
NASA Conference Publication 10 162 Vol. I 

Third CLIPS Conference Proceedings 

Gary Riley, Editor 
Lyndon B. Johnson Space Center 
Houston, Texas 

* .1 

Proceedings of a conference sponsored by 
Lyndon B.  Johnson Space Center and I-NET Inc. 
and held at the Johnson Space Center, Houston, Texas 
September 12-1 4, 1994 



This publication is available from the NASA Center for Aerospace Information, 
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390. 



ABSTRACT 

Expert systems are computer programs which emulate human expertise in well defined problem 
domains. The potential payoff from expert systems is high: valuable expertise can be be captured 
and preserved, repetitive andlor mundane tasks requiring human expertise can be automated, and 
uniformity can be applied in decision making processes. The C Language Integrated Production 
System (CLIPS) is an expert system building tool, developed at the Johnson Space Center, which 
provides a complete environment for the development and delivery of rule andlor object based 
expert systems. CLIPS was specifically designed to provide a low cost option for developing and 
deploying expert system applications across a wide range of hardware platforms. The development 
of CLIPS has helped to improve the ability to deliver expert system technology throughout the 
public and private sectors for a wide range of applications and diverse computing environments. 
The Third Conference on CLIPS provided a forum for CLIPS users to present and discuss papers 
relating to CLIPS applications, uses, and extensions. 





CONTENTS 

VOLUME I 

SESSION 1A: MEDICAL AND DIAGNOSTIC APPLICATIONS 
Session Chair: Greg Madey 

The Buffering Diagnostic Prototype: A Fault Isolation Application 
Using CLIPS ............................................................................................................................. 1 

On The Development of an Expert System for Wheelchair Selection .................................... 2 

Expert Witness - A System for Developing Expert Medical Testimony ................................. 13 

SESSION 1B: DATABASE AND OBJECT ORIENTED PROGRAMMING EXTENSIONS 
Session Chair: Allan Dianic 

The Design and Implementation of EPL: An Event Pattern Language for 
Active Databases ..................................................................................................................... 2 1 

CLIPS++: Embedding CLIPS into C++ ............................................................................ 29 

Expert System Shell to Reason on Large Amounts of Data ................................................... 34 

SESSION 2A: AUTOMATION, PROCESS CONTROL, AND ADVISORY APPLICATIONS 
Session Chair: A. Chandrasekaran 

A1 & Workflow Automation: The Prototype Electronic Purchase Request System ............... 45 

A Knowledge-Based System for Controlling Automobile Traffic .......................................... 52 

Development of an Expert System for Power Quality Advisement using CLIPS 6.0 .............. 61 

QPA-CLIPS: A Language and Representation for Process Control ....................................... 67 

SESSION 2B: FUZZY LOGIC, NEURAL NETWORKS, AND PROGRAM UNDERSTANDING 
Session Chair: Bob Shelton 

Fuzzy Expert Systems using CLIPS ........................................................................................ 8 1 

Neural Net Controller for Inlet Pressure Control of Rocket Engine Testing ........................... 92 

............................................................. CLIPS Template System for Program Understanding 105 

v w, PAGE RAM NOT FKMEP 
\ .j If:-T...  : !j>;;;&, ,.,' .- ----, * I L i ) l l r * l - , .  L.-'.l;if 



An implementation of Fuzzy CLIPS and its Application Uncertainty Reasoning in 
Microprocessor Systems Using Fuzzy CLIPS ......................................................................... 112 

SESSION 3A: DATA ANALYSIS APPLICATIONS 
Session Chair:. Jim Harrington 

Using Expert Systems to Analyze ATE Data ........................................................................... 115 

...................................................................... Real-Time Remote Scientific Model Validation 123 

A CLIPS-Based Expert System for the Evaluation & Selection of Robots ............................ 131 

SESSION 3B: KNOWLEDGE ACQUISITION AND CLIPSIEXTERNAL 
SOFTWARE INTEGRATION 

Session Chair: Keith Levi 

Adding Intelligent Services to an Object Oriented System ....... ; .................. .. ................... 143 

CLIPS, AppleEvents, and Applescript: Integrating CLIPS with Commerical Software ....... 153 

Target's Role in Knowledge Acquisition, Engineering, Validation, and Documentation ........ 162 

SESSION 4A: AEROSPACE APPLICATIONS 
Session Chair: Melissa Mahoney 

.................................... An Expert System for Configuring a Network for a Milstar Terminal 171 

Expert System Technologies for Space Shuttle Decision Support: Two Case Studies .......... 180 

The Meteorological Monitoring System for the Kennedy Space CenterICape Canaveral 
Air Station ............................................................................................................................ 191 

VOLUME I1 

SESSION 4B: PARALLELIDISTRIBUTED PROCESSING EXTENSIONS 
Session Chair: Len Myers 

................................................... Using PVM to Host CLIPS in Distributed Environments 203 

A Parallel Strategy for Implementing Real-Time Expert Systems Using CLIPS ................... 212 

Using CLIPS in the Domain of Knoweledge-Based Massively Parallel Programming .......... 220 



SESSION 5A: PLANNING, OCEANOGRAPHIC, AND INSTRUCTION APPLICATIONS 
Session Chair: Susan Bridges 

Transport Aircraft Loading and Balancing System: Using a CLIPS Expert System for 
.............................................................................................. Military Aircraft Load Planning 233 

Predicting and Explaining the Movement of Mesoscale Oceanographic Features 
Using CLIPS ............................................................................................................................ 241 

Knowledge-Based Translation and Problem Solving in an Intelligent Individualized 
................................................................................................................... Instruction System 246 

SESSION 5B: DEBUGGING, OPTIMIZATION, AND PROTOTYPING EXTENSIONS 
Session Chair: Steve Scott 

MIRO: A Debugging Tool for CLIPS Incorporating Historical Rete Networks .................... 255 

............................................ Optimal Pattern Distribution in Rete-based Production Systems 263 

Stimulation in a Dynamic Prototyping Environment: Petri Nets or Rules? ........................... 273 

SESSION 6A: DESIGN APPLICATIONS 
Session Chair: Carol Redfield 

Collaborative Engineering - Design Support System ..................................... .. ..................... 285 

Character Selecting Advisor for a Role-Playing Game ........................................................ 296 

........................................................... The Computer Aided Aircraft-design Package (CAAP) 303 

SESSION 6B: PROTOTYPING AND RULE GENERATION/REVISION EXTENSIONS 
Session Chair: Bebe Ly 

Rule Based Design of Conceptual Models for Formative Evaluation ..................................... 317 

Automated Rule Base Creation via CLIPS-Induce ............................................................... 326 

Automated Revision of CLIPS Rule-Bases ............................................................................ 334 

SESSION 7A: DISTRIBUTED PROCESSING AND VIRTUAL REALITY EXTENSIONS 
Session Chair: Mark Engelberg 

............................................... DAI-CLIPS: Distributed, Asynchronous, Interacting CLIPS 345 



PLIPS: Parallel CLIPS .............................. , ................................................................... 356 

Using CLIPS to Represent Knowledge in a VR simulation ................................................. 363 

Reflexive Reasoning for Distributed Real-Time Systems ..................................................... 372 

SESSION 7B: DIAGNOSTIC AND BLACKBOARD EXTENSIONS 
Session Chair: Terry Feagin 

PalymSys - An Extended Version of CLPS for Construction and Reasoning Using 
Blackboards ...................................................................................................... . ............ . . 377 

DYNACLIPS (DYNArnic CLIPS): A Dynamic Knowledge Exchange Tool for 
Intelligent Agents ..................... ................... . ....... ........ . ................... ...... . . . . . 388 

A Generic On-line Diagnostic System (GOLDS) to Integrate Multiple Diagnostic 
Techniques ...................a,,. .. .............................. .......... ........ .................. . . .  ............ 40 1 

viii 



Session 1A: Medical and Diagnostic Applications 

Session Chair: Greg Madey 





Session 1 A: Medical and Diagnostic Applications 

The Buffer Diagnostic Prototype: 
A Fault Isolation Application Using CLIPS 

Ken Porter 
Systems Engineer 

MS: R1-408 
Harris Space Systems Corporation 

295 Barnes Blvd. 
PO Box 5000 

Rockledge, FL 32955 

This paper describes problem domain characteristics and development experiences from using 
CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic 
Prototype. 

The problem domain is a large digital communications subsystem called the Real-Time Network 
(RTN), which was designed to upgrade the Launch Processing System used for Shuttle support 
at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond 
response times. The RTN's extensive built-in test capability but lack of any automatic fault isola- 
tion capability presents a unique opportunity for a diagnostic expert system application. 

The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A 
novel technique called "faulty causality" employs inexact qualitative models to process test 
results. Experiential knowledge provides a capability to recognize symptom-fault associations. 
The implementation utilizes rule-based and procedural programming techniques, including a 
goal-directed control structure and simple text-based generic user interface that may be re-usable 
for other rapid prototyping applications. Although limited in scope, this project demonstrates a 
diagnostic approach that may be adapted to troubleshoot a broad range of equipment. 



ON THE DEVELOPMENT OF AN EXPERT SYSTEM 
FOR WHEELCHAIR SELECTION 

Gregory R. Madey 
Charlotte A. Bhansin 
Sulaiman A. Alaraini 
Mohamed A. Nour 

ABSTRACT 

The prescription of wheelchairs for the Multiple Sclerosis (MS) patients involves the examination 
of a number of complicated factors including ambulation status, length of diagnosis, funding 
sources, to name a few. Consequently, only a few experts exist in this area. To aid medical thera- 
pists with the wheelchair selection decision, a prototype medical expert system (ES) was devel- 
oped. This paper describes and discusses the steps of designing and developing the system, the 
experiences of the authors, and the lessons learned from working on this project. 
Wheelchair-Advisor, programmed in CLIPS, serves as a diagnosis, classification, prescription, 
and training tool in the MS field. Interviews, insurance letters, forms, and prototyping were used 
to gain knowledge regarding the wheelchair selection problem. Among the lessons learned are that 
evolutionary prototyping is superior to the conventional system development life-cycIe (SDLC), 
the wheelchair selection is a good candidate for ES applications, and that ES can be applied to other 
similar medical subdomains. 

Kent State University, Kent, Ohio, 44240; (gmadey@synapse.kent.edu) 
Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, 44195. 

INTRODUCTION 

The medical field was one of the first testing grounds for Expert System (ES) technology; the now 
classic expert system, MYCIN, has often been cited as one of the great breakthroughs in Expert 
Systems. MYCIN, however, is only one of a large number of expert system applications intro- 
duced over the last two decades in the medical field alone [Waterman, 19861. Other examples 
include NURSExpert [Bobis and Bachand, 19921, CENTAUR, DIAGNOSER, MEDI and 
GUIDON [Waterman, 19861, MEDICS [Bois et al., 19891, and DiagFH [Lin and Tang, 1991 1 to 
mention only a few. However, no expert system, to our knowledge, has been developed for the 
wheelchair selection problem. In this paper, we report on a new application of ES in the medical 
field; the paper discusses the experiences of the authors with a prototype system developed, using 
CLIPS, to delineate a wheelchair selection for multiple sclerosis (MS) patients. Our work, there- 
fore, contributes to the existing applications of medical expertlsupport systems by expanding the 
domain of applications to the wheelchair selection problem and demonstrating the utility of CLIPS 
on this problem domain. We will demonstrate that the complexity of the wheelchair selection deci- 
sion makes it a prime target for an expert system application. 

To prescribe a wheelchair for a patient with MS involves more than knowing the patient's disease 
condition and available choices of potential wheelchairs. A complex web of factors has to be 
untangled to reach an appropriate choice of a wheelchair. The decision is complicated by such fac- 
tors as physical body measurements, age and life style, degree of neuralgic impairment, and envi- 
ronmental factors. , - 

MOTIVATIONS FOR COMPUTER-AIDED WHEELCHAIR SELECTION 

The motivations for using computer-aided wheelchair selection support fall into two categories: 
those from the therapist's standpoint and those from the patients' standpoint. 



From the Therapist's Standpoint: 

The use of computer-aided selection of wheelchairs benefits the therapist in several ways. The pre- 
scription of wheelchairs for the MS population is complicated by diverse presentations and symp- 
tom fluctuations as well as many other factors. The selection of a well-suited wheelchair is a func- 
tion of the following variables. 

1. Ambulation status: In general, a patient is classified as able to walk or not able to walk. In 
multiple sclerosis, some ability to walk may be limited to short distances or specific terrains. This 
factors into the type of wheelchair they will need. 
2. Environments to be traversed: This variable includes both indoor and outdoor locations. 
The existence of ramps in the patient's residence and the size of the bathroom are among the envi- 
ronmental factors relevant to the choice of an appropriate wheelchair. The frequency of need in 
each environment helps detennine the priority. 
3. Distances to be traversed: Under this factor, both the indoor and outdoor activities are 
considered. Self-propelling for short distances may be feasible for some individuals who stay pri- 
marily at home, so a manual wheelchair may be appropriate, although disability level may be high. 
More active users may require a power wheelchair to travel long distances in the community. 
4. Transport of the wheelchair: Consideration must be made for the wheelchair to disas- 
semble into parts so as to fit in a car or to be sized to fit on public lift-equipped busses. 
5. Caregiver characteristics: If a caregiver exists for the patient in question, the characteristics 
of the caregiver(s) are considered in the wheelchair selection. The age, number of caregivers, toler- 
ance for equipment, their health, and the degree of support for the patient are some of the factors to 
be evaluated when selecting a whee1~hai.r for the patient. 
6. User characteristics: This variable includes both physical and cognitive dimensions. For the 
physical, body measurements of the patient are essential to the selection processes, along with 
qualities of posture, balance, and abnormal muscle tone. Wheelchairs come in made-to-order frame 
sizes and appropriate sizing is essential. Physical abilities are also evaluated: voluntary movements 
of the extremities and head are noted. Areas requiring support for best posture and function are 
documented. As for the cognitive dimension, physical and occupational therapists have to consider 
the extent to which the patient can safely use the devices. Some other issues to be examined by the 
therapists are the ability to learn the electronic system of power wheelchair, to respond quickly in 
dangerous situations and the ability to report discomfort or problems with fit of the wheelchair. 
7. Length of diagnosis-history of disease course: This composite variable aids in 
determining if the MS symptoms of the individual are stable. If they seem stable, a less-modular 
wheelchair can be appropriate. A progressive disease course would require many modular options 
for future needs; as the MS symptoms change, it would be possible to modify the wheelchair to fit 
the needs of the patients. 
8. Currently owned wheelchairs: Therapists need to consider this item early in their analysis. 
The current wheelchair may or may not meet some of the needs of the patient. One possibility is 
that the current wheelchair can be modified to meet the patient's needs. Another possibility is that 
the wheelchair needs to be replaced because it is inappropriate for current needs, beyond repair or 
desired modifications can not be performed. 
9. Funding sources of past and potential wheelchairs: This factor is considered at the 
end of the process but it is a crucial one. Most patients are restricted in terms of the number of 
wheelchairs that they can purchase over time under their insurance coveraJe. Typically, a therapist 
examines and evaluates the factors that determine the needs of the patient to narrow down the 
choices of the available wheelchairs. Once the options are reduced, the therapist uses the funding 
source variable to choose among the options. The funding sources can include Medicaid, 
Medicare, private insurance (e.g., third party), private purchase, or charity (e.g., MS Society 
Equipment Loan Program). Each one of these sources has its own rules regarding the wheelchair 
selection problem. For example, some policies restrict the purchase of a new wheelchair to one 
every five years. Some will not cover a manual wheelchair if an electric wheelchair was previously 



obtained. Hence, such restrictions need to be factored in when considering the selection of an 
appropriate wheelchair. 
10. Current wheelchairs on the market: There are over 500 models, each offering sporting 
multiple options of sizing, weight, frame styles, footrests, armrests, cushions, and supports. A 
current database of technical information would greatly aid in wheelchair selection. 

Note that the degree of importance placed on each one of the foregoing factors is not fixed. There 
is a complex interaction between variables for each patient under consideration. It can be seen from 
the above illustration that selecting an appropriate wheelchair would be difficult to solve algorith- 
mically. Hence, an expert system is a good candidate for this kind of problem. It was observed by 
the expert involved in this pilot project that the process of selecting the wheelchair involves both 
forward and backward reasoning. A therapist starts with the factors that are considered to be 
important to the patient in question and then narrows down the options available to the patient. This 
process involves forward reasoning and it is estimated to be eighty percent (80%) of the overall 
analysis performed by the therapist. The rest of the reasoning, twenty percent (20%), is devoted to 
backward chaining where the therapist starts with a specific set of wheelchairs and sees if they 
meet the needs of the patient as well as the requirements of the funding source. 

A computer-aided support system can play a significant role in helping the therapist cope with the 
factors mentioned above. It can guide the therapist in making the best decjsion about what 
wheelchair and features need to be prescribed, based on comparison to other successful cases. It 
can aid the therapist by insuring thorough evaluation. Also, it can help the therapist keep abreast of 
new products on the market. Such a system insures quality in the wheelchair selection process. An 
inappropriately prescribed wheelchair usurps coverage and prevents re-prescription of a more 
appropriate chair. In addition, the standardized reporting format could also be used to conduct 
more objective studies on wheelchair prescription. 

Such a system also has value as a training tool for both novice therapists and therapy students. A 
tutorial in which real-life or simulated applications are demonstrated can be used for teaching and 
training. Furthermore, innovations in the wheelchair industry change frequently. The use of com- 
puter-based support can overcome this problem. A database of currently available wheelchairs kept 
and updated on a regular basis, is needed in the field of rehabilitation technology. Finally, the doc- 
umentation of valuable expertise as reflected by real-life applications will be easier using a com- 
puter based system. In this context, an expert therapist is a scarce resource. Hence, years of expe- 
rience involving the prescription of numerous wheelchairs can be stored in the system and used 
later as a reference by therapists who practice in more general areas. 

From the Patient's Standpoint: 

Of all patients with Multiple Sclerosis (MS), about 40 percent will lose the ability to ambulate 
[Poser, 19781. Thus, wheeled mobility stands out as a primary need in this population. Because of 
the nature of the wheelchair selection problem, it is not unusual for the medical therapist/specialist 
to prescribe a seemingly appropriate wheelchair for a particular patient only to have the patient 
reject the wheelchair. The importance of the selection of an appropriate wheelchair for a particular 
patient cannot be overstated. From the MS patient's standpoint, the selection of a suitabIe 
wheelchair is critical for the following reasons: 

- 

1. Insurance: Because of funding restrictions, the patient might be restricted to a wheelchair for a 
minimum number of years before being eligible for another wheelchair. The MS patient wants to 
be sure the right chair is prescribed. 
2. Cost: The prescription of an appropriate wheelchair should take the cost factor into considera- 
tion, especially if the patient is to bear that cost, for patients' resources vary. Also cost considera- 
tion is important due to funding restrictions imposed by insurers or MedicaidMedicare programs. 
The costs of a wheelchair can range from several hundred to several thousands of dollars. 



3. Mobility and comfort: The selection of an inappropriate wheelchair will limit already dimin- 
ished mobility and deny the individual MS patient the potential for increased functional indepen- 
dence from an otherwise suitable wheelchair. 
4. Health: An inappropriate wheelchair not only may inhibit mobility and cause discomfort, but it 
may worsen the patient's condition, e.g., postured deformities, pressure sores, etc. 
5. Image and psychological factors: A suitably selected wheelchair rnight enhance the 
patient's personal image, and thus contribute to more comrnunity/social involvement. For example, 
a young MS patient might desire a sporty wheelchair to remain active and socially involved. 

Because of the foregoing reasons, it is desirable to have a computer-aided wheelchair selection 
support system that will hopefully maximize the benefits in the selected wheelchair. 

Rationale For Using An Expert System 

As was discussed earlier, the selection of the wheelchair for the MS population involves the exarn- 
ination of presentations and symptom fluctuations. Because of the complexity of these factors, 
only a few therapists are available with a body of expertise to tackle the wheelchair selection deci- u 
sion. A computer-aided system, however, would capitalize on this expertise and make it more 
widely available. Hence a knowledge-based system seems appropriate, more specifically, a knowl- 
edge-based expert system. The next section discusses medical expert systems in general and devel- 
ops a taxonomy for them. We then show where our prototype system fits relative to this taxon- 
omy. 

TAXONOMIC FRAMEWORK FOR MEDICAL EXPERT SYSTEMS 

The wide range of intelligent (knowledge-based) medical systems today can be broadly classified 
using the taxonomy shown in Figure 1. This taxonomy is based on three broad dimensions: tech- 
nology, domain, and application type. 

A. Technology 

TechnoIogy is further divided into: 1) hardware platform (e.g. PC-based, workstation-based, etc.), 
2) A1 method (solution), and 3) programming tools. A medical knowledge-based system can thus 
be classified on whether it is PC-based, mainframe-based, etc. It can also be classified on whether 
it is an expert system solution [Cagnoni and Livi, 19891, a neural network (ANN) [Kuhn et al., 
19911, a natural language system, interactive hypermedia mammel, 19921, a paper-based ward  
and Reed, 19931, etc. Programming tools include A1 programming languages and shells. 
Examples include OPS5, Lisp, Prolog, and CLIPS [Stylianou and Madey, 19921. 

B. Domain 

Knowledge-based systems have been applied in a variety of medical subdomains [Prasad et. al., 
1989; Cagnoni and Livi, 1989; Waterman, 1989; Bobis and Bachand, 1992a; Bobis and Bachand, 
1992b; Bois et al., 1989; Lin and Tang, 19911. Example subdomains include: heart diseases, 
blood analysis, asthma, artificial limbs, childhood diseases, and this project on multiple sclerosis 
(MS). It is difficult, however, to neatly classify medical computer-aided systems on the basis of 
medical subdomains since many of these systems have overlapping domains. 

