sunNot a o • • • ndwritten C code, so it was not desirable tori ha_alread been developed on eadler prol.,e_,sinha
epheme s • . UCCKS wnicn rovides a stanoaro,zeoeveio them The _ystemBulld a ca ablld.y,called User C.ooe ; _ Pred p • • " DIOCKoia rams /n=s prowoes a
interlace so ,.hatthe.useC.shandwri_eni_ .cod.e.,can_icea_l_e_ee_;na_e_sirnulation_.The'existing orbit
migration path lrom nandwntten sonwaru to au,u,,,o y u
dynamics models and sun ephemeris were incorporated into the block diagram this way.

cecraft block die rams were developed and debugged, they were ready for t.hecode genera-Once the spa . _]1 r'r_l<= r,rtnv__rtAclthR h k diaarams directly into executable
• n rocess for execution on me A_-I uu. _utu_,w.. w:.-.../.-.;._.:bloc • -"....... '-^- _ ' in-rio p. • • ne Au-1 uu r ulreo no n=uruu,¢,,,a ,_,,,,,
real-t,me source code, so movingthese block d=agramsto t eq
utes.

in rtionsof the I/O were also readily ported to the AC-100, because the standard I/O capabilities of
tChert,_-lP_0;are tightly integra!.edinto.the software, so that connecting the AC-100 standard I/O was no
more difficultthan editing tile DtocKo=agrams.

Other portions of the MSTI 2 PIL I/0 had to emulate the specialized interfaces of the various ACS sensors
ctuators which required custom hardware interfaces to be developed forthe AC-100. These hard-and a , " II w the automaticall generated code to
• daces r uired the development of rout,nes to a o . .ware ,nte .eq • hort C su_rout,nes wh,ch called low-

communicate with the custom-des=gned I/O boards. These were 5 s
level I/O routines which are supplied with the AC-100. These custom routines were oeveiopeo us,ng ,,,u
ordinary compile-link-debug cycle.

the uations of motion of the spacecraft were developed using AutoLev. This software.pack-In addition, .eq , m ,,cinn K_ne's method, and automatically
he uallons ot mollon OTa oynari.G_, _y_¢u =age develops t eq :__^ -n.,,...,_o was int'=nratedinto the Systemldulio mooels

generates source cooe to slmulale mese _qu¢,uu,,_. --,_ _,,-,_ -u
as a User Code Block.

Spacecraft Subsystem Models.

The models which were implemented in !he MSTi 2 PIL included attitude dynamics, a sun sensor, an earth
sensor, low rate gyros, a n=gnrate gyro, mrusters, reaction wheels, orbit dynamics, and sun ephemeris.

The PIL setup operated at 80 Hz, which provided a sufficientlyfast response to the on-board code which
was o erating at 5 Hz. Throughput testing started by running the models at 20 Hz, and then increasing the
rate. _he rate was increased to 120 Hz, and the AC-100 had not overflowed, so resting was stopped. It
was decided that operating the ..mod.el at 80 Hz..would allow a..gro_h in movie/com_ex_y of 50% or more,
and this rate was more than sufficient lot a qUtCKresponse to me b Hz. on-_oufu =u,w..,=.

e of the PIL was also chosen because the on-board software operated at 5 Hz., it was notThe 80 Hz. rat • i h res nded faster than
necessary to model any phenomena much fas!er than this. No phenomena wh c po
about 0.05 seconds was modeled, and the _u Nz. rate supponeo mls.

Sun Sensor

- n ensor had a square field of view, 64 ° by 64° in extent. The output of this sensor was twoThe MSTI 2 su s • • " V a sin le bit to indicate the• "" n of the sun n the F_eldOt View (FO), gtubers re resent,n the angular pos_t,o • anu P • housekee in informat=on. This information was encocled in.a dat
_u. ,S present ,n the_OV.,and some ,,er secon_l togtheprocessor. This was transmitte(.:l.,u, an ord,na_ .,__
vrame wnlcn was iraH_,,,LL_-u_ -,,,_ _, , ,-- _.1.... _._nA¢_w_r_ tr_ mitted from me processor io [nu
serial data stream, us=ngRS-422 voltage ,evu,_. ,,,u w,, ns
sun sensor.

