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ABSTRACT

Three-axis attitude determination is equivalent to finding a coordinate transformation matrix which transforms a

set of reference vectors fixed in inertial space to a set of measurement vectors fixed in the spacecraft. The atti-

tude determination problem can be expressed as a consUralned optimization problem. The constraint is that a

coordinate transformation matrix must be proper, real, and orthogonal. A transformation matrix can be thought
of as optimal in the least-squares sense if it maps the measurement vectors to the reference vectors with minimal

2-norm errors and meets the above constraint. This constrained optimization problem is known as Wahba's

problem. Several algorithms which solve Wahba's problem exactly have been developed and used. These algo-
rithms, while steadily improving, are all rather complicated. Furthermore, they involve such numerically unstable
or sensitive operations as malrix determinant, matrix adjoint, and Newton-Raphson iterations.

This paper describes an algorithm which minimizes Wahba's loss function, but without the constraint. When the

constraint is ignored, the problem can be solved by a straightforward, numerically stable least-squares algorithm
such as QR decomposition. Even though the algorithm does not explicitly take the constraint into account, it still

yields a nearly orthogonal matrix for most practical cases; orthogonality only becomes corrupted when the sen-

sor measurements are very noisy, on the same order of magnitude as the atti0ade rotations. The algorithm can be
simplified if the attitude rotations are small enough so that the approximation sin0 = 0 holds.

We then compare the computational requirements for several well-known algorithms. For the general large-
angle case, the QR least-squares algorithm is competitive with all other known algorithms and faster than most.

If attitude rotations are small, the least-squares algorithm can be modified to run faster, and this modified algo-
rithm is faster than all but a similarly specialized version of the QUEST algorithm.

We also introduce a novel measurement averaging technique which reduces the n-measurement case to the two

measurement case for our particular application, a star tracker and earth sensor mounted on an earth-pointed
geosynchronous communications satellite. Using this technique, many n-measurement problems to reduce to

< 3 measurements; this reduces the amount of required calculation without significant degradation in accuracy.

Finally, we present the results of some tests which compare the least-squares algorithm with the QUEST and

FOAM algorithms in the two-measurement case. For our example case, all three algorithms performed with
similar accuracy.

The authors arewith Hughes Aircraft Company, Bldg El. MS DII0, POB 92919. Los Angeles, CA 90009
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1. INTRODUCTION

This paper discusses a new sub-optimal algorithm for attitude determination. It also introduces a novel measure-
ment averaging technique which effectively reduces the number of vector measurements that must be processed

by any attitude determination algorithm. It is organized as follows: first a brief statement of the attitude deter-

mination problem is given, followed by a formal statement of Wahba's attitude determination problem. In Sec-
tion 2, we introduce a new suboptimal least-squares algorithm which minimizes Wahba's loss function, but

without the orthogonality constraint on the attitude matrix solution. In Section 3 the computational requirements

for the new algorithm are presented and compared with several other attitude solutions (optimal & suboptimal).
Section 4 discusses a technique for reducing the number of vector measurements. Finally, Section 5 presents

simulation results for a specific example of a geosynchronous communications satellite with a star tracker and an

earth sensor. We end with a brief conclusion.

Attitude Determination Problem Statement

Consider a set of reference vectors r i , i = 1, • • • , n expressed in an inertially defined coordinate system I.

Consider the same set of vectors, but denoted s i , i = 1, • • • , n when expressed in a spacecraft body defined

coordinate system B. These vectors are related by the attitude (or direction cosine) matrix A, i.e.

stfArt ifI, "'" ,n (1)

In one application, for example, the measurement vectors s i would be provided by earth sensor and star tracker

measurements (corrupted by error sources such as noise and biases) while the reference vectors r i would

correspond to known directions of the stars and earth nadir expressed in I.

The vectors s i and r i (for i = 1 , • • • , n) can be concatenated to form the columns of matrices

Then (1) can be written as one matrix equation

S = AR (3)

where S and R are 3xn matrices and A is a 3x3 proper real orthogonal matrix [1], i.e.

Ar =A -1 & det(A) = 1 (4)

Since A satisfies the properties of (4), it represents a rotation transformation which preserves the lengths of vec-

tors and the angles between them.

The problem is to find an estimate/_ of the attitude matrix A using the measurement matrix S and the reference

matrix R (both possibly corrupted by noise). It is a fundamental fact that at least two non-collinear vectors are

needed to determine attitude; thus, it is necessary that n > 1 to obtain a solution.

The problem thus described has a long history ([3]-[14]). A number of solutions have been proposed, both

approximate and optimal. Approximate algorithms such as TRIAD cannot accommodate more than two obser-
vations and even throw away part of this information; therefore, they don't provide an optimal estimate of the

attitude.

