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Abstract

This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle
Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the Real-'13me
Sequential Filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quatemion and
corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart
a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors
in the initial attitude and rates, while maintaining a small state vector.

SAMPEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori
attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in
estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate

corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also
demonstrated through (1) substantial improvements in attitude solutions during Sun-magnetic field coalignment and
(2) magnetic-field-only attitude and rate estimation during the spacecraft's Sun-acquisition mode.

A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when
both Sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic
algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm
has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times
as little as 400 sec.

1. Introduction

A crucial aspect of an attitude Kalman filter is that the attitude quatemion q and the covariance matrix must be

propagated between measurements using the spacecraft's angular velocity (also referred to here as the rates), _. Thus,
q is propagated via

-_ - lta(t_)q (1)

where

fl(_) = [-[¢0 x] O] (2)
_6)T

and ux, coy,and _= are the components of e along the spacecraft's body axes. Note that matrices, including vectors
(column matrices), are denoted in boldface in this paper, matrix transposes are denoted by the superscript T, and

"This work was supported by the National Aeronautics and Space Adminislration (NASA)/Goddard Space Flight Center
(GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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Equation (3) defines a cross product-tommatrix equivalence that will be used elsewhere in this paper. Attitude here
denotes the orientation of the spacecraft body frame with respect to the geocentric inertial frame (GCI), to describes

the rate of change of the attitude, and all vectors are resolved along the body axes unless specified otherwise.

For a gyro-based spacecraft, gyros accurately measure t_, and accurate results can be obtained by integrating

Equation (1) alone. For a gyroless spacecraft such as the Solar, Anomalous, and Magnetospheric Particle Explorer
(SAMPEX), however, we must propagate the rates via the following Euler equation (References 1 and 2):

dL = Nm, - t_ xL (4)
dt

where N_ is the sum of the external torques acting on the spacecraft, and L is the total angular momentum of the
spacecraft. If I is the inertia tensor of the rigid part of the spacecraft and h denotes angular momentum contribution

from rotating parts such as momentum wheels, L is given by

L = l_+h (5)

Equations (1) and (4) generally pose a difficult initial-value problem, because significant errors in to can arise from

spacecraft and torque models, as well as the initial values of q and _ used in the integration.

Of course, we may avoid rate propagation altogether by using only single-frame algorithms such as TRIAD (algebraic

method in Reference 1) and QUEST (Reference 3), which determine the attitude using at least two simultaneous

measurements. But these methods do not provide accurate solutions when all of the observed vectors are nearly collinear.

A Kalman filter is superior in such a situation, as will be demonstrated later, since it can use propagation to estimate
the unobservable elements of the state. Additionally, modeling the spacecraft's dyfiamics is advantageous because it

accounts for other physical phenomena such as nutational frequencies.

A Kalman filter scheme that corrects for the errors in _ is thus desirable. This paper presents results from such a filter

developed for the PC-based SAMPEX real-time attitude determination system (Reference 4), denoted the Real-Time

Sequential Filter (RTSF). Only pertinent aspects of the SAMPEX RTSF are discussed here; complete details, including

system aspects, mathematics, and models for the environmental torques, are give_ in References 5-7.

The basic features of the SAMPEX RTSF are as follows. Let op,_ denote the rates generated through Equation (4),

and let t_,_ denote the true rates. The errors are the difference _the two, and these errors are modeled as being of
two types: a zero-mean white noise vector, fl_,, and a systematic error, b,_, i.e.,

¢ap,,p = t_,,,e+ b,_,_ _" TI_ (6)

In addition to the quaterrdon, we wish to estimate the rate errors b using the following Kalman state vector:

x = [q_ br7 (7)

together with the following general principles:

Model N,_ as accurately as possible.
Model noise terms such as Ti_, by treating them as a noisy background arising from torque uncertainties and

accounting for them statistically in the Kalman filter formulation.

Estimate b optimally by using the sensor residuals, and propagate b between measurements using a suitable

dynamics model.

