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ABSTRACT

The primary and subharmonic instabilities of separating compressible subsonic two-dimensional

boundary layers in the presence of a two-dimensional roughness element on a flat plate are investi-

gated. The roughness elements considered are humps and forward- and backward-facing steps. The

use of cooling and suction to control these instabilities is studied. The similarities and differences

between the instability characteristics of separating boundary layers and those of the boundary layer

over a flat plate with a zero pressure gradient are pointed out and discussed. The theoretical results

agree qualitatively and quantitatively with the experimental data of Dovgal and Kozlov. Cooling

and suction decrease the growth rates of primary and subharmonic waves in the attached-flow

regions but increase them in the separated-flow regions.



1. INTRODUCTION

In boundary-layer flows over aerodynamic surfaces, separation takes place when the adverse

pressure gradient exceeds a certain limit. When the flow moves against a pressure gradient, its

energy and momentum become too small to overcome the viscous force; as the pressure gradient

exceeds a certain value, the flow is brought to rest, and the forward flow then separates from the

wall. Separation might occur while the flow is still laminar, so we need to evaluate the influence of

separation on the instability waves that can eventually lead to the breakdown of the laminar bound-

ary layer.

In this work, we investigate the stability characteristics of a boundary layer that separates due

to the presence of a single, localized two-dimensional roughness element on an otherwise flat plate.

The roughness elements considered in this study are humps and forward- and backward-facing

steps. Roughness elements exist with varying shapes and dimensions on different aerodynamic

surfaces; the importance of determining the shapes and sizes that will allow the flow to remain lami-

nar is evident.

The transition process in a two-dimensional low-speed flow over a two-dimensional roughness

element includes such mechanisms as the enhancement of receptivity of free-stream turbulence and

acoustic disturbances; 1-4 linear amplification of Tollmien-Schlichting (TS) waves and shear-layer

instability for separated flows; 5-s GOrtler instability; enhancement of secondary instabilities; 9-11 and

nonlinear interactions that can be captured by nonlinear parabolized stability equations (nonlinear

PSE) or direct numerical simulation (DNS) studies of the full Navier-Stokes (NS) equations. 12-14

Localized surface roughness contributes to the generation of disturbances in boundary layers

(boundary-layer receptivity) by providing appropriate conditions for the interaction of free-stream

acoustic or vortical disturbances with the unsteady motion of the boundary layer. As a result, the

disturbances become internalized into the boundary layer. Nayfeh and Ashour 3 found that the

receptivity of incompressible boundary-layer flow over a hump to free-stream acoustic waves

increases as the hump height increases. When the hump height was sufficient to cause separation,

the receptivity increased considerably. The TS and shear-layer instability waves in a separation

bubble were found to coexist in flow over a roughness element. Although the shear-layer instability

waves are associated with high frequencies, the TS waves are difficult to distinguish from the shear-

layer instability waves. The G_rtler vortices in the flow over a roughness element develop in the

concave surface regions and may interact with the TS waves. Although such interactions are

weak 15,16 in flow over a smooth surface, this same result may not occur in the presence of a

roughness element. The subharmonic secondary instability increases 9,1° dramatically in a flow that

separates due to a roughness element. Such an instability can set a three-dimensionality in the flow

field and can lead to early transition. The fundamental secondary instability and nonlinear
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interactionsmayplaya significantrolein the breakdownto transitionwhentheamplitudesof the

disturbancesarelargeenoughto causesuchinteractions.

A majordifficultyin studyingthestabilitycharacteristicsofseparatingflowsis thedetermina-

tion of the meanflow. Althoughconventionalboundarylayerspredictthe locationof separation,

theyfail to marchthroughit. Moreover,conventionalboundarylayersfail to accuratelypredictthe

meanflowoverroughnesselementsthat donot evencauseseparationdueto the abruptchangein

the boundaryconditions,whichcausesviscous-inviscidcouplingand addsanupstreaminfluence.

Thus, the mean-flowproblemmust be solvedwith a triple-deck formulation, an interacting

boundary-layer(IBL) method,or aNSsolver.For smoothroughnesselementswith separatingand

reattachingboundarylayers(i.e.,smallseparationbubbles),IBL canbeusedto accuratelydetermine

theflow field. If theroughnesselementsaresharpor if the sizeof the elementis largeenoughto

inducemassiveseparationandvortexshedding,then both the triple-deckand IBL formulations

breakdown,andaNSsolvermustbeused.Notethat to accuratelypredicttheflowfieldin thepres-

enceofroughnesselementsthat mayinduceseparationwith aNSsolver,onemustusea grid that is

fineenoughto avoida smearingofthe importantflowstructuresbythetruncationerroror the arti-

ficial dissipation. Evenfor the simplecaseof a subsonicflowovera smoothflat plate with zero

pressuregradient,cautionmustbeexercisedin usinga NSsolverto generatemean-flowprofilesif a

stability analysisis to beperformedon theseprofiles,iv Furthermore,becausethe numberof flow

casesthat mustbeinvestigatedin linearstability studiesis very large,the NScalculationsmaybe

very expensive.Lessenand GangwaniTM and Singh and Lumley 19 used approximate analytical-

numerical methods to calculate the velocity profiles in a flow over a roughness element. They found

that the calculated profile has an inflection point. By performing temporal linear stability calcula-

tions on their calculated velocity profiles, Lessen and Gangwani is showed that the roughness has a -

destabilizing effect and shifts the branch I neutral point toward lower Reynolds numbers, particu-

larly at relatively large streamwise wave numbers.