Figure 4 shows the highest level block.diagram of the Sun .Sensor rnodelomThulSethn_ee/UsSed_h_a°U_U: of

The error models included in the sun sensor model included geometric misalignment of the sensor on the

spacecraft, and a bias on each output angle.

334

The data bytes for the serial data stream were formatted in the SystemBuild models, and passed on to the
serial output of the AC-100.

Sun Sensor Block Diagram
SS Transformation SS IA switch

_^ ECI to Vehicle _ [23J SS Vector Normalizeloal

un dy ,l u" G lJ 0 0iH=ss
z [_u3-- " _ "3"I_ 0.0125 j,un Unit Vec Body Z 0SS10:0 p Ln SS Z

body
0.0125

SS Data

tti__n(

2J
or woe co zmen 0.0 .>5

_

_11 SS Sun in FOV Z SS Logic

...... F 1 11
_3D-i-4 SS X Output ral]16_1 _urr.,n hL2J -- - I I ARCTAN

SS IA Horizonta. -l_r ,, 3_ a ra_

rad to deg

<_] ss X output de_

Figure 4

E.arth Sensor

The MSTI 2 earth sensor was a scanning horizon sensor with a 60° half-cone angle. Due to the mechani-
cal structure of the sensor, 81° of the scan cone were obstructed.

The outputs of this sensor includedtwo angles, representing the phase and the chord of the earth in the
scan cone. In addition, there were three individual informational bits: one bit indicated the earth was

resent in the scan cone, another single bit indicated that the leading edge of the earth chord was blocked
y the obstruction, and the third single bit indicated that the trailing edge of the earth chord was blocked by

the obstruc!ion. This info.rmation,along w:ithsome housekeeping information,was encoded in a data frame
wnicn was trans..m.itted5,times persec,o..nd to the processor. This was transmitted on an ordinary serial data
Stoeamusing H_-4_ voltage levels. NO commanas were transmitted from the processor to the earth sen-

FyigUre3 shows !he block diagram of t.heEart.h Sensor model. This model used the output of the attitude
nam=cs model alon@w=ththe orbit dynamics model, to compute the sensor data. If the scan cone inter-

sected the earth, the chord and phase were computed, and the three bits described above, were set
appropriately. If the scan cone did not intersect the earth, the default values for the angles were used, and
the default values were used for the blanking bits. The housekeeping information washard-coded to its
default value, and was not variable.

The error models for the earth sensor included geometric misalignment of the sensor on the spacecraft, and
a bias on each of the angle outputs.

The data bytes for the serial data stream were formatted in the SystemBuild models, and passed on to the
serial output of the AC-IO0.

335

The primary source of attitude rate information on the MSTI 2 spacecraft was two high accuracy 2-axis
gyros. However, they would saturate at a relatively low angular rate.

Each sensitive axis of each gyro had two pulse streams: one for positive rotation, and one for negative
rotation. Only one of these two pulse streams was active at any moment. The frequency of these pulse
treams was ro rtional to the angular rate about the sensitive axis In addition, each pulse stream had a

st_rE, ,nrl_nt tr=P_)mPg_nrfnr reliability These pulse streams were transmitted on a RS-422 differential pair.
Th'_ere_e;e'a t''ot'al"of:3")c._o-nducto"rs transm'ittingthe gyro data.

There was no housekeeping information transmitted from the gyros to the processor, and there were no
commands transmitted from the processor to me gyros.

The gyro models on the AC-100 used data only from the attitude dynamics models. The error models
included geometric misalignment of the gyro on the spacecraft, and gyro biases.