To formulate a dynamics model for b, we fast note the following aspect of Equation (4): It is not reasonable to treat
b as constant because even constant errors in N_ do not necessarily generate constant b. In fact, in view of the

sporadic nature of the control torques as well as the attitude dependence of the environmental torques, it is uncertain

whether a simple dynamic model can be developed for b. We avoid this issue by arguing that we are interested not in

the origin of b, but in its instantaneous value that would reconcile the differences between the propagated and observed
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values of q. Consider now propagation between measurement times tk and tk, 1 and use the following notation: filter

estimates are denoted by carets; estimates before and after updates (via measurements) are denoted by minus signs and

plus signs, respectively; and the times are denoted by subscripts k and k+l. In this notation, tSk(- ) -- ta_,,_e(tt.), and
we seek to correct the rates using

,_,(+)= 6k(-)-/_k(÷) (8)

Propagation of q, _, and the covariance matrix, P, to tk. 1 is then done using 6k(+). Since Equation (8) corrects

the rates ,at tk, it follows that _k.l(+) must reflect only errors that accumulated during the intervening period,
At = tk. _ - t_.

Kalman filter updates, however, are of the form:

_k.l(÷) = _k.l(- ) ÷ Ab_.q (9)

where Ab_q denotes the correction estimated by the filter. It follows that _k.l(+) (and Abe. 1) will denote the errors

in 6k.1(-) if _,-i(-) = O. This is achieved in the RTSF by specifying that _ decays exponentially with a time constant,
• , of the order of At. That is, we model the dynamics of b through the first-order Markov model:

= -'c-lb + rib (10)

where TIb is another zero-mean white noise vector.

The above Markov model also assists in tuning the filter through the following useful feature: The diagonal elements

of P corresponding to b would then converge to a constant value that depends on _ and the statistical properties of

rib- For simplicity, take b and rib as scalars, and define Q, through <rib(t) rlb(tt)r> = Q(Ot(t_t/), where 6(t-t I) is

the Dirac delta function. Then p, the Kalman filter's covariance matrix element for b, converges to p. given by

p. = Qx/2 (U)

Let us now suppose thatthe < ]II,_Iz> isknown by examining themodel uncertaintiesinEquation (4).We argue that

p. isalsoofthisorderofmagnitude sinceb cannotbe known toa greaterdegreeofprecisionthan _ itself.Thus, we

use p. and x togetherto fix the numerical value of Q in Equation (II),and then use Q in the Kalman filter
computations.

This formulation for estimating b has many similarities to gyro-bias estimation (References 8--10), where b denotes the
gyro drift-rate biases and 6(-) donates uncorrected gyro rates. In view of the slow variation of these biases over time

(see, e.g., Reference 11), it is then possible to approximate their dynamics by Equation (10) using a large value for ¢.

There is one important difference, though, between the two situations. Gyros accurately measure _, and the leading

errors in the gyro rates are indeed removeJt by estimating essentially constant biases. Thus, for example, /_k(.) is
subtracted from both 6k(-) and tSk.l(- ) and before their mean is used to propagate q via Equation (I). Consequently,
the increments, A/_, to/_ provided by the Kalman updates take/_ progressively closer to that constant.

The rest of this paper is organized as follows. Sections 2 and 3 summarize details of the spacecraft, the data used here,
and the theory. Sections 4 and 5 are devoted to tuning, accuracy, and robustness of the filter. Section 6 demonstrates

the advantages of the RTSF over single-frame solutions by (I) showing its stability when Sun and magnetic field vectors

are nearly parallel and (2) determining attitude and rates using only magnetic field data. Section 7 shows that combining
the RTSF with the deterministic algorithm of References 12 and 13 yields a robust magnetometer-only attitude-and-rate
determination scheme. Section 8 summarizes the conclusions.

2. Description of SAMPEX and Data Characteristics

SAMPEX is the first of the Small Explorer satellites and is designed to study elemental and isotopic composition of

energetic particles of solar and cosmic origin. It has a 550x675 km orbit with an 82-deg inclination. SAMPEX nominally

is Sun-pointing and has a rate of 1 rotation per orbit (RPO) about the spacecraft-to-Sun vector. The attitude accuracy
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requirement of 2 deg is achieved using a fine Sun sensor (FSS) and a three-axis magnetometer (TAM). The control
hardware consists of a momentum wheel and a magnetic torquer assembly (MTA).