For the results presented in this work, an IBL formulation was used to calculate the mean flow.

The mean-flow profiles generated by IBL and their stability characteristics compared well 2° with

those generated with a NS solver and a sufficiently fine grid. However, the IBL formulation is less

computationally demanding than NS solvers.

More experimental studies exist than analytical and numerical studies that deal with the

stability of separating boundary layers. However, most of these experiments are concerned with

determining the transition location (natural transition experiments) and its variation with the rele-

vant parameter space, rather than with the determination of the spectral structure and the growth

and development of the instability waves (controlled or forced experiments). Many of these natural

transition experiments are, in fact, flight experiments performed on swept and unswept wings.

These experiments examine a variety of effects including suction, pressure gradients, compressibil-



ity, and multiple, three-dimensional, and sharp roughness elements. This variation makes the

validation of stability theories for separating flows difficult, particularly because DNS studies of the

full NS equations of separating flows are rare. These experiments have resulted in several

empirically based criteria 21,22 for the prediction of the transition location in flows over roughness

elements. However, these criteria are not broadly applicable and are valid only for the considered

configurations and experimental conditions. Moreover, these criteria do not provide an

understanding of the physical mechanisms that are involved.

In this work, we investigate the stability characteristics of the flow over three types of rough-

ness elements: humps and backward- and forward-facing steps. We focus our attention on roughness

elements that induce small separation bubbles. The similarities and differences between the

stability characteristics of separating boundary layers and boundary layers on smooth flat plates

with a zero pressure gradient are demonstrated and discussed. In Section II we outline the mathe-

matical formulation and the methods of solution; in Section III we present stability results for sepa-

rating boundary layers; in Section IV we compare our stability results with the experimental data of

Dovgal and Kozlov; 23 in Section V we consider the laminar flow control (LFC) of separating boundary

layers by cooling and suction; and, finally, in Section VI we present our conclusions.

2. FORMULATION AND METHODS OF SOLUTION

2.1. Mean F10w

We consider a two-dimensional compressible subsonic steady flow over a smooth two-dimen-

sional localized roughness element on a fiat plate. The roughness elements considered in this work

include smooth humps and backward- and forward-facing steps. The shape of the hump is given by

y=-_= f(z) = hf(z)

where

(1)

f(z)=I1-3z2+2 l if lzl_<l
L 0 , if Izl>l

2 x*-L* =2x-1
z= _

(2)

(3)

Here, h* is the hump height, 2* is the length of the hump, L* is the streamwise distance from the

leading edge of the flat plate to the center of the hump, and the star denotes a dimensional quantity.

The reference length L* affects the calculations through the Reynolds number Re, where

(4)



and U* and v*_are the free-stream velocity and kinematic viscosity, respectively.

The shape of the step is given by

i
y:(h)g(x), g(x):_fR-e{l+erf[ 1-_ 1)]}

(5)

where h = h*/L* is the nondimensional height of the step, s is the slope of the step (negative for a

backward-facing step and positive for a forward-facing step), and erf is the error function.

Because the roughness elements under consideration may induce separation bubbles, a strong

viscous-inviscid interaction and an upstream influence exist. Hence, the conventional boundary-

layer formulation fails to predict such flows. In this paper, we use an IBL formulation to solve for

the mean flow over the roughness element. For details of the IBL formulation, we refer the reader to

Ragab et al.2o

2.2. Primary Instability

To study the stability of the calculated mean profiles, small unsteady two-dimensional distur-

bances are superimposed on them. Then, we substitute the total flow quantities into the Navier-

Stokes equations, subtract the mean flow, invoke the quasiparallel assumption, and linearize the

resulting equations with respect to the disturbance quantities. Next, we assume that the distur-

bance quantities have the so-called normal mode form; that is,

cl =_(y)exp[i(iadx-mt)]+cc (6)

where _ stands for a disturbance quantity, cc denotes the complex conjugate of the preceding term, x

is the streamwise coordinate, t is time, and a and m are complex in general. In the stability analyses

and computations throughout this work, the reference length is 5*r= _V*X*/U*, the reference veloc-

ity is U:, the reference time is 5"/U*_, and the pressure is made nondimensional with respect to
. ,2 ,

p._U_ , where p_ is the free-stream density. For the spatial stability considered in this work, m is

real, and a = a_ + iai is complex, where a r is the streamwise wave number and -a i is the spatial

growth rate. The frequency eo is related to the dimensional circular frequency o)* through

o_= oJ*5* /U*; this relationship and the definition of S_ show that

m= FR (7)

where

F = o_ v_ (8)
u':

and
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R= = (9)
v,

Because co* is fixed for a certain physical wave as it propagates downstream, equation (8) shows that

F is also fixed for the same wave.