Because the roe had to be emulated with very high precision, and because the gyro outputs were spe-gY • f r the AC 100, the GPC board This board
cialized, it was necessary to build a custom outputboard o . - •

rovided closed-loo control of the frequency. A counter was p_acea on eacn pulse stream, ano mese
P ,__ ._.4 _...,_,,, At- 100 to nrovide a feedback path The angular rate of the spacecraft a.bout
counterscou,u u_ ,_.-,uuy ,,,o ,.,- _

ch ro axis was int rated over time, and this accumulated value was compared to the counters aunng
ea _ gyr,._e_........... +oo"h sten was adiusted to make sure that the gyro outputs were never
eacn _u Nz. m_p. --_ ,,_uo,,_,y v, _,,,, . ,
more than one pulse in error, when con_..ai'.e_..agaln.stthesoi_taren 80m_)dHezlS'bTh_lfu_ti_nab(_CkPn_eal_u_eea me

nerate smoom ulse trams wu,,J==w_,_ ,v,,,,: -, , ,,.
sGtPeCamb°aa_)g°thgeerduring one or Pr_re 80 Hz. periods, and only occasionally commanding one pulse to be
transmitted.

Each GPC board could transmit all of the signals coming from one gyro, so 2 GPC boards were required in
the PIL to emulate these gyros.

It was necessary to develop a small handwritten C routine to drive the GPC boards. This routine handled
the feedback cdntrol of the GPC board. This routine took the integrated angular rate from the block die-

r ms and read the feedback counters on the GPC boards. Alter applying appropriate scale factors, the
g a , -4+...... Any differences were compensated by adjustingthe freg.u.ency dur-
two values were uu==_ud_uJ_, _,,.v,o.... I rs

ing the next 80 HZCs_C_l.vW_heth_e}ctsheaCClsmulated errors of the gyro emu ato ,
compared to t e d " ,

This interface routine interacted with the hardware by calling simple low-level I/0 routines, which are
bundled with the AC-100. This routine was incorporated into the SystemBuild block diagram as a User
Code Block.

HiQh RateGyro

The MSTI 2 spacecraftincludedone lowfidelity3-axisgyrowhich had favorablesaturationcharacteristics
"n rdertohandlethat rtionofthemissioninwhichthespacecrafthad highangularrates.The outputof

lhis° gyrowas threevoka_e levels,one foreach axis.The voltagelevelwas proportionaltotheangularrate
ofthespacecraftabouttherespectiveaxis.Therewas no housekeepinginformationtransmittedby this

gyro,and therewere no commands fromtheflightprocessortothisgyro.

The highrategyromodel used datafromtheattitudedynamics model tocompute thegyrooutput.The
ndardAC-100 confiqurationincludesseveraldigital-to-analogoutputs,so emulatinathegyroelectrical

Stperfacewas quitesimple.UsingthestandardI/Oconnectioneditor,thisentiremodel',alongwithitsI/O,

requiredaboutone halfofa day toimplement.

Reaction Wheel AssembhL

h MSTI 2 s acecraft had three reaction wheels, one along each primary axis of the spacecraft. These
T e P ri I si nal as a tor ue command from the flight processor, and
reaction wheels accepted an analog elect ca g q . -.

n electncal ulse stream whose frequency was proport|onalto the wheel speed. In add=t=on,there
emitted a _ _,.P___;........ ,4+which the nrocessor could transmit to the wheels, and there were
were venous nouseKr_i-)llly _ul m,H lal ,UO _-"

336

various housekeeping signals which the wheels could transmit to the processor.

Thnea_a_t_OnaWh_o%el,rl_l.e/sincori_o_ted ,tw.o!o_ue s.ou.rces.First, the motor torque was directly propor-
• _ . _.W tu=Hu, o _,.UlllllldllU, ;_U [i11_ was rnooelea DVa siml:)le(:lain :5 n rl thA fri_ti_n=l t_n,_,,c,vaneaasat " . _. ,. ,, . ec_n H,,o

.......... unct=.onor,wneel speed, and th=swas modeled using a s=mpletable lookul_ block The net
curqueac[,ng on me wnee=was me signed sum of these two torques. - "

The net torque computed by the wheel model was passed along to the attitude dynamics model, Which
would compute the wheel angular accelerations relative to the spacecraft. The reaction wheel model would
integrate this acceleration to determine the wheel speed.