The nominal body y-axis is the Sun vector, and the nominal x- and z -body axes are defined by the Sun/orbital frame

of Reference 14. For our purposes, it suffices to note the following:
• The body y-axis is the pitch axis and also the FSS boresight, and the angular deviations of this axis from the

Sun vector are defined as the roll and yaw angles, which are measured by the FSS.

• The pitch angle denotes angular errors about the y-axis and is measured by the TAM.
• Pitch control is derived through the wheel whose axis coincides with the body y-axis, whereas the MTA

primarily provides roll and yaw control, and angular momentum dumping.
• During the nominal 1-RPO mode, roll, pitch, and yaw angles are all 0, and _ = (0, 0.06, 0) deg/sec.

SAMPEX telemetry datasets of Table 1 are used here and, with the exception of SIM722, they all contain inflight data.
SIM722 was constructed (Reference 7) using SAMPEX ephemerides and the wheel data from PB722 and is useful in

calibrating the accuracy of the b estimates.

Table 1. Highlights of the SAMPEX Telemetry Datasets Used for Evaluating the RTSF

Name of Da__=et

PB705

PASS53

SIM722

Features

Transition from Sun-acquisition mode to nominal 1-RPO mode on the day of launch, 7/4/92

Nominal 1-RPO mode data of 7/8/92

Simulated data for duraSon of eclipse (Earth shadow) on 7/21/92

PB825 Near-coalignment of Sun and magnetic field vectors on 8/23/92

PB722 Inflight rL_t_ for the eclipse of SIM722

No significant differences were noticed between QUEST and TRIAD attitude solutions. The TRIAD attitude solutions
were differenced to provide rates, and the single-frame results are often taken as the truth models accurate to: 0.5 deg

for roll/yaw, 1.5 deg for pitch, and 0.5 deg/sec for rates.

3. Theoretical Aspects of the RTSF

Definition of Errors:

The Kalman filter formalism here follows the scheme of Reference 15; i.e., state errors before and after an update are
considered, and the differential equation for P is derived by demanding optimality. The following notation is used in
addition to that in Section 1. A generally denote an orthogonal matrix; A(q) is then the orthogonal matrix parameterized

by a quaternion ¢. Quatemion multiplication, denoted by ®, is defined here in the reverse order of the corresponding
attitude matrices; i.e., g • ¢1® ¢2 is equivalent to A(q) = A(¢z)A(ql).

The attitude error is linearized, and is taken as a vector of three small independent Euler angles, a • (=¢z,%, 0¢=),needed
to rotate the true body frame onto the estimated body frame. That is, if

=[__ 11r (12)

then A(_) = A(bq)A(q_,_). The error x in the state vector X of Equation (7) is then

x • [=r A/,r]r
(13)
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The 6x6 covariancematrix P isthen definedas P- <,xxr>.If X_,_ - [a__ b.r] r isthe true state vector, the
following relationships hold: L_n* u't_j

¢(2) ---g_ ® _(_)
(14)

/_(*) = b,,.,,_- Ab(,)

The sign convention for Ab ensures that, from Equations (6) and (8), the rate estimates are of the following form:

= ¢%.._ + Ab ÷ vl,_ (15)
Let

x* = [_,r Ab,_-]r (16)

be the errors estimated by the filter. _ is then updated through

#(+) = 4(-)®(_() -I
(17)

i;(+)= _-) + Ab"

The relationbetween the stateerrorsbeforeand afteran update followsas x(+) = x(-) - x'.

Propagation From tk to t_,l:

is propagated readily after ignoring Vlb in Equation (9), i.e.,

Regarding the rates, _ is first updated via Equation (8), and L is updated using Equation (5): Lk(+ ) - ! _k(+) ÷ h k.

Here h is the wheel momentum given by h : [0 !_ co,,_ 0It, where I_ is the moment of inertia of the wheel about
its axis and _,_ is the wheel speed. _k(÷) and/2k(+ ) are then used to numerically integrate Equations (1) and (4) to
obtain 4_.1(-) and /2k.1(- ), along with the differential equation for P to be given shortly. The uncorrected rates at

tk< are thenobtainedby invertingEquation (5),i.e.,_5k.I(-) = l-1[/_,t.i(-)-ht.1].