C. Application Type 

The application type dimension describes the function of the knowledge-based system for which it 
is developed. These applications types include diagnosis [Lin and Tang, 19911, classification 
waterman 19861, prescription/selection [Stylianou and Madey, 19921, tutoringltraining [Prasad et 



al., 19891,data analysis and interpretation, prognosis, and knowledgeltechnology transfer. Many 
knowledge-based systems are built to support more than one of these functions. 

Figure 1: A Taxonomic Framework for Knowledge-Based Decision Support Systems 

Review of Medical Expert Systems 

Our emphasis in this paper is on medical expert systems, which is a subset of the computer-aided 
support systems in the technology dimension mentioned above. Some of the well known medical 
expert systems include the following waterman, 1986, pp.272-2881: 

1. CENTAUR: The domain of this expert system is lung diseases, developed in the INTERLISP 
programming tool by the Stanford University. Operational functions include diagnostic interpreta- 
tion of pulmonary function tests. 
2. DIAGNOSER: Deals with heart diseases, develop in LISP by the University of Minnesota. 
3. GUIDON: The medical domain include bacterial infections. It is developed in INTERLISP by 
the Stanford University. 
4. MDX: Deals with liver problems, developed in LISP by the Ohio State University. 
5. MED1: Deals with chest pain, developed in INTERLISP at the University of Kaiserlautern. 
6, MYCIN: Best known of all medical expert systems, MYCIN's medical subdomains include 
bacteremia, meningitis, and Cystis infections. It was developed at Stanford University and the 
main operational functions include diagnosis of the causes of infections, treatment, and education. 
7. NEUREX: Concerned with the nervous system, NEUREX was developed in LISP at the 
University of Maryland. Its functions include diagnosis and classification of the diseases of the 
nervous system. 



8. CARAD: This expert system handles radiology; it was developed at the Free University of 
Brussels. Its main functions is the interpretation and classification of X-ray photographs [Bois 
et.al., 19891. 

Our Wheelchair-Advisor stands apart from these expert systems listed above by its unique domain 
of wheelchair prescription for MS patients and our choice of the programming tool. This project 
involved the use of a PC and the expert system shell CLIPS [NASA, 1991; Gianatano and Riley, 
1994; Wygant, 1989; Gonzalez and Dankel, 19931. The functions/objectives of the 
Wheelchair-Advisor included diagnosis, classification, prescription, and training. Figure 2 maps 
these characteristics into a classification scheme to show where our prototype expert system fits 
relative to current computer-aided medical systems. As Figure 2 indicates, and to our best knowl- 
edge, no other expert system application has been developed in the domain of wheelchairs for MS 
patients. 

Tan,, 
Employed 

Figure 2: Classification Framework for Medical Decision Support Systems 

THE WHEELCHAIR EXPERT SYSTEM PROJECT 

A. The Environment 

The Cleveland Clinic Foundation's Mellen Center for Multiple Sclerosis Treatment and Research 
was initiated in 1985 with a grant from the Mellen Foundation. The Mellen Center, the largest and 
most comprehensive full-time MS center in the country, is an interdisciplinary outpatient rehabilita- 
tion facility providing direct patient care, education, and basic and clinical research into the causes 
and management of MS. In 1993, the Mellen Center had 14,000 patient visits for its services of 
neurology, nursing, occupational therapy, physical therapy, psychology, and social work. 
Approximately 350 new patients are seen each year. 

B. The Knowledge Engineering Process 

The knowledge engineering process has often been described as the "knowledge engineering bot- 
tleneck" due to the difficulty and complexity of this process. To deal with the complexity of the 
knowledge engineering process, three basic methodologies were used to elicit knowledge from the 
expert: interviews, insurance documents, forms, and prototyping. 

1. Interviews 

Multiple interviews were conducted with the expert by three knowledge engineers (KE) all of 
whom, including the expert, are the authors of this paper. A typical session lasted from 3 to 5 
hours. 



2. Insurance Letterslother Forms 

The insurance and other prescription forms supplied the knowledge engineers with the missing 
links in the pieces of knowledge gained from the interviews. These forms embodied actual cases 
describing patient symptoms, condition, cognitive/psychological state, and the recommended 
wheelchair. Because of the difficulties of obtaining sufficient knowledge using interviews only, as 
pointed out above, the knowledge obtained from these documents was invaluable inasmuch as it 
complemented the expertise derived directly from the expert. 

3. Prototyping 

The interviews went side by side with an actual prototype developed to foster better communication 
between the expert and the KE's. This helped offset some of the limitations of the interviewing 
process. Each subsequent version of the prototype provided a chance for the expert to "endorse" 
the KE's interpretation of the knowledge supplied in the previous interview. At times the expert 
would clarify a previous answer and supply a new one; thus it became clear that the prototype 
helped correct errors in communication and misinterpretations. 

C. The System-Building Process 

The project was conducted in an interactive fashion and rapid prototyping was used to develop the 
system. Figure 3 shows the block diagram of the prototype system. First, the patient's needs and 
constraints are considered. This data can be provided on line or by using an input text file in which 
the data about a particular patient is stored. To accomplish this task a number of rules of the type 
IFKHEN are implemented. The result of this. examination, which is a template of facts about the 
patient in question, is then used by the search module which in turns uses this information while 
searching the wheelchair database to find the appropriate wheelchair(s). Note that the optimizer 
module consists also of IF/THEN rules. As for the wheelchair database, it contains a list of 
wheelchairs with different features. An explanation facility where the reasoning of the system is 
explained to the user can be added to the system. Finally, there is a solution set module where the 
recommendations of the ES are included. In the next subsection, a description of CLIPS, an expert 
system language, is presented. Then, sample screens and dialogue are shown. 

Patient Database 
Wheelchair I I Database 

Patient's 
Search --) Explanation Facility 

NeedsIConstraints 

Solution Set 

Figure 3: Block Diagram of the System Design 
- 

CLIPS 

CLIPS (short for C Language Integrated Production System), developed at NASNJohnson Space 
Center, has recently shown increasing usage [NASA, 199 1 ; Giarratano and Riley, 1994; Gonzalez 
and Dankel, 1993; Martin & Taylor, 19921. CLIPS is a forwardchaining rule-based language that 
resembles OPS5 and ART, other widely known rule-based development environments. Figure 4 



shows the basic components of CLIPS, which are essential for an ES. Following this figure is a 
brief description of each component. 

1. User Interface: The mechanism by which the user and the expert system communicate. 

2. Fact-list: A global memory for data. For example, the primary symptom of an MS patient can 
be represented in CLIPS syntax as in Figure 5. For clarity, the reserved key words of CLIPS are 
printed in bold letters. 

3. Knowledge-base: Contains all the rules used by the expert system. For instance, consider 
the following partial rule that is used by the system to list all the primary symptoms of an MS 
patient: 

IF user has a primary symptom of cerebellar ataxia 
THEN the primary symptom is cerebellar ataxia 

In the CLIPS syntax, this rule and the associated dialogue can be written as shown in Figure 6. 

4. Inference engine: Makes inferences by deciding which rules are satisfied by facts, prioritizes 
the satisfied rules, and executes the rule with the highest priority. 

5. Agenda: A prioritized list created by the inference engine of instances of rule& whose patterns 
are satisfied by facts in the fact list. The following shows the contents of the agenda at some stage: 

Agenda n 
Inference Knowledge 

List Engine 

Interface El 
Figure 4: CLIPS Basic Components. Adapted from [Giarratano and Riley, 19941. 

-- - - 

English: 
The primary symptom of the patient is cerebellar ataxia. 

CLIPS : 
(deffacts user-data 

(ms symptoms primary cerebellar ataxia) 
1 

Figure 5: CLIPS Syntax for storing facts 

n Figure 7, three instantiated rules are placed on the agenda. Each entry in the agenda is divided 
into three parts: Priority of the rule instance, name of the rule, and the fact-identifiers. For the first 
entry in the agenda, for example: 

2 refers to the priority. 
ms-symptom-primary is the name of the rule. 
f-5 is the fact-identifier of the fact that matches the pattern of the rule. Such facts are stored as in 

Figure 5. 



(defrule ms-symptoms-primary 
?phase <- (phase ms symptom) 

= > 
(retract ?phase) 
(printout t crlf "What is the primary symptom of the MS 

patient? " )  

(bind ?answer (readline) f 
(if (not (etringp ?answer)) 
then (printout t crlf "Please check again ! " crlf) 
(assert (phase ms symptom) ) 
(if (stringp ?answer) 
then (bind $?sym (str-explode ?answer 
(assert (ms symptoms primary $?sym secondary)))) 

L L 

Figure 6: CLIPS Syntax for rules 

Agenda 
2 ms-symptoms-primary: f-5 
1 ms-symptoms-secondary: f-6 
0 ms-symptoms-secondary-more f-7,f-8 

Figure 7: CLIPS Agenda 

Sample Screens And Dialogue 

The above rule, the ms-symptoms-primary rule, can be used to show a scenario of a dialogue 
between the end user (e.g., a physical therapist) and the expert system as follows: 

WEAT I S  TEE PRIMARY SYMPTOM 08 THE MS PATIENT? 
cerebellar ataxia 
WEAT IS TBE SECONDARY SYMPTOM OF THE MS PATIENT? 
weakness 

Figure 8: A Sample screen of a dialogue in a session 

Based on the new information provided by the end user, the data about the patient will be updated. 
Accordingly, the fact-list will include a new fact which shows the name of the primary symptom of 
this patient. The resulting fact is presented in Figure 5. Another impact of this new information will 
be to update the agenda to include the next rule to be fired, the ms-secondary-symptom rule in this 
case. This is possible because a new fact, f-5, which was entered by the user as an answer to an 
on-screen question, now satisfies this rule. 

LESSONS LEARNED 

There are many lessons to be learned from this project. First: the evolutionary prototyping in de- 
signing expert systems is proven to be superior to conventional system development life-cycle. 
Figure 9 shows the steps involved in designing a system under the traditional method. 

Figure 9: System Development Life Cycle (SDLC) 

-) 
End 

User Production Testing -) Design + Analysis -b 



On the other hand, prototyping presents a more efficient way to design a system. Under this 
method, the end user will be aware of the costsfbenefits and, most importantly, will be a part of the 
development team. In essence, the system will be modified a number of times until the desired 
system is obtained. Figure 10 shows the steps involved in this method. 

& Prototype 
Expert 

Figure 10 : Evolutionary Prototyping 

Second: the expert system developed in thls project has shown the wheelchair selection problem to 
be a good candidate for ES applications. This project has also shown that there are major benefits 
for both the medical practitioners and the MS patients to be derived from such an application. 
Third, it is evident from this project that other similar medical subdomains might be good candi- 
dates for the application of the ES technology. Our project serves to expand the medical applica- 
tions domain. Fourth, CLIPS was found to flexible, powerful, and intuitive development envi- 
ronment for this application. 

CONCLUSIONS 

The authors of this paper were involved in a project concerned with the actual development of a 
wheelchair selection expert system. A prototype expert system (Wheelchair-Advisor) was devel- 
oped, using CLIPS, to prescribe wheelchairs for Multiple Sclerosis (MS) patients. This paper 
reports the process, the experiences of the authors, the advantages of evolutionary prototyping for 
expert system development, and the possibilities for new medical subdomains as candidates for 
expert system applications. 

Our findings show that there are major advantages for using an expert system tool to aid in the 
analysis and selection of a wheelchair for an MS patient. Such an expert system can also be used as 
a training and educational tool in the medical industry. 

REFERENCES 

Bobis, Kenneth G. and Bachand, Phyllis M., "URSExpert: An Integrated Expert System 
Environment for the Bedside Nurse," in proceedings of IEEE International Conference on 
Systems, Man and Cybernetics, Chicago, 1992, pp. 1063- 1068. 

"Care Plan Builder: An Expert System for the Bedside Nurse," in proceedings of 
IEEE International Conference on Systems, Man and Cybernetics, Chicago, 1992, 
pp. 1069- 1074. 

Bois, Ph. DU, Brans, J.P., Cantraine, F., and Mareschal, B., "MEDICS: An expert system for 
computer-aided diagnosis using the PROMETHEE multicriteria methods," European Journal 
of Operations Research, Vol. 39, 1989, pp. 284-292. 

Cagnoni S. and Livi R., "A Knowledge-based System for Time-Qualified Diagnosis and 
Treatment of Hypertension," in Computer-Based Medical Systems: Proceedings of the Second 
Annual IEEE Symposium, June 26-27, 1989, Minneapolis, Minnesota. pp. 12 1 - 123. 

Fieschi, M., Artificial Intelligence in Medicine, Chapman and Hall, London, 1990. 



Giarratano, Joseph and Riley, Gary, Expert Systems: Principles and Programming, 
PWS-Kent Publishing Company, Boston, 1994. 

Gonzalez, Avelino J. and Dankel, Douglas D., The Engineering of Knowledge-Based 
Systems: Theory and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1993. 

Hammel, Joy M., "Final Report of the AOTA/Apple Grantees," Veterans Administration, Palo 
Alto, CA, March 1992. 

K. Kuhn, D. Roesner, T. Zamder, W. Swobodnik, P. Janowitz, J. G. Wechsler, C. Heinlein, 
M. Reichert, W. Doster, and H. Ditshuneit., "A Neural Network Expert System to Support 
Decisions in Diagnostic Imaging," in Proceedings of IEEE 4th Symposium on 
Computer-Based Medical Systems, May 12- 14, 199 1, Los Angeles, pp. 244-250. 

Lin, W. and Tang, J.-X., "DiagFH: An Expert System for Diagnosis of Fulrninant Hepatitis," in 
Proceedings of IEEE 4th Symposium on Computer-Based Medical Systems, May 
12- 14, 199 1, Los hgeles,  pp. 330-337. s 

1 

Martin, Linda and Taylor, Wendy. A Booklet of CLIPS Applications, NASA, Johnson 
Space Center, Houston, TX, 1992. 

Mouradian, William H., "Knowledge Acquisition in a Medical Domain," A1 Expert, July 1990, 
34-38. 

NASA, Lyndon B. Johnson Space Center, CLIPS Basic Programming Guide, 1991., 
Houston, TX. 

Prasad, B. , Wood H., Greer, J. and McCalla G., "A Knowledge-based System for Tutoring 
Bronchial Asthma Diagnosis," in Computer-Based Medical Systems: Proceedings of the 
Second Annual IEEE Symposium, June 26-27, 1989, Minneapolis, Minnesota. pp. 40-45. 

Stylianou, Anthony C. and Madey, Gregory R., "An Expert System For Employee Benefits 
Selection: A Case Study," Journal of Management Systems, Vol. 4, No. 2, 1992, pp. 41- 
59. 

Ward, Diane and Reed, Stephanie, "PowerSelect: A Prototype for Power Mobility Selection- 
Based Upon Human Function," in Proceedings of the Ninth International Seating 
Symposium, February 25-27, 1993, Memphis, TN, pp. 307-310. 

Waterman, Donald A. A Guide to Expert Systems, Addison-Wesley Publishing Company, 
1986. 

Wygant, Robert M., "Clips-A Powerful Development and Delivery Expert System Tool" 
Computers in Engineering, Vol. 17, Nos. 1-4, 1989, pp. 546-549. 



EXPERT WITNESS - A SYSTEM FOR DEVELOPING 
EXPERT MEDICAL TESTIMONY 3z/o63 

P -  "K 
Raymond Lewandowski, MD . 

Center for Genetic Services 
7 12 1 S. Padre Island Dr. 

Corpus Christi, Texas 78412 

David Perkins and David Leasure 
Department of Computing and Mathematical Sciences 

Texas A&M University - Corpus Christi 
6300 Ocean Dr. 

Corpus Christi, Texas 78412 

ABSTRACT 
Expert Witness is an expert system designed to assist attorneys and medical experts in 
determining the merit of medical malpractice claims in the area of obstetrics. It this by 
substitutes the time of the medical expert with the time of a paralegal assistant guided 
by the expert system during the initial investigation of the medical records and patient 
interviews. The product of the system is a narrative transcript containing important 
data, immediate conclusions from the data, and overall conclusions of the case that the 
attorney and medical expert use to make decisions about whether and how to proceed 
with the case. The transcript may also contain directives for gathering additional 
information needed for the case. 

The system is a modified heuristic classifier and is implemented using over 600 CLIPS 
rules together with a C-based user interface. The data abstraction and solution 
refinement are implemented directly using forward chaining production and matching. 
The use of CLIPS and C is essential to delivering a system that runs on a generic PC 
platform. The direct implementation in CLIPS together with locality of inference 
ensures that the system will scale gracefully. Two years of use has revealed no errors 
in the reasoning. 

1. INTRODUCTION 
When preparing a medical malpractice lawsuit, an attorney must identify the relevant 
facts and use them to decide first if the case has merit. Usually, the attorney consults a 
medical expert to evaluate the client's medical records and to advise the attorney. The 
problems for attorneys and clients is that medical experts are both expensive and 
relatively scarce, the problem of determining fault is tedious and time consuming, and 
the case load is growing. 



Our approach to this problem is to make a preliminary determination of merit without 
investing large amounts of time from a medical expert. Using an expert system called 
Expert Witness, the paralegal staff can be guided in their examination of medical 
records and conducting of client interviews. After data collection, Expert Witness 
produces a transcript of reasoning that aids the attorney and medical expert in 
determining the validity of a case. The transcript is very similar to what the medical 
expert would also have produced, except that it was created with far less expense. By 
taking this approach, an attorney can determine the preliminary merits of a lawsuit 
while saving substantial amounts of money. The attorney and medical expert can take 
on more work. Deserving cases are more likely to be pursued because more cases can 
be handled overall. Fewer non-meritorious, wasteful cases need be pursued, resulting 
in saved expense and anguish. Overall, in two years of operation, Expert Witness has 
been tested in 10 legal offices on numerous cases with no complaints, and based on the 
success of the system, significant development is planned to greatly expand its 
coverage. 

This paper describes the functional architecture, the implementation, the history, and 
the plans for expansion of Expert Witness. It begins with a functional overview of the 
Expert Witness in Section 2. After the functional -- description, - some typical cases are 
described in Section 3. In Section 4, the implementation of the current system in 
CLIPS and C is described, as is the history of the project, and the future directions. 
Results and conclusions are given in section 5. 

2. FUNCTIONAL DESCRIPTION 
The current domain of expertise for Expett Witness is obstetrical malpractice. The 
overall context in which Expert Witness determines the extent of medical malpractice is 
shown in Figure 1. To determine the fault of medical personnel, Expert Witness 
directs a paralegal in the search for relevant medical facts from patient records and 
patient interviews. Such information includes the family history, the patient history, 
the history of the mother prior to birth, the events and medical procedures performed at 
birth, and subsequent tests and treatment. Expert Witness builds a case file for each 
client. This multiple client feature allows the paralegal to start and stop data collection 
corresponding to the availability of information and access to the client. When 
sufficient data has been collected, a narrative transcript and a fact summary is 
produced. The narrative transcript is similar to what the medical expert would have 
produced. It marks the important details, such as confirming or disconfirming 
evidence, presents reasoning chains based on evidence, suggests further tests, and 
derives conclusions regarding the viability of the case. The transcripts and the fact 
summaries are used by the attorney and the medical expert to make the fmal decision 
whether malpractice contributed to the client's condition, and also to determine what 
additional data need collected. The general philosophy embedded in Expert Witness's 
knowledge is to only make conservative conclusions, based on practice that is well 
accepted in the field. 



medical records 

narrative transcript 

fact sheets 

I 

patient histories 

Figure 1. Context of Expert Witness 

3. EXAMPLE CASES 
The following cases are summaries of two actual cases handled by Expert Witness. 

Case I 

An infant was born with apgar scores of 8 and 9. The birth weight was six pounds. 
During the mothers labor, monitoring indicated that the baby was in distress. In response 
to the data suggesting distress, the physician treated the mother and reviewed the 
mother's medications. It was found that one of the medications that the mother was 
taking is known to create false positive findings of fetal distress. Normally, the distress 
patterns would have lead to a cesarean section. By reviewing the data correctly, the 
physician avoided an unnecessary surgery which carries added risks for the mother. The 
Expert Witness program analyzed the data and advised the user that the physician had 
acted appropriately based upon the facts presented. This analysis prevented a potentially 
frivolous law suite. 

Case I1 

A child is known to be mentally retarded. The child was born with apgar scores of 2 and 
5. During labor, the mother had a biophysical profile which was abnormal. After 
delivery, the infant developed low blood sugar and seizures. Family history revealed that 
the mother has a nephew by one of her sisters who is also mentally retarded. The Expert 
Witness program analyzed the data and advised the user that there appeared to be some 
improprieties on the part of the physician during the mother's labor that could have 
contributed to the child's present condition. It also noted, however, that there may have 
been a pre-existing condition which may be the main contributor to the child's problems. 
It suggested that further analysis is necessary. This is a case that deserved m h e r  in 
depth analysis by actual expert witness physicians. 



4. IMPLEMENTATION, HISTORY, AND FUTURE DIRECTIONS 
Expert Witness is used cyclically to build up a patient file. Within each cycle there are 
two stages, data collection and data inference. Data collection is done interactively as 
the paralegal presents known information to the system through a text based user 
interface written in C. Once all known information is provided, the inference phase 
begins, and the known data are analyzed to determine what conclusions are able to be 
made and what they are. When more information is needed, additional data are 
suggested in the transcript. The medical expert may also direct the paralegal to obtain 
more information. The next cycle of data collectiodinference process allows direct 
entry of any additional information, and produces a more complete narration. 