Th_:taa_d_liACielOOc_. nfi_ur_[nulr}clud .e.s.severe! analog-t.o;digitalinputs, so the inputto this model was
.... _, ,.,_ . • p om m=smode=was a pu=seslream. While it was not necessary to

comro_m=spu_sestream with high accuracy, the pulse stream generator from the gyro subsystem had
already been developed, so it was easiest to simply reuse the gyro software and hardware with only
changes in a few parameters in the software. Each GPC board could emulate two reaction wheels, so two
addit=onalcopies of this board were required to emulate the RWAs. The housekeeping inputs and out ts
of the reaction wheels were not modeled in the PIL. pu

Thrusters

The MSTI 2 spacecraft included 12 thrusters: 8 low-force thrusters for attitude control and 4 high-force
thrusters for orbit adjust and orbit maintenance. These were simple on-off thrusters, and could not be
throttled for proportional control. The flight processor issued no commands directly to the thrusters.
Instead, the propulsion valves were controlled by the processor. A high "I-I'L level signal opened the
valves, and a low TTL level signal closed the valves. There were many housekeeping signals to and from
the spacecraft propulsion system.

The fuel system on the MSTI 2 spacecraft regulated the pressure of the fuel being fed to the thrusters.

The interface board inthe flight processor could command a thruster bum duration in increments of 250 ps.
These l-rL level signals were issued by the on-board software once per 5 Hz. period. The MSTI 2 thrusters
had a very shod thrust buildup at the beginning of each thrust pulse, followed by a very short thrust tail-off
at the endof each thrust pulse.

Thoel_h_aS_errcemO_anedlsin_theMSTI2.PIL were rn_l.,eled with n9 th.rustbuildup or tail-off. The models simply
_.vJT'.__,,,_...... ,1_u- !w_menz on me spac.ecra._,based on the thrust capability and location of the indi-
v-uu._=..f_.sle_: .._=netorces were .summea. a.no pass .edalong to the oroit dynamics models, and the
.=u,qu,_a,wuJu,_umrneo,ano p,ass.ea along lo me attituoe dynamics models. T.he propulsion models did not
mc_uoeDlOwaownof the _ue_sysxem, because this was a pressure regulated system.

In order to maintain sufficient fidelity of the attitude dynamics, it was decided that the thruster commands
should be captured with a resolution finer than one 80 Hz. period. This required a custom interface board,
the Valve Command Capture (VCC) board. This board sampled the TTL thruster signals at 6 MHz., and
accumulated the results over each 80 Hz. period. The PIL software would sample the VCC board once per
80 Hz• cycle, and fold the results into the thruster models. 6 MHz. was a much higher sample rate than
required by this simulation, but this high rate was no more difficult to implement than a lower rate.

This board required a short C interface routine, which was handwritten code. This routine did little more
than call the 10w-level I/O routines supplied by the AC-100, and pass the results along to the block diagram.
This routine was implemented in the block diagram as a User Code Block.

Attitude Dynamics Models

The_MSTI..2 spacecraft was model .ecl..as four interacting rigid bodies: The main Spacecraft structure and
uu reac[_on wnee_s. /ne main at_i_uoeoynamics b_ock diagram is shown in Figure 5 The equations of

motion of these bodies were developed usJna Kane's method, wi*h ,h,, ^. ,,^, ,,..._:
• _ , , ,,,_ ,-,uLu,__v_u, tw_/u package, r_anes

me..t,h_l al/oweclt he ..modelsto include all forces of interest on the bodies, including non-conservative fric-
uu,u_ =orces an(] amnrary actuator rorces.

The spacecraft structurewas modeled as a rigid body with misalignment of the principal axes of inertia.
The wheels were modeled as axisymmetric bodies with their axis of symmetry aligned with their spin axis.

