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SUMMARY

Our Sensitivity-Based Minimal Residual (SBMR) method which is based on our earlier Distributed

Minimal Residual (DMR) method allows each component of the solution vector in a system of

equations to have its own convergence speed. Our global SBMR method was found to consistently

outperform the DMR method while requiring considerably less computer memory. Recently, we

have developed and tested a new Line SBMR or LSBMR method and a Time-Step-Scaling (TSS)

method that are even more robust and computationally efficient than our global SBMR method

especially on highly clustered computational grids in laminar and turbulent flow computations.

Distributed Minimal Residual (DMR) Method

This method predicts an optimum amount of correction to each component of the solution vector by

combining the information from several previous iteration levels. Each of the corrections obtained

from the past iterations is multiplied by a different weighting factor and these weighting factors are

determined so that they minimize the overall future residual. Although it is based on general Krylov

subspace methods, the DMR method [1] differs from them by the fact that weighting factors are

different from one variable to another in the system.
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Global Sensitivity-Based Minimal Residual (SBMR) Method

The residual at a grid point depends on the solution vector Q at the neighboring grid points

including the point itself. The sensitivity of residual Rm (m=1,2,3: number of equations) with

respect to Qk (k=typical neighboring points) is 0__. That sensitivity can be determined from the
ao,

finite difference equation used in the scheme. For a two-dimensional incompressible flow solved

using Chorin's artificial compressibility method the solution vector is Q = {p u v} T. Suppose we

have calculated the solution vector Q at iteration levels up to t+n where n is the number of regular

iteration steps between two iteration levels. Then the change in the solutions between the iteration

levels can be written as follows.

Apk = (pfl"- (p fl Auk = (u_"- (uff, Av, = (vff*'- (vff, (1)
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Using the first two terms in a Taylor series expansion in artificial time direction, each residual for a

two-dimensional system after n iterations will be

(2)

Similarly, future residual at t = (t+n)+l can be approximated by

Here, a's are the factors that multiply A's to estimate the future solution vector so that it minimizes

the future residual. Then, (p_,,+.l = (Pk)' + txpAPk with similar expressions foru and v [23,4,5].
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Line SBMR (LSBMR) Method _! _ _: _:' _' _-'_ : : :_ = _ :_

The SBMR method calculates the same ct's for the entire computational domain, which cannot

represent optimum a's for both coarse grid regions and fine grid regions. Therefore, a natural

conclusion is to allow ct's to have different values in the clustered regi0hS.: A modified formulation

(LSBMR) was developed [3,5] to allow these ct's to have different values from one grid line to

another. The LSBMR formulation will be explained uslng the two-dimensional, incompre§sible

flow Navier-Stokes equations as an example. The system has three equations (rmax=3) and three

unknowns (M=3), that are p, u and v. The acceleration coefficients for those unknowns are tXp, a u

and tXv, respectively. If the grid lines are clustered in the j-direction, then each j = constant grid line

will be assigned its own set of three constant ct's. The residual at a grid point (i,j) incorporates a's

at the neighboring grid points plus the point itself. For the given Navier-stokes system, this yields

" ,_-IL°P,i-, p+_. P,,i%+ p_.,,_t
rtj÷l J ............

i +1 t t

+Z [aR. oR; oK ,.,]
s=i-I La%, .,,,,,OU_j+I _ J

Vtj. t_ , V_j_Jv + V_j+lGt

'ki+l J (4)
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On each j = constant line, three values (M=3) of constant a's are determined so as to minimize the

L-2 norm of the future global residual:
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D r=l / r

[ __ O+n)+1\

3 / R(t+a)+ lo1.¢,r ]2ZZ _ =0

[ _ (t+n)+l \

3 [ R(t+,o+ 1o1.¢.r 'l--

22yt, ) 0D r=l (5)

forj = 1, 2,..., jmax. Ifjmax is the total number ofj = constant grid lines, then substituting the

equation (4) into (5) results in (jmax) x M algebraic equations for the same number of unknown

optimum ct's. For a given j = constant grid line when using central differencing in j-direction, ctJ

_(t+n,M-l..., _(t+_l,.., _(t+_.l .....

appears only in t_ I,i,j-l), K m {,l,J) and K= 0,J+t). Therefore, we can see that the summation

over me entire domain leaves the termsonly with 00-2, d-1 aJ, aJ+1 and c0+2 summed along thej

= constant line. Now we have

(r 0R(t+n)+l(i'J- 1)
2_" _"Rimax 3 t'm)+l(i,j_l) r

i =1 r=l 0Or J
max3E j'1+2'£. y -
i=l r=l 0otJm

imax 3 [ (t-m)+l; ;_,,0R(rt+n)+l(i,j+l)
+2_" if" Rr (,,a',--, .

,='t 04
=0

(6)

forj = 1,2,. • .,jmax and m = p, u, v. In this example the simultaneous system of equations (6) yields

a block penta-diagonal matrix equation for (jmax) x 3 optimum tx's where each block is a 3 x 3

matrix. In the general case of a two-dimensional system having M partial differential equations, the

block penta-diagonal system (6) will have blocks of size M x M. Superior performance of

LSBMR is demonstrated for laminar (Fig. 1) and turbulent (Fig. 2) flows.

m

Time Step Scaling (TSS) Technique

A simple and efficient additional convergence acceleration technique called the Time Step Scaling

(TSS) was developed [3,5] for the steady-state solution of the incompressible flow on highly-

clustered grids. This technique can be considered as an extension of the local time-stepping so that

time steps can be different for each equation and at each grid point. In the highly-clustered grid

regions, the grid spacing in the direction of grid clustering is very small and it limits the magnitude

of Ax to be extremely small for stability reasons (time step is proportional to the square of the grid

spacing). On the other hand, the Jacobian, J, becomes large in the clustered regions. However, the
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product JA-t is orders of magnitude smaller in the fine grid region than in the coarse grid region.

Since the transient solutions are not of interest, one may desire to use larger time steps for some

equations in the highly-clustered region for faster convergence. A close investigation of the

convergence characteristics of each equation reveals that it is the slow evolution of pressure field in

the fine-grid region which slows the overall convergence. Therefore, the time step for the continuity

equation is scaled such that JAx in the clustered regions has the same order of magnitude as that in

the coarse grid regions. To do this, the maximum value of JA't along the grid line in the direction of

grid clustering is located and the time step at each grid point along this grid line is scaled as follows

A'r(i,j) = c _(JA't)m_ (7)

where Ax(i,j) is the calculated time step without the TSS, J(i,j) is the Jacobian, c is a user specified

coefficient (typically 0.8) and (JAx)m is the maximum value of JAx along the grid line considered.

For highly-clustered grids, magnitude of JAx in the coarse grid region is orders of magnitude larger

than that in the fine-grid region. The TSS technique was found to significantly accelerate the

convergence when highly clustered grids are used (Figures 1 and 2).
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Figure 1 Convergence histories for a 2-D straight channel flow including the TSS technique.

(L/H = 5, Re = 1600, 60x60 grid cells, ARmax = 104, 13= 5, CFL = 2.8, von Neumann = 0.4)
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Figure 2. Convergence histories for a 2-D straight channel flow including the TSS technique.

(L/H = 10, Re = 1.6xl06, 60x120 grid cells, ARmax = 104, _= 5, CFL = 2.0, von Neumann = 0.4)
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