1445112467 N95-19382

STEADY POTENTIAL SOLVER FOR UNSTEADY AERODYNAMIC ANALYSES

D. Hoyniak NASA Lewis Research Center Cleveland, Ohio 44135

52-07 37012 13P

Presentation Outline

- Description of flow solver, SFLOW
- Subsonic Calculations (Steady & Unsteady) Compressor Cascade (10th Standard Configuration) Turbine Cascade (4th Standard Configuration) GE Low Speed Research Compressor GE Low Speed Research Turbine
- Transonic Calculations (Steady) Compressor Cascade (10th Standard Configuration)

Objective

Develop steady flow solver for use with LINFLO

- Compatible with LINFLO
- Composite Mesh
- Transonic Capability

Approach

- Steady flow potential equation written in nonconservative form
- Newton's Method
- Implicit, Least-Squares, Interpolation Method used to obtain finite difference expressions
- Matrix inversion routines from LINFLO

Differential Equations

Steady Flow

$$\begin{aligned} A^{2}\nabla^{2}\phi - (\gamma - 1)\nabla^{2}\phi \frac{\overline{D}\phi}{Dt} - \frac{\overline{D}^{2}\phi}{Dt^{2}} - \nabla\phi \cdot \frac{\nabla(\nabla\Phi)^{2}}{2} \\ &= -A^{2}\nabla^{2}\phi + \nabla\phi \cdot \frac{\nabla(\nabla\Phi)^{2}}{2} \\ &\frac{\overline{D}}{Dt} = \nabla\phi \cdot \nabla \end{aligned}$$

Unsteady Flow

1.1

AND THE PARTY

111

CONTRACTOR OF A

1

$$A^{2}\nabla^{2}\phi - (\gamma - 1)\nabla^{2}\Phi \frac{\overline{D}\phi}{Dt} - \frac{\overline{D}^{2}\phi}{Dt^{2}} - \nabla\phi \cdot \frac{\nabla(\nabla\Phi)^{2}}{2} = 0$$
$$\frac{\overline{D}}{Dt} = i\omega + \nabla\Phi \cdot \nabla$$

Newton' Method

$$[A(\Phi)] \{\phi\} = \{b(\Phi)\}\$$

 $\Phi\left(\vec{x}\right)^{n+1} = \Phi\left(\vec{x}\right)^{n} + \phi\left(\vec{x}\right)^{n}$

Convergence Criterion

$$|\phi(\vec{x})''| < \varepsilon$$

Cascade Geometry

Composite Mesh

10thStandard Configuration, Subsonic Flow Conditions Steady Mach Number Distribution $M_{-\infty}$ = 0.7, $\Omega_{-\infty}$ = 55 deg

10thStandard Configuration, Subsonic Flow Conditions Unsteady Torsion Mode Response

 α = 1.0, ω = 0.24 σ = 30 deg

initia nia orregi

Ξ

THURSDAY

Ē

40

10thStandard Configuration, Subsonic Flow Conditions Unsteady Torsion Mode Response

Standard Configuration Number 4 Turbine Cascade Composite Mesh

1.1.10.000

Unsteady Pressure, Magnitude

and a second second

0.0

0.20

0.40

0.60

.1.8

.0 8

0.40 X/c

0.80

1.0

ÞG

x/c

42

.

111600

GE Low Speed Research Compressor & Turbine Configurations

Airflow

GE Low Speed Research Compressor Steady Blade Loading

GE Low Speed Research Compressor Design Point, Suction Surface

44

Collection of Collection (Collection)

GE Low Speed Research Compressor Design Piont, Pressure Surface

GE Low Speed Research Turbine Steady Blade Loading

the second second differences and the second s

.

and the second

.....

GE Low Speed Research Turbine Design Point, Pressure Surface

1.6

Transonic Flow Calculations

- Artificial viscosity added using rotated difference scheme of Jameson
- Dissipation coefficient based on local Mach number
- Modified Newton's method used to solve resulting equations

Modified Newton' Method for Transonic Flow Calculations

$$[A(\Phi)] \{\phi\} = \{b(\Phi)\}\$$

 $\Phi(\vec{x})^{n+1} = \Phi(\vec{x})^n + \omega \phi(\vec{x})^n$

Convergence Criterion $\left|\phi\left(\vec{X}\right)^{n}\right| < \varepsilon$

10th Standard Configuration, Transonic Flow Conditions $M_{-\infty}$ = 0.8, $\Omega_{-\infty}$ =58 deg.

Ξ.

÷

Summary

- 10th standard configuration predictions show good agreement with other flow solvers
- 4th standard configuration turbine predictions show good agreement with the magnitude of measured data, however there are some problems with phase near trailing edge on suction surface
- GE low speed research compressor and turbine predictions show reasonable agreement with magnitude and phase measurements
- Transonic solution progressing, needs better model for artificial viscosity near shock, and mesh clustering capability

A DESCRIPTION OF A DESC	THE OT A DESCRIPTION OF	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1.1.1.1.4.46.71.1.0.000	000 000 100 00	110,001,00	A REPORT OF A DESCRIPTION	- 1

Den DOME - Cher Frances allera Secondaria de Secondaria

. . . . 1 ansa majoalajot 1.

INVESTIGATION OF A

.

....