337

The moments and products of inertia of each body were set as parameters in the block diagram.

Usin AutoLev, the equations describing the interaction o! the bodies was described vectorially, and then
Autn_ev automatically generated a complete stand-aione implementation of these equations. One of the
routines which AutoLev generated computes the algebraic relation between (1) the current state of the sys-
tem and the actuator forces and (2) the angular accelerations of the bodies.

Rotational Dynamics Block Dlagram

Integrate Al_ha

Omega 1 rad per sec _ 2 _'_11 Time Step Size

- 2 dt
/_.;_i Omega 2 rad per seel I/___-___.0125 1

k-U_Ome a i rad er sec | l___j-__ _ r_ _er s__Dy n

T P I[001 s! ; te;°it Omeqal
| Break | I _--" I 7

i[gebraic Loop[______i_ 3 q2

- _ L_

RWA MOI _.__,_,_ _ac_ _ p _'_ It
_'_i_= " A_k_4_* _' _'_ _ _ .J

[YI= 0.0_ RRWA P__ _] _,mega2 dot tad per see per sec [_>

| Y2= 0.0 nf RWA ,=_._,_i _ H

|y3= 0.0077_ BWA s__=_ _,_Y_-* _,:==_ _ --ILmega3 ' dot tad per sec per sec

| Y5= 0.0077_ RWA

[Y6=00 t[...... I ,-

3

X RWA alpha tad per s per s [_>

___--_I__ y RWA alpha rad per s _)er s

SC MOI !i xZ_iii iiii II_ _----- Z RWA al_ha tad per s per s

Iyl= 16._. _Y_R Error flag []_>

Y2= 19.63!

Y3= 14.29(.

Y4: -0.6! _ YZ SOI kg WA _ _--_ ax{s

Y6= 0.001 _C ZX MOI kg

Figure 5

t=newas extracted from the AutoLev_enerated program, and incorporated into the block diagramsThis rou" . e to the thrusters, 2) the totaler Code Block The inputs to this routine were (1) the total torque du . . (
as a Us . -" "^- ..._-^-.,.- I_ The current anqular velocity ot the spacecraft.frame, (4)

rue ac_in on each o_me _a_J_,u,,w,,_,_, ,-,!o q - g _-"-'k-"l (5_ the mass oroDerties (_ the spacecraft structure, 6(._the .massurrem an ular ra_e u/u_u,, w,,_,, .
tnec_.,;,_o ,_ ,hg. _nrlbirl._l wheels and ('_) the orientation of each wheel in the spacecra,... I ne out.puts

,,.,v_............... I r =onsof the s acecraft structure ana me angumr_rom this User _,(xle' i3"/(:_kwere the angular acce e at" P
accelerations of the individual wheels.

I r accelerations were ted into discrete-time integrators to compute the angular rate of the space-
The angu .aI.,........ roftrates were fed into a discrete-time quatemion propagator
crall and the speea o_lne wnee=s. H,_ =p(=_,_, =
tOcompute the spacecraft attitude.

Orbit Dynamics Models and Sun Ephemeris

are two hL h fidehty models which were developed several years ago lot other programs. They. wereThese "g , " .. " t'., :--^ _fl,_r thc_ir nnninal develo[:)ment, they were modified to
developed as hanawrmen u source cooe. _u,!,?,,,,_. "'.-:-_ • -^-,^, ,_ without
be User Code Blocks for use in the System_u,d environment. _om o=mese -_J_,= w_,_ uo_,.,

338

further modification in the MSTI 2 PIL.

ThruesO.nfOoit"dy;amioCaSa_r___.e! includes .a fish order g,ravity model, and incorporates accelerations due to
..... _... p=upttgalor I.sa .xeo-slep r.ounn-oroer Hunga-Kutta integrator. The inputto the sun ephem-
_hns_s,_ne]_e;. expresseaas_ year, n_mn, (:lay, nour, minute, second, and millisecond, and the output is
.......... .,,v,, ,,, L-,_I,au(;uraie [0 a lew arcseconas

While the PIL is executing, an interface was presented to the user which allowed the operator to interact
with the real-time simulation. This interface was builtunder Interactive Animation (IAI. Using the Interactive
Animation editor, the screens were builtup graphically and connected to the various inputs and outputs ofthe block diagram.