Equation (6) can be substituted into the stability equations and boundary conditions to obtain

an eigenvalue problem that is solved numerically. The effect of nonparallelism on the two-dimen-

sional instability waves in incompressible flow over a roughness element that might cause separation

was studied by Nayfeh and Ashour. 3 The effect was destabilizing but negligible. Spatial DNS

studies 12-14 on the effects of nonparallelism on flow stability over a roughness element showed a

similar result. Details of the formulation for the linear quasi-parallel primary instability of com-

pressible flows are available in many references (e.g., Mack24).

In this paper, we consider subsonic flows with a free-stream Mach number M_ of less than or

equal to 0.8. For these flows, at most one unstable primary mode exists for certain flow and stability

parameters, and the most unstable primary wave is two dimensional. 24 In all compressible results

presented here, the free-stream temperature is 300 K, the Prandtl number is 0.72, and the variation

of viscosity with temperature is governed by the Sutherland formula.

2.3 Secondary Instability

In the several stages of transition from a laminar to a turbulent boundary layer over a flat plate,

the primary instability of two-dimensional TS waves is followed by the appearance of a spanwise

variation in the disturbance field. This variation increases and eventually sets in strong three-

dimensionality in both the disturbance field and the mean flow.

We now believe that the spanwise variation and, consequently, the three-dimensionality are due

to a parametric excitation of low-amplitude three-dimensional disturbances by large-amplitude two-

dimensional TS waves. Depending on the relation between the frequencies and the streamwise wave

numbers of the exciting (primary) and excited (secondary) waves, we can distinguish between two

types of resonances that lead to two types of breakdown to transition.25. 26 When the frequency and

streamwise wave number of the three-dimensional wave are equal to one-half those for the two-

dimensional wave, we have a subharmonic resonance that leads to the H-type of breakdown. On the

other hand, when the frequencies and streamwise wave numbers of the primary and secondary

waves are equal, we have a fundamental parametric resonance that leads to the K-type of break-

down.

The secondary instability of incompressible boundary-layer flows over a smooth flat plate was

studied extensively by Herbert, 25,26 and later extended to compressible flow by Nayfeh, 2v E1-Hady, 2s

Masad and Nayfeh, 29 and Ng and Erlebacher; 3° details of the formulation are available in these

references.
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2.4 Validation of Mean-Flow and Stability Codes

For smooth surfaces, one can use a conventional boundary-layer formulation to solve for the

mean flows over these surfaces. However, conventional boundary-layer formulations cannot accu-

rately predict the flow over surfaces with abrupt changes in the boundary conditions because of the

strong viscous-inviscid interaction and the possibility of flow separation. Instead, one needs to use a

triple-deck formulation, an IBL formulation, or a NS solver. These approaches account for the

viscous-inviscid interaction, as well as separation bubbles, but NS solvers are very expensive in

comparison with triple-deck and IBL formulations.

To validate the IBL approach, Ragab et al. 2° compared their results for a backward-facing step

with solutions to the thin-layer compressible NS equations. They used the computer code ARC2D.

The mean flows as well as the stability characteristics were compared. They found that for the

purpose of stability analysis of boundary layers over smooth-surface roughness elements, the IBL

formulation is a viable alternative to the NS equations.

The stability results presented in this paper were calculated with finite differences. 31 The

primary instability code was validated by comparing its results for incompressible and compressible

flows with the results produced by the fundamental matrix method. 32 Ng and Erlebacher s° found

that our results 29(from the subharmonic instability code) agree well with their results.

3. STABILITY RESULTS

Nayfeh et al.s studiedtheoreticallythe primary instabilityofincompressibleflows overtwo-

dimensionalhumps and dips.They found thattheinstabilitydepends on the height-to-widthratioof

the roughness element as wellas the locationofthe element with respecttobranch Iofthe Blasius

neutralstabilitycurve. Moreover, they pointedout thatthe stabilityof separatingflows ismore

complicatedthan the stabilityofflowsover smooth surfacesdue tothe coexistenceofviscousand

shear-layerinstabilitymechanisms. The major findingsofNayfeh etal.5were alsoreachedby Ceboci

and Egan. 6

To gain insight into the physics of the instability of flows over roughness elements, Nayfeh et

al.s analyzed the streamwise distribution of the pressure coefficient Cp. A typical streamwise distri-

bution of the pressure coefficient for a separating flow over a hump is shown in Figure 1. Note that

for all humps considered in this work, the center is located at x = 1.0, which means that for Re = 106

the value of R at the center is R = _-_ = 1000. The symmetric hump extends between x = 0.9 and

1.1. With the center located at R = 1000, separation starts downstream of the center of the hump.

An adverse-pressure-gradient region is located ahead of the hump and is followed by a region of

favorable pressure gradient that extends over a very short distance. Then a strong adverse pressure

gradient occurs, which causes the boundary layer to separate; then another region of favorable pres-

sure gradient begins. Thus, we expect that the primary instability waves will be unstable ahead of



thehump (Figure 2), become stable over the short favorable-pressure-gradient region, become unsta-

ble again in the separation region, and finally, become stable in the second favorable-pressure gradi-

ent region.