The inference part of the system is written in CLIPS 4.3.' Over 600 rules constitute 
the knowledge base. The basic architecture is an elaboration of the heuristic 
classification model.2 Initial data are abstracted from quantitative values to qualitative 
categories. Matching, based directly on CLIPS rule matching, is used to determine the 
first level of solutions in the form of direct conclusions in the narrative transcript. 
Additional reasoning is performed to produce the next level of conclusions, based on 
the initial level. In contrast to some heuristic classifiers which seek to produce one 
conclusion and may take the first one that is satisfactory, Expert Witness makes all 
conclusions that it can. It uses a mix of reasoning methods, using some data to 
strengthen and some data to weaken conclusions. It does not use certainty factors or 
other approximate reasoning methods, since the qualitative representation of strength of 
belief using basic CLIPS was adequate for the conservative reasoning philosophy 
adopted for the system. 

The performance of Expert Witness has been very good. The knowledge used has 
generally been localized, and the reasoning chains have been kept relatively short. 
Factoring of the rule base into a number of independent subsystems for determining the 
first level of conclusions has also helped. The second level conclusions are made using 
a rule base that is loaded after all first level conclusions have been made. 

Expert Witness was built over a period of 5 months beginning in 1991. The initial 
knowledge engineer and expert was Dr. Ray Lewandowski, a medical consultant and 
clinical geneticist. The user interface was constructed by David Perkins at Texas A&M 
University-Corpus Christi. The system has since been used by ten attorneys and their 
staff. Follow-up consultations are performed with Dr. Lewandowski. Plans are 
underway to increase the number of users. In the several years since being introduced 
in the field environment, no incorrect recommendations have been made, and much 
time has been saved. 

Based on the success of the initial system and demands of the users for broadening the 
scope of application, additional experts are currently being interviewed in the areas of 
neonatology, expanded obstetrical coverage, and hospital practices and procedures. 
Additional modules beyond those are in the planningstage. No significant changes to 



the structure of the knowledge base are expected. Knowledge should remain localized, 
and the performance penalty should grow linearly with the number of systems. Each 
system will be incorporated so that it can function as a stand-alone or integrated 
component of the entire system. 

5. RESULTS AND CONCLUSIONS 
The system has since been used continuously since its development by ten attorneys 
and their staff. In the several years since being introduced in the field environment, no 
incorrect recommendations have been made, and much time has been saved. Based on 
this extended success, plans are underway to increase the number of users and the 
scope of the system's coverage. 

A critical success factor for Expert Witness, aside from the quality of the knowledge 
base, has been the need for it to run on a generic hardware platform. The use of 
CLIPS has allowed us to keep the system small, while maintaining speed and ease of 
programming, both because the inference component is small and because it easily 
interfaced with a compact C user interface. 

The second critical success factor derived from CLIPS is the suitability of the forward 
reasoning and matching to the application and representation of the knowledge. 
Although CLIPS would have allowed it, no meta-level reasoning was necessary. This 
simplicity allowed the knowledge base to grow to over 600 rules without greatly 
affecting the structural complexity of the knowledge or the cost of using it. On the 
face of it, the plainness of the knowledge representation as rules speaks against this 
system when compared to more complicated knowledge structures and control regimes, 
but in reality, the degree of fit between the knowledge and the inference system has 
allowed us to create and maintain a reasonably large knowledge base cheaply and 
reliably. This simplicity is crucial for us when we consider expanding the knowledge 
base as much as fivefold, which we intend to do. 

REFERENCES 

1 CLIPS Release Notes, Version 4.3, NASA Johnson Space Flight Center, June 13, 

1989. 

Clancey , W. J., "Heuristic Classification, " ArtiJcial Intelligence, 27:3, December 

1985, pp. 289-350. 





suo!sua~xa %u!turuer8ord paluairo parqo purr aseqqrra uo!ssag - 





THE DESIGN AND IMPLEMENTATION OF EPL: AN EVENT 
PATTERN LANGUAGE FOR ACTIVE DATABASES* 

G. Giuffrida and C. Zaniolo 

Computer Science Department 
The University of California 

Los Angeles, California 90024 
giovanni@cs.ucIa.edu 

Abstract 

The growing demand for intelligent information systems requires closer 
coupling of rule-based reasoning engines, such as CLIPS, with advanced Data 
Base Management Systems (DBMS). For instance, several commercial DBMS 
now support the notion of triggers that monitor events and transactions 
occurring in the database and fire induced actions, which perform a variety of 
critical functions, including safeguarding the integrity of data, monitoring 
access, and recording volatile information needed by administrators, analysts 
and expert systems to perform assorted tasks; examples of these tasks include 
security enforcement, market studies, knowledge discovery and link analysis. 
At UCLA, we designed and implemented the Event Pattern Language (EPL) 
which is capable of detecting and acting upon complex patterns of events which 
are temporally related to each other. For instance, a plant manager should be 
notifled when a certain pattern of overheating repeats itself over time in a 
chemical process; likewise, proper notification is required when a suspicious 
sequence of bank transactions is executed within a certain time limit. 
The EPL prototype is built in CLIPS to operate on top of Sybase, a commercial 
relational DBMS, where actions can be triggered by events such as simple 
database updates, insertions and deletions. The rule-based syntax of EPL 
allows the sequences of goals in rules to be interpreted as sequences of 
temporal events; each goal can correspond to either (i) a simple event, or (ii) a 
(possibly negated) eventlcondition predicate, or (iii) a complex event defined as 
the disjunction and repetition of other events. Various extensions have been 
added to CLIPS in order to tailor the interface with Sybase and its open 
cliendserver architecture. 

INTRODUCTION 
A growing demand for information systems that support enterprise integration, scientific 
and multimedia applications has produced a need for more advanced database systems 
and environments. In particular, active rule-based environments are needed to support 
operations such as data acquisition, validation, ingestion, distribution, auditing and 
management -both for raw data and derivative products. The commercial DBMS world 
has sensed this trend and the more aggressive vendors are moving to provide useful 
extensions such as niggers and open servers. These extensions, however, remain limited 
with respect to functionality, usability and portability; thus, there remains a need for an 
enterprise to procure a database environment that is (1) more complete and powerful, and 

'?his w o k  was done under contract with Hughes Aircraft Corporation, Los Angcles, California. 

2 1 

PAGS BUNK W T  F#ME,D 



thus supports those facilities not provided by vendors, and (2) is more independent from 
specific vendor products and their releases and helps the enterprise to manage their IMS 
and cope with multiple vendors, data heterogeneity and distribution. 

A particularly severe drawback of current DBMS is their inability of detecting patterns of 
events, where an event is any of the possible database operation allowed by the system; 
typically they are: insertion, deletion and updating. Depending on the application, 
sequences of events temporally related to each other, might be of interest for the user. In 
addition to basic database events, management of long transactions and deferred actions 
may be involved in such patterns. Practical examples of such meaningful patterns of 
events are: 

Temperature which goes down for three consecutive days; 

2 day delayed deposit for out-of-state checks; 

30 days of inactivity on a bank account; 

IBM shares increased value consecutively within the last week; 

Big withdrawal from a certain account followed by a deposit for the same amount on 
another account. 

These and similar situations may require either a certain action to take place (e.g.: buy 
IBM shares) or a warning message to be issued (e.g.: huge transfer of money is taking 
place.) EPL gives the user the ability to handle such situations. 

The purpose of this paper is to propose a rule-based language and system architecture for 
data ingestion. The first part of this paper describes the language, then the system 
architecture is discussed. 

EPL DESCRIPTION 
An EPL program consists of several named modules; modules can be compiled, and 
enabled independently. The head of each such module defines an universe of basic 
events of interest, which will be monitored by the EPL module. The basic events being 
monitored can be of the following three types: 

insert (Rname) , delete (Rname) , update (Rname) 
where Rname is the name of a database relation. 

A module body consists of one or more rules having the basic form: 

event-condition-list 
+ 

action-list 

The left hand side of the rule describes a certain pattern of events. When such a pattern 
successfully matches with events taking place in the database the set of actions listed in 
the right hand side are executed, 



For instance, assume that we have a database relation describing bank accounts whose 
schema is: ACC(Accno,Balance). We want to monitor the deposits of funds in excess of 
more than $100,000 into account 00201. In EPL, this can be done as follows: 

begin AccountMonitor 
monitor update (ACC) , delete (ACC) , insert (ACC) ; 
update (ACC (X) ) , 
X.old Accno = 00201, 
 new-~ccno = 00201, 
~.oldI~alance - X.new - Balance > 100000 
-> 
write ( "suspect withdraw at %sn, X. evt ime) 

end AccontMonitor. 

The lines "begin AccountMonitor" and "end AccountMonitor" delimit the module. 
Several rules may be defined within a module (also refereed as "monitor".) The second 
line in the example define the universe for the module, in this case any update, delete and 
insert on the ACC table will be monitored by this module. Then the rule definition 
comes. Basically this rule will be fired by an update on the ACC table, The variable X 
denotes the tuple being updated. The EPL system makes available to the programmer 
both the new and the old attribute values of X, these are respectively refereed by means 
of prefixes "new-" and "old-". An additional attribute, namely "evtime", is available. 
This contains the time when the specific event occurred. 

In the previous rule, the event-condition list consists of one event and three conditions. 
The action list contains a single write statements. In general one or more actions are 
allowed, these actions are printing statements, execution of SQL statements, and 
operating system calls. 

The previous rule can also be written in a form that combines an event and its qualifying 
conditions, that is: 

update (ACC (X) , 
X.old Accno = 00201, 
x.newI~ccn0 = 00201, 
X.old-Balance - X.new balance > 100000) - 

-> 
write("suspect withdraw at %s", X.evtime) 

In this second version, the extent of parentheses stresses the fact that conditions can be 
viewed as part of the qualification of an event. A basic event followed by some 
conditions will be called a qualified event. 

The primitives to monitor sequences of events provided by EPL are significantly more 
powerful than those provided by current database systems. Thus, monitoring transfers 
from account 00201 to another account, say 00222, can be expressed in a EPL module as 
follows: 



update (ACC (X) , X.old-Accno = 00201, 
X.old-Balance - X-new-Balance > 100000) 

update (ACC (Y) , Y. old-Accno = 00222, 
X,old-Balance - X.new-Balance = Y.new-Balance - Y.old - Balance) 

- > 
write ("suspect transfer") 

Thus, the succession of two events, one taking a sum of money larger than $100.000 out 
of account 00201 and the other depositing the same sum into 00222, mggers the printing 
of a warning message. 

For this two-event rule to fire, the deposit event must follow immediately the withdraw 
event. (Using the concept of composite evenu described later, it will also be possible to 
specify events that need not immediately follow each other.) 

The notion of immediate following is defined with respect to the universe of events being 
monitored in the module. Monitored events are arranged in a temporal sequence (a 
history). The notion of universe is also needed to define the negation of b, written !b, 
where b stands for a basic event pattern. An event el satisfies !b if el  satisfies some 
basic event that is not b. 

We now turn to the second kind of event patterns supported by EPL: clock event.. Each 
clock event is viewed as occurring immediately following the event with the time-stamp 
closest to it. But a clock event occurring at the same time as a basic event is considered 
to follow that basic event. For example, say that our bank make funds available only after 
two days from the deposit of a check. This might be accomplished as follows: 

insert ( deposit ( Y), Y-type = "check"), 
clock( Y.evtirne + 20) 

-> 
. . . action to update balance . . . 
write( "credit %d to account # %dtf, Y.amount, Y-account). 

In this rule the "clock" event makes the rule waiting for two days after the check deposit 
took place. 

The EPL system assumes that there is some internal representation of time, and makes 
available to the user a way to represent constant values expressing time. In particular, any 
constant number can be followed by one of the following characters: 'Sf, 'M', 'H', 'Dl, 
which stand, respectively, for seconds, minutes, hours and days. In the previous exampIe 
the constant 2 0  stands for two days. A value for time is built as the sum of functions that 
map days, hours, minutes and seconds to an internal representation. Thus 2D+24H+61M 
will map to the same value of time as 3D+lH+lM. Thus, EPL rules are not dependent 
on the internal clock representation chosen by the system. Observe that a clock can only 
take a constant argument -i.e., a constant, or an expression which evaluates to a 
constant of type time. 

Patterns specifying (i) basic events, (ii) qualified events, (iii) the negations of these, and 
(iv) clock events are called simple event patterns. Simple patterns can always be decided 
being true or false on the basis of a single event. Composite event patterns are instead 
those that can be only satisfied by two or more events. Composite event patterns are 



inductively defined as follows. Let {p,, p,, ..., pJ, n>l be event patterns (either composite 
or simple.) Then the following are also composite event patterns: 

1. (p,, p,, ..., p,) : a sequence consisting of p,, immediately followed by p,, ..., 
immediately followed by pn. 

2. n:p, : a sequence of n>O consecutive p,'s. 

3. *:p, : a sequence of zero or more consecutive p,'s. 

5-  {P,, P,, ..., pJ denotes that at least one of the pi must be satisfied for (1 I i I n). 

Using the composite patterns we can model complex patterns of events. For instance, we 
can be interested to "the first sunny day after at least three consecutive raining days." 
Assuming that we have a "weather" table which is updated every day (the "type" 
attribute contains the weather type for the specific day.) Our rule will be: 

[ ( 3  : i n s e r t  ( weather  (X)  , X. t y p e  = ' r a i n r  ) , 
i n s e r t  ( weather  (Y)  , Y .  t y p e  = 'sun' I 

-> 
w r i t e ( " h u r r a h ,  e v e n t u a l l y  sun on %d\nn,  Y.evtime) . 

This rule fires even though between the three raining days and the sunny one there are 
days whose weather type is different from "rain". In case we are interested to "the first 
sunny day immediately following three or more raining days," we should rewrite the rule 
as: 

( 3  : i n s e r t  ( weather  ( X )  , X .  t y p e  = ' r a i n r  ) , 
* : i n s e r t  ( weather  (2) , Z . t y p e  = ' r a i n r  ) , 
i n s e r t  ( weather  ( Y )  , Y . t y p e  = 'sun' ) 

-> 
w r i t e  ("hurrah,  e v e n t u a l l y  sun  on %d\nw,  Y . e v t i m e )  . 

Note the different use of the relaxed sequence operator "[...I" in the first case and the 
immediate sequence one "( ...)" in the second rule. By combination of the available 
composite operators, EPL can express very complex patterns of events. 

EPL ARCHITECTURE 
EPL's architecture combines CLIPS with a DBMS that supports the active rule 
paradigm. The current prototype runs on Sybase [SYBASE] and Postgres [POSTI - but 
porting to other active RDBMS [K90][MS93] is rather straightforward. 

Sybase rule system presents some drawbacks like: 

Only one mgger is allowed on each table for each possible event; 

The mgger fires immediately after the data modification takes place; 

Trigger execution is set oriented, which means the triggers are executed only once 
regardless the number of tuples invoIved in the transaction; 

Only SQL statements are allowed as actions. 



EPL tries to both overcome to such limitations and allow the user to model patterns of 
meaningful events. 

Event Monitoring Mechanism 

For each event which needs to be monitored by an EPL rule a trigger and a table (also 
referred as Event monitor Relation, ER) have to be created on Sybase. The trigger fres 
on the event which can be either an insert, delete or, update. This trigger will copy the 
modified tuple(s) into the corresponding ER. 

As an example, say that we want to monitor the insertion on the ACC relation previously 
defined. As soon as the EPL monitor is loaded into the system the fact (universe 
ace-mon i acc), will be asserted into the CLIPS working memory. This new fact triggers 
a CLIPS rule which creates a new Sybase relation called "ERacc-ins" having the 
following schema: (int accno, int balance, int evtime). Moreover, a Sybase trigger is 
created by sending the following command from CLIPS to Sybase: 

c r e a t e  t r i g g e r  ETacc-ins on acc  f o r  i n s e r t  a s  
begin 

d e c l a r e  @d i n t  
s e l e c t  @d = d a t e d i f f (  second, '16:00:00:000 12/31/1969', g e t d a t e ( ) )  
i n s e r t  ERacc i n s  select d i s t i n c t  *, @d from i n s e r t e d  - 

end 

The event time is computed as the number of seconds since the 4pm of 12/31/1969. This 
is a standard way to represent time on .UNIX systems. Any ER name starts with the 
prefix " E R  followed by both the monitored table name and the type of event. The 
correspondent trigger has "ET" as prefix. 

As later explained, the module EPL-Querier performs the communication between 
CLIPS and S ybase. 

EPL rules as finite-state machines 
As previously discussed, any EPL rule is modeled by a finite state automaton which is 
implemented by a set of CLIPS rules. Transitions between automaton states take place 
when the following conditions occur: 

a new incoming event satisfies the current pattern; 

a pending clock request reaches its time; 

a predicate is satisfied. 

On a transition the automaton can take one of the following actions: 

Move to the next Acceptance state where it will wait for the next event; 

Move to a Fail state. Here, the automaton instantiation, with relative information, is 
removed from the memory; 

Move to a Success state. Here, the actions specified in the right hand side of the rule 
are executed. 



Each EPL rule is transformed to a set of CLIPS rules which implement its finite state 
machine. Several instantiations of the same EPL rule can be active at the same time. 

Architecture overview 

EPL is basically built on top of CLTPS in two ways: 1) Some new functions, 
implemented in C, have been added to CLIPS in order to support EPL; 2) CLIPS 
programs have been written to implement the EPL rule execution system. Figure 1 
depicts the entire EPL system. 

EPL , ................................................................................................. 
EPL 

EPL EPL source 
Querier Compiler ' i code 

EPL 
User User 
~nterface i ' 

EPL Demons 
.................................................................................................. 

F i g u r e  1. EPL A r c h i t e c t u r e  

EPL-Compiler is a rule translator, it takes an EPL program as input and produces a set 
of CLIPS rules which implement the EPL program. EPL-Polling, at regular intervals, 
transfers the ERs from Sybase to the CLIPS working memory. This process requires 
some data type conversion in order to accommodate Sybase tuples as CLIPS facts. The 
EPL-Querier sends SQL commands to Sybase server when either (1) Sybase triggers or 
ERs have to be created (or removed) or when (2) an SQL command is invoked on the 
action side of an EPL rule. The EPL-User-Interface accepts commands from the user 
and produces output to either the screen or a file. At low level, EPL commands are 
executed by asserting a fact in the CLIPS working memory. Such an assertion triggers a 
rule which executes the desired command. This loose coupling allows an easy design of 
the user interface whose only task is to insert a new fact depending on the user action. 

EPL-Demons is a CLIPS program which implements the EPL rule execution system. 
Basically this set of CLIPS rules monitors the entire EPL execution. The EPL demons, 
together with the CLIPS rules produced by the EPL-compiler, form the entire CLIPS 
program under normal execution time. The CLIPS facts on which these rules work are 
those periodically produced by the EPL-Polling, and those asserted by the EPL user 
interface as a consequence of user actions. 



Conclusions 
This document has described the design and the architecture of EPL, a system which 
provides sophisticate event pattern monitoring and triggering facilities on top of 
commercial active databases, such as SYBASE. EPL implementation is based on CLIPS 
and the design of an interface between SYBASE and CLIPS represented one of the most 
critical tasks in building EPL. EPL rules are translated into a set of CLIPS rules which 
implement the finite state machine needed to execute such EPL rules. 

This paper provided an overview of the language definition and a brief description of the 
system implementation neglecting various implementation details for lack of space. 

Future work is required to provide language extensions and interfacing with other active 
database systems. 

Acknowledgments. This report builds upon a previous one authored by S. Lau, R. 
Muntz and C. Zaniolo. The authors would also like to thank Roger Barker for several 
discussions on EPL. 

REFERENCES 

[Is01 ISO-ANSI Working Draft of SQL-3. 

[COLE] R. Coleman. "Pulling the Right Strings", Database Programming and Design, 
Sept. 1992, pp. 42-49. - - 

[SYBASE] Sybase Inc. Sybase's Reference Manual. 

IF0821 C.L.Forgy. "RETE: A Fast Algorithm for the Many Patternmany Object 
Pattern Match Problem" on Artificial Intelligence 19, 1982. 

[CLIPS] ''CLIPS User's Guide", Artificial IntelIigence Section. 

1 ~ 9 0 1  G.Koch, "Oracle: the Complete Reference," Berkeley, Osborne, McGraw- 
Hill, 1990. 

[LMM86] J.L Lassez, M.J. Maher, K. Maniot. "Unification Revisited", Lecture Notes 
in Computer Science vo1.306, Springer-Verlag, 1986. 

mS93] J-Melton, A.R.Simon. "Understanding the new SQL: A Complete Guide," 
San Mateo, California, Morgan Kaufmann Publishers, San Francisco, 
California, 1993. 

[NT89] S.Naqvi, S.Tsur "A Logical Language for Data and Knowledge Bases," 
Computer Science Press, New York, 1989. 

[POST] J. Rhein, G. Kemnitz, POSTGRES User Group, The POSTGRES User 
Manual, University of California, Berkeley. 

[St871 M. Stonebraker, The POSTGRES Storage System, Proc. 1987 VLDB 
Conference, Brighton, England, Sept. 1987. 

[S t92] M. Stonebraker, The integration of rule systems and database systems IEEE 
Transactions on Knowledge and Data Engineering, October 1992. 



CLIPS++: Embedding CLIPS into C++ * 

Lance 0 bermeyer and Daniel P. Miranker 

Tactical Simulation Division 
Applied Research Laboratories Department of Computer Sciences 

The University of Texas at Austin The University of Texas at Austin 
Austin, T X  78713 Austin, TX 78712 

1anceoQarlut .utexas.edu miranker@cs.utexas.edu 

Abstract 

This paper describes a set of C++ extensions 
to the CLIPS language and their embodyment in 
CLIPS++. These extensions and the implemen- 
tation approach of CLIPS++ provide a new level 
of embeddability with C and C++. These exten- 
sions are a C++ include statement and a defcon- 
tainer construct; (include <c++-header-f ile . h>) 
and (def container <c++-t ype>). 