While propagating/_,N_ ismodeled as thesum of fourexternaltorques:magnetic control(N,_), gravitygradient,

aerodynamic,and radiationpressure.(The wheel torqueisimplicitthroughhk._intheabove propagationscheme.)The

environmentaltorquesare computed inthe RTSF usinga detailedspacecraftmodel as well asaccuratealgorithms;in

particular,theaerodynamictorqueiscomputed usingtheFREEMAC algorithm(Reference16),which generatesvelocity-

dependent drag coefficients.We note,however, thatthe noisein SAMPEX wheel speed obscuresthe effectsof the

environmentaltorques.Thus, only N_,_ isnoticeable;thisisgiven by N,,,_= p xB, where Stisthe dipolemoment
of the MTA and B isthemagnetic field.

The differential equation for P can be derived by noting that the error in _ after propagation comes from two sources:

(1) the error before propagation and (2) the random vectors, Ti_, and TIb, which are ignored in propagation. The
linearized propagation equations for the errors follow as

F(&)x + 11

(18)

Equation (18) defines F and q. Introducing Q, the diagonal spectral density matrix of _i, through
<Tl(t) rl(t/) r> = Q6(t-t t) it can then be shown (Reference 15) that the covariance matrix evolves according to

dP = FP ÷ PF r+ O (19)
dt

Equation (19) is integrated numerically in the RTSF to obtain Pk._(-)-
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Updates Using Sensor Measurements:

Let V_ and V t be the measured (body frame) and reference (GCI) vectors corresponding to a particular sensor and let

1;'8 - A(_-))V r The residual y is defined as y = Vj = _ra. Linearizing the attitude errors about q,_ yields

y = Hx(-) ÷ AVs (20)

where H • - _" x 03,_] and A Va is random measurement error. The following optimality requirements can then be
. . [ L_ _ ] • ¢J .......... -"...... txtate ,,,matious" ¢D if the error is unbiased before a measurement

usecL to obtaiia the usual r_,atman gain anu _;t,v_tioa,,,_-,,e,_, ,,,t •, -
(<x(-)> = 0), it should remain so after the update (<x(+)> = 0), and (2) the statistical average of the total error,

<x(÷)rx(+)>, should be a minimum:

K = P(-)H r [HP(-) Hr + R] -1 (21)

=[,,',,,,-
where R • <A V8 A V/>. The correction x' is then given by

(22)
x" = Ky

for use in Equations (16) and (17). The covariance update in Equation (21) was chosen over more numerically stable

algorithms due to memory and speed considerations on personal computers. To partially mitigate the risks, P(*) is

symmetrized after the update. No adverse effects have been noticed to date.

For SAMPEX, no special treatment is necessary to construct R for the TAM, since independent magnetic field

measurements are made along each body axis. The FSS, however, measures only two independent angles, and-only the

corresponding components of y are used in the computations. Details are given in Reference 5.

4. Tuning and Accuracy of the Rate Corrections

The telemetry digitization of the FSS is 0.5 deg; this value was used to construct R for FSS measurements. For the
TAM, uncertainties in the reference magnetic field calculations are larger than the digitization errors of 0.3 mG; after

the residuals were examined, a TAM noise of 3 mG was used to construct R.

A distinctive feature of telemetered SAMPEX data is the large wheel noise (-1 rad/sec). This noise yields torques of

the order of 10 .2 N-m, far in excess of the maximum values of the environmental torques (-10 .4 N-m), and results in

_). The pitch covariance P_a thus grows by about 3x10 -s (A02 rad 2 between
a noise of about 1.Tx10 -4 tad/see in change of P due to the process noise (EquatiOns (19)), Q_ was correspondinglymeasurements. Since Q is the rate of

assigned a value of 3x10 -s At rad2/sec. To provide for the situation in which _ and _z are substantial (as during Sun

acquisition), the same value was also assigned for Qll and Qss"

The discussion of Equations (8--11) then fixes the bottom three elements of Q, which correspond to qb" Thus, p. in

Equation (11) was chosen as 3x10 -8 rad 2/see2, so that

6x10-8 tad2 i = 4, 5, 6
Q_= ,c ._d_c3 '

is chosen equal to the telemetry period: 0.5 sec for real-time data and 5.0 sec for playback data. As can be seen from

Figure 1, the rate-error elements of P converge to the above value of p. very well.