Next, we consider a boundary layer that separates due to the presence of a backward-facing

step. Except for comparison with the experimental data in Section IV, all steps considered in this

work are centered at x = 1.0, and for Re = 106 they are centered at R = 1000. In Figure 3, we show

the streamwise distribution of the pressure coefficient. The vertical dashed lines are the streamwise

boundaries of the separation bubble. Far upstream and far downstream of the step, the pressure

coefficient approaches that of the flow over a smooth flat plate; hence we expect that the stability

characteristics in these regions approach those of the flow over a smooth flat plate. In contrast with

the case of the hump (where we have four regions of pressure gradient), in the case of the flow over

the backward-facing step, we have only three regions: a short favorable-pressure-gradient region,

followed by a strong adverse-pressure-gradient region that could cause the flow to separate, and

another region of favorable pressure gradient. Consequently, the step will have a stabilizing

influence in the favorable-pressure-gradient regions and a destabilizing influence in the adverse-

pressure-gradient region.

In Figure 4, we compare the neutral stability curve for the flow over a flat plate without a

roughness element with that for the flow in the presence of a backward-facing step. Far away from

the step, the neutral curve approaches that of the Blasius flow, as expected. The first region of

favorable pressure gradient divides the unstable region into two regions. The second favorable-

pressure-gradient region reduces the instability. Moreover, the strong adverse pressure gradient,

which is responsible for separation, causes part of the right unstable region to extend over a very

large band of frequencies. The unstable high-frequency disturbances in the flow over the step are a

strong indication of the inviscid nature of the instability in the separation region. This instability is

similar to mixing and shear-layer instabilities. The inviscid and high-frequency instabilities in the

flow over a square hump were found in the DNS study of Danabasoglu et al. 14 Furthermore,

Klebanoff and Tidstrom s found that close to the roughness element the fluctuation was composed of

relatively higher frequencies. In our search for branch I of the neutral stability curve in the adverse-

pressure-gradient region of figure 4, we encountered an interval of R in which the stability code

converged on negative frequencies, which means that in this interval the flow is unstable regardless

of how small is the frequency. The wave numbers (Figure 4(b)) associated with these unstable low-

frequency disturbances are very small. One of the consequences of the presence of a stable region

that divides the unstable region into two regions is that if we follow a wave with a fixed frequency as

it is convected downstream, then as we march through the stable region, it is easy to converge at and

keep following one of the several damped modes that exist, especially if the initial guess of the

eigenvalue is extrapolated from previous streamwise solutions. We encountered this situation in



comparingour theoretical results with the experimental data of Dovgal and Kozlov 2s for the case of a

forward-facing step with a relatively large height. In this type of situation, a global numerical

eigenvalue scheme has a distinct advantage over a local one.

The movement of the transition location as the height of the roughness element varies is an

important consideration (Schlichting_3). Earlier papers on this problem assumed that the point of

transition is located at the position of the roughness element when the roughness element is rela-

tively large or that the presence of the roughness element has no influence when it is relatively

small. However, Fage 21 (Schlichting 33)has shown experimentally that the point of transition moves

continuously upstream as the height of the roughness element is increased, until it ultimately

reaches the position of the roughness element. Schlichting _3 pointed out that in discussing the

influence of roughness on transition, three questions must be answered. First, what is the maximum

height of a roughness element below which the element has no influence on transition? Second, what

is the height of the roughness element that induces transition at the element? Third, how can the

transition location be described in the range between these two limits? The answer to the in-st ques-

tion has practical applications; if such a critical height exists, then allowable tolerances on unavoid-

able roughness elements will be designed such that these critical heights are not exceeded. To

answer these questions with linear stability theory, we adopt the empirical eN (N = 9) transition cri-

terion. Thus, we correlate the transition location with the shortest distance, measured from the

leading edge, at which the amplification factor (N factor) of the primary disturbance reaches the

value 9. The value of R at this location is denoted by RN= 9. Thus, we calculate the values of RN= 9

and the corresponding values ofF for several hump heights (from h = 0 (no hump) to the nondimen-

sional hump height h = 0.004). The variation of RN= 9 with the hump height is shown in Figure 5(a);

the variation of the corresponding most amplified frequency F with the hump height is shown in

Figure 5(b). In Figure 5, we denote each point at which the calculations were actually made by a

circle and join the circles.