The include construct allows C++ functions to be 
embedded in both the LHS and RHS of CLIPS rules. 
The header file in an include construct is the same 
header file the programmer uses for his/her own C++ 
code, independent of CLIPS. The defcontainer con- 
truct allows the inference engine to treat C++ class 
instances as CLIPS deftemplate facts. Consequently, 
existing C++ class libraries may be transparently im- 
ported into CLIPS. These C++ types may use ad- 
vanced features like inheritance, virtual functions, and 
templates. 

The implementation has been tested with sev- 
eral class libraries, including Rogue Wave Software's 
Tools.h++, GNU'S libg++, and USL's C++ Standard 
Components. The execution speed of CLIPS++ has 
been determined to be 5 to 700 times the execution 
speed of CLIPS 6.0 (10 to 20 x typical). 

1 Introduction 

CLIPS++ is a reimplementation of NASA's CLIPS 
6.0 [3] that has been tailored to support applications 

*This effort was funded in part by the State of Texas Ad- 
vanced Technology Program, the Applied Research Laboratories 
Internal Research and Development Program DABT63-92-W42. 

with large data and performance requirements or ap- 
plications that must coexist with C++. This reimple- 
mentation has the following features 

Rules may directly access C++ objects. No need 
to reformat C++ objects to CLIPS representa- 
tions or vica versa1. 

Simple integration with.existing C++ code. 

compatible with C++ development tools. 

Execution time is reduced from 5 to 700 times (10 
to 20x typical). 

Scalabile with respect to data and throughput re- 
quirements. See Section 3.2. 

Matching technology that eliminates the prob- 
lems of volatile match time; resolving a critical 
problem for real-time applications. 

CLIPS++ is compatible with NASA CLIPS 6.0 ex- 
cept that the COOL object system has been replaced 
with C++ objects, and only a single LEX-like con- 
flict resolution strategy is supported. Nearly all pub- 
lically available CLIPS programs available on the In- 
ternet have been compiled and correctly executed by 
CLIPS++. 

2 Language 

The CLIPS++ system includes minor language ex- 
tensions that allow CLIPS rules to operate transpar- 
ently on C++ object instances. These extensions com- 
prise just two new constructs and a semantic extension 
to the use of deftemplate. 

'CLIPS++ is a true integration with C++, not a sirr~ple 
wrapper like RETE++ 



Table 1: Execution Time of Manners, (seconds), 
CLIPS 6.0 vs. CLIPS++ 

2.1 Declarations 

2.1.1 include 

; salary-clp 
(include "dec1s.h") 

The include construct is equivalent to a C/C++ 
#include. I t  makes all declarations in a legal C/C++ 
header file visible to CLIPS++. For example, as- 
sume the C++ header file dec1s.h declares a type 
employee-type. That file may in turn include defi- 
nitions from third party class libraries. The Rogue 
Wave string and date classes are used in the running 
example in this paper. 

Consequently, listing the include statement (above) 
at  the beginning of a CLIPS++ source file makes dec- 
larations in the file decls.h, including employee-type, 
visible to the CLIPS++ program. 

class last-raise-type 
public : 

RUDat e date ; 

3; 

class employee-type 1 
public : 

RWCSt r ing name ; 
RWCStringk get-department (void) 

(return dept ; > 
last-raise-type last-raise; 

private: 
RWCString dept ; 

1; 

Figure 1: Relative Performance of Manners, CLIPS 
6.0 vs. CLIPS++ 

2.1.2 defcontainer 

; salary.clp 
(defcontainer employee (type employee-type)) 

The defcontainer construct is the primary language 
addition. Defcontainer is equivalent to the CLIPS 
deftemplate, except that it is used to declare that a 
C++ type can be referenced in a rule's LHS. Note 
that the slots of a defcontainer are precisely the slots 
of the C++ object defined in the include file. Thus, 
the arguments to defcontainer are limited to the con- 
tainers name and the C++ type that is stored in that 
container. 

Any C++ type can be used provided that the type 
overloads the operators == and > in the obvious way. 
Advanced C++ features like inheritance, multiple in- 
heritance, virtual functions, and templates may be 
used. Most notably the C++ data type need not 
inherit from a CLIPS++ provided base class. This 
allows application developers great flexibility in de- 
signing class hierarchies, and reusing existing code. 



2.2 Rule Syntax 
5Q)O- 

There is no real change between CLIPS++ rule 
syntax and CLIPS rule syntax. There is a semantic r ~ a  .. 

extension to the meaning of the slot names for un- 
ordered facts. When the compiler recognizes that a om -. 

template name is C++ container name, declared by 
5500 -. 

defcontainer, rather than a template name declared by 
deftemplate, then the slot identifiers are allowed to be 

900 -. 
any legal C++ expression that returns a value from an 
object. The expressions may include the C++ dot (.) 
and dereference (-i) operators. As a result LHS's can 
be formulated to traverse complex object structures. ~m .. 
For example, the following is a legal CLIPS++ rule 
that operates on the class defined above. The compiler 1 5 ~  .. 

recognizes employee as the name of a container of in- 
stances of the C++ class employee-type. The slot 
defined by the accessor function (getdepartment 0) 
returns values from the instances. The slot defined 
by the expression ( l a s t x a i s e  .date) returns a value 
from a nested object instance. 17. 25 37 Y) 

R- Shr 

; give  a r a i s e  t o  everyone i n  r&d who has not 
; had a r a i s e  s ince  the beginning of 1994 Figure 2: Relative Performance of Waltz, CLIPS 6.0 
(defrule give-a-raise-to-rtd vs. CLIPS++ 

?e <- (employee 
(get-department() "rtd") 
(name ?name)) The system includes a debugger capable of mon- 
( las t -ra ise  .date ?d itoring system execution and inspecting data, and a 

: (< ?d ( R W D ~ ~ ~  1994) ) profiler capable of guiding the user through the pro- 

=> gram optimization sequence. 

In the RHS, member functions may be called for 
objects that are matched in the LHS. In both the RHS 
and LHS, arbitrary C/C++ objects may be accessed 
or called. 

The tight integration with C++ has performance 
benefits as well. C/C++ functions are directly called. 
CLIPS introduces a level of indirection by activating C 
functions through a name to address mapping scheme. 

3.2 Performance and Matching Technol- 
ogy 

The CLIPS++ system employs both published and 
unpublished optimization techniques developed over 
the last 12 years[7, 6 ,  4, 1, 5, 21. The CLIPS++ sys- 
tem features the LEAPS matching technique asymp- 
totically better than RETE or TREAT. Consequently 
the performance of CLIPS++ scales with problem size 

3 Architecture and Environment 

3.1 Development Environment 

The CLIPS++ system is based on an optimizing 
compiler that accepts CLIPS or CLIPS++ programs 
as input and outputs C++. Output code is compiled Table 2: Execution Time of Waltz, (seconds), CLIPS 
by the host system's C++ compiler, and linked with 6.0 i s .  CLIPS++ 
a runtime library of CLIPS++ support routines. 



as measured by data and throughput requirements2. 

Rather than computing an entire conflict set and 
then applying a conflict resolution strategy to deter- 
mine a single rule instantiation to fire, LEAPS folds 
the conflict resolution strategy into the matcher such 
that the first instantiation that it discovers on each cy- 
cle is the same instantiation that a RETE or TREAT 
implementation would fire. LEAPS has been formally 
proven to produce the same execution sequences as 
the RETE match. 

Real-time applications benefit substantially. Since 
it is much faster, and more predictable to com- 
pute only the fired instantiation, CLIPS++ eliminates 
much of the volatility in match times developers have 
come to expect from rule systems. The combination 
of the improved algorithm and the optimization tech- 
niques often result in provably optimal code. 

3.3 Integration with C++ Class Libraries 

Integration with C++ class libraries is a simple 
matter of including the correct header files and link- 
ing with the correct libraries. CLIPS++ can inference 
over class library objects if they are declared using 
a defcontainer construct. CLIPS++ can call library 
functions wherever a standard CLIPS function would 
be used. 

In the above example, the line 

(1astxaise.date ?d &: (< ?d (RWDate I 1 
1994) 1) 

uses RWDate objects, which are the date objects 
from Rogue Wave's Tool~.h++ class library. The 
statement binds an object of type RWDate to the vari- 
able ?d, constructs a temporary object with the date 
1/1/94, and compares the bound object with the tem- 
porary object. The comparison will automatically call 
the Rogue Wave supplied function 

operator <(const RWDateO dl, coast RWDateO 
d2 ) 

Nearly all of the complexities of C++ class libraries 
are hidden from the programmer. 

The CLIPS++ system has been tested with sev- 
eral class libraries, including the Tools.h++ library 
from Rogue Wave Software, the C++ Standard Com- 
ponents from USL, and the libg++ library from GNU. 

?Nearly all claims of scalable performance are based on in- 
creasing the size of the rule base, not by increasing the size of 
the working memory 

Figure 3: Relative Performance of Waltzdb, CLIPS 
6.0 vs. CLIPS++ 

4 Benchmark Results 

We detail the performance of 4 of the 5 programs in 
the Texas Benchmark suite, Waltz, Waltzdb, Manners 
and A R P [ ~ ] ~  Performance results are for CLIPS++ 
vs. CLIPS 6.0 on standard benchmark programs. All 
times reported are user + system cpu seconds. The 
test platform was a Sun Sparcstation 2 running SunOS 
4.1.3. Both the test programs and the baseline CLIPS 
6.0 were compiled using GNU'S gcc version 2.5.8, with 
highest optimization. 

We clearly demonstrate both absolute improve- 
ments in speed and very substantial improvement in 
scalability with respect to data size size. The asymp- 
totic improvement due to the LEAPS match reveals 
important speed improvement for small data set sizes 
in the range of 3 to 7. As data set sizes increase, in- 
creases in speed are measured by orders of magnitude 
(i.e. lox, lOOx even 1000~). 

'~vailable by ftp from anonymousOcs.utexas.edu, cnrrnect 
to pub/ops5-benchmark-suite. CLIPS versions are also there. 



Table 3: Execution Time of Waltzdb, (seconds), 
CLIPS 6.0 vs. CLIPS++ 

Figure 4: Relative Performance of ARP, CLIPS 6.0 
vs. CLIPS++ 

5 Conclusion 

The CLIPS++ system is an advanced production 
system that successfully integrates declarative CLIPS 
rules with object oriented C++ data  types. This in- 
tegration extends from simple user defined types to 
complicated class libraries from commercial vendors. 

Additionally, the CLIPS++ system is based on the 
LEAPS algorithm, and contains many published and 
unpublished performance optimizations. The combi- 
nation of the asymptotically superior LEAPS algo- 
rithm and the optimizations results in a productioxl 
system of unprecedented performance. 

References 

[I] D.A. Brant, T. Grose, B. Lofaso, and D.P. Mi- 
ranker. Effects of Database Size on Rule System Per- 
formance:Five Case Studies. In Proceedings of  the 17th 
International Conference on Very Large Datu Buses 
(VLDB), 1W1. 

[2] D.A Brant and D.P. Miranker. Index Support for Rule 
Activation. In Proceedings of the 1993 ACM SIGMOD 
International Conference on the Management of Data, 
1993. 

[3] J.C. Giarratano. CLIPS User's Guide, Version 6.0. Ar- 
tificial Intelligence Section, Lyndon B. Johnson Space 
Center, 1994. 

[4] D. P. Miranker, D. Brant, B.J. Lofaso, and D. Gadbois. 
On the Performance of Lazy Matching in Production 
Systems. In Proceedings of the 1990 National Confer- 
ence on Artificial Intelligence, pages 685492. AAAI, 
July 1990. 

[S] D. P. Miranker, F.H. Burke, J. J. Steele, J. Kolts, and 
D. R. Haug. The C++ Embeddable Rule Systeru. 
Int. Journal on Artificial Intelligence Tools, 2(1):33- 
46, 1993. Ako in the Proc. of the 1991 Int. Conf. on 
Tools for Artificial Intelligence. 

[6] D. P. Miranker, B.J. Lofaso, G. Farmer, A. Chandra, 
and D. Brant. On a TREAT Based Production Sys- 
tem Compiler. In Proceedings of the 10th Infernatinti~l 
Conference on Ezpert System, Avignon, France, pages 
617-630, June 1990. 

[7] D.P. Miranker and B. J. Lofaso. The Organization 
and Performance of a TREAT Based Production Sys- 
tem Compiler. IEEE Trans. on Knowledge and Duttr 
Engineering, pages 3-10, March 1991. 

Table 4: Execution Time of ARP, (seconds), CLIPS 
6.0 vs. CLIPS++ 



B - EXPERT SYSTEM SHELL TO REASON ON 
LARGE AMOUNTS OF DATA 

G. GiufSrida 
Computer Science Department 

The University of California Los Angeles 
giovanni@cs.ucla.edu 

Abstract 

The current DBMSs do not provide a sophisticated environment to develop rule based 
expert system applications. Some of the new DBMSs come along with some sort of rule 
mechanism, these are active and deductive database systems. However, both of these 
are not featured enough to support full implementation based on rules. On the other 
hand, current expert system shells do not provide any link with external databases. 
That is, all the data are kept into the system working memory. Such working memory 
is maintained in main memory. For some applications the reduced size of the available 
working memory could represent a constraint for the development. Typically these are 
applications which require reasoning on huge amounts of data. All these data do not fit 
into the computer main memory. Moreover, in some cases these data can be already 
available in some database systems and continuously updated while the expert system 
is running. 
This paper proposes an architecture which employs knowledge discovering techniques 
to reduce the amount of data to be stored in the main memory, in this architecture a 
standard DBMS is coupled with a rule-based language. The data are stored into the 
DBMS. An interface between the two systems is responsible for inducing knowledge 
from the set of relations. Such induced knowledge is then transferred to the rule-based 
language working memory. 

INTRODUCTION 
Current trends in database research area are about making smarter and more friendly current 
DBMS. Traditionally, - - a DBMS is mostly a repository of information to be later retrieved by an 
ad-hoc query language. If some data are currently unavailable in the system, or the query is not 
properly issued, the system can return either an error or a non-answer. This is not really the case 
when a specific question is asked to a human expert, in this case the expert digs in his or her 
memory looking for an answer, if no proper answer is found the expert perhaps starts looking for 
alternative, and approximate, responses. Actually, the expert uses his or her knowledge in a sort 
of "cooperative way" trying to make the user as more satisfied as possible. To answer such a 
query the expert employs his or her knowledge in a much more productive way than performing 
a simple Iinear scan over the known set of tuples in his oy her mind: meta-knowIedge was 
fruitfully employed in order to formulate the answer. 

In an artificial system such meta-knowledge can be known a priori (readTied up to fhe system 
at database design time) or induced by an aIready available set of relations. The purpose of 
induced knowledge [Qu79] [CLC91] is to describe the current state of the database by means of 
sets of rules; a rule induction algorithm is responsible to discover such induced knowledge. 
Basically, induced rules are oriented to summarize the way the different attributes are related to 
each other. Artificial reasoning can be built on top of this meta-knowledge. 



This paper proposes an architecture which integrates two public domain systems, namely 
Postgres and CLIPS, into a unique environment. The proposed architecture offers a shell for 
developing expert systems able to work on large amounts of data. Database relations are stored 
on Postgres while the artificial expert is implemented on top of CLIPS. The artificial expert can 
specialize the rule induction algorithm in order to focus the induction only on the necessary data. 

Postgres comes along with a rule system to implement active database features. By the way, 
impIementing an expert system using only Postgres has some drawbacks. The Postgres rule 
mechanism has been designed for triggering over updates on the database. We always need to 
perform a secondary storage update in order to fire a Postgres rule. This can be too expensive in 
many cases when a little fact stored in main memory can perform the same task. Moreover, the 
rule system in Postgres does not implement all the facilities of a special purpose rule-based 
language such CLIPS. 
On the other side CLIPS does not provide any access to an external database. This can cause 
serious limitations in designing expert systems reasoning on large amounts of data stored on a 
database. 

CURRENT SYSTEMS 
Latest developments in databases are oriented to enrich traditional systems with some sort of 
rule-based mechanism. Novel additional features are so added to traditional DBMS by means of 
rules. New classes of systems have appeared on the market, they are: Active [St921 [HCL+90] 
[MI3921 and Deductive [Mi881 [RSS92] [NT89] databases. The following sections give some 
details about these new systems. The suitability of those as expert system shell is also 
investigated. Advantages and drawbacks for each system are drawn. Also, the limitations of 
current rule-based languages as developing shell for expert system oriented to reason on large 
amounts of data are discussed. 

Active Database 

More and more active database systems are everyday appearing on the market. The transition of 
such system from research stages to the market was fast. They materialized in systems like 
Sybase [MD92], Postgres [St87], Starburst [HCL+90], and more. However, the active feature of 
databases is still under investigation. Additional research still needs to be done. 

The active feature extends the traditional systems with a rule-based mechanism oriented to allow 
implementation of demons. The purpose of these demons is basically to overview operations on 
the database and, when certain conditions are satisfied, invoke a corrective action over the 
database. The system can so be extended with sort of animated entities; data integrity can be 
enforced by means of active rules. 

Typically an active rule has the following format: 

on <event> 
i f  <condit ion> 
then  <act ion> 

This rule model is also referred as E-C-A (Event-Condition-Action) rule. Simpler rule model 
can utilize an E-A pattern. event is one of the possible operations oriented to tuple handling; 



typical events are: insert, delete, update or, retrieve. The specified condition is a condition 
which should hold on the data involved in the current event in order to f i e  the rule. action is the 
set of actions that take place when the specified condition is satisfied. 

In the following a Postgres rule is reported as example of active rule (copied from [Post]): 

define rule rl is 
on replace to EMP-salary 

where current. name = 'Joer 
do replace EMP (salary = new.salary) 

where EMP . name = ' Sam' 
Rule rl will fire every time the salary of Joe is updated. For such update the salary of Sam will 
be set to the same value of the new salary of Joe. In other words, Sam will always get the same 
salary of Joe. Note that the inverse is not true, the same rule will not take care to update Joe's 
salary when Sam's salary is replaced by some new value. 

Evaluation of database active feature is based upon (1) the domains of possible events which can 
be monitored, (2) the formalism to specify the condition; (3) the language to execute actions. 
Other features, like rule execution model, have also to be considered for a sound evaluation. 
Postgres [St87], is actually one of the most advanced active databases currently available. 

Active database systems present some drawbacks as expert system shells. The most significant 
ones are hereafter listed: 

Firing only upon database events, no "Working memory" is available. A1 the data are kept 
in the secondary memory storage. Main memory usage might, in several cases, be preferable 
to a secondary memory one. 

The language to specify actions is usually restricted to the database domain. Typical rule- 
based languages allow on the right-hand side complex operations (print, while loop, user 
inputs, etc.) to be performed. 

Not well defined rule execution model is available. 

Other criticisms to these systems are about the rule redundancy required in some cases. A set of 
sort of complementary rules might be defined in order to ensure some data integrity. For 
instance, let us suppose we want to make sure that each employee works for one and only one 
department. A set of rules needs to be defined in order to enforce this constraint: One will take 
care when a new employee is hired, another when the employee is transferred, another when a 
department is dropped, and so on. This is not really the case of an equivalent rule-based 
implementation where a single rule can handle all the cases. The different behavior between 
active DBMS and RBL is actually based on different architectures. In an active database system 
the rules are tied up to the database operations, so a trigger must be defined for each possible 
operation on the interested data. In a rule-based system, rules are fired straight from the data in 
the working memory. The operations which update the data are hidden to the triggered rules. 
This model reduces the number of required rules. Moreover, the maintenance cost for a set of 
rules is of course higher than the one for a single rule. 

The previous considerations should convince the reader that implementing an expert system on 
top of an active database is not a straightforward task; they lack the power for that purpose. 



Deductive Data bases 

Another challenging and relatively new research direction in database area is about Deductive 
databases. These systems are essentially based on a Prolog-like development language. Some of 
these are LDL++ [NT89], NAIL! [MUVG86] and CORAL [RSS92]. Here facts can be either 
stored on main memory or secondary memory storage. However, in the author's opinion, 
deductive databases are still not at a stable stage. Further investigation needs to be spent on 
those. This belief is also enforced from the lack of any commercial deductive database system on 
the market at the time of this writing. 

Development of deductive databases raised several both theoretical and practical issues that are 
still looking for answers. Research is still in progress in this direction. 

Some of the most significant points of deductive systems are: 

Prolog-like rule-based development environment; 

Recursive rule invocation allowed; 

Easily definable virtual relations (views in database jargon); 

Hybrid forward/backward chaining rule execution model. The method chosen depends on the 
current task to be performed. It is chosen automatically by the system itself. The user does 
not have any responsibility on that; 

Restricted usage of negation. Only certain classes of negation (namely stratifed) are 
allowed. Basically, no negation on recursive calls can be used. 

Ability of interfacing with already available DBMSs. 

Deductive databases are definitively a proper environment for deveIoping expert reasoning on 
large amounts of knowledge. However, as already said, they still need some time before 
reaching a steady stage. 

Expert System Shells 

Somewhat current expert systems shells present the opposite problem of the previously discussed 
database systems. In this case all the facts are kept into the system working memory. No 
connection with any external storage system is provided. This can be a constraint difficult to be 
taken around when huge amount of knowledge is employed as basis for the reasoning. In this 
case the main memory cannot be big enough to accommodate this large number of tuples. In 
another possible scenario, reasoning has to be developed on data which are already stored on 
some database systems. Perhaps these data are still evolving while the artificial reasoning is 
performed. The only possible solution to this problem is represented by a periodic transfer of the 
new updated data from the database to the expert system shell. 