Figure 2 clarifies the discussion of Equations (9) and (10), by examining the dependence of x on t_, the update period

for [. That is,/_ is updated via Equation (17) only ,,a_. r every t_ a see, as opposed to the telemetry period of 5 sec here.
(4 is always updated every 5 see.) Here "Sun angle' is the angle between the predicted and measured Sun vectors; thus,
for a fixed set of measurements, larger Sun angles indicate larger propagation errors. Plots a and b show that, when

= t,_ a = 5, the mean Sun angle is about 0.25 deg and rate corrections of the order of 10 deg/hour are estimated. In
plots c and d, • is lowered to 1 see while retaining the same value for p.. Thus, Q is now larger, and the RTSF does
not correct for errors below this noise level. However, the mean Sun angle is now larger, about 1 deg, indicating that

larger propagation errors arise if rates are not corrected. Plots e and f show the results for a larger value of x : 25 sec.

If t_ is retained at 5 sec (plot e), the RTSF quickly diverges and the Sun angle even reaches 180 deg. This happens
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because/_ does not decay to zero during the time between the updates, so that the updates, _÷), in Equation (9) also

nclude past rate errors. The divergences are eliminated by choosing t_,_ = 25 sec, as shown in plot f. However, since

is now updated infrequently, the Sun angles in plot f are generally'_ger than those in plot a.

The accuracy of the/_ estimates was ascertained by using simulated data. These results are shown in Figure 3. In plot a,
the truth model for _ is noisy due to fluctuations in the inflight wheel data used to generate SIM722. The simulated

data were input to the _TSF but with a constant wheel speed equal to the value at 0 sec, and we see that the RTSF's _y
estimates generally reflect the true mean values. However, significant differences occur around 100 and 450 sec, where

changes in tz_ cause changes in the true t_. This information is not available to the RTSF and leads to significant

Sun angles, together with nonzero values for _; around these times in plot b. We see from plots a and b that the signs
of these b_ estimates agree with Equation (6). Quantitatively also, the by estimates are reasonable; for example, the

corrections total about 0.01 deg/sec during 0-200 sec, which compares well with the rate differences in plot a.

We thus see that tuning results confu'm the arguments of Section 1 and that the rate corrections /_ are accurate to
1 deg/hour.

5. Robustness of the RTSF Against A Priori Errors and Torque Errors

The RTSF was evaluated extensively with PB705 data where SAMPEX is in Sun acquisition soon after launch. The

spacecraft is initially nutating rapidly--c_y constant at about 0.3 deg/sec and tz x and t_ sinusoidal with amplitudes of

about 0.6 deg/sec--before transitioning to the nominal 1-RPO mission mode. (The transition is clearly visible in Figure
10.) Thus, the Sun-acquisition part of PB705 is a rapidly varying situation and provides a stringent test of the RTSF's

performance. In most results here, the RTSF was started with what we term zero initial conditions; i.e., the body frame
is aligned with GCI and t_ -- (0,0,0).

Figure 4 shows the convergence of the RTSF results to single-flame solutions using both FSS and TAM data. Although
the a priori errors are largek(-27, -91, 21) deg in attitude and (-0.5, 0.3, 0.4) deg/sec in the rateskthe RTSF's estimates

converge in about 300 see. The effects of the a priori errors clearly show up in plot c, where/_ is extremely large during
convergence.

Figures 5 and 6 show another useful aspect of the RTSF: the ability to compensate for torque errors. Figure 5 shows

results with PB705 during the transition to I-RPO mode, with the TRIAD rates serving as the truth model. Here _y
drops from 0.3 deg/sec to the 1-RPO value of 0.06 deg/sec partly due to a substantial wheel torque. The wheel speeds

input to the RTSF, however, were deliberately given the wrong sign during this run. Thus, around 200 sec, the RTSF's ey
estimate initially increases. This gives rise to large Sun angles, and significant/_y are estimated (plot b) that eventually

correct oay; the time lag needed to correct t5 is finally e_l_iminated in the 1-RPO mode where c% is nearly constant.
Similar results were, in fact, used during prelaunch tests of ground software to detect and rectify the conversion factor
for telemetered wheel data.