Optimal algorithms, on the other hand, compute a best estimate of the spacecraft attitude based on a loss func-
tion which takes into account all n measurements. One particular loss function which has found a prominent

place in the literature is the so-called Wahba loss function, which was first proposed by Wahba in 1965 [2]:

- 1 n 2 A .

L(A)f __i_=l ,tlsi _ _rille= 2 l (S _t_) A_ It2 ffi 2tr[AVi(S-AR)r(S-AR)A_], (5)

where II • II2 denotes the vector 2-norm, A = diag(a I , a 2 , • • • , an), and the a i , i = 1 , • • • , n are non-

negative weights, whose sum can be set to unity without loss of generality (and will be in the sequel).
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Wahba's Problem

Wahba's problem is formally stated as follows:
minimizes the cost function (5). Find a proper real orthogonal matrix satisfying (4) which

Solutions to Wahba's problem

The early solutions, as reported in [2], involve a polar decomposition of SR T; a complete set of eigenvalues and
eigenvectors of the symmetric part is then required. Therefore, these solutions required a large amount of calcu-lation.

Davenport [4] has shown that the quadratic loss function in the attitude matrix can be transformed into a qua-
dratic loss function in the corresponding quatemion. This is a great simplification of the problem proposed by
Wahba since the quatemion is subject to fewer constraints than the nine elements of the attitude matrix.
Davenport's substitution leads directly to an eigenvalue equation for the quatemion. This substitution and the
resulting eigenvalue equation form the basis for much of the work presented in the literature; for example, it is
the starting point for the derivation of the well-known QUEST algorithm. The QUEST algorithm provides an
efficient closed-form solution to the eigenvalue problem.

The TRIAD algorithm is a deterministic, suboptimal algorithm which can accommodate only two measurements.
It involves very simple and straightforward calculations, has been in existence for at least two decades, and has

been implemented in a number of missions; these include, among others, Small Astronomy Satellite (SAS),
Seasat, Atmospheric Explorer Mission (AEM), and Dynamics Explorer.

Markley's SVD algorithm [6] provides a very robust method for solving Wahba's problem. It is not very
efficient since it requires the singular value decomposition of the attitude profile matrix (a 3×3 matrix con-
structed from the measurement and reference vectors). Markley's FOAM algorithm [9] provides a related solu-

tion which does not require the singular value decomposition and is, therefore, very efficient. Markley reports
execution times faster even than for QUEST, previously the fastest known algorithm. In a very recent paper
[10], Markley introduces a variant of FOAM• The iteration normally required for solving the usual quartic is

avoided at the cost of losing orthogonality of the solution. However, orthogonality is recovered using an original
technique; simulations show no loss of accuracy in most cases.

Another solution recently described is the polar decomposition (PD) algorithm of Bar-Itzhack [12]. As the name

suggests, it obtains a solution by performing a polar decomposition of the attitude profile matrix; i.e. a decompo-
sition into orthogonal and symmetric parts. The orthogonal part is precisely the solution to Wahba's problem.

In the next sections we explore the use of standard linear least-squares techniques to minimize (5) while relaxingthe constraint (4).

2. THE NEW SUBOPTIMAL ALGORITHM

Least squares estimation theory can be used to obtain an approximate solution to the problem posed in Section
1. To be perfectly clear, the algorithm presented here is not a solution of Wahba's problem; it minimizes

Wahba's loss function, but without constraint. Therefore, this solution is suboptimal. We first present the gen-
eral form of the algorithm after which it is specialized for the case of small rotations. The general algorithm
requires three non-collinear vector measurements in the general case, while the small-angle least-squares algo-rithm works with as few as two measurements.

2.1 General Case

Consider the attitude matrix A of (1). We wish to estimate A using ri and Si (for i = 1 ,
Equation (3), the problem we address is • '' ,n,n>3). Given

m_,_i_ ,IS- _lJ22 (6)

over all possible .4. The objective function of (6) is equivalent to Wahba's loss function with all weights ai set
to unity for simplicity; the results in this paper can easily be extended to the weighted least-squares case. The
least squares estimator minimizing this objective function is given by [16]:

,f = sR• (7)
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whereR + denotes the pseudo-inverse of R. If the columns of R are linearly independent (as they would be with

>3 nonredundant measurements), R ÷ can be written

R+ = RrIRRr] -1 (8)

In practice, rather than directly computing (8), it is much more numerically robust and computationally efficient

to perform an orthogonal triangularization of R ; from this the attitude estimate, ,4, can be computed. An ortho-

normal matrix Q exists which transforms R to an lower triangular matrix F:

RQ =It o] (9)

Ref. [15] describes some standard, numerically stable algorithms exist for computing the orthogonal transforma-
tion of R; two of the more popular algorithms are Householder rotations and modified Gram-Schrnidt. Equation

9 is slightly different from the "usual" orthogonal triangularization in two ways: first, in the more typical setup,
Q would operate from the left instead of the right and F would be upper instead of lower triangular, and second,
the notation is perturbed because we already used the symbol R and here we use F to represent the matrix that

would usually be called R.