Current solutions to this problem are oriented to create an ad-hoc interface between an expert 
system shell and a DBMS. Such solutions are often properly tailored for the application itself. 
They do not provide a generic solution to the problem. 



KNOWLEDGE INDUCTION ALGORITHM 
The process of knowledge induction [Qu79] [ a 9 0 1  aims to build useful semantic data starting 
from the available relations in a database. In this section, an overview of the knowledge 
induction algorithm is given while keeping an eye open on our specific implementation. 

Somehow the knowledge induction process aims to "capture" the semantics of the stored data 
and model it by means of induced rules. Different forms of rule may exist, we are mainly 
interested in rules which correlate two attributes between themselves. The correlation of interest 
for us is the definition of a domain for the first attribute which identifies a unique value for the 
second attribute. We are interested to the range form which is: "ifx, I X I x, then Y = y with 
Probability P and Coverage C." The probability vaIue expresses the certainty degree of the 
given rule while the coverage refers to the number of tuples used to build such rule. Additional 
details can be found in [Qu79], [CL90] and [CLCgl]. Several different forms and attributes can 
be combined to express induced rules. 

The set of induced rules represents part of the knowledge about the given databases. Storing 
these rules most probably requires less space than the corresponding table format. Induced rules 
have to change dynamically reflecting the database updates. Every update operation on the 
database has to affect the set of induced rules accordingly. 

In the proposed system induced rules are stored as CLIPS facts whose form is: 

(ik <argl> <lowerBound> <upperBound> <arg2> <value> <prob> <cover>) 

The first atom is to classify the set of facts describing the induced knowledge. The remaining 
atoms are the infomation about the specific induced Ale. The set of all these facts forms the 
induced knowledge. Semantics of most of the arguments is straightforward. prob is the 
probability factor and cover is the number of tuples covered by the rule (look at [Ch94] for a 
complete description of these parameters.) For instance, the rule "if62000 I SALARY I 85000 
then TYPE = 'MANAGER' with Probabiliry=0.6, Coverage=3" is stored in the following 
CLIPS fact: 

(ik SALARY 62000 85000 TYPE MANAGER 0.6 3) 

As an example, let us suppose to have the following table, namely emp, in our Postgres database: 

EMP 
+------+--------+-------- + 
INAME I TYPE I SALARY 1 
+------+--------+--------+ 
IJohn ISTAFF 130000 1 
IMary IMANAGER 162000 1 
IEva ISTAFF 132500 1 
lBob IMANAGER 185000 1 
/Mark [MANAGER 176000 1 
IJudy IMANAGER 183000 1 
lKia [STAFF 156000 1 
!Tom IMANAGER 150000 I 
IPhil ISTAFF 154000 1 
+------+--------+-------- + 
By applying the induction algorithm on these tuples the set of CLIPS facts will be: 



(ik emp.SALARY 62000 85000 emp.TYPE MANAGER 0.8 4) 
(ik emp.SALARY 50000 50000 emp.TYPE MANAGER 0.2 1) 
(ik emp.SALARY 30000 32500 emp.TYPE STAFF 0.5 2) 
(ik emp.SALARY 54000 56000 emp.TYPE STAFF 0.5 2) 

The induced rule schema is only a first attempt which is used more as framework for this paper. 
A real design should take into more consideration other parameters to be included in the schema. 

The induced rules need to be dynamically updated reflecting operations performed over the 
database. For instance, let us suppose the following new tuple is inserted into the system: 

Betty MANAGER 60000 

The knowledge base has to be updated to the following set of facts: 

(ik emp.SALARY 60000 85000 emp.TYPE MANAGER 0.83 5) 
(ik emp.SALARY 50000 50000 emp.TYPE MANAGER 0.16 1) 
(ik emp.SALARY 30000 32500 emp.TYPE STAFF 0.5 2) 
(ik emp.SALARY 54000 56000 emp.TYPE STAFF 0.5 2) 

The new tuple affected the values in the fist  fact, the lower bound, probability and coverage 
values changed accordingly. Similar changes wiIl take place in case of deletion or updating. 

PROPOSED SYSTEM OVERVIEW 
In the proposed system architecture, Postgres and CLIPS are being integrated. The interface 
between them represents the key point for the design. An expert system can be developed on top 
of CLIPS. This latter is extended with features to make available summarized data stored in 
Postgres. From an expert system shell's point of view the new system can be seen as in the 
following figure: 

Postgres E I  
Postgres presence is actually hidden to the end-user. The application built on top of CLIPS takes 
advantage of the meta-knowledge induced from the stored database. The expert system being 
developed on CLIPS has to be aware of the following: 

Database schema; 

Database statistics: number of tuples, number of induced rules, rule coverage, popularity, 
probability, etc. 

CLIPS has to be extended with dedicated constructs to inquire for such information. Depending 
on both the database information and the application being implemented, the meta-knowledge 
extraction process is properly tailored and executed. From CLIPS several actions can be taken in 
order to model the induction algorithm to best fit the current application. 



The knowledge induction process executes in a dynamic fashion, that is, once the rule schema 
has been defined, any update on the monitored Postgres relations will be reflected on the induced 
rules. The rule induction manager then propagates these induced rules to the CLIPS working 
memory in the fact form previously discussed. Eventually, these facts trigger some CLIPS rules. 

The interface between CLIPS and Postgres then can be defined by the following set of functions 
available on the CLIPS side: 

Inquire for the database schema; 

Inquire for database statistics; 

New rule induction schema definition: R,.X + &.Y, where R, and R, are relations while X 
and Y are attributes; 

Mod* rule induction parameters (cut-off factor, etc.); 

Retrieve current rule induction schema; 

Remove induced rule; 

The system extends the set of built-in CLIPS functions to include these new sewices. 

DESIGN 
The system will be presented to the expert system developer as a more featured shell which 
includes ability to access summarized data. The key points of all design are essentially the 
following: 

Interface between CLIPS and Postgres; 

Induced knowledge management. 

The system architecture is the following: 

DBMS 
User 

E S 
User 

The Induction Manager is responsible for the communication between CLIPS and Postgres. 
CLIPS utilizes services offered by this module to tailor the induction algorithm to its needs. 
Responses from Postgres to CLIPS are also passed through the induction manager. The link 
between Postgres and WM (the CLIPS working memory) stands for a straight access from 
Postgres to CLIPS working memory. That is, once the rule schema has been defined, updates on 
Postgres will result in updates on the induced rules. These rules are then written straight to 
CLIPS' working memory without requiring the intervention of the induction manager. In other 
words, the induction manager can be seen as a set of function to be invoked from CLIPS, while 

Postgres 'CLIPS 
- 

---, 

Induction 
Manager 

- 

WM 
L 

-- 
- 



the link from Postgres to WM represents an asynchronous flow of data toward CLIPS. Once the 
rule induction schema has been defined, this flow of data will be dynamically maintained, that 
is, any update to any monitored Postgres relation can cause some rule induction instances 
updates, these will be promptly propagated to CLIPS through this link. As better explained in 
the following, actually the induction manager is scattered between Postgres and CLIPS. Some 
Postgres triggers and CLIPS rules (together with some external Postgres procedures) form the 
complete block. 

The entire system works in a dynamic fashion. That is, at the same time the CLIPS application is 
running people can keep on working on Postgres. Postgres updates affect the set of induced rules 
on the CLIPS side. Such updates can mgger some CLIPS rules to execution. Under this light the 
entire system can be seen as an extension of the rule-based mechanism of Postgres: Some 
Postgres rule activations eventually trigger some CLIPS rules. 

CONCLUSIONS a 

This paper discussed the design of a system where expert shell techniques are combined together 
with knowledge discovering techniques. Two public domain systems, namely CLIPS and 
Postgres, have been combined into a unique one. Purpose of this design is to provide an expert 
system shell with ability to reason over a large amount of data. Current expert system shells lack 
the ability of accessing data stored on external devices. On the other side database technology is 
not yet well refined to provide a featuring shell to develop expert systems. Proper combinations 
of these techniques may lead to interesting results. 

The possible applications for such a system are those where reasoning on large volume of data 
are required. For instance, think about the complexity of reasoning on the millions of customers 
of a phone company or a frequent flyer program, in this case the complexity is due to the 
enormous amount of data to reason on. 

REFERENCES 
[Ch94] W.W.Chu, "Class notes CS244-Spring 1994", University of California in Los 

Angeles, 1994. 

[CL90] W.W.Chu, R.Lee, "Semantic Query Processing Via Database Restructuring," 
Proceedings from the 8th International Congress of Cybernetics and Systems, 1990. 

[CLC'l] W.W.Chu, R.Lee, Q.Chen, "Using Type Inference and Induced Rules to Provide 
IntensionaI Answers," Proceedings of the 7th International Conference on Data 
Engineering, 199 1. 

Po821 C.L.Forgy, "RETE: A Fast Algorithm for the Many Pattem/Many Object Pattern 
Match Problem,'' Artificial Intelligence 19, 1982. 

[Gig91 J.C.Giarratano, "CLIPS User's guide," Artificial Intelligence Section, Lyndon B. 
Johnson Space Center, June 1989. 

[HCL+90] L.Haas, W-Chang, G.M.Lohman, J.McPherson, P.F.Wilms, G.Lapis, B.Lindsay, 
H.Pirahesh, M.Carey, E.Shekita, "Starburst midflight: as the dust clears," E E E  
Transactions on Knowledge and Data Engineering, March 1990. 



[MI3921 D.McGoveran, C.J.Date, "A Guide to SYBASE and SQL Server," Addison-Wesley 
Publishing Company, 1992. 

[Mi881 J.Minker "Foundation of Deductive Databases and Logic Programming," Morgan- 
Kaufmann, Los Altos, CA, 1988. 

m G 8 6 ]  K.Morris, J.Ullman, A.Van Gelder, "Design overview of the NAIL! system," 
proceedings of the 3rd Int. Conference on Logic Programming, Springer-Verlag 
LNCS 225, New York, 1986. 

[NT89] S.Naqvi, S.Tsur, "A Logical Language for Data and Knowledge Bases," Computer 
Science Press, 1989. 

[RSS92] R.Ramakrishan, D.Srivastava, S.Sudarshan, "CORAL: A Deductive Database 
Programming Language," Proc. VLDB '92 Int. Conf. 1992. 

[Post] J. Rhein, G. Kemnitz, POSTGRES User Group, The POSTGRES User Manual, 
University of California, Berkeley. 

[S t871 M. Stonebraker, "The POSTGRES Storage System," Proc. 1987 VLDB Conference, 
Brighton, England, Sept. 1987. 

[St921 M. Stonebraker, "The Integration of Rule Systems and Database Systems," IEEE 
Transactions on Knowledge and Data Engineering, Octobe? 1992. 

[Qu79] Quinlian, J.R., "Induction Over Large Data Bases," STAN-CS-79-739, Stanford 
University, 1979. 

i 
I 
i 



Session 2A: Automation, Process Control, and Advisory Applications 
- 

Session Chair: A. Chandrasekaran 





Al & Workflow Automation: 
The Prototype Electronic Purchase Request System 

P 7 
Michael M. Compton 

compton@ptolemy .arc.nasa.gov 
(415) 604-6776 

Shawn R. Wolfe I -  ' 

shawn@ptolerny.arc.nasa.gov 
(415) 604-4760 

A1 Research Branch / Recom Technologies, Inc. 
NASA Ames Research Center 
Moffett Field, CA 94035-1000 

Abstract: 

Automating "paper" worwow processes with electronic forms and email can dramatical& improve 
the mciency of those processes. However, applications that involve complex forins that are used 
for a variety of purposes or that require numerous and varied approvals ofren require additional 
sofhvae tools to ensure that I )  the electronic form is correctly and completelyjilled out, and 2)  the 
form is routed to the proper individuals and organizations for approval. The Prototype Electronic 
Purchase Request (PEPR) system, which has been in pilot use at NASA Ames Research Center 
since December 1993, seamlasly links a commercial electronic f o m  package Crnd a CLIPS-based 
knowledge system that first ensures that electronic forms are correct and complete, and then 
generates an "electronic rowing slip" that is used to route the form to the people who must sign it. 
The PEPR validation module is context-sensitive, and can apply diflerent validation rules at each 
step in the approval process. The PEPR system is form-independent, and has been applied to 
several diferent types of fomts. The system employs a version of CLJPS that has been extended to 
support Applescript, a recently-released scripting language for the Macintosh. This "scriptability" 
provides both a transparent,fzexible interface between the two programs and a means by which a 
single copy of the knowledge base can be utilized by numerous remote users. 

Introduction 

The Procurement Division at NASA Ames Research Center processes up to twenty thousand 
purchase requests (PRs) every year. These PRs, which a l l  use a common form, are used to 
procure virtually anything used at the Center: computers, hazardous chemicals, office equipment, 
s ~ i e n ~ c  .instruments, airplane parts, and even funding for external research projects. PRs can be 
submitted by any civil servant employee at the Center, and must be approved by anywhere from 
three to twenty different individuals and offices. The average time required to submit a PR and 
obtain the necessary approvers' signatures is eighteen business days. Worse yet, approximately 
half of the PRs that are submitted are either incorrectly filled out, lack some required additional 
paperwork, or are routed to the wrong group for approval and must be returned to the originator. 
This not only delays procurement of the requested items but also burdens the system with a 
significant amount of paper flowing in the "wrong direction". In addition, the paper system lacks 
any mechanism for tracking a submitted PR, so people who originate these purchase requests often 
try to track them manually by picking up the telephone and calling around until they find where the 
PR is in the approval process. This, along with the numerous "walk-though" PRs, contribute 
significantly to the delays involved in processing the requests. 

In 1991, the A1 Research Branch at NASA Ames undertook a "weekends and evenings" effort to 
see whether a knowledge-based system, in conjunction with other advanced computing tools, 
could help expedite the process by which purchase requests are submitted, routed, and approved. 
The resulting system, called the Prototype Electronic Purchase Request system (PEPR), combines 
a commercial electronic forms package with a knowledge-based system that both ensures that the 



submitted forms are c o m t  and complete, and generates an electronic "muting slip", based on the 
content of various fields on the form, that reflects the approvals that particular PR requires. The 
PEPR system currently operates in a Macintosh environment and takes advantage of several new 
collaborative features of the latest release of the Macintosh OS, including digital signatures and 
"0s-level" e l m n i c  d. 

The system is now being used by several different groups at Ames to process a particular class of 
PR, namely those that apply to the funding of external research at colleges and universities. Initial 
results indicate that the system can dramatically reduce the time required to originate and process 
PRs and their supporting paperwork by ensuring that PRs entering the system are error-free and 
automatically routing them to the proper individuals. The system also provides a tracking 
capability by which the originator of a PR can query the system about the status of a particular PR 
and find out exactly where it is in the approval process. 

Figure 1: An Example Purchase Request 

Figure 1 shows an example PR. Because of its size and complexity, we have focused on the Ames 
Purchase Request form for the development of the PEPR system. However, our implementation is 
largely form-independent, and can be applied to other forms that require "complex routing". We 
have also applied the PEPR system to approximately six other types of forms and are actively 
pursuing other potential applications of the system both inside and outside of NASA Ames. 

Why Al? 

The knowledge-based component of the PEPR system utilizes a fairly straightfoxward rule- and 
object-based mechanism to provide its validation and routing capabilities (although we are 



investigating machine learning techniques to ease the knowledge-acquisition problem -- see the 
section entitled Future Plans, below). There are two main reasons that a knowledge-based 
approach is appropriate to the problem of validation and routing of electronic forms. 

Fist, the knowledge required to ensure the PR's correctness and completeness is quite diverse 
and very widely distributed among the various groups at Ames. Different validation "rules" come 
into play depending on what items or services are being ordered and what offices are required to 
approve a particular purchase. Early on in the project it became clear that these validation rules 
would have to be acquired and revised incrementally. In addition, the fact that different validation 
rules come into play at different stages of the approval cycle meant that the validation mechanism 
had to be both "item-sensitive" and "context-sensitive". By adopting a rule-based approach, we 
were able to design and implement a general mechanism for applying validation rules of varying 
complexity and then add and/or refine form-specific validation rules as they were discovered. 

Second, the knowledge that we required to generate a correct "approval path" for a particular PR 
was not well-defmed and distributed among a wide variety of people. We also recognized that in 
order to guarantee that the system would always generate a correct set of approvers, we would 
need to be able to incrementally add routing knowledge as "holes" in the existing routing 
knowledge became apparent. The inherent separation of "inference engine" and "knowledge base" 
in rule-based systems offered a clear advantage over a conventional procedural approach. 

Why CLIPS? 

We decided to use the CLIPS shell to implement the knowledge-based portion of the PEPR system 
for a variety of reasons. First, the data-driven nature of forms processing seemed to suggest that a 
forward-chaining inference engine would be appropriate. Second, CLIPS runs in a Macintosh 
environment, which is the platform of choice among our targeted pilot users. Third, the 
availability of CLIPS source code meant that we could tailor it to our specific needs (see [2] for a 
more detailed description of the mMications we made to CLIPS). Several other projects withim 
our branch had successfully applied CLIPS to a variety of problems, so there was a fair amount of 
local expertise in its use. Also, the fact that it is available to govemment projects at no cost made it 
particularly appealing. 

Key Design Requirements 

To evaluate the suitability of a knowledge-based system in an automated workflow environment, it 
was of course necessary to provide other components of the workflow system. As a result, certain 
design issues and requirements were idenflied early in the project. The following represent key 
assumptions and design desiderata that probably apply to any automated workflow system: 

Familiar user interface: The electronic version of the form had to look very much like the 
paper form with which the users were already familiar. Also, the electronic form needed to 
perform the rudimentary operations that users have come to expect from any automated application 
(printing support, automatic calculation of numeric fields, etc.) 

Reliable data transport mechanism: In order to get the forms from user to user, the system 
had to utilize an easy-muse and reliable electronic mail system. 

User authentication: Once users are expected to receive and process sensitive data 
electronically, they must be assured that the people who sent the data are who they claim to be. 
Therefore, our system needed to ensure authentication of its users. 



Data integrity assurance: Likewise, the users needed to be sure that the data they received 
had not been altered, either accidentally or intentionally, while in transit. 

Seamless integration: We wanted the operation of the knowledge-based component of the 
system to be completely invisible from the user and have its output appear as data on the farm. 

Tracking capability: Enabling a user to determine where in the process a particular form is 
at any particular moment, without having to bother other users, is very important to the acceptance 
of an automated workflow system. We wanted our users to be able to determine the status of their 
submitted form automatically. 

Of course, we did not want to have to develop all of the mechanisms required to meet these key 
needs. T h d u l l y ,  most of the requirements described above had been provided by recently- 
released commercial products. Therefore, our goal in the development of the PEPR system was to 
make use of commercially-available technology to fulfill these requirements whenever possible, 
and to integrate the various software components as cleanly as possible. While this approach 
required us to make use of pre-release versions of some software components of the system (with 
many of the frustrations inherent in "beta testing"), it enabled us to focus on the development and * 
integration of the knowledge-based component and also led to mutually beneficial relationships 
with the vendors whose products we utilized. 

System Components 

Because of the workflow-enabling capabilities of the latest release of the operating system, the 
availability of workflow-related products, and the relative popularity of the platform at Ames, we 
chose to implement the first version of the PEPR system on the Apple Macintosh. The PEPR 
system is comprised of several commercial software tools: 

Expert System Shell: As described above, we selected CLIPS with which to implement the 
knowledge-based portion of the PEPR system. 

Electronic Forms Package: The Informedm package from Shana Corporation is used to 
produce high-fidelity electronic forms. This package is comprised of the Informed Designerm 
program, which permits a forms designer to define the layout and functionality of the form, and the 
Informed Managerm program which permits filling out the form by end-users. 

Scripting Language: The various software modules that comprise the PEPR system share 
data by means of AppleScriptm, a scripting language for the Macintosh that allows the programs to 
interact with each other and share data, even across an AppleTallc network. 

DBMS: The PEPR system currently utilizes 4th Dimensionm, a "scriptable" data base 
management system from ACIUS, to hold data associated with the routing and tracking of forms 
as they are sent from user to user. 

These applications all operate together under version 7.1.1 of the Macintosh operating system (also 
known as "System 7 Pro") which provides system-level capability for electronic mail, digital 
signatures (for 'user authentication and data integrity assurance) as components of Apple's 
PowerTalkm software product. The PowerSharem system, which provides the store-and-forward 
mail service and user catalog support, operates on a centrally-located server system and supports 
all client users. 



Each user of the system is required only to be running System 7 Pro and the Informed Manager 
application. CLIPS and 4th Dimension reside on a central "server" and can be accessed remotely 
by all users. 

Knowledge Base Structure 

The PEPR knowledge base is comprised of four main modules; the Validator, the Classifier, the 
Approval-path Generator, and the Organization "data base". In addition, each form that the PEPR 
system supports has its own set of form-specific validation rules that are loaded dynamically as the 
f o m  is processed. 

Validator: The PEPR validator is responsible for ensuring that the various fields on the 
form are correct and complete. The validation rules are represented as CLIPS classes, and are 
organized hierarchically with their own "applyy' methods. Actual form-specifc validation rules are 
represented as instances of these classes and are loaded dynamically from disk files when a 
particular form type is to be validated. If a validation rule is violated, the validator creates an 
instance of an error object with a suitable error message that eventually gets returned to a field on 
the form. 