Figure 6 presents results with PASS53 data where rate errors of about 1 deg/hour appear in phase with MTA activity.
Unlike the data in Figure 5, the data here are unmodified, and the RTSF results suggest that the MTA needs to be
calibrated.

Figure 7 presents results with PASS53 data highlighting the usefulness of estimating b even in a slowly varying
situation. Here propagation of e via Equation (4) was completely omitted, and the RTSF was run using zero initial

conditions; the oy estimate quickly converges to the 1-RPO value. In contrast, Figure 8 shows the results with PB705
data where the reverse situation holds: The a priori errors were small, e was propagated, but b was not estimated.

Large rate errors (which we ascribe to N,, z errors) accumulate over time and eventually degrade the attitude accuracy.

6. RTSF Advantages Over Single-Frame Algorithms

As mentioned in the introduction, a Kalman filter yields estimates via propagation of ,_ for state vector elements that

are not observable. This is demonstrated here for two situations: (1) near-coaligument of the Sun and magnetic field

vectors whereby the pitch angle is nearly unobservable and (2) attitude and rate estimation using only magnetic field
data. (Note that Figure 3 is also a magnetic-fieM-only situation, since SIM722 models an eclipse.)
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vectorswherebythe pitch angle is nearly unobservable and (2) attitude and rate estimation using only magnetic field

data. (Note that Figure 3 is also a magnetic-field-only situation, since SIM722 models an eclipse.)

Figure 9 presents the former case, with the top plot showing peaks of nearly 25 deg in both QUEST and TRIAD
solutions for the pitch angle when the Sun-magnetic field angle falls below 5 deg. This occurs despite nominal values
for all sensor and control data (not shown here) during this period. In contrast, the RTSF pitch estimates vary very little

over the timespan, with these estimates now being generated using propagation alone. The absence of pitch observability
does affect the RTSF pitch covariance P22, whose growth due to Q in Equation (19) is not offset by measurements.

Thus, P22 first rises steeply in plot b and then falls when the TAM data again provide useful information.

Figure 10 presents RTSF results using PB705 data but without using the available FSS data. The starting conditions
here were the zero initial conditions as in Figure 4, but now attitude information is obtained through only the magnetic

field B. Although a single measurement of B can yield only information regarding rotations perpendicular to it,B

changes direction sufficiently during an orbit, so that all three attitude angles are observable over a sufficiently long

span of data. This is indeed seen in Figure 10, where the RTSF's yaw angle estimates converge after about 1000 sec.
After convergence, the RTSF attitude and rate estimates remain within 1.5 deg and 0.01 deg/sec, respectively, of the

single-frame estimates (not apparent here). We attribute this difference to magnetic field model uncertainties since RTSF

attitude accuracies of 0.1 deg were obtained using simulated data (Reference 7).

7. Robust TAM-Only Attitude and Rate Determination

Motivated by the successful TAM-only attitude-and-rate estimation by the RTSF (Figures 3 and 10), we have developed
a robust TAM-only method that overcomes the following shortcomings of the RTSF: (i) Convergence of the RTSF

estimates is not guaranteed since it is an extended Kalman filter, and (2) the TAM-only convergence is slow, about

1000 sec in Figure 10. These difficulties are overcome here by initializing the RTSF with the solution from the TAM-

only deterministic algorithm (DA) of References 12 and 13.

The DA considers the following two time derivatives of the magnetic field B: the one in the reference frame, BR, and

"the one in the body frame, _,t. (The notation used here conforms with that of References 12 and 13.)They are related

formally by the vector equation:

B_ = ._A+_× B (23)

Noting that [BI is invariant under orthogonal transformations, two special orthogonal axes perpendicular to

B (Reference 12) can be chosen such that the projections to2 and co3 of to along these axes are restricted to lie on

a circle. The DA then extracts the radius and center of this circle from TAM data.