Figure 5(a) clearly shows that the theoretically predicted transition location moves continuously

upstream as the hump height increases; this result is consistent with the experimental findings of

Tani and Hama. 34 (See also Dryden. 35) However, this variation is not linear. The curve that

describes the movement of the location of RN= 9 becomes steeper as the hump height increases and

becomes steepest when the flow separates. When the hump height exceeds a critical value, the

location where N first reaches 9 moves slowly upstream toward a location only a short distance

downstream of the center of the hump, which is the point of onset of separation. The existence of a

roughness height at which transition takes place at the roughness element has been noted by many

experimentalists (e.g., Dryden 35and Fage and Preston36). This height was correlated based on

experimental data by defining a Reynolds number Re k such that



Re k = k*U*k.
Y

where k* is the height of the roughness element, U_ is the velocity of the flow at the height k* in the

absence of roughness, and v* is the kinematic viscosity. Transition is assumed to occur at the

roughness element when Rek exceeds a critical value. Fate and Preston 3e estimated this value at

400 for flow past a wire mounted on a body of revolution. However, if the roughness is not a circular

wire, then this Re k criterion does not take into account the effects of roughness-element length,

which was found by Masad and Iyer 7 to be significant. Note in Figure 5(b) that the most amplified

frequency increases as the predicted transition Reynolds number decreases and shifts toward a much

higher value as the flow separates.

Dryden 35 analyzed previously published data on the effect of both single and distributed rough-

ness on transition from laminar to turbulent flow. Dryden 35 collected the experimental data points

of Tani and Hama, 34 Tani et al.,37 Stfiper,3S and Scherbarth (as reported in Quick sg) and showed that

the ratio Re t /Re o of the transition Reynolds number Re t on a rough plate to the transition Reynolds

number Reo on a smooth plate correlates reasonably well with the ratio k/5*k of the roughness

height k to the displacement thickness 5_ of the boundary layer at the location of the roughness

element. The resulting correlation is similar to that in figure 5(a), although the region in figure 5(a)

at which transition takes place at the roughness element is missing in Dryden's figure. However,

Dryden indicated in his comments on the correlation results that the "curve applies only when

transition occurs downstream from the roughness element." Dryden s5 also investigated the existence

of a roughness height at which transition takes place at the roughness element. In analyzing the

experimental data of Tani and Hama, 34 he indicated that "departures from a single functional

relation between Re t and k/S*k occurred as the transition position approached the position of the

roughness element." The existence of two functional relations between Re t and k is clear in figure

5(a).

In Figures 6(a) and 6(b), we show the streamwise variations of the growth rates and N factors

for three points shown in Figure 5. The hump height that causes incipient separation for the condi-

tions in Figure 5 is h = 0.0021. In dimensional quantities, the hump height is

h* = hRev*. (8)
u:

So, for Re = 10 o, h = 0.0021, and a unit Reynolds number of 106/ft, the hump height that causes incip-

ient separation is 0.0252 in or 0.065 mm; this value increases as the unit Reynolds number

decreases.

Nayfeh et al. 9 studied the effect of a bulge on the subharmonic instability of incompressible

boundary layers. They examined the effect of the hump height on the growth rate and amplification
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factor of the subharmonic wave for five disturbance frequencies. They found that in the absence of

separation an increase in the hump height results in an increase in the amplification factors of the

primary and subharmonic waves at all considered frequencies. The amplification factors when sepa-

ration occurs are much larger than those when no separation occurs. In the subharmonic instability

results in this paper, the amplitude of the primary wave is defined as the root mean square (rms) of

the streamwise velocity disturbance maximized over the normal coordinate. The spanwise wave-

number parameter B = 1000 tieR (where fl is the spanwise wave number of the subharmonic wave) of

the most amplified subharmonic wave shifts 9,1° toward smaller values of B as the hump height

increases.

4. COMPARISON WITH EXPERIMENTAL DATA

Nayfeh et al.5 studied the primary instability characteristics of incompressible flows over two-

dimensional humps and dips mounted on a fiat plate. They compared their theoretical results with

the natural transition experimental data of Walker and Greening as reported in Fage. 21 In these

experiments, the maximum transverse dimension of the roughness element varied from 0.75 mm

(0.03 in.) to 1.75 mm (0.07 in.) for the humps and from 1.425 mm (0.057 in.) to 1.675 mm (0.067 in.)

for the dips. The free-stream mean-flow velocities ranged from 15.9 m/sec (53.0 ft/sec) to 28.5 m/sec

(95.0 ft/sec) for the humps, and from 18.57 m/sec (61.9 ft/sec) to 25.47 m/sec (84.9 ft/sec) for the dips.

Nayfeh et al. 5 followed a primary wave with a fLxed physical frequency from the onset of instability

(branch I) to the experimentally determined transition location, computed the value of the N factor

at that location, changed the frequency, repeated the calculations, and so on. The frequency that

resulted in the maximum value of the N factor at the experimentally determined transition location

was taken as the frequency of the disturbance wave that causes transition. Nayfeh et al. _ compared

their theoretical results with 14 sets of experimental results for humps and 6 sets of experimental

results for dips. The calculated mean flows show that 13 out of the 14 humps induce separation, and

all 6 dips induce separation. The theoretically calculated values of the N factors at the experimen-

tally determined transition locations in the hump cases vary from N = 7.4 to 10.0, with an average

value of 8.5. For the cases with dips, these values vary from N = 6.7 to 9.2 with an average value of

8.0. This comparison increases the confidence in using the empirical eN method as a tool for predict-

ing the transition location.