Classifier: If the validator finds no errors on the form, the Classifier is invoked. The 
Classifier uses the contents of specific fields on the form to construct hypotheses about potential 
categories to which the -c form might belong. The Classifier loads a group of form-specific 
"clues" that are comprised of a text string, a field name, a classification category, and a certainty 
factor. These clues are evaluated in turn; if the clue's text string is found within the associated 
field, then membership in the given category is established with the given certainty factor. These 
certainty factors can be positive or negative, and are combined using the CF calculus defined by 
Shortliffe et a1 for the MYCIN system. If the resulting certainty associated with a certain 
hypothesis exceeds a threshold value, then the form is said to belong to that category. 

Approval-path Generator: Once all of the applicable categories for a given PR have 
been determined, the approval-path generator looks at specific fields on the form and determines 
the originating organization. It then loads the form-specific routing rules, and determines both the 
"management" approvals that are required (which depend upon the originating organization and, 
often, the total dollar amount associated with the PR) and the "special" approvals that are required 
(which are dependent on the classification categories to which the PR was assigned). These 
approvals are represented as the various organizations that must approve the form. The approval- 
path generator then looks up the "primary contact" for each of these organizations in the 
"organization data base" and inserts that person's name in the forms electronic "routing slip". 
(Note that by updating the "primary contact" for an organization periodically allows forms to be 
routed to designated alternates should the real primary person be on vacation or otherwise 
unavailable). 

Organization Data Base: This portion of the knowledge base contains CLIPS 
objects that correspond to the various managerial groups and hierarchies at Arnes, and is used to 
help generate approval paths, as described above. (Of course, this module is currently a very good 
candidate for re-implementation in some other format as an external data base, and the PEPR team 
is currently negotiating with other Ames groups who maintain similar data bases for other 
purposes). 

Development History 

The PEPR system has been under development on a part-time basis for the past three years. Since 
then, the system has undergone various changes, both in its architecture and functionality. In Early 
1991, work began in investigating the problems associated with the procurement process and the 
potential applicability of software tools to help address those problems. The team identified a 
useful sub-class of purchase requests on which to begin work, namely those PRs associated with 



the funding of research at external universities (this sub-class had the advantages of being 
reasonably straightforward with respect to the routing required and of providing an immediate 
near-tern benefit -- the A1 Research Branch submits a substantial number of these PRs and would 
therefore be in a good position to evaluate the utility of such a system). In June of 1991, the forms 
required to support university grants were distributed to a small number of users. These forms 
included only the evaluation forms (not the PR), and did not utilize the knowledge-based 
component. Early in 1992, the electronic forms were re-implemented in Informed, which proved to 
be a superior forms package to the that which had been used previously. These fonns (except the 
PR) were given to numerous users around the Center, and were well-received. The knowledge- 
based validator, although working, was not deployed to end-users because we lacked a mechanism 
to efficiently share data between the form and the knowledge system. By the fall of 1992, we had 
initial versions of both the validator and the approval-path generator working, but they were only 
usable as a demonstration because they were not well-enough integrated with the foms system to 
be given to end-users. This "integration" was by means of a popular keyboard-macro package that 
allowed the two applications to clumsily share data via a disk file. However, this approach had 
two serious drawbacks. First, the keyboard macro package merely simulated the manipulation of 
the user interface, and so the user would have been subjected to a very distracting flurry of dialog 
boxes and simulated mouse-clicks. Second (and more importantly), that integration required that 
both the forms package and the knowledge base be running on the user's machine. That was an 
unacceptable limitation and would have undoubtedly "turned off' more users that it would have 
helped. We were, however, able to give the end-users electronic versions of the grant evaluation 
forms, which were somewhat helpful to the more experienced users even without the knowledge- 
based components. In early 1993, the team signed on as pre-release users of Applescript, and 
modified the CLIPS shell to be "scriptable". This not only enabled a more "seamless" and less 
distracting integration between the forms package and the knowledge base, but more importantly it 
enabled us to set up a single copy of the knowledge system on a central server and permit users to 
access it over the network. By the summer of 1993, we became pre-release users of the new 
operating system software (part of the Apple Open Collaboration Environment) that provided 
support for digital signatures, system-level electronic mail, and other workflow-facilitating 
features. With these new features came the ability not only to give real users access to the 
knowledge base validation and routing capability, but also the data integrity assurance that would 
be required to support electronic submission of the sensitive data contained on financial 
instruments such as a purchase request form. 

In December 1993, the PEPR system "went live", and is now in daily use within the Aerospace 
Systems Directorate at Ames for the electronic submission, approval, and routing of purchase 
requests and university grant evaluation forms. The system is even being used to electronically 
send grant award forms to selected universities, something that had previously been done manually 
by the University Affairs Office at Ames. 

Future Plans 

The PEPR team is currently supporting the University Grant pilot testers, and is in the process of 
making small refinements to the system as the users report problems and suggest improvements. 
In the coming months, we expect to be able to expand both the user base of the system and the 
scope of the purchase requests to which it is applied. We are also investigating other related 
workflow applications, both within Ames and at other government laboratories and within 
industry. 

The PEPR team is also working very closely with researchers at Washington State University who 
are applying machine learning techniques to electronic forms. Our hope is that as our data base of 
"correct and complete" forms grows, we will be able to utilize these techniques to automatically 
generate new validation and routing rules. 



References 

:1] Compton, M., Wolfe, S. 1993 Intelligent Validation and Routing of Electronic F o r m  in a 
3istributed Worl$ow Environment.. Proceedings of the Tenth IEEE Conference on A1 and 
4ppIications. 
'21 Compton, M., Wolfe, S. 1994 CLIPS, Apple Events, and AppleScript: Integrating CLIPS 
;vith Commercial Sofrware. Proceedings of the Third Conference on CLIPS. 
'31 Compton, M., Stewart, It, Tabibzadeh, S., Hastings, B. 1992 Intelligent purchase request 
$stem, NASA Ames Research Center Tech. Rep. FIA-92-07 
:4] Shortlie, E. H. 1976 Computer-based medical consultationr: MYCIN. New York: American 
ZIsevier. 
'51 Hermens, L.A., Schlirnmer, J.C. 1993 Applying machine learning to electronic fonnjilling. 
keedings  of the SPIE Applications of AI: Machine Vision and Robotics 



?- 4 A KNOWLEDGE-BASED SYSTEM FOR CONTROLLING AUTOMOBILE TRAFFIC 

Alexander Maravas* and Robert F. Stengel+* 

Department of Mechanical and Aerospace Engineering 
Princeton University 
Princeton, NJ 08544 

Abstract 
Transportation network capacity varia- 

tions arising from accidents, roadway mainte- 
nance activity, and special events, as well as 
fluctuations in commuters' travel demands 
complicate traffic management. Artificial intei- 
ligence concepts and expert systems can be use- 
ful in framing policies for incident detection, 
congestion anticipation, and optimal traffic 
management. This paper examines the applica- 
bility of intelligent route guidance and control as 
decision aids for traffic management. Basic re- 
quirements for managing traffic are reviewed, 
concepts for studying traffic flow are intro- 

- , - duced, and mathematical models for modeling 
traffic flow are examined. Measures for quanti- 
fying transportation network performance levels 
are chosen, and surveillance and control strate- 
gies are evaluated. It can be concluded that au- 
tomated decision support holds great promise 

. for aiding the efficient flow of automobile traffic 
- -- over limited-access roadways, bridges, and 

tunnels. 

Introduction 
U.S. automobile traffic has been growing 

by 4 percent a year to its current level of 2 tril- 
lion vehicle-miles, and it is expected to double to 
4 trillion vehicle-miles by 2020. According to 
Federal Highway Administration, if no signifi- 
cant improvements are made in the highway 
system, congestion delays will increase by as 
much as 400 percent 111. According to IVHS 
America, the annual cost of c.ongestion to the 
U.S. in lost productivity is estimated at over 
$100 billion 121. In many areas there is very lit- 
tle that can be done to increase road capacity. 
There is not adequate right-of-way next to exist- 
ing roads, and in many cases the cost of a new 
highway is prohibitively expensive. It is there 

*Student 
"*Professor 
Presented at the Third Conference on CLIPS, 

- - Houston, Sept. 1994 

fore imperative that new ways be sought to 
make better use of existing infrastructure. 

In 1987 the Federal Highway 
Administration formed Mobility 2000, a joint ef- 
fort between the government, industry and 
academia. This led to the formation of an orga- 
nization called the Intelligent Vehicle Highway 
Society of America, or TVHS America [I]. IVHS 
America aims at improving the level of trans- 
portation services that are currently available to 
the public by integrated systems of surveillance, 
communications, computer and control process 
technologies [4]. 

IVHS technologies have been grouped 
into four generic elements: Advanced 
Transportation Management Systems (ATMS), 
Advanced Driver Information Systems (ADIS), 
Automated Vehicle Control (AVC), and 
Commercial Operations 131. This paper concen- 
trates on ATMS, which involves the manage- 
ment of a transportation network. 
Implementation of such systems requires devel- 
opment of real-time traffic monitoring and data 
collection techniques. More precisely, an 
Advanced Traffic Management System should 
have the following characteristics, as specified 
by the proceedings of the Mobility 2000 confer- 
ence 13,41: 
w real time operation 
w responsiveness to changes in traffic flow 
w surveillance and detection 

integrated systems 
collaboration of jurisdictions involved 
effective incident control strategies 
Effective incident control strategies will 

be a crucial part of this project. Contrary to 
widespread belief, not all congestion is due to 
rush hour traffic; 56% of costs incurred by con- 
gestion are due to non-recurrent events or inci- 
dents. Incidents include vehicle accidents, unfa- 
vorable weather conditions, highway mainte- 
nance, and road reconstruction 131. It is essential 
to determine the nature and scope of an incident 
as quickly as possible. The control center should 
be informed about the incident either through 



the police or other jurisdictional agencies. A 
more advanced approach would be visual vali- 
dation of incidents with the use of camera 
surveillance systems. Effective detection and 
verification of incidents will lead to lower dis- 
ruption of traffic flow [3]. Drivers could be 
routed to alternate paths to avoid unnecessary 
tie-ups and frustration due to long delays [3]. 

Traffic control centers would need real- 
time information about the network condition. 
An intelligent vehicle/highway system would 
have to monitor traffic throughout the day. For 
the near future, sensors will include inductive 
loops buried just below the surface and ultra- 
sonic sensors mounted overhead. These devices 
will be able to count the number of vehicles 
passing a certain point and wiIl gauge their 
speed. Another alternative would be for image- 
processing computers to extract traffic data 
from television pictures from cameras on the 
arterial network. Recent tests have provided 
very promising results about the accuracy of in- 
ductive loop detectors [I]. Ultimately, im- 
provement of network surveillance technologies 
and link-time estimation techniques will be cru- 
cial in the implementation of an intelligent ve- 
hicle/highway system 151. In the future, vehi- 
cles equipped with navigational systems could 
communicate directly with the control center, 
giving information about the drivers' locations, 
speeds, and destinations. 

Advanced Traffic Management Systems 
will have to be integrated with Advanced 
Traveler Information Systems (ATIS) to ensure 
higher efficiency of the control system. Drivers 
will be informed about congestion, roadway 
conditions, and alternate routes through audio- 
visual means in the vehicle and through variable 
message signs at strategic points of the network. 
Information provided might include incident lo- 
cations, fog or snow on the road, restrictive 
speeds, and lane conditions. Two-way real-time 
communication between vehicles and the control 
center could be facilitated by radio commu- 
nications, cellular systems, and satellite commu- 
nica tions [4]. 

Among the benefits of IVHS will be re- 
duction in traffic congestion, reduction in the 
number of accidents , improved transit service, 
less fuel wasted, and fewer emissions from 
idling engines [4]. Fully integrated ATMS/ATIS 
combinations could reduce congestion in urban 
areas from 25 to 40%. Unchecked traffic conges- 
tion is the largest contributor to poor air quality 

and wasted fuel consumption. IVHS will not 
solve all problems in transportation, but it will 
increase the level of services rendered. 

Fundamentals of Traffic Flow Modeling 
Evaluating traffic performance requires 

a thorough understanding of traffic flow charac- 
teristics and analytical techniques. The most 
important macroscopic flow characteristics are 
flow rate, density, and speed [A. The flow rate 
9 past a point is expressed as [81: 

where q : flow rate past a point 
n : number of vehicles passing point in 

time interval T 
T :  time interval of observation 

It is important to recognize that q is 
sensitive to the selected time interval T during 
which the measurement began and ended. 
Whatever the value of T, the most common units 
for q are vehicles/hr. 

Density (or concentration) can be ex- 
pressed as [7,8]: 

where k : density 
n : number of vehicles on road 
L : length of road 

Density is an instantaneous traffic measurement, 
and its units are usually vehicles/lane-mile. In 
most cases, one mile and a single line of vehicles 
are considered. Traffic densities vary from zero 
to values that represent vehicles that are com- 
pletely stopped. The upper limit of k is called 
the jam density and is on the order of 185 to 250 
vehicles per lane-mile, depending on the length 
of the vehicles and the average distance between 
vehicles. 

Speed is another primary flow variable. 
Space-mean speed is the average speed of the 
vehicles obtained by dividing the total distance 
traveled by total time required, and it is ex- 
pressed as [8]: 



where u : space-mean speed 
Si : distance traveled by vehicle i on 

roadway 
mi : time spent by vehicle i on roadway 

A very important relationship exists 
between the three fundamental stream flow 
variables that have been defined above. This 
flow.relationship is[7]: 

A linear speed-density relation has been as- 
sumed to simplify the presentation. The relation 
can be expressed as [71: 

This relationship indicates that as speed ap- 
proaches free flow, speed density and flow ap- 
proach zero. An increase in density causes a de- 
crease in speed until flow is maximized at q m  

and speed and density reach their optimum val- 
ues ( uo, h). Further increases in density cause 
density to reach its maximum value (k,)  and 
speed and flow to approach zero [71. A rela- 
tionship between flow and density can be ob- 
tained by substituting equation (5) into (4). This 
yields 171: 

Under low-density conditions, flow approaches 
zero and speed approaches free-flow speed ( u. ). 
At optimum density, flow is maximized, and 
speed attains an optimum value. Maximizing 
the objective function (6) by setting its derivative 
equal to zero ( dq / dk = 0 1, we find that opti- 
mum density occurs at half the jam density 
( k o  = k, / 2). This is true only for a linear speed 
density relationship, but the same reasoning can 
be applied to other non-linear relationships [7]. 

The optimum speed is half the free flow 
speed ( u o = u ~ / ~ ) .  Because q r n z k o ~ o ,  it is 
evident that q m  = u/ki / 4. Once again, it is im- 

portant to remember that these values are only 
true for a linear speed-density relation [il. The 
flowdensity relationship often serves as a basis 
for highway control. Density is used as the con- 
trol parameter, and flow is the objective func- 
tion. At low densities, demand is being satis- 
fied and level of service is satisfactory, but as 
density increases control is needed to keep den- 
sities below or near the optimum density value 
[7]. Other models have been proposed by 
transportation planners. This is an optimization 
problem with traffic flow as the objective func- 
tion and traffic density as the control parameter. 
The technology to measure traffic density exists, 
and its knowledge can help us estimate traffic 
flow, average speed, travel time, and level of 
service. 

Assumptions of Surveillance and Control 
Procedures 

Every morning there is a large pool of 
people west of the Hudson river who want to 
cross it. Every member of this group of "intelli- 
gent agents" is part of a continuously changing 
environment, holding an individual behavioral 
response to the evolution of the dynamic system. 

It has been observed that commuters 
usually choose the route with the shortest travel 
time. Consequently, drivers tend to divide 
themselves between two routes in such a way 
that the travel times between them are identical. 
Finally, an equilibrium point is reached in which 
commuters do not have much choice between 
two routes since the user cost (travel time) of 
traversing the two links has stabilized [81. 

In many cases, an incident can disturb 
the user equilibrium. In such instances trans- 
portation planners can help establish a new 
equilibrium where no route is undemtilized. By 
dispensing traffic advisories to the right people, 
one can be assured that misallocation of trans- 
portation resources can be avoided. Computer 
simulations have proven that the use of route 
guidance systems can reduce travel time to all 
drivers by up to 20% [9]. Route guidance was 
found to be more helpful as the duration of in- 
cidents increased, in which cases more drivers 
had to be routed to achieve an optima1 traffic as- 
signment 191. A corresponding surveillance 
procedure is illustrated in Figure 1. 

In selecting between alternate routes, a 
user-optimal system chooses a route that mini- 
mizes the travel time of the individual driver. 



However, a system-optimal system selects a set 
of routes that minimizes the overall travel time 
of all drivers [I l l .  Routing decisions should not 
be made independently because every decision 
effects the whole network: if many drivers 
choose a certain route at the same time, that 
route may become congested and non-optimal 
[lo]. 

Figure 1 Proposed Surveillance Procedure. 

A Declarative Framework for Traffic Control 
Traffic control can be partitioned into 

reflexive, procedural, and declarative functions. 
Reflexive functions operate at the subconscious 
level of human thought; they are instantaneous 
reactions to external stimuli. Procedural actions 
also operate on a subconscious level, but they 
are more complex than reflexive functions, fol- 
lowing a set of basic rules and actions that rep- 
resent skilled behavior. Declarative functions 
operate at the conscious or preconscious level of 
thought. On the conscious level they require at- 
tention; on the preconscious level they require 
intuition and conceptual formulations. They in- 
volve decision making and provide models for 
system monitoring, goal planning and sys- 
tem/scenario identification [12,131. 

A traffic management system requires 
goal planning and system monitoring. At every 
instant, all alternatives must be considered and 
decisions must be made through a deductive 
process [131. A declarative model makes such 
decisions in a process that is similar to human 
reasoning [61. All our knowledge, beliefs, and 
experience of traffic modeling are placed in a 
declarative framework to provide a system that 
reasons in an intelligent manner. 

This paper focuses on declarative traffic 
controls. Rules that reflect the controllers 
knowledge of the response of the control system 
are established. Programming is implemented 
as a CLIPS expert system that supports various 
programming paradigms. CLIPS was chosen 
because it can be easily integrated with C pro- 
grams. The rule-based programming paradigm 
is useful in modeling traffic incidents. In proce- 
dural programming, the order in which all the 
commands are executed is pre-specified. In real- 
ity, traffic incidents are often unpredictable. By 
establishing the appropriate heuristics and rules, 
the system becomes "intelligent." When it is 
faced with a certain problem, it uses pattern 
matching that is appropriate to the existing 
facts. 

Computer systems often are organized 
in a modular structure to increase computational 
efficiency. Time can be saved by looking at rules 
and facts that are relevant at that instant. 
Modular representation allows partitioning of 
the knowIedge base into easily manageable 
segments, thus making the system easily ex- 
pandable. CLIPS incorporation of modules is 
similar to the blackboard architecture of other 
systems. Knowledge sources are kept separate 
and independent, and different knowledge rep- 
resentation techniques can be used. 
Communication of all sources takes place 
through the blackboard 1151. 

Task definition is an important factor in 
the development and design of such rule-based 
systems. The ultimate goal is to develop an ex- 
pert system of expert systems, which is a hier- 
archical structure that reasons and communi- 
cates like a team of cooperating people might 
1131. 

A knowledge-based system called the 
Traffic Information Collator (TIC) has been de- 
veloped at the University of Sussex. The TIC re- 
ceives police reports on traffic incidents and au- 
tomatically generates appropriate warning mes- 
sages for motorists. The system operates in real- 
time and is entirely automatic. The TIC is com- 
prised of five processing modules each holding 
its own knowiedge base [16,171. 

Research in air traffic control has been 
conducted in a similar manner. Cengeloglu in- 
tegrated an Air Traffic Control Simulator 
(written in C) with a traffic control decision 
framework (implemented in CLIPS). The simu- 
lator creates a virtual reality of airspace and 
continuously updates the information 



(knowledge base) of the decision framework. 
Several scenarios containing unexpected condi- 
tions and events are created to test the prototype 
system under hypothetical operating conditions 
[IS]. 

A complete transportation model should 
consist of a traffic simulator and a traffic man- 
ager. This paper focuses on the decision process 
of managing and controlling traffic. 

Prediction algorithms could be em- 
ployed to predict the evolution of traffic. This 
additional knowledge could be used in the con- 
trol process. Smulders created a model to study 
the use of filtering on freeway traffic control 
[IS]. Once the actual values of the density and 
mean speed in all sections of the freeway are 
available, his model generates predictions for 
the evolution of traffic over short time periods 
(e.g., 10 minutes). A state vector contains all the 
information about the present state of the sys- 
tem. The estimation of a certain state from the 
measurement vector is done through the use of 
a Kalman filter 1181. 

The real-time operation of knowledge- 
based systems in actual or simulated environ- 
ments is attained through the use of a cyclic 
goal-directed process search, with time-sliced 
procedure steps. Prior to a search, the value of 
parameters is either known or unknown. After 
the search, the status of parameter values may 
be changed. Repetitive knowledge-base initial- 
ization sets the value of every parameter to its 
default value after each search cycle; all inforrna- 
tion that was attained in the previous search is 
deleted. Thus the controller "forgets" the infor- 
mation it acquired in a former search prior to 
solving a new problem. 

The CLIPS knowledge base can be ini- 
tialized by resetting the program. All the con- 
structs remain unchanged and do not have to be 
reloaded. This process allows the accommoda- 
tion of time-varying data in the system 1141. In 
this sense, real-time application implies some 
parallel execution features. Several domains of 
the research space must be searched concur- 
rently 1191. It is noteworthy that not all cyclic 
search processes of the system have to be syn- 
chronous. 