The constraint on to2 and to3 can be parameterized by an angle • so that to is described by two unknown parameters:

tox, the projection of ca onto B, and _. These are then determined using /o and the second time derivatives of B
as evaluated in the two frames. From Equation (4), 6 is expressed as a function of to and Nto t , yielding

._(_) + to__(a,) +_,_(_) = o (24)

where the vectors At(fiT), k = 0, 1, 2, are defined in Reference 13. Projecting Equation (24) onto the plane

perpendicular to B yields two transcendental equations for • and tot, generally yielding at least two solutions. The

ambiguity in the solutions can be removed if Nto , can be neglected, so that we can demand that the reference frame

components of the angular momentum L be constant. For SAMPEX, in particular, this requirement holds during

eclipses when there is no magnetic control.

The efficacy of the DA calculations was tested using eclipse data from PB722, and evaluating B_ and BA using 100-see

batches of TAM data. Figure 11 presents attitude and rate results from this calculation, using a 2-3-2 Euler sequence

to parameterize the attitude. The advantage of this parameterization is that the third Euler angle directly reflects the
1-RPO rate of the spacecraft, whereas the other two angles are very nearly constant for small nutational amplitudes.

We see that, although up to four solutions appear toward the middle of the timespan, only two solutions appear toward

the extremities. Demanding the constancy of L in the reference frame then unambiguously selects the correct solution
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To understand why we usually have only two solutions, it is useful to approximate L = h which holds very well for
SAMPEX. Then

where _(_) - -FiIo (¢)xh], Q_ IB[ • -FI[Bxh], and o_. denotes the projection of the o onto the plane
perpendicular to B. Thislineari_es Equation (24) and yields:

One can then exclude el by projectingtheseequationsonto thevectorC_ IBI ,,Bx/_(O). This leadstoa quadratic

equation with respect to x = tan(_/'2), analogous to that in Reference 12 for the constant-e limit. (The quadratic
equation turns into Equation (3-11) in Reference 12 if one sets h = 0.)

The DA yields multiple solutions when B is approximately antiparallel to the roll axis. Since h for SAMPEX is directed

along the pitch axis, I_(_) is approximately antiparallel to B for any value of ¢_. Contributions to 1_(O) cannot then

be neglected in B x 9, and this gives rise to the multiple solutions, at about 600 sec in Figure 11.

Figure 12 compares the RTSF roll angle results obtained by initializing the filter with two different schemes: (1) zero

initial conditions and (2) with the correct DA solution from Figure 11. It is evident that using the DA for initialization
significantly improves the attitude accuracy by reducing the convergence time of the RTSF. Note that results with both

initial conditions reflect oscillations with the spacecraft's nutational period (=120 sec). To illustrate the importance of
the initial conditions, we note that the RTSF solutions diverged when the spurious solution of Figure 11 was used to

initialize the filter. In this context the successful convergence with zero initial conditions is also noteworthy. (The large
nutational amplitudes for zero initial conditions are eventually damped by the RTSF's rate corrections.)

8. Conclusions

We find that the SAMPEX RTSF's method of estimating the rate errors b that accumulated during the period between

rate updates yields accurate results while minimizing the computational load. The tuning scheme, which exploited the
relationship between the converged covariances, noise characteristics of SAMPEX data, and the Markov time constant,

was simple but effective, and resulted in estimates of b accurate to 0.0003 dee/see (1 dee/hour). Consequently,
estimating b significantly enhanced the performance of the SAMPEX RTSF by providing robustness against

• Large a priori attitude and rate errors

• Errors in the control torques

In fact, we see that rates were generated accurately in slowly varying situations even when the Euler equation is not
used.

The RTSF's advantages over single-frame algorithms were demonstrated through

• Stability of pitch angle estimates during Sun-magnetic field near-coalignment, where both QUEST and TRIAD
solutions were incorrect by nearly 25 deg

• Magnetic-field-only attitude and rate determination to within 1.5 deg and 0.01 dee/sec of the single-frame
solutions using zero initial conditions

The deterministic magnetic-field-only algorithm significantly enhanced the robustness and accuracy of the filter by

generating coarse estimates of the a priori attitude and rates. This results in an important contingency algorithm for
spacecraft like SAMPEX which have no sensor redundancy.
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