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Summary

The objective of the study is to assess the capability of two-equation turbulence models for simu-

lating propulsion-related flowfields. The standard k - e model with Clden's low Reynolds number

formulation for near-wall effects is used as the baseline turbulence model. Several experimental test

cases, representative of rocket combustor internal flowfields, are used to catalog the performance of the

baseline model. Specific flowfields considered here include recirculating flow behind a backstep [ 1,2],

mixing between coaxial jets [3] and planar shear layers [4,5]. Since turbulence solutions are notoriously

dependent on grid and numerical methodology, the effects of grid refinement and artificial dissipation

on numerical accuracy are studied. In the latter instance, computational results obtained with several

central-differenced and upwind-based formulations are compared. Based on these results, improved

turbulence models such as enhanced k - e models as well as other two-equation formulations (e.g.,

k - w) are being studied. In addition, vafidation of swirling and reacting flowfields are also currently

underway.

Technical Discussion

The k and e transport equations are solved coupled to the the preconditioned Navier-Stokes equa-

tions. Preconditioning ensures that the system remains well-conditioned at all flow Mach numbers

and Reynolds numbers, thereby providing uniform convergence under a wide range of conditions

(Ref. [6,7] for details). Furthermore, convergence difficulties associated with strongly stretched grids,

which are characteristic of turbulent flows, are mitigated by using the ADI algorithm with proper local

time-stepping and preconditioning [6,7]. Several spatial discretization schemes such as second-order

cenwal-differencing and first- and third-order upwind differencing are used. When cenwal-differencing

is used, the presence of odd-even splitting and/or oscillatory solution behavior in the vicinity of steep

gradients, sometimes necessitate the judicious addition of second-order dissipation through the use

of switches or flux-limiters [8]. Oscillatory solutions, in particular, are frequently observed in tur-

bulence computations and usually seem to be related to large-scale unsteady flow processes such as
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vortex-shedding. Upwind schemes which possess inherent dissipative properties usuaUy suppress such

unsteady behavior and may therefore be regarded as more robust schemes.

Results and Discussion

The first test case discussed is the Driver-Seegmiller backward-facing step flow [1] shown in Fig. 1. The

velocity contours (Fig. 2) indicate a recirculafion length of x/H = 5.7, which is in agreement with other

published computational results using the k - _ model (expt. value is 6.3). The results in Fig. 2 were

obtained with third-order upwind-biased discretizadon of the convective terms. Interestingly, central

differencing does not yield a converged solution with the velocity contours suggesting that the solution

is unsteady. Addition of second-order dissipation [7] renders the solution steady. This unsteadiness

was however not encountered with any of the upwind schemes studied. Figure 3 shows the velocity

and pt profiles plotted against experimental data at several axial stations for the different discretization

schemes. The central-differenced and third-order upwind schemes agree fairly well with each other,

while the first-order scheme shows significant discrepancies in pt and under-predicts the recirculation

length. Additionally, the results are well-predicted when third-order is used for the flow equations

and first-order upwind is used for the turbulence equations. This result suggests that using first-order

accuracy in the turbulence equations does not undermine the overall accuracy of the calculation.

A grid refinement study was performed for the backstep flow of Kim, Kline and Johnston [2]. Grid

sizes of912, 1812 and 3612 were used. The coarsest grid had 9 points within y+ = I0. Fig. 4 compares

the velocity and k profiles for the three levels of refinement for the third-order upwind scheme. As the

figure shows, the coarsest grid differs significantly from the finer grids, especially in the region just

downstream of the reattachment point. __e/woOer _ agreequite well with each other, implying

grid-independence. Second-order central differencing, once again, indicated an unsteady solution even

for the coarsest grid case unless additional dissipation was included.

The next case considered is the experiment of Johnson and Bennett [3], involving two co-flowing

jets in a confined sudden expansion. Figure 5 shows the converged velocity contours for this case

while Fig. 6 shows comparisons of velocity profiles obtained from central-differenced and upwind

calculations plotted against experimental data. Overall agreement is quite good except at the centerline

in the near-injectorregion.

The final test case presented here is the turbulentplanar..........................shear layer experiments of Chang et al

[5]. In Fig. 7, comparisons of the velocity and k profiles are presented for the non-reacting case using

third-order upwind for the convective terms. The computations were perforn_ using inviscid wall

boundary conditions at the upper and lower edges of the domain. The computations agree fairly well

with the experingnts in the upstream S_tions. However, in the downstream stations, there is growing

discrepancy in the predicted k profiles. A similar discrepancy was observed in the calculations repo_a:!

in Bef. 5 and may be related to the choice of wall boundary condition.

Theaboveresults demonstrate thataccurateturbulentflowsolutions maybeobtainedwith theproper
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choice of spatial discretization schemes. Several of the flowfields were observed to have convergence

difficulties related to large-scale unsteadiness in the flowfield. Upwind-based schemes appear to be more

robust in this regard, probably because of the dissipation that is inherent in these schemes. The results

presentedhere will provide a baseline reference point for the selection of improved turbulence models

for solving combustor-related flowfields. Additional calculations are underway for the computation of

swirling and reacting flowfields.
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Figure 1: Computational Grid for Dfiver-Seegmiller Backstep How
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Figure 2: Velocity Contours for Driver-SeegmiUer Backstop Flow

w

= =

= =

u u IJ

g_._MD
. + .

LIB

._., .

XJH e 4.0

$, + . , .

...... c_om,

/.
U ILl IJ

X/N=4_

X.'H • 14.0

1

,f
!

_ | i i • 9

_m14_

u .... . ....+ +

..... C4mL all-- m_=,.

'I =:'"

IlJli I_lll

Figure 3: Velocity and/_t profiles - Comparison between Schemes
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Figure 4: Velocity and k profiles for Khn et a/backstcp - Grid Rcfinemcnt Study
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Hgure 5: Computational Grid and Velocity Contours for co-axial jets.
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Figure 6: Velocity profiles for co-axial jets.
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Figure 7: Velocity and k profiles for turbulent planar shear layer
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