Now, partitioning Q as [ Q l Q z ], yields

R = [I" 0 _-FQr (10)

We now show how this factorization can be used to minimize the 2-norm of E A__S - ,_. Denote

SQ = [C D] (11)

Then, calculate

EQ = [C -,_F O] (12)

So, the least squares solution is obtained by choosing ,_ to satisfy

Ar = c or A = cr "-_ (13)

which is a matrix equation whose matrix-valued solution can be obtained using standard techniques from linear

algebra. Equations (9), (11) & (13) give an algorithm for solving the linear least squares problem (6). Equation
(7) is a batch solution of a static estimation problem. It can be used to update each time step of a recursive

algorithm such as a Kalman Filter, such as in [11].

Advantages of the General Least-Squares Algorithm

(1) The algorithm can be carded out using well-known, numerically stable algorithms.

Disadvantages of the General Algorithm

(1) Implementing the QR decomposition requires a relatively large number of calculations in the general
case, so the algorithm trades speed for numerical robustness.

(2) The solution technique ignores the constraints of (4); thus the estimated attitude matrix will not neces-
sarily be a true attitude matrix (i.e. orthogonal). This can be alleviated by using the orthogonalization pro-
cedure of Bar-Itzhack [11]. More importantly, as sensor errors approach zero the estimated attitude matrix

will approach orthogonality. This is because the least-squares algorithm minimizes the objective function
of (6); since the true attitude matrix zeros this objective function, in the error-free (no noise) case, the

least squares solution will equal the exact solution to Wahba's constrained problem. We have observed

this in a number of simulations.

(3) The algorithm is only usable when three or more (non-collinear) measurements are available; otherwise
the inverse of (8) doesn't exist.

Summary: The general least-squares algorithm does not appear to be very interesting in its own right; its main
interest is that in the special ease of small attitude rotations it can be simplified, yielding a very attractive algo-

rithm. We discuss this below.
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2.2 Small Rotations Case

If small attitude rotations are assumed, the attitude matrix A of (1) can be written as

A = (14)

where ¢, 0,and V"are the usualEuleranglesand are the quantitieswe wish to estimate(allEulerangle setsare

essentiallyequivalentforsmallangles;theseare theso-calledbody roll,pitch,and yaw pointingerrors).

Combining Equations(I) & (14) asinBar-Itzhack[IlL the least-squaresproblem (6)reducesto:

minimizellS_.u-/_,_e[l, (15)

where

I -- rl 1

2 r2

s_a_ _

is, '.

Rona_l A=

0 -r13

rl3 0
-r|2 rll

0 -r23
r23 0
--r22 r21

() --rn 3

r. 3 0
--rn 2 rl 1

¥12

rll

o
r7.2

r21

o
and eA=

r.2
r,t
0

Equation (15) represents a linear measurement equation where the parameters to be estimated are the desired

body roll, pitch, and yaw angles. The least squares attitude estimate in this case is given by

- ÷ " -T " -1 "T -

Equation (16) gives the least-squares solution to the linear system of equations in (15); a solution exists for n>2

measurements. Again, instead of computing (16) directly, a QR decomposition of/_,mtt is used to calculated

the attitude solution. More explicitly, there exists an orthonormal matrix Q and an upper triangular matrix F
such that

(Note that in this case, the "QR" decomposition is in its usual form except that F takes the place of R). Now,

[;:]partition Q = ; then,

R-,,,-_Qr Q_J[ o_ ]=Q,_r. (18)

As above, this factorization can be used to minimize the 2-norm of e = _'smaU - Rsmatt O. Denote

Qg,,,_=[ca]. (19)

Then, calculate

The least squares solution is then obtained by choosing O such that

re = c, (21)

which is a 3×3 system of linear equations easily solved using standard techniques such as Gaussian elimination

[15]. Therefore, having computed the QR decomposition of Rsmatt, Equations (19) & (21) give an algorithm for

solving the linear least squares problem considered.
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Advantages of the Small-Angle Least-Squares Algorithm

(1) For small angles, this algorithm provides a nearly optimal attitude estimate using an efficient and
numerically stable algorithm.

(2) The small angle algorithm explicitly estimates the roll, pitch, and yaw angles (not the full attitude
matrix). Thus additional calculations are not required to obtain the roll, pitch, and yaw angles from the
attitude matrix.

(3) The matrix Rsmatt contains many zeros and one can take advantage of this known structure to reduce

the required computation. This algorithm's computational requirement compares favorably with other

algorithms as shown below.

(4) This algorithm works with n >2 measurements, unlike the general algorithm which needs at least three
measurements.

Disadvantages of the Small-Angle Algorithm

(1) The primary disadvantage is introduction of errors due to the small-angle approximation, and thus
applicability limited to only those cases where small angle approximations are valid. For attitude rotations
in all three coordinate axes of less than 5°, the error due to the small angle approximations is bounded by

0.006 ° , which is acceptable in many cases..