Fage 21 used his own experimental data on the effects of surface roughness on transition, as well

as the experimental data of Walker and Greening, Walker and Cox, and Hislop (as reported in

Fage21), to correlate the transition location with the height h and length _ of the roughness element

and the Reynolds number Re. Masad and Iyer 7 took various combinations of h, _, and Re for flows

over a hump and computed the predicted transition location with linear stability theory and the e 9
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method and compared their results with the results of the correlation of Fage. 21 The agreement

between both sets of results is good.

Dovgal and Kozlov 2s conducted a controlled (forced) experiment to study the influence of imper-

fections on the stability characteristics of incompressible flows. They used a vibrating ribbon placed

upstream of a roughness element to introduce two-dimensional small-amplitude disturbances into

the developing boundary layers. Dovgal and Kozlov considered a hump, a forward-facing step, and a

backward-facing step. In the hump cases, the experimentally determined distributions of the magni-

tudes of the streamwise velocity fluctuations across the boundary layer exhibit the same three-peak

characteristics predicted theoretically by Nayfeh et al. 5 As demonstrated by Nayfeh et al., 5 the

distribution of the magnitude of the streamwise velocity fluctuation of a flow over a smooth surface

across the boundary layer has two peaks, a large one at the critical layer and a small peak near the

edge of the boundary layer. In the separation region, the distribution develops a third peak at the

inflection point of the mean-flow profile. This peak is due to the shear-layer instability mechanism,

and it increases in magnitude with distance from the separation point, achieves a maximum that can

be comparable to the peak at the critical layer, and then decreases to zero at the reattachment point.

The experimentally determined transverse and streamwise developments of the disturbances ahead,

inside, and after the separation bubble are similar to those obtained by Nayfeh et al. 5 Moreover, our

calculated distribution of the phase of the streamwise velocity disturbance across the separating

boundary layer has the same two-phase jump as that measured by Dovgal and Kozlov. 2s The three

peaks in the transverse distribution of the streamwise velocity fluctuation and the corresponding

two-phase jump were also found 4° in subsonic flow on a smooth surface that exhibits an adverse

pressure gradient because of its curvature. The same three-peak characteristic in the transverse

distribution of the streamwise velocity fluctuation was found in the DNS results of Danabasoglu et

al. 14for the flow over a square hump, which agrees with the experimental data of Boiko et al. 41

In the step cases, the center of the step was located 500 mm downstream of the leading edge of

the plate, the free-stream velocity was 6 m/s, and the Reynolds number based on the distance from

the leading edge to the center of the step and the free-stream velocity was 2 x l0 s . Two step heights

were used: 0.9 and 2.2 mm; the vibrating ribbon was excited by three different frequencies: 60, 76,

and 94 Hz. In nondimensional quantities, the heights were h = 0.9/500 = 0.0018, and h = 2.2/500 =

0.0044. The nondimensional frequencies were F = 157 x 10-6, 199 × 10 -6 , and 246 x 10-6. Dovgal

and Kozlov _-3reported the streamwise variation of the integral of the growth rates. The 12 cases

presented by Dovgal and Kozlov are compared with our theoretical calculations in Figure 7. The

overall agreement is good and supports the calculation of the mean flow with IBL and the calculation

of the growth rates with the quasi-parallel linear stability theory.

The IBL results predict that the flow separates when the step height is 2.2 mm, regardless of

whether the step is a forward- or backward-facing one. When the height is 0.9 mm, the IBL results
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predictnoseparationfor bothtypesof steps. We point out here that the work of Dovgal and Kozlov 23

does not clearly state how sharp the steps used in the experiments were. Their sketch of the steps

suggests that they were very sharp; if this assumption is true, then some of the theoretical

underpredictions in the experimental results might be attributed to the fact that the calculations

were performed with smooth steps.

5. LAMINAR FLOW CONTROL OF SEPARATED BOUNDARY LAYERS

Laminar flow control (LFC) is the art and science of delaying or enhancing (depending on the

application) the occurrence of laminar-turbulent transition. In subsonic boundary-layer flows over

commercial aircraft surfaces, increased efficiency can be realized by maintaining larger regions of

laminar flow to reduce friction and drag; increased efficiency can translate into larger range, reduced

volume, and fuel cost savings. Because aerodynamic surfaces have some degree of roughness either

from manufacturing irregularities or environmental conditions, the study of LFC techniques is of

practical importance.

These techniques are known to be most effective when applied to low-amplitude fluctuations;

that is, when the disturbances are in the linear regime and before the onset of any significant wave

interactions. However, in this section, we consider the effect of LFC techniques on both primary and

subharmonic disturbances. Although subharmonic disturbances dominate at a somewhat significant

amplitudes of the primary wave, the interest here is in studying the response of existing subhar-

monic waves to the different LFC techniques that are applied to control the initial stages of primary-

disturbance growth.