Using a Knowledge-Based System for Decision 
Aiding in Traffic Control 

The aim of this project is to design an 
expert system that evaluates traffic conditions 
and dispenses travel advisories to commuters 
and traffic control centers. A decision-support 
system has been written in the CLIPS program- 
ming environment to illustrate several traffic 
control procedures (Fig. 2). The program is 
geared toward illustrating a method of traffic 
control rather than solving a particular problem. 
Some traffic parameters have been approxi- 
mated and certain simplifying assumptions have 
been made to avoid unnecessary computational 
complexity. 

A small network was constructed for 
initial program development. The network con- 
sists of a section of the New Jersey Turnpike and 
the routes connecting Exits 14, 16, and 18 to the 
Holland Tunnel, Lincoln Tunnel, and George 
Washington Bridge. Node and link data for a11 
the roads in New Jersey and New York has been 
accumulated by the Civil Engineering 
Department at Princeton University. Future re- 
search could be geared toward appIying the 
declarative control procedures developed in this 
project to a network of a larger scale. 

Actual implementation of this system is 
based on it receiving real-time information 
about traffic conditions of a network using sen- 
sor measurements at different points on the 
network. The current program uses scenario 
files, with hypothetical traffic densities from all 
roads in the network. The program reads these 
values (as well as the pertinent time period of 
the day) and creates the appropriate data con- 
structs, which are asserted as facts. The system 
then matches these facts based on pre-specified 
heuristics. Once it has concluded a declarative 
search, it gives certain advisories and recom- 
mendations at the CLIPS command prompt. All 
advisories are made with the idea that they 
would be broadcast on changeable signs at sev- 
eral roadway locations; they could also be dis- 
played at traffic management centers or on the 
displays of suitably equipped vehicles. 
Alternative scenario files test the system under 
several hypothetical operating conditions. 



Sensor Traffic 
Density 
Measurements 

Template slots. 

RULES: Heuristics on dispensing 
advisories. 

Computers 

Figure 2 Schematic Representation of System 
Architecture. 

Implementation of the Traffic Management 
System 

The decision-support system, pro- 
grammed with CLIPS 6.01, supports several 
procedural functions, that are necessary for the 
computation of relevant information. Once the 
density is known, the average travel speed, flow 
rate, service rate, and level of service can be cal- 
culated from the appropriate models and equa- 
tions. 

Historical data of expected traffic de- 
mand for the Hudson river crossings have been 
stored in a function that returns the expected 
number of vehicles at a certain time period. The 
use of an appropriate filter would make this 
function redundant. It provides information 
about the probable evolution of traffic and is 
sufficient for the preliminary development of the 
system. It makes the system "forward looking" 
and capable of predicting congestion buildup. 
Historical data could be stored as facts; however, 
this clogs up the facts list, and the system is 
forced to look at irrelevant facts. 

After reading initial data from the sce- 
nario fiIe, the roadway densities are asserted as 
facts, and they are put onto the facts list. The 
initialization rules create the appropriate data 
constructs based on these basic facts and the ap- 

propriate procedural functions. Most of the 
program's knowledge is stored in templates, 
which are similar to structures in C. Thus every 
link of the network has it own template, con- 
taining information such as speed, density, 
flow, operational lanes, service rate, and acci- 
dent-status. Templates are convenient for stor- 
ing data and can be readily accessed and modi- 
fied by the user. After all the values of the slots 
of the templates have been calculated, the tem- 
plates are asserted as facts. Thereafter, deci- 
sions are made by pattern matching on the val- 
ues of the templates' slots. Data storage is com- 
pact so as not to overflow the CLIPS fact list. 

The system is readily adjustable to lane 
closures due to maintenance. For instance, if 
one of the lanes of the Lincoln Tunnel is closed 
due to maintenance, then when the knowledge 
base is initialized, it takes this fact into account. 
In the case of bad weather, such as a snowstorm, 
the values of the free-flow speed and the jam 
density should be reevaluated. Since these devi- 
ations from normal operating conditions are in- 
corporated into the system once i t  is initialized, 
all decisions made thereafter are adjusted ac- 
cordingly. System initialization at every time 
increment ensures that the link-node data is 
augmented to reflect current conditions. Thus 
the system is very flexible and can include all 
foreseeable traffic situations. 

Broadcasting travel advisories is a chal- 
lenging part of the program. For instance, the 
fact that there is an accident on the route from 
Exit 14 to the Holland Tunnel is useful for peo- 
ple approaching that exit, but not for people 
traveling away from it. Thus the system is 
faced with the decision of whether to make a 
broadcast and to whom it should be made. Due 
to the geometry of the network, the broadcast 
heuristics are different for every decision node. 
Even in such a small network, there are numer- 
ous broadcasting possibilities. 

Automated communication between 
commuters and the control center can be 
achieved by the appropriate use of advisory 
rules. The data templates also contain informa- 
tion such as the presence and severity of acci- 
dents on the links of the network. Every link's 
template has a slot that is called "accident sta- 
tus," which can be either TRUE or FALSE. The 
default value is FALSE, but once an accident oc- 
curs it is switched to TRUE. Thereafter, the sys- 
tem ensures that the appropriate people are in- 
formed of the incident. Templates also store the 



estimated time to restore the link to normal op- 
erating conditions and the degree of lane block- 
age at the accident site. 

While radio advisories provide com- 
muters with information about traffic delays and 
adverse traffic conditions, it is doubtful that 
they give them all the information they need at 
the right time. Since not all drivers are tuned to 
the same station and radio advisories may lack 
central coordination, the result of broadcasting 
may not be system-optimal. Changeable mes- 
sage signs ensure that the appropriate people 
get the right message at the right time. The sys- 
tem is more helpful under such circumstances, 
since it can help bring the network back to user 
equilibrium by ensuring that all links are prop- 
erly utilized. 

In general the factors that should be con- 
sidered in any routing decision are: a) traffic 
density and velocity profile of main and alter- 
nate route, b) length of main and alternate 
route, c) percentage of divertible traffic volume, 
and d) demands at on-ramps on both routes [20]. 
Once the density of the link is known, an aver- 
age speed can be computed using one of the 
traffic models described earlier in this paper. 
Dividing the length of the link by the average 
speed yields the current (experienced) travel 
time. 

Routing between two alternate routes 
can be achieved by the use of a tolerance-level 
measurement. The difference be tween experi- 
enced travel times (or flow) between two routes 
can be calculated. If it is higher than some pre- 
specified level, then commuters should be 
routed to the underutilized roadway. The use of 
individual travel times is user-optimal, whereas 
the use of traffic flow is system-optimal. 
Optimizing commuters travel time can probably 
be done better with the use of shortest-path al- 
gorithms, whereas equilibrating flows can be in- 
corporated in an expert system. 

Traffic flow is a measure of highway 
productivity. Ensuring maximum utilization is 
essentially an optimization problem, with flow 
as the objective function and density acting as 
the control parameter. The flow of a link is 
maximized at the optimal density (k,,). For a 
linear model, the optimal operating density is 
half the jam density ( k j ) .  The system has the 
expertise and knowledge to recognize how far 
the actual density measurements are from ideal 
conditions. If the traffic density of a road is less 

than optimal, then the road is under-utilized. If 
the density is higher then optimal, then it is 
over-utilized. An advanced intelligent highway 
system should be able to monitor and compare 
traffic flow in both directions of a link to see if 
the decision for a lane-direction change is 
warranted. The ultimate goal is to ensure that 
all routes are utilized properly. This section of 
the system is subject to a lot of development and 
improvement since the domain knowledge is 
uncertain. Currently there is no clear way to 
route traffic optimally. 

The system searches its historical data to 
see if traffic demand for a link is expected to rise 
or fall in the next time period. If travel demand 
is expected to fall and the road is being under- 
utilized, the system suggests that more vehicles 
be routed to that link. Diversion of traffic flow is 
an effective method of improving traffic perfor- 
mance and can be achieved by rerouting drivers 
with specific direction and destinations [ZOI. 
Advisories on the New Jersey Turnpike are dif- 
ferent for people traveling North than for those 
traveling South. 

The issue of how long a message should 
be broadcast is significant. Suppose that con- 
gestion can be avoided if 30% of drivers respond 
to the diversion sign. If only 15% of the drivers 
follow the diversion recommendation, conges- 
tion will not improve as expected. A feedback 
control system could take this into account by 
deciding to broadcast the diversion message for 
a longer time period until the desired utilization 
levels are reached. This approach compensates 
for all uncertainties in the percentage of divert- 
ible traffic flow [201. The critical design issue is 
assuring that the system reaches stability 
quickly. 

Knowledge base initialization at fre- 
quent time intervals, through the use of sensor 
measurements, makes this method of 
broadcasting a closed-loop feedback control 
process. Since the real-time implementation of 
this system would rely on cyclic search, a 
message would be sent every time the system 
decides that traffic should be diverted. 
Currently the program does not have real time 
measurements or simulated traffic demands, so 
it does not execute a cyclic search. It considers 
24 one-hour periods over the span of a day. Real 
time implementation would require that the 
CLIPS knowledge be reinitialized at every time 
increment with the state measurements. 



Conclusion 
This project has made a step towards 

emulating an automated decision process for an 
Advanced Transportation Management System. 
This non-conventional approach to transporta- 
tion modeling has examined the applicability of 
intelligent control techniques in management. 
Since a fully operational Intelligent Vehicle 
Highway System will require full integration of 
symbolic and numerical knowledge, declarative 
rules have been embedded with procedural 
code. A framework for modeling traffic inci- 
dents has been provided. The link information 
of the system is augmented on a real-time basis, 
and advisories are issued based on the current 
state of the system. 

Operation of this system requires that 
the traffic control center has knowledge of the 
traffic densities of all links in the transportation 
network. The technology for making such mea- 
surements exists and has been described earlier 
in this paper. Implementation of this system 
will require research into how programming 
software will be integrated with all the system 
sensors. 

Before fully implementing such a con- 
trol process, it is necessary to choose what de- 
gree of automation the system should have. The 
system should be allowed to run on its own, 
without human intervention, only when all pos- 
sible errors have been removed from it. 

It is difficult to foresee all the incidents 
that could happen. Even for such a small net- 
work there are many possibilities for issuing 
travel advisories. As the area that is monitored 
by sensors becomes larger, it is evident that hu- 
man operators cannot check everything that is 
going on. However, the heuristic rules and fre- 
quent knowledge-base initialization make the 
system adaptive to many situations. The size of 
the knowledge base and the number of advi- 
sories are limited only by the available computer 
memory. Initially the system can be tested in a 
small area. Thereafter, additional rules for 
broadcasting to other locations can be added in- 
crementally. Additional details of this research 
can be found in Ref. 21. 

Future Work 
Future work can be geared towards ex- 

panding the knowledge base by using the object- 
oriented programming paradigm offered by 
CLIPS. Node and link data of large networks 

could be stored compactly in an object-oriented 
format. Different classes of roads could be de- 
fined (e.g. arterial, expressway, intersection). 
Every link would then be an instance of these 
classes and it would inherit some of its proper- 
ties from them. 

The cyclic search must be implemented 
with the use of actual or simulated data, requir- 
ing the knowledge base to be reset (initialized) 
at frequent time intervals. It would be interest- 
ing to link CLIPS with a traffic simulator written 
in C. The simulator could generate traffic de- 
mands, and the CLIPS program could issue ap- 
propriate advisories. 

This system knowledge base is subject to 
refinement. Additional rules must be added so 
the system knows what to do in the absence of 
certain density measurements, which could * 
arise from malfunctioning sensors. Since not a11 
transportation engineers use the same traffic 
models, it would be desirable to allow the user 
to use different traffic models or to be able to 
create his own model with an equation parser. 
The traffic routing technique and its relevant 
objective function needs to be reevaluated. 
Backlogs due to ramp-metering also should be 
examined. The use of estimators and prediction 
algorithms would enhance system performance 
significantly. 

A learning control system would be able 
to learn from its daily experiences. Initially, it 
could be "trained" on a set of simulated data. 
Data archiving, on a daily basis, would increase 
the size of the system's knowledge base. 
Thereafter, it could evaluate how well it han- 
dled a previous accident. Hence, if it was in a 
similar situation it would use its acquired ex- 
pertise to issue the appropriate advisories. An 
intelligent system could detect traffic incidents 
from unusual sensor readings. Eventually the 
system would be able to distinguish between 
weekday and weekend traffic patterns. 
Considering the recent technological advances 
in intelligent control systems, the era of the fully 
automated highway might not be very far away. 

Acknowledgement 
This work was supported by the 

National Science Foundation, Grant No. ECS- 
9216450. 



References ' 
[I] Bernstein D., Ben Akiva M., Holtz A., 
Koutsopoulos H., and Sussman J., "The Case for 
Smart Highways," Technologv Review, July 
1992. 

[2] Anon., IVHS Strategic Plan Report to 
Congress, Department of Transportation, Dec. 
18, 1992. 

[3] Proceedings of a Workshop on Intelligent 
Vehicle/ Highway Systems, Mobilitv 2000, San 
Antonio Texas, Feb. 15-17, 1989. 

[4] Euler G.W., "Intelligent Vehicle/Highway 
Systems: Definitions and Applications," 
Journal, Nov. 1990. 

[51 Ervin, R.D., An American Observation of 
NHS in Tauan, Ann Arbor, Michigan, 1991. 

[6] Stratton D.A., Aircraft Guidance for Wind 
Shear Avoidance: Decision Making Under 
Uncertaintv, Ph.D. Dissertation, Princeton 
University, Princeton, 1992. 

[7 ]  May A.D., Traffic Flow Fundamentals, 
Prentice Hall, Englewood Cliffs, 1990. 

[8] Morlok E.K., Inh-oduction to Transportation 
Engineering and Planninrr, McGraw-Hill , New 
York, 1978. 

[9] Rakha H., Van Aerde M., Case E.R., Ugge 
A., "Evaluating the Benefits and Interactions of 
Route Guidance and Traffic Control Strategies 
using Simulationr', IEEE CH2789, June 1989. 

[lo] Solomon M., flew Apuroaches to the 
Visualization of Traffic Flows in Hifhwav 
Networks, Senior Thesis, Princeton University, 
Princeton, 1992. 

[I l l  Van Aerde M., Rakha H., "Development 
and Potential of System Optimized Route 
Guidance Strategies", IEEE CH2789, June, 
1989. 

[13] Stengel R.F., "Probability-Based Decision 
Making for Automated Highway Driving, to 
appear in IEEE Trans. Vehicular Technology (with 
A. Niehaus). 

[14] Handelman D.A., A Rule-Based Paradim 
for Intellirent Ada~t ive  Richt Control, Ph.D. 
Dissertation, Princeton University, Princeton, 
June 1989. 

[IS] Cengeloglu Y., A Framework for Dvnami~ 
Knowledge Exchange Amone Intelligent A~ents,  
Masters Thesis in Electrical and Computer 
Engineering, University of Central Florida, 
Orlando Florida, 1993. 

[I61 Evans R., Hartley A.F., "The Traffic 
Information Collator", E x ~ e r t  Svstems, Nov. 
1990, Vol. 7, No. 4. 

[I71 Allport D., "Understanding RTA's", 
b c e e d i n e s  of the 1988 Alvev Technical 
Conference, 1988. 

[I81 Smulders S.A., "Modeling and Filtering of 
Freeway Traffic Flow", Trans~ortation and 
Traffic Theory, Elsevier, New York, 1987. 

I191 Le Fort N., ~boukhaled,  D.Ramamonjisoa, 
"A Co-Pilot Architecture based on a multi-ex- 
pert system and a real-time environment", 1993 
IEEE International Conference on Svstems, Man 
and Cvbernetics, Vol. 5, France Oct. 17-20, 
1993. 

- 

[20] Cremer M., Fleischmann S., "Traffic 
Responsive Control of Freeway Networks by a 
State Feedback Approach", Transportation and 
Traffic Theorv, Elsevier, New York, 1987. 

[211 Maravas, A., A Knowledge-Based Svstem 
for Ovtimal Control of Traffic Row, Princeton 
University, Mechanical and Aerospace 
Engineering Department Senior Independent 
Work Report, Princeton, 1994. 

1121 Chao T., Design of an In te l l i~en t  
Vehicle/Hirrhwav - System Comuuter Simulation 
Model, Princeton University, Mechanical and 
Aerospace Engineering Department Senior 
Independent Work Final Report, Princeton, 1994. 



DEVELOPMENT OF AN EXPERT SYSTEM 
FOR POWER QUALITY ADVISEMENT 

USING CLIPS 6.0 

A. Chandrasekaran P.R.R. Sarma Ashok Sundaram 
Tennessee Technological University Custom Power Distribution Program 

Cookeville, TN 38501 Electric Power Research Institute 
Palo Alto, CA 94303 

ABSTRACT 

Proliferation of power electronic devices has 
brought in its wake both deterioration in and 
demand for quality power supply from the 
utilities. The power quality problems become 
apparent when the users' equipment or systems 
maloperate or fail. Since power quality concerns 
arise from a wide variety of sources and the 
problem fixes are better achieved from the 
expertise of field engineers, development of an 
expert system for power quality advisement 
seems to be a very attractive and cost-effective 
solution for utility applications. An expert 
system thus developed gives an understanding of 
the adverse effects of power quality related 
problems on the system and could help in 
finding remedial solutions. The paper reports 
the design of a power quality advisement expert 
system being developed using CLIPS 6.0. A 
brief outline of the power quality concerns is 
first presented. A description of the knowledge 
base is next given and details of actual 
implementation include screen outputs from the 
program. 

INTRODUCTION 

The introduction of nonlinear loads and their 
increasing usage, have led to a point where the 
system voltage and current are no longer 
sinusoidal for safe operation of the equipment at 
both industrial and customer levels. Before the 
advent of electronic and power electronic 
devices, the current distortions were due to 
saturation of the magnetic cores in the 
transformers and motors, arc furnaces and 
mercury arc rectifiers. Even though the overall 

effect on the system was there, it had no serious 
effect on the performance of comparatively more 
rugged and insensitive equipment. Today, 
sensitive electronic and microprocessor based 
equipment are commonly used and they are 
susceptible to variations and distortions of the 
sinusoidal wave. Distorted sinusoidal waveforms 
of voltage and current are produced due to the 
nonlinear characteristics of the electronic 
components which are used in the manufacture 
of any electronic related equipment. The power 
quality problems arising in the system basically 
are impulses, surges, sags, swells, interruptions, 
harmonics, flicker etc. These power quality 
problems can be a potential threat to the 
satisfactory operation of the equipment. Thus 
there is a need to alleviate or eliminate the 
effects of poor power quality. Engineers are 
applying their experience with the causes of 
power quality impairment to recommend 
solutions to correct the problems. 

Expert systems could be used for domain 
specific problems, such as power quality. The 
solutions to power quality may be many and it 
may not be possible to come to a single 
conclusion. Expert System approach can be 
useful to get a very successful approximate 
solution to problems which do not have an 
algorithmic solution and to ill-structured 
problems where reasoning may offer a better 
solution. The opinions of the experts may vary 
regarding a particular problem, but the level of 
expertise combined from several experts may 
exceed that of a single human expert, and this 
can be made use in an Expert System. The 
solutions given by an expert system are unbiased 
but the solutions from an expert may not always 
be the same. Databases can be accessed by an 



expert system and algorithmic conclusions can is dropout of sensitive customer equipment 
be obtained wherever possible. which usually require constant voltage. 

POWER QUALITY (PQ) IN 
POWER SYSTEMS 

The impulses arising in the system are usually 
due to lightning and they cause insulator 
flashover, transformer failures, arrestor failures 
and damage to other substation equipment. 
Lightning strokes can pass through the 
transformer neutrals and cause damage to the 
customer equipment also. This is especially 
when the lightning strikes close to the 
distribution transformers. Oscillatory transients 
can be classified into three groups as low 
frequency, medium frequency and high 
frequency transients. Their range is from below 
5 kHz to above 500 kHz. The main causes for 
these transients are capacitor switching, cable 
switching, back to back capacitor energization, 
travelling waves from lightning impulses and 
circuit switching transients. The impact of these 
transients are very high voltage levels on the 
secondary side of the transformers, especially 
due to capacitive coupling between primary and 
secondary windings, for medium frequency 
transients. Thus, these transients can also cause 
equipment failures and disruption of sensitive 
electronic equipment. 

Sags and Swells can be classified into three 
groups namely instantaneous, momentary and 
temporary. They may last from 0.5 cycle to 1 
minute. Sags may cause dropout of sensitive 
electronic equipment, dropout of relays, 
overheating of motors etc. Swells are usually 
due to single-line-to-ground faults occurring in 
the system. The extent of voltage rise varies 
with the type of grounding scheme adopted. An 
increase in the voltage of 73.2% is for 
ungrounded systems. The effect of swells could 
cause Metal Oxide Varistors to be forced into 
conduction. 

Over-vol tages and under-voltages last longer 
than 1 minute. They are caused by load 
switching, capacitor switching or due to bad 
system voltage regulation. The impact of these 

Harmonics are caused due to nonlinear 
characteristic of the loads of which converter 
circuits, arcing devices etc are some examples. 
Harmonics are multiples of fundamental 
frequency and are continuous in nature and 
distort the sinusoidal waveform. Interharmonics 
are caused by cycloconvertors and arc furnaces. 
The impact of harmonics can cause overheating 
of transformers and rotating machinery, 
maloperation of sensitive electronic equipment, 
maloperation of frequency sensitive equipment, 
metering errors, presence of neutral to ground 
voltage resulting in possible neutral overloading, 
capacitor failures or fuse blowing, telephone 
interference,increased power losses, etc. 