(2) As for the general least-squares algorithm, this algorithm is not an exact solution of the Wahba prob-
lem and does not guarantee an orthogonal attitude matrix. If no measurement noise is present (and there
are no roundoff errors), the only errors are due to the small angle assumptions. If the amount of measure-
ment noise is small compared to the size of the attitude rotations, the linearization is the main source of

error and nonoptimality is not an issue.

3. COMPUTATIONAL REQUIREMENTS

In this section, we present the computational requirements for the least squares algorithm and compare these
with the computational requirements of several well-known algorithms. Table 1 below summarizes the computa-

tional requirements.

For each algorithm, we address both the general case and the small rotation case. We specifically address the
cases of two and three vector measurements (i.e. n = 2,3). The two and three measurement cases are the most

important because most typical spacecraft have either two or three sensors active at a time. Two vector meas-
urements are sufficient to determine attitude. The three measurement case is important because many systems

seeking maximal accuracy will include an orthogonal (or near orthogonal) triad of sensing devices. In the next
section we present a technique for reducing more than three measurements to no more than three for cases
where the additional measurements can be conveniently clustered (for example, one star tracker tracking and

measuring multiple stars).

The computational requirements in this table do not include the calculations needed to compute the so-called

attitude profile matrix, thus making general QUEST and SVD operations counts independent of n, the number of
measurements. The least-squares operations counts, on the contrary, do grow with larger n. For the general
(large-angle) least squares algorithm, only the three-measurement case is included because three vector measure-
ments are required to obtain a solution. The SOMA (slower optimal matrix) algorithm [9], a variant of FOAM,
is included for completeness.

Observations From Table 1

(1) TRIAD is the fastest two-measurement algorithm, but is error prone because it actually throws away
some of the measurement information.

(2) Of small-angle algorithms (excluding TRIAD), QUEST is the fastest, both for two and three measure-

ments. It is followed by least squares and then FOAM.

(3) Of the general large-angle algorithms, FOAM is the fastest, followed by QUEST and then least

squares. SVD is the slowest.

Table 2 summarizes the primary characteristics of each algorithm. The second column indicates the nature of the

solution by construction. The third column indicates the types of calculations which make up the bulk of the
computation for each algorithm. We make one more observation:
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Table 1 - Algorithm Computational Requirements For The Two & Three Measurement Cases ]
Algorithm Operations

cosine sine add multiply I arccos I arcsin [sqrt

Least Squares

General, "--3 msmts 0 0 267 264 0 0 6
Small Angles, "=2 msmts 0 0 81 78 0 0 3
Small Angles, "=3 msmts 0 0 117 114 0 0 3

TRIAD, "=2 msmts 0 0 34 59 0 0 2
QUEST

General Case, "--2 & 3 msmts 0 0 217 209 0 0 1
Small Angles, n=2 msmts 0 0 42 71 0 0 1
Small Angles, n=3 msmts 0 0 64 95 0 0 1

SVD, ,,=2 & 3 msmts 0 0 299 336 0 0 0

FOAM, n=2 msmts 0 0 81 112 0 0 1
FOAM*, n--3 msmts 0 0 117 148 0 0 1
SOMA**, 3 msmts 1 0 94 155 1 0 4

* assumes one Newton-Raphson iteration

** SOMA identical to FOAM in two measurement case

(4) As a preview of Section 5, FOAM appears to have more numerical error. Both QUEST and FOAM

include some computations which might be sensitive to numerical round-off errors such as trace, adjoint,
determinant, and Newton-Raphson iteration.

Algorithm

Least Squares
Small Angles

General Case

TRIAD

QUEST

Small Angles
General Case

SVD

FOAM

Polar Decomposition

Table 2 - Algorithm Characteristics

Solution Characteristic Primary Computations

solves for $, o, & v
directly; near-optimal
minimizes Wahba's loss function
without constraint

non-optimal; deterministic

QR decomposition

QR decomposition

cross products, matrix multiply

solves Wahba's problem
solves Wahba's problem

solves Wahba's problem

solves Wahba's problem

solves Wahba's problem

solve _ = b, A e Rx'3

trace, adjoint, determinant,
Newton-Raphson iteration

singular value decomposition (iterative)

adjoint, Newton-Raphson iteration, frobenius norm

polar decomposition, linear equation solution,
matrix multiply

4. AVERAGING OF MEASUREMENTS FOR NEARLY COLLINEAR SENSORS

In this section we describe a technique for combining the measurements of nearly collinear sensors to reduce the

number of independent measurements which must be processed by the attitude determination algorithm. This is
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motivated by the following observation: given two or three (non-collinear) vector measurements, additional,

independent measurements which are nearly collinear to any of the original two or three provide very little addi-
tional information. For example, consider a spacecraft with two star trackers whose boresights are well-

separated from each other. Further assume that each tracker tracks several stars within its field of view and pro-
duces independent vector measurements for every star it tracks. The stars within each star tracker's boresight

are separated by only a few degrees. Therefore, each star tracker is essentially a two-axis sensing device, with a
weak measurement of the axis of rotation about its boresight. A much better three-axis attitude measurement is

available by combining the measurements of the two star trackers, and two axes of measurement from each is

sufficient.