Interactlvo Animation User Intorfaco

0,0000 0,0000 0.0000

0.0000 0,0000

• i , f • "='" "'=°'=

• " "÷_ .=. .-- =: _. ' i.. • J • • { j _-

o _ ; ; L-- L.. J.-.'...L ...' ...L.. ',... J...'.. ,L..,'

Scared Thrusts
i

RWA Tach RWA Torque Thruster Torque

O. 0.0000 0.0000
O, 0.0000 0,0000

O. 0,0000 0.0000

Emrlh

0.00
0.00 e
0.00

Desp[n Time

0.00

0,0000

GMT Time

Figure 6

Total Torque _ o, _,
Nm

0.0000
O,O000

0,0000 0,0000
0.0000 r_nnn_

O.O00O

The main executive PIL screen is shown in F gure 6. From this screen, the user could invoke any one of
many different screens at any time. With these screens, the user could monitor various intemal variables in
the PIL simulator real-time, or the user could interact with the simulation by varying parameters and adjust-

339

ing various settings, again in real-time. This capability was used primarily to simulate faults in the
spacecraft, in order to test the response of the on-board software to oft-nominal conditions.

A different screen dedicated to each subsystem was included in the Interactive Animation interface. With
each screen dedicated to an actuator, the user could override the commands coming from the flight pro-
cessor and in'ect his or her own commands. The user.could command,individual thruster firings, and coup,
command re_cetionwheel torques directly. Similarly, with each screen aeq.lcated to a,senso._r,me user c,_, io
override the sensor data computecl, by the PIL si_n_-lat!on a L ,sor, der a wn_haelUeeaS_thlineaU_eordeC'_nt__

lace the sun in any onentatlon relative to me sp,a,_._'E?_L=wv,,u,,,p,_o, --;--z_ _....... .4,._,. -
P_n relative to the spacecraft coord=nates, or coula inject any oooy rates ImOinu gy_u ,,_.J_=.

Outside of the flight processor, the variables internal to the on-board .softw.are are not available to the

spacecraft. In order to keep the PIL a true environment emulator, it also had no access to me va.naoles
intemal to the processor. Therefore, the Interactive Animation screens could not present all of the informa-
tion of interest in the spacecraft. Most significantly, the PIL provided no direct method to determine what
attitude control mode the processor was currently using.

Custom Interface Boards_

As described above, several custom electronics boards were developed for this project. These boards
were prototyped and debugged by the primary engineer, and the artwork and fabrication was subcontracted
to an electronics design house.

The boards included the GPC board, and the VCC board. The MSTI 2 PIL was implemented on an older
model of the AC-100 which did not have an efficient serial interface, so it was necessary to build a custom
serial interface, the Dual Serial Transmitter (DST). In addition, a simple executive board, the ASBX, was
build to control the interactions of the other boards with the AC-100.

Because the graphical programming environment of SystemBuild provides such,rapid software develop-
ment, most of the time spent developing the MSTI 2 PIL went towara namware aeveiopmem.

Conclusion

B_ taking maximum advantage of the AC-f 00 development environment, one engineer spent three months,
with one-rnonth of help from a second engineer, to develop a high fidelity spacecraft simulator. This
included all initial design, all model development, all software development, the design and development of
four custom electronics boards, integration of the subsystems, and refinement ot.the sy,stem. Th.!swas due

rimarily to the raphical programming environment of SystemBuild, along with the cooe generation capa-
£ility of AutoC_:)_e. Another prime factor in this success was the abilityof the AC-t 00 system to reuse
existing code.

By spending very little time on software development, the engineer was allowed to focus on the mere difli-
cult task of hardware development.

34O