5.1 Effect of Compressibility

For flow over a fiat plate, 24,28-3° the overall effect of compressibility is stabilizing following a

primary or a subharmonic wave as the wave propagates downstream. In Fig. 8, we show the effect of

compressibility on the neutral two-dimensional primary instability curves. The neutral curves for

M, = 0.8 are lower (smaller frequencies and streamwise wave numbers) than those that correspond

to incompressible flow. The maximum growth rates (maximized over all frequencies) for M. = 0.8

and M_ = 0 are compared in Fig. 9. Compressibility is clearly stabilizing.

The effect of compressibility on the stability of flows over imperfections is not the same as its

effect on flows over a flat plate. An increase in the Mach number increases the streamwise extent of

the separation bubble (Fig. 10). In Fig. 10, we show the variation of the streamwise locations of the

separation and reattachment with hump height for M_ = 0 and 0.8. For a given Mach number M_

and a given hump height h, the left branch corresponds to the separation location, whereas the right

branch corresponds to the reattachment location. As the Mach number increases, the separation

location moves slightly upstream, but the reattachment location moves significantly downstream.

13



Theincreasein the size of the separation bubble due to compressibility is consistent with the exper-

imental findings of Larson and Keating. 42 The increase in the size of the separation bubble due to

compressibility causes a destabilization of the flow that counters the stabilizing effect of compress-

ibility in the attached-flow regions. However, Masad and Iyer 7 showed that the overall effect of com-

pressibility on the predicted transition Reynolds number with the eN method is stabilizing. Their

findings are consistent with the experimental fmdings.4S, _

5.2 Effect of Heat Transfer

The effect of heat transfer on the primary instability of compressible boundary layers over a flat

plate was studied extensively by Mack. 24 Mack found that cooling stabilizes first-mode waves.

Masad and Nayfeh 45 and E1-Hady _ studied the effect of heat transfer on the subharmonic instability

of compressible flows over a smooth flat plate. They found that the direct effect of cooling (the ampli-

tude of the primary wave is fLxed) on the subharmonic wave in incompressible flows is very small

and becomes destabilizing at large amplitudes of the primary wave. They also found that when the

primary wave is a first mode, cooling stabilizes the subharmonic wave at low spanwise wave

numbers and destabilizes it at high spanwise wave numbers.

Our mean-flow calculations indicate that cooling delays the occurrence of separation until larger

hump heights are introduced; when the flow separates, cooling reduces the size of the separation

bubble. These results are consistent with the experimental findings of Larson and Keating. 42

In the results presented in this subsection, we express the level of heat transfer by specifying

the ratio of the actual wall temperature to the adiabatic wall temperature Tw / Tad. For Tw / T_ = 1,

we have an adiabatic condition; values of Tw/Tad < 1 indicate cooling. The effect of cooling on the

primary instability of flows over a hump large enough to induce separation is shown in Figs. 11 and

12 for M. = 0 and 0.8, respectively. If we compare these figures, the stabilizing effect of compress-

ibility is evident. Moreover, Figs. 11 and 12 show clearly that cooling has a stabilizing influence in

the attached regions and a destabilizing influence in the separation region.

The effect of cooling on the subharmonic instability of subsonic flows (M. = 0.8) over a hump is

shown in Fig. 13. At the considered spanwise wave number B = 0.2 and the rms amplitude of the

primary wave Arms = 0.01, cooling has a stabilizing influence on the subharmonic wave in the

attached regions and a strong destabilizing influence on this wave in the adverse-pressure-gradient

regions.

5.3 Effect of Suction

Suction is a well-known technique for the LFC of air boundary layers on aerodynamic surfaces.

The effectiveness and feasibility of LFC by suction has been demonstrated in both wind-tunnel and

flight experiments. The success of these demonstrations has led to the adoption of boundary-layer
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suctionasamethodfor maintaininglargerregionsof laminarflowon thewingsof newly designed

aircrafts.

Suction stabilizes primary disturbances in both incompressible and compressible flows over

smooth flat plates. Moreover, E1-Hady 47 found that suction stabilizes subharmonic disturbances in

incompressible boundary layers. Masad and Nayfeh _s and EI-Hady _ also showed that suction stabi-

lizes subharmonic disturbances in compressible boundary layers.

To determine the influence of suction on flows over roughness elements, we considered the flow

over a backward-facing step with uniform suction. Figure 14 shows the variation of the growth rates

of disturbances in incompressible flow over the step with R in the absence and presence of a uniform

suction (vw = -1.0x 10-4). The step height is h = 0.005, and the flow separates with and without

suction. The suction used in the calculations for Fig. 14 reduces the size of the separation bubble,

which agrees with the experimental findings of Hahn and Pfenninger. 49 Moreover, suction has a

stabilizing effect in the attached regions but may have a destabilizing effect in parts of the separa-

tion bubble. For small step heights that do not induce separation, suction has a stabilizing effect at

all locations.