The central concept of this section is to combine collections of nearly collinear measurements by averaging

them, and then using that averaged measurement (along with at least one other measuremen0 in the attitude

determination algorithm of choice.

To carry out this concept, the nearly collinear measurements (for example, the measurements of all stars in a
star tracker) are averaged and normalized in Cartesian coordinates. This results in one measurement vector (and

its corresponding reference vector) as follows:

=1+ =2+ "'" + s. (22)
measurement vector: Samvg= II s t + s2 + • • " + s,, II 2

rt+r2+ .. +r= (23)
reference vector: ray* = ilrt+r2+ ... +r,, 112"

It is easy to verify that if the original measurements satisfy (3), then the resulting averages from (22) & (23)

also satisfy (3). Therefore, if there are at least two widely separated sets of coaligned or nearly coaligned atti-
tude measurements, these sets of measurements can be grouped and averaged as above. This results in just a

few (typically two or three) measurements, each of which might be aggregates of several sets of nearly

coaligned measurements, Reducing the number of measurements this way has two main benefits:

(1) It reduces the operations necessary in the attitude determination algorithm (at least if the least squares

algorithm is used; some algorithms' operations counts do not grow with additional measurements).

(2) It reduces the data flow required across the interface between the star sensor and the central processor.

$. SIMULATION RESULTS : COMPARISON OF LEAST-SQUARES, QUEST, and FOAM

In this section we present the results of a simulation which demonstrates several of the concepts in this paper.

We compare the performance of the least-squares algorithm with the well-known QUEST and FOAM algorithms
for the case of small attitude rotations with two vector measurements. We also demonstrate the use of the meas-

urement averaging technique of Section 4.

The particular example studied here is a geosynchronous satellite with a star tracker and an earth sensor. The

star tracker can track up to m stars, but the m star mesurements are averaged by the technique of Section 4 to

produce one vector measurement. The star tracker boresight is assumed to be 53 ° from the earth sensor
boresight, and these two sensors provide two well-separated vector measurements for attitude determination. We

simulate only the small-angle version of the least-squares algorithm since the general algorithm needs at least
three measurement vectors. It is reasonable to use the small-angle algorithm, because during normal operations

geosynchronous satellites typically maintain their attitudes to within small perturbations from the nominal atti-
tude. We also simulate both the general and small-angle QUEST algorithms, and the FOAM algorithm.

To study the effects of finite precision arithmetic, the simulation includes a model of the round-off error which
is exhibited in a typical processor. The algorithms are assumed to be implemented in single precision floating-

point arithmetic, with numbers stored as 23-bit mantissa, sign, and 8-bit exponent. This corresponds to the popu-

lar 1750a architecture.

First, coordinate frames will be defined after which the detailed implementation of the algorithm will be

described. Figure 1 depicts the geometry.

5.1 Coordinate Frame Definitions

The fight-handed coordinate frames considered are defined below.
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orbiting reference frame, R=(1,2,3)

body frame, B=(x,y,z)

Star sensor frame, S=(a,b,c)

inertial frame, I=(_,II,N)

I,x

/

/

/

I

/

/

/ 3,z

/

/

TOD
IT

J

Equatorial
Plane

SPACECRAFT
ORBIT

Y

Z _

X

c,
aAz //J I ,

b

a

Y

Figure I - Geometry & Coordinate Frames
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1. S = Star Sensor Frame

This frame has its 3-axis in the direction of the star sensor boresight, its 1-axis in the positive azimuth

direction of the star sensor, and its 2-axis completes the right-handed triad.

2. B = Spacecraft Body Frame

This frame has the spacecraft yaw axis as its 3-axis, the spacecraft pitch axis as its 2-axis, and the space-

craft roll axis as its 1-axis.

3. R = Orbiting Reference Frame

This frame has its 3-axis nadir pointed, its 2-axis orbit normal south, while its 1-axis completes the right-

handed triad.

4. I = Celestial Frame

This frame, commonly referred to as the Earth Centered Inertial (ECI) frame, has its 3-axis parallel to the
rotation axis of the earth and pointed north, its 1-axis towards the vernal equinox, and its 2-axis in the

plane of the equator completing the fight-handed triad.