Noise is caused by the range of components less 
than 200 kHz. Improper grounding and 
operation of power electronic equipment are the 
main causes of noise production. The impact of 
noise is on telephone interference. Notching is 
due to commutation in three phase inverters and 
converters. The number of notches depend on 
the converter and invertor configuration. The 
converters and invertor circuits can be operated 
in a six pulse, twelve pulse, eighteen pulse or 
more configurations. Flicker is usually caused 
by presence of components less than 25 Hz. Arc 
furnaces and intennittent loads like welding 
machines are some examples. These low 
frequency components may cause problems with 
lighting. 

The various disturbances leading to power 
quality deterioration can stem from a wide 
variety of reasons that are often interdependant 
and quite complicated. A thorough analysis may 
be time consuming and inefficient. The solutions 
also depend upon experience of the system. 

EXPERT SYSTEM APPROACH TO PQ 

Expert systems came into existence as an 
outcome of the need for better problem solving 
methods where a closed form solution is 
unavailable. Since knowledge of power quality 



problems is obtained more through study and 
experience, development of an Expert System is 
a viable approach. 

An Expert system comprises of user interface, 
working memory, inference engine, agenda, and 
knowledge acquisition facility. The user 
interface is a mechanism by which the user and 
the expert system communicate. Working 
memory consists of a global database of facts 
used by the rules. An agenda is a list of rules 
with priority created by the inference engine, 
whose patterns are satisfied by facts or objects in 
the working memory. The knowledge acquisition 
facility is an automatic way for the user to enter 
knowledge in the system rather than by having 
the knowledge engineer explicitly code the 
knowledge. 

Rule-based, object-oriented and procedural 
programming paradigms are supported by CLIPS 
6.0. The basic components of CLIPS 6.0 are 
facts list, knowledge base and inference engine. 
The fact list contains the data on which 
inferences are derived, knowledge base contains 
all the rules and the inference engine controls 
the overall execution. Thus the knowledge base 
contains the knowledge and inference engine 
draws conclusions from the knowledge available. 
The user has to supply the expert system with 
facts and the expert system responds to the 
users' queries for expertise. 

Knowledge can be represented by rules, 
semantic networks,parse trees, object-attribute- 
value triples, frames, logic etc. Each have their 
own limitation and a suitable field of usage [I]. 
Trees and lattices are useful for classifying 
objects because of hierarchical nature. 

Decision trees can be used effectively in the 
development of power quality expert system due 
to hierarchical nature of power quality problems 
as usually one problem leads to several 
problems. A decision structure is both a 
knowledge representation scheme and a method 
of reasoning about it's knowledge. Larger sets of 
alternatives are examined first and then the 
decision process starts narrowing till the best 
solution is obtained. The decision trees should 

provide the solution to a problem from a 
predetermined set of possible answers. The 
decision trees derive a solution by reducing the 
set of possible outcomes and thus getting closer 
to the best possible answer. Since the problems 
pertaining to power quality have different effects 
the solutions and remedial actions may be 
approximated by successive pruning of the 
search space of the decision tree. 

A decision tree is composed of nodes and 
branches. The node at the top of the tree is 
called root node and there is no flow of 
information to the root node. The branches 
represent connection between the nodes. The 
other nodes, apart from the root node, represent 
locations in the tree and they can be answer 
nodes or decision nodes. An answer node may 
have flow of information toand from the other 
nodes and are referred as child nodes. The 
decision node is referred as leaf node and 
represents all possible solutions that can be 
derived from the tree. Thus the decision node 
terminates the program with solutions. 

Broadly classifying a system, the power quality 
problems are felt at the distribution system level 
or a customer level. Thus this can be taken as 
the root node. At the distribution level the 
problem may be with the equipment at the 
substation or with the equipment in the 
distribution lines. Similarly the problem at the 
customer level could be with an industrial 
customer, a commercial customer or a 
residential customer. Thus these can be referred 
to as the child nodes. The problems faced at 
each of these levels may be understood better 
with each successive answer node, and thus 
probable answers could be arrived at, at the 
decision nodes. This approach could be useful if 
any numeric or monitored data pertaining to the 
system is not available. Also a probable answer 
can be concluded, depending on the answers 
given by the user only by observable impacts on 
the equipment, say the equipment maloperating 
or equipment failing or fuse failing, motor 
getting overheated etc. The efficiency or the 
level of certainty of solutions given will depend 
on the information provided by the user 
regarding the problem. 



When monitoring equipment are connected at 
various points at the customer facility, data 
pertaining to the various disturbances due to 
surges, impulses, interruptions, variations in 
voltage, current etc can be collected or stored. 
Many such monitors are available and used by 
the utilities. PQ node program of Electric Power 
Research Institute (EPRI) uses a number of 
monitors for collecting disturbance data. The 
output from these analyzers can be used by the 
expert system for diagnosis. This approach 
could be very effective as the user may not be 
able to provide enough information from his 
knowledge. This will increase the efficiency of 
the expert system, as the user may give an 
incorrect answer or may not be able to answer 
some questions. The data files can be accessed 
into the expert systems, which is CLIPS 6.0, in 
our study and the data can be internally 
manipulated to come to a certain decision. If 
necessary, further information can be elicited 
from the user before arriving at a f w l  solution. 

Standard reports of the outputs with graphs of 
disturbances, possible solutions etc can be 
generated by the program by opening text files 
within the program. 

IMPLEMENTATION OF THE 
EXPERT SYSTEM 

Center with the specific purposes of providing 
high portability, low cost and easy integration 
with other systems has been selected. The latest 
version CLIPS 6.0 for Windows provides 
greater flexibility and incorporates object- 
oriented techniques. 

Figure 1 shows the configuration of the expert 
system blocks being analyzed for the power 
quality advisement. The rules are framed by the 
experts opinion and the number of rules can be 
increased and added to the program whenever 
possible. The monitored data from PQ nodes, 
user or both can supply the facts, which can be 
utilized to come to a probable solution. The 
inference engine and agenda fire the rules on the 
basis of priority. There is an explanation facility 
which gives reports and suggests the possible 
reasons for coming to a conclusion depending on 
the inputs given. 

INFERENCE 

INTERFACE 
RULES 

EXPLANATION 
FACILITY 

/ EXPERTS I 

EPRI is sponsoring a research project for the FIG 1 BIAXlC D I & M  OF EXPERT SYSTM 

development of software modules for addressing 
power quality problems in the utilities. The 
center for Electric Power of the Tennessee The following is the pattern in which the 
Technological University is co-sponsoring the questions are asked by the Expert System for the 
project. The major objectives of the project are responses of the user. Here a batch file is run 
the following : and CLIPS 6.0. response is given below. 

Design and test a prototype expert system for 
power quality advising. 
Develop dedicated, interactive analysis and 

design software for power electronic systems. 
* Develop a concept of neural network 

processor for the power system disturbance 
data. 

For developing the expert system, CLIPS 
software designed at NASA/Johnson Space 

CLIPS> (open "s.dat" s "w') 
TRUE 

CUPS > (open "r.datm r "w") 
TRUE 

CLIPS > (load "scptl .tip") 
.............................................................. 
********* 
TRUE 



CLIPS > (reset) Is the transformer getting overheated even 
under normal load conditions ? 

CLIPS > (run) I. Yes 
2. No 

* Expert System For Power Quality Advisement 8 

Developed By * 

Dr. A. Chandrasekaran and P.R.R. Sanna * 

; Center For Electric Power 

T m -  Technologiul University 8 

t Cookevlle, Te-. 

* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Where is the complaint from? 

1. Distribution-system 
2. Customer 

Where is the problem occumng ? 

1. Circuits 
2. sub-station 

Wha is the complaint ? 

1. Service-Intemption 
2. Device-Malopention 
3. Equipment-Failure 

Which of these has the problan ? 

1. Tramformer 
2. Circuit-Breaker 
3. Control-CircuiUy 

Is the sysum voltage normal ? 

1. Yes 
2. No 

Is the hum of the transformer excessive ? 

1. Yes 
2. No 

Is the transformer geuing overheated ? 

1. Yes 
2. No 

Is the transformer supplying power 10 

heavy lighting and power electronic loads ? 

1. Yes 
2. No 

Are there capacitor banks in the substation ? 

1. Yes 
2. No 

Is the ~bstation provided with harmonic 
filters to filter harmonics ? 

1. Yes 
2. No 

Probable cause: 

Place filters to prevent samntion 
and overheating of the mansformers 
when it supplies power to power 
electronic loads. 

CLIPS > (exit) 

The foilowing is the symptoms file "s.datW, 
which was storing the symptoms pertaining to 
the problem is given below. 

THIS EXF'ERT SYSTEM IS BEING 

* 8 

8 DEVELDPED BY 

8 

* Dr. A.CHANDRASEKARAN & P.R.R. SARMA 8 

~ 8 8 ~ ~ ~ ~ ~ 8 ~ ~ 8 * ~ 8 ~ ~ * ~ ~ 8 ~ ~ 8 ~ ~ ~ ~ * 8 8 8 * 8 8 8 8 8  

SUMMARY OF SYMPTOMS OBSERVED: 

** The wmplaint is from the distribution syslan. 

** The trouble is in the albstation. 



** Complaint is devicc maloperation. 

** The problem putains to the autsformer. 

** The hum of the transformer is excessive. 

** The trwformer is gming overheated. 

" The transformer is supplying power to lighting and 
power electronic loads. 

** The msformer is gating heated under normal load conditions. 

The following is the possible reasons file 
"r.datn, which was storing the possible reasons 
pertaining to the problem is given below. 

** 'Ihe transformer hum could be more due to loose core bolts. presence of 
harmonics etc. 

** Transformer may get overheated due to overloading, saturation. 
insignificant fa* in winding m. 

** Transformer un gU overheated under normal load conditions due to 
humonics, insignificant faults in transformer ac. 

** Harmonics may be in the system when the power is being supplied to 
lighting and power dccfronic loads. 

** Harmonics may be present if harmonics are not filtered out. 

The text files generated can be imported into 
Word perfect, Winword etc for making the final 
reports. At present, efforts are being made to 
integrate the data obtained from the PQ analyzer 
into the CLIPS program as a part of the EPRI 
project. The monitored data reports from the PQ 
analyzer can be used to arrive at conclusions 
about the power quality problems especially with 
regard to the origin of the disturbances from the 
users' queries. Also the reports could 
incorporate disturbance graphs obtained from the 
data specified in the input files of the monitored 
data. 

The concepts of the theories of uncertainty and 
Fuzzy Logic can be utilized using FuuyCLIPS 
in the development of the power quality expert 
system, especially in cases where the questions 
like " Is the hum of transformer excessive?" 
have to be answered. The possibilities for 
'excessive' may be more than normal, high, 
very high etc. FuzzyCLIPS may be used for 
answers of this sort and the efficiency of the 
solutions thus can be increased. 

CONCLUSION 

The development of the power quality expert 
system shows that expert system usage is 
definitely a viable alternative. Analysis of 
monitored data can be used to identify the 
sources causing power quality deterioration. 
Suitable conclusions can be drawn to recommend 
mitigating the power quality problem sources to 
the customers on one hand and the equipment 
manufactures on the other. An expert system 
approach can also be useful to educate customers 
on actions that can be taken to correct or prevent 
power quality problems. 

REFERENCES 

1. Giarratano Joseph and Riley Gary, "Expert 
Systems, Principles and Programming", 2nd 
edition, PWS Publishing Company, Boston, 
1993. 

2. Adapa Rambabu, "Expert System 
Applications in Power System Planning and 
Operations", IEEE Power Engineering 
Review, February 1994, pp. 12 to 14. 

3. Liebowitz Jay, DE salvo A. Daniel, 
"Structuring Expert Systems " , Yourdon 
Press, Prentice Hall Building, Engelwood 
Cliffs, N.J. 07632, 1989. 

4. "A Guide to Monitoring Power Distribution 
Quality", phase 1, Electric Power Research - 

Institute Project 3098-01, Report TR- 103208, 
Palo Alto, California, April 1994. 



CUPS '94 - Third Conference on CUPS 1- // 
QPA-CLIPS: a language and representation for process 

control 

Thomas G. FreundZ 

Abstract 

QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its 
constructs defke a dependency network of process actions driven by sensor information. 
The language consists of 3 basic constructs: TASK, SENSOR and FILTER. TASKS 
define the dependency network describing alternative state transitions for a process. 
SENSORS and FILTERS define sensor information sources used to activate state 
transitions within the network. deftemplate "s define these constructs and their run-time 
environment is an interpreter knowledge base, performing pattern matching on sensor 
information and so activating TASKS in the dependency network. The pattern matching 
technique is based on the repeatable occurrence of a sensor data pattern. QPA-CLIPS has 
been successfblly tested on a SPARCStation providing supervisory control to an Allen- 
Bradley PLC 5 controller driving molding equipment. 

1 .O Introduction - the need 

Process control is the science and, at times, art of applying and holding the right setpoint 
value and/or mixing the right amount of an ingredient at the right time. But, when is the 
time right ? And, if we know enough about the material or mixture, what is the right 
setpoint value and/or amount that has to be mixed ? 

Materials scientists and engineers have spent years of painstaking experimentation and 
analysis to characterize the behavior of metals, plastics, and composites. Along the same 
vein, manufacturing engineers and factory floor operators have developed many person- 
years worth of practical "know-how" about material behavior under a variety of 

- 

processing conditions. 

In addition, though there is always room for improvement, significant strides have been 
made in useful sensor technology for acquiring information on material behavior. As the 
types of materials used in everyday products increase in complexity, the demand increases 
for embedding a better understanding about material behavior directly into the control of 
their manufacturing processes. 

= Author's address - Pratt & Whimey, 400 Main Street, Mail Stop 1 18-38, East Hartford 
CT 06 108. This work was supported by a grant fiom the National Center for 
Manufacturing Sciences, Ann Arbor, MI 48108 and in cooperation with den-Bradley Co. 
(Milwaukee, WI) and Erie Press Systems (Erie, PA) 



QPA-CLIPS, the language and its run-time environment, is a means to directly tie our 
best understanding of material behavior to the control of material forming or curing 
processes. This is accomplished by intelligent mapping of sensor information on material 
behavior to changes in process parameter values. The changed parameter values, in turn, 
are used to directly drive process equipment . 

2.0 The problem 

Material forming processes transform a prescribed volume of material(s) into a desired net 
shape. In curing, material is processed in a way that changes material properties to a set 
of desired characteristics. In either case, the proper choice of tooling along with a 
properly defined process cycle, or "recipe", are crucial to the consistent production of 
quality parts. Variations in material behavior from an expected norm must be accounted 
for in both the initial conditions of the material and, particularly, the cycle or "recipe" 
driving the process equipment. 

2.1 Controlling a forming or curing process 
- -  - - - - -- - - 

Attaining a desired final form &d m s a l  characteristics -- --- in - forming o r - ~ i ~ ~ e s s e s  ----- 

requires effective control offorce and heat application. Control of force involv+ 
application of mechanical pressure to distort or redistribute a set volume of material 
within a constraining volume, defined by the tooling (i.e., dies) used in the process. 

In the case of forming processes, the material usually requires to be more pliable than its 
natural state at room temperature. Heat application then becomes an integral part of the 
pressure application. For curing processes, the application of heat itself, with some 
pressure being applied in certain cases, is at the core of the processes. In either case, heat 
control then, must be .synchronized with force control and the state of the material must 
be monitored in-process to determine the right point in the process cycle where heat 
andfor force application is needed. 

One must also take into account the physical limitations imposed by the machinery used 
for the process. Repeated extreme rates of heat or force application can lead to frequent 
machine breakdowns and, consequently, make the process economically undesirable. 

2.2 "Listening" to the material 

In-process monitoring is not the act of collecting streams of historical data for off-line 
analysis; though this is an important step in creating effective process control. When we 
collect information during a dialogue, we don't necessarily capture every single word and 
nuance. Rather, we normally record essential points and supporting information that 
capture the theme or goal of what is being exchanged. 



In a similar way, analyzing process data involves the ability, as in listening, to differentiate 
between steady or normal process behavior and patterns , or events, indicating the onset of 
a change in material state. 

As a simple example, Figure 1 shows a plot of sensor data over time during a curing 
process. Point A indicates the onset of the peak, point C, in the sensor data; while B 
indicates that we are past the region around C. If C is indicator of an optimum material 
condition for heat or force application, understanding data patterns in A andfor B can be 
used to trigger that application. 

1 

Figure 1 

So that, creating a process "recipe" becomes a matter of identifling those key patterns or 
events, understanding their relationship to heat or force application, and finally linking 
that application to the occurrence of these events. 

3.0 A solution : QPA-CLIPS 

QPA-CLIPS, or Qualitative Process Automation CLIPS, is a Ianguage with a supporting 
run-time environment used to describe and run process "recipes" as a set of causal 
linkages between a specific sensor event(s) and application of a heat or force. The concept 
of qualitative process analysis was developed as a technique for intelligent control based 
on interpretation of sensor information [I]. QPA-CLIPS is an implementation of this 
concept in the CLIPS environment. 

3.1 Architecture 

The execution model of QPA-CLIPS is basically a traversal across a dependency network. 
-The nodes in that network describe one or more sensor events, their related application 
actions, and one or more pre-conditions which must be satisfied in order to activate or 
traverse the node. 

Traversal through a node consists of 3 phases: 

(1) satisfaction of pre-conditions, 



(2) detection of sensor events, 

(3) performing required heat or force application. 

Transition to the next phase cannot occur until successfi~l completion of the current 
phase. Once phase 3 is completed, one of the remaining nodes in the network is chosen 
for traversal using the same 3-phase method. If all nodes have been traversed, traversal is 
halted. Pre-conditions are either traversal through another node, unconditional (i.e. 
START node), or the successfbl diagnostic checks on a sensor. The flow chart in Figure 2 
s u d e s  the traversal process. 

I 
I 

r cvcnt Apply 
Heat or Force 

Figure 2 

Node traversal is implemented as an interpreter knowledge base exploiting the underlyiq 
CLIPS search methods. 

There are currently 3 constructs making up the QPA-CLIPS language: TASK, SENSOR, 
and FILTER. They are defined within the interpreter knowledge base through a set of 
defte~pIate 's 121 . The contents of a node are described by the TASK. SENSOR defines 
sources of raw sensor data; while FILTER applies mathematical functions to SENSOR 
data. A collection of TASKs describing a dependency network, along with the required 
SENSORS and FILTERS, is referred to as aprocess model and is consistent with the 
GRAFCET standard based on Petri Nets [3]. 

3.1.1 TASK 

TASKs encapsulate the pre-conditions for node traversal, sensor event descriptions, and 
the prescribed heat or force application. In BNF notation form, this translates to: 

( TASK 
(name <name>) 
(start-when <pre-condition>) 



(look-for <sensor-event>) 
(then-do <application>) ) 

<name> is a unique label used whenever another TASK refers to this TASK throughout 
the process model. <pre-condition> is a string type that can be either: 

<task-name> COMPLETE, 
or 

<sensor> OK 
or 

START 

In the first form, the pre-condition becomes the completion or traversal through another 
node, or TASK. The second form checks completion of a diagnostic check for a sensor. J 

Sensor diagnostics are not cwently an explicit construct in QPA-CLIPS. Rather, they are 
embedded in the sensor UO bctions integrated with CLIPS. The third form of <pre- 
condition> is makes that TASK the initial traversal point in the dependency network. 

<sensor-event> is a string type that can have muitiple occurrences of the form: 

<source> is the label for a SENSOR or FILTER providing data identifying this event. 
<direction> can be RISES, DROPS, or HOLDS. The remaining items are numbers 
describing respectively a threshold value that must be reached, the tolerance band around 
the nominal value, and the number of times that SENSOR or FILTER data must meet this 
threshold-and-tolerance- band occurrence without interruption. 

So for example, the sensor event clause of 

flow RISES 50 0.01 3 

translates to data fiom SENSOR flow must rise at least 0.01 above 50 cclmin. for 3 
consecutive times in order to be identified as this sensor event. 

<application> is of the form : 

where <parameter> is a label for a process parameter and <amount> is a new value or 
setting for that parameter. An example is : 



or set pressure to 5 tons. Application of heat or force then is basically a change in the 
value of a memory location which, in turn, drives the process. 

3.1.2 SENSOR 

SENSORS are one of 2 possible sources of data for a sensor event defined within a TASK 
and defined as follows: 

( SENSOR 
(name <name>) 
(max-allowed <value>) 
(rnin-allowed <vaiue>) ) 

<name> is a unique label used whenever a TASK or FILTER refer to this SENSOR 
throughout the process model. mmc+ZZuwed and min-dluwed provide the allowable range 
of values for the sensor data. As an example, a flowmeter within a process model can be 
defined as: 

( SENSOR 
(name flowmeter) 
(max-allowed 100) 
(min allowed 5) ) 

The rate of the flowmeter can range between 5 and 100 cc/min. Currently , retrieval of 
sensor data is accomplished through user-defined functions embedded within CLIPS. 
Association between a SENSOR and these hnctions is perfbrrned through the QPA- 
CLIPS interpreter. The implementation of SENSOR assumes use of one sensor for the 
process. This suffices for current applications of QPA-CLIPS. However, for multiple 
sensor input, the SENSOR construct will be modified to include a reference to a specific 
hction, referred to a the SENSOR source, or: 

( SENSOR 
(name <name>) 
(max-allowed <value>) 
(min-allowed <value>) 
(source <hction>) ) 

3.1.3 FILTER 

FILTERS are the other source of data for a sensor event and is defined as: 

( FILTER 
(name <name>) 

. (max-allowed <value>) 



(min-allowed <value) 
(change <sensor>) 
(using <formula>) ) 

<name> is a unique label used by a TASK whenever referring to this FILTER in order to 
identify a sensor event. Both rnax-alIowed and min