Although suction has both direct (the amplitude of the primary wave being l%xed) and indirect

(the amplitude of the primary wave changes) stabilizing effects on subharmonic waves in the case of

attached flow, it has a destabilizing direct effect in the separation bubble caused by a backward-

facing step, as shown in Fig. 15.

6. CONCLUSIONS

The stability characteristics of two-dimensional compressible subsonic boundary layers that

separate due to the presence of a two-dimensional roughness element on a flat plate are investigated.

The roughness elements considered are humps and forward- and backward-facing steps. The mean-

flow problem is solved with the interacting boundary-layer (IBL) equations. The growth rates

obtained by using both the IBL equations and the quasi-parallel linear stability theory agree with

the forced experimental data of Dovgal and Kozlov. 23

As the height of the roughness element increases gradually from zero, the theoretically

predicted transition location with the N factor criterion moves continuously upstream. However, the

shift in the transition location upstream increases sharply as the hump height approaches the value

that corresponds to incipient separation. As the height of the roughness element approaches a

certain large value (larger than the value that causes separation), the upstream movement of the

predicted transition location slows down considerably. Thus, the transition location is close to the

separation point.

Suction and cooling stabilize the attached flow and destabilize the flow in the region of the sepa-

ration bubble. This result is consistent for both primary and subharmonic disturbances.
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To date, the most common and practical approach for predicting the transition location in

boundary-layer flows over smooth and rough surfaces is linear stability theory coupled with the

empirical e_ method. However, no theoretically based criteria exist for manufacturing and installa-

tion tolerances of roughness elements to prevent or delay transition. Additional stabihty calcula-

tions, numerical simulations, and flight and ground facility experiments are needed, as well as data

on the combination of all three approaches, to generate such criteria.
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Figure 1. Distribution of pressure coefficient Cp for incompressible flow over hump with height h =
0.004 at Re = 166. Vertical dashed lines are boundaries of separation bubble, and center of hump is
at R = 1000.
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Figure 3. Distribution of pressure coefficient Cp for incompressible flow over backward-facing step
with height h = 0.005 and slope s = -5 at Re = 106. Vertical dashed lines are boundaries of separa-

tion bubble. Center of step is at R = 1000.
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Figure 7. Variation of -Iaidx with Reynolds number for incompressible flow over step at Re = 2 x
105. (--) Theoretical results and (0) experimental data.

(a) Backward-facing step, with slope s = -10, height h = 0.0018, and F = 199x10 -6,
(b) Backward-facing step, s = -10, h = 0.0018, F = 157 x 10 -6.
(c) Backward-facing step, s = -10, h = 0.0018, F = 246 x 10-6.
(d) Backward-facing step, s = -10, h = 0.0044, F = 157 × 10-6.
(e) Backward-facing step, s = -10, h = 0.0044, F = 199 × 10-6.
(f) Backward-facing step, s = -10, h = 0.0044, F = 246 x 10-6.
(g) Forward-facing step, s = 10, h = 0.0018, F = 157 x 10-6.
(h) Forward-facing step, s = 10, h = 0.0018, F = 199 × 10-6.

(i) Forward-facing step, s = 10, h = 0.0018, F = 246 × 10-6.
(j) Forward-facing step, s = 10, h = 0.0044, F = 157 x 10-6.
(k) Forward-facing step, s = 10, h = 0.0044, F = 199 x 10-6.
(1) Forward-facing step, s = 10, h = 0.0044, F = 246 x 10-_.
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Figure 11. Variation of growth rates of primary waves with R for incompressible flows over hump

where F = 50 × 10 -6, Re = 106, and hump height h = 0.004. (-) Adiabatic conditions, and (...) Tw/Tad
= 0.5.
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Figure 12. Variation of growth rates of primary waves with R for subsonic flows over hump where
M_ = 0.8, F = 50 x 10 -6, Re = 10 6, and hump height h = 0.004. (--) Adiabatic conditions, and (...)

Tw/T,,j =0.5.
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Figure 13. Variation of growth rates of subharmonic waves with R for subsonic flows over hump
where Moo = 0.8, F2-D = 50 × 10-_, B = 0.2, Re = 106, rms amplitude of primary wave is fixed at all

values of R and is equal to 0.01, and hump height h = 0.004. (--) Adiabatic conditions, and (...)
TwI =0.5.
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Figure 14. Variation of growth rates of primary waves with R for incompressible flows over

backward-facing step at F = 50 × 10 _, Re = 106, step height h = 0.005, step slopes = -5, and center of

step is at R = 1000. (--) No suction, and (...) uniform suction with v w = -1.0 × 10 4 .
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Figure 15. Variation of growth rates of subharmonic waves with R for subsonic flows over
backward-facing step where M_ = 0.8, F2_D = 50 × 10-_, B = 0.2, Re = 106, rms amplitude of primary
wave is fixed at all values of R and is equal to 0.01, the step height h = 0.004, the step slopes = -5,

and center of step is at R = 1000. (--) No suction, and (...) uniform suction with vw = -2.0× 10 -_ .
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