5.2 Coordinate Frame Transformations

The coordinate frame transformations considered are defined below. A 3×3 direction cosine matrix is a transfor-

mation from one coordinate frame to another. In the following, a direction cosine matrix will be written

A = A (a 1 , • • • , an) where arguments a i , i = 1 , . • • , n indicate a functional dependence (not explicitly

shown) of the direction cosine matrix on the arguments.

1. Transformation From Spacecraft Body To Star Sensor Coordinates

M :a'-_S M =M(aAz ,era. ,_'R) (24)

.

where

0tAz,e,_.t., _R = Azimuth,Elevation,& RotationMountingAnglesOf TheStarSensor

TransformationFrom OrbitingReferenceFrame To Body Frame

a :R--*B A =a(_,O,_) (25)

3. Transformation From Celestial Frame To Orbiting Reference Frame

C :I--#R C=C(i ,fI,TOD) (26)

where TOD denotes the time-of-day angle, i = orbit inclination, and f_ = right ascension of the ascending

node.

5.3 Measurements

The following measurements are available from the star sensor and the earth sensor to estimate the spacecraft

attitude.

1. Star vector measurements expressed in the star sensor coordinate frame S, s/m _ S i = 1 , 2, • • • , m.

2. The corresponding star vectors expressed in the celestial coordinate frame I from the star catalog (obtained

as a result of performing star identification), r/c _ I i = 1 , 2, • • • , m.

3. Earth vector measurements expressed in spacecraft body coordinates B from the earth sensor, skn _ B.

-sin0_ cos_ 1
sk"= sin_ (27)

COS0Az COS_EL

where 0AZ and _bEL are the earth sensor azimuth and elevation measurements, respectively, with respect to

earth nadir. Our earth "ephemeris" data which is analagous to star reference positions given from the

catalog isr_=(0,0,1)r e R.

538



5.4 Collection and Averaging Of Measurements

Our ultimate goal is to find an attitude matrix A (_, O, V) which Iransforms from the orbiting reference frame

R to the body frame B and equates the measurement Vectors in R to the reference vectors in R (see equations
(6) and (24), or (30) and (32) below). The measurement and reference vectors for the earth sensor are:

s_'¢ nandr_ c R, (28)

and the measurement and reference vectors for the star tracker are:

Mrs_¢ B_adCrf e R, i=1,2, ... ,m. (29)

The star sensor measurements and reference vectors are then averaged using equations (22) and (23) to makeone aggregate star sensor measurement.

5.5 Implementing the Suboptimal Algorithm

In this case, the least-squares problem (15) is to minimize the difference between the the measurements
(expressed in the body frame) and the references (expressed in the orbiting reference frame) through attitude
rotation A (the desired quantity). For the star sensor measurements,

minimizeIIS_ - A(¢. e. ¥) R,,_II.
where (30)

For the earth sensor measurement,

_avl I T= M sa_ mad R_ = Cr_l. (31)

minimizeIlsf - A (_. o. v) rBI,wherer_ = (32)

Combining Equations (2"_ (28), and (29), rearranging terms, and removing one extraneous equation, the least-squares problem (15) reduces to

II[s-'.'-R-,.'] [Ro II
/ o

minimize I15-/_l, orminimize//is.,_:_.,_/_l_,.,:..,,, o '//o/11

//[ J t o 0' (33)

which is a linear measurement equation in O, O, and ¥. Xavg,i denotes the i'th entry of the vector Xavg. The

least squares solution is then obtained by factoring _ and implementing Equations (19) and (21) as discussed inSection 2 above.

Small angle approximations are used to provide the simple form of the attitude matrix in Equation (33).
Because of the orbit normal steering law of many geosynchronous satellites, the small angle assumption is valid;
the satellite body axes will not deviate from the orbiting reference frame more than a few tenths of a degree
during normal operations (including stationkeeping). The star sensor measurements and references are averaged
in cartesian coordinates using equations (22) and (23) providing one single "measurement" from the star sensor
which reduces subsequent computation and limits data flow at the interface.

5.6 Simulation Results

For our simulations, we use _he following reference vectors:

I] 01 ' R_2ffi t--cos53*J (34)

The reference vector Ravg 1 is the direction of earth nadir in the orbiting reference frame while Ravg 2 is the
direction of a star expressed in the orbiting reference frame. The measurement vectors are computed as

Say# : A,mR,_I + nt , i ffi I, 2 (35)
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where

[ cos_cos0 cos,¢stn0s_n_s_n_cos# -c°sw_n°c°s_stnVs_n# } (36)A,_, -- -sin¥cos0 -sin_sinOsin0+c.os¥cos$ sin_sin0cos0+cosysin0
sinO ---cosOsin_ cosOcos_ * = 9 = v = 0,_t

and n i is a vector of zero-mean Gaussian white noise measurement errors on the components of n i . For simpli-

city, the measurement noise is assumed to have equal magnitude in every direction. We denote it's equivalent

angular size by On. In all cases, the measurement vectors thus produced are normalized to have unity 2-norm.

The parameter 0ro t represents the size of the true attitude rotation.

The simulation results are summarized in Table 3. All algorithms were simulated with n i = 0, to assess the

effect of round-off errors, and with n i _: 0 to assess estimation accuracy in the presence of sensor noise (and

round-off error). Algorithm accuracy is computed by

=[ _0.o,)2+ - 0 )2+ - (37)

Of course, when no measurement noise is included, the algorithm need he executed only once; however, when

measurement noise is included, we execute the algorithm 250 times to capture the statistical effects and then

take RMS values. When n i = 0 (i.e. On = 0), this gives the effect of round-off errors; when n i _ 0, the metric

of (37) is a measure of total estimation error. We stress that the numerical results are merely experimental, not

validated by any rigorous numerical analysis.

Table 3 - Simulation Results : Algorithm Accuracies

ROTATION SIZE MEASUREMENT NOISE LEVEL ESTIMATION ERROR, _u,

0rot, degrees 0_, degre_

A

B

C

D

E

F

G

H

0

0.{301

O.Ol

0.1

0.1

0.1

0

0

o

o

o

o

0.13oo1

0.Ol

0.0ol

0.01

sMALL ANGLE

LEAST SQUARES

2.0× 10 _

3.1x10 4

3.6×10 -_

2.7×10 -4

2.8)<10 -4

0.014

0.0014

0.014

GENERAL QUEST

0.0

4.0×10 _

1.8x10 _s

1.9x10 _s

1.4x10 -4

0.014

0.0014

0.014

SMALL ANGLE QUEST

0.0

4.OxlO_
1.6,,<10-6

1.5×10_

1.9×10-4

0.014

0.0014

0.014

FOAM

0.0

2.5x10- s

2.8)<10 --5

5.8)<10 -6

1.4xlO-4
0.014

0.0014

i 0.014

The results summarized in Table 3 are representative of a fairly wide range of attitude errors and noises,

although all would be considered "small-angle" cases. We see that, for these cases, the least-squares algorithm is

less affected by finite precision arithmetic than the other algorithms (except, mysteriously, in Case A). Its accu-

racy is comparable with the other algorithms in the presence of sensor noise. So, from Table 3, we conclude
that for this special case, the least squares algorithm provides accuracy essentially identical to QUEST and

FOAM.

The FOAM algorithm appears to be most susceptible to round-off error and, thus, its estimation accuracy

degrades as measurement noise decreases.

6. CONCLUSION

A number of algorithms exist for solving the attitude determination problem. In this paper we introduce a new

suboptimal least-squares algorithm for the solution of Wahba's problem. It is especially attractive for cases
where attitude rotations are known to be small. In the small-angle ease, the least-squares algorithm is quite

efficient and can be performed with numerically stable operations. The computational requirements of the least

squares algorithm are compared with other well-known algorithms for the two and three measurement cases. If

the angle of rotation is known a priori to he small, small angle QUEST is the most efficient algorithm, followed

closely by the least squares algorithm. In the general n-measurement, large-angle case, QUEST and FOAM are

still preferable as they are fast optimal algorithms which have been shown to work well in practice. Finally, we
introduce a measurement averaging technique which reduces the number of vector measurements that any
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algorithm must process. Performance degradations using the averaging technique are small as long as at least
two sensors with large angular separations and similar accuracies are available.

REFERENCES

[1] G.M. Lerner, "Three-Axis Attitude Determination," in Spacecraft Attitude Determination & Control, Ed.
by J_R. Wertz, D. Reidel, 1985, pp. 420-28.

[2] G. Wahba, ,4 Least Squares Estimate Of Spacecraft Attitude, SIAM Rev., v. 7, no. 3, Jul 1965, p. 409.

[3] J.E. Brock, Optimal Matrices Describing Linear Systems, AIAA J., v. 6, no. 7, Jul 1968.

[4] P.B. Davenport, A Vector Approach To The Algebra Of Rotations With Applications, NASA X-546-65-
437, Nov., 1965.

[5] M.D. Shuster & S.D. Oh, Three-Axis Attitude Determination From Vector Observations, J. Guid. & Contr.,
v. 4, no. 1, Jan-Feb 1981.

[6] F.L. Markley, Attitude Determination Using Vector Observations And The Singular Value Decomposition,
J. Astro. Sci., v. 36, no. 3, Jul-Sep 1988, pp. 245-258.

[7] F.L. Marldey, Attitude Determination & Parameter Estimation Using Vector Observations : Theory, J.
Astro. Sciences, v. 37, no. 1, Jan - Mar, 1989, pp. 41-58.

[8] F.L. Markley, Attitude Determination & Parameter Estimation Using Vector Observations : Application,
AAS Paper 89-364.

[9] F.L. Markley, Attitude Determination Using Vector Observations : .4 Fast Optimal Matrix Algorithm,
Flight Mech./Est. Theory Syrup., Greenbelt, MD. 5-7 May 1992.

[10] F.L. Markley, New Quaternion Attitude Estimation Method, J. Guid., Contr., & Dyn., v. 17, no. 2, Max-
Apr 1994.

[11] Itzhack Y. Bar-Itzhack & J. Reiner, Recursive Attitude Determination From Vector Observations : Direc-
tion Cosine Matrix Identification, J. Guid. & Contr., v. 7, no. 1, Jan-Feb 1984.

[12] Itzhack Y. Bar-Itzhack, Polar Decomposition For Attitude Determination From Vector Observations,
Flight Mech./Est. Theory Syrup., Greenbelt, MD, 5-7 May 1992.

[13] M.D. Shuster, Approximate Algorithms For Fast Optimal Attitude Computation. AIAA Guidance & Con-
lrol Conference, Palo Alto, CA, Aug 1978.

[14] M.D. Shuster, Maximum Likelihood Estimation Of Spacecraft Attitude, J.c_stro. Sci., v. 37, no. 1, Jan-Mar
1989, pp. 79-88.

[15] G.W. Stewart, Introduction To Matrix Computations. Academic, 1973.

[16] J.M. Mendel, Lessons In Digital Estimation Theory, Prentice-Hall, 1986.

541



APPENDIX - ALGORITHM OPERATIONS COUNTS

In this appendix, we present the details of some of the operations counts for the case of two measurements.
These results are presented in Table 1 of the main body of this paper. This appendix is included to justify the
claims of Table 1, document the assumptions used to do the operations counts for the various algorithms, and
illustrate the general method used to obtain the results of Table 3 of the main body. It is not exhaustive due to

lack of space.

Small Angle Least Squares Count

The operations count for the least squares solution using a QR decomposition is taken from Stewart [15] who

provides a count of the number of multiplies required by each algorithm; we assume the same number of addi-

tions are required. The results are shown in Table A1.

Table A1 - Small Anllle _ Square* OperstMm| Count

OPERATION TYPE

QR Decomposition

(Stewta [15], AIS. 3.S, p. 236)

Use QR for Le_ Squires
(Stewtn [15], AI_ 3.7, p. 234, d_ dines)

Solve upper -,,mmgular

sym,ecn

fol'm "me,a _,I_ '1_11t"

TOTAL

tdditims

36

30

81

multiplies

36

3O

6

0

iqlt

3

3

The calculations required to solve an upper triangle 3x3 system were counted by hand. The form "measure-

ment" operation of the last row is the calculation required to form J of Equation (15) in the main body of this

paper.

Small Angle QUEST Operations Count

The bulk of the computations required for small angle QUEST are those involved with solving a 3x3 system of

linear equations. We assume that Gaussian elimination is used for which Stewart [15] provides a count of the
multiplies (we assume the number of additions is the same). The calculations are summarized in Table A2. The

notation is from [5].

Table A2 - Small Angle QUEST Operations Count

OPERATION TYPE

form S 0

calculate A " 2/ - S O

form Z

solve Ax : Z using

iptussian elimination (Stewart [15], A18. 1.3, p. 131)

form

multiplyelementsby 2

TOTAL

9

3

9

18

42

multiplies

24

0

18

18

71

Iqrt
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General QUEST Operations Count

The general QUEST operations count is summarized in Table A3 below. The notation in the table is consistent
with [5].

Table A3 - General QUEST Operatlona Count

OPERATION TYPE additions mulfipl;es sqrt

f_S 4times

form O 4 times

form det(S) 4 times

fon'n K 4 times

form co 4 times

form Z

fotmO "2- g

formo2 + z rz
form 8 + zrsz

form ZFS2Z

one newton-raphson itca'atim

fon'n _. [_, ¢.O

fo_ (_/+ 13S+ S2)Z
form
p_t m_t_

36

8

2O

48

16

9

1

3

9

14

10

5

36

2

0

o

0

36

72

8

18

o

3

12

15

4

2

33

4

2

TOTAL 217 2O9 1

A number of the operations are done four times to find and implement pre-rotations which avoid the 180 ° rota-
tion case.

FOAM Operations Count

Table A4 below summarizes the opeations count for the FOAM algorithm. Notation in the table is consistent
with [9].

Table A4 - FOAM Operatlom Count

OPERATION TYPE additions multiplies sq_

forma _,

ftnmK

fm-a_
fomnlibI1_
f_rn Iladj (B)II_
f_ra 0¢ + liB I1_)/_
fccm Zadj (Br )/;

foma BBT B

divide above by

add and aabuact three matriccs

1

1

0

8

17

!

0

36

0

18

1

2

1

9

27

lO

10

54

9

0

1

0

0

0

0

o

0

o

0

0

TOTAL 81 112 1

For the two measurement case, no Newton-Raphson iteration is required since X admits a closed form solution in
this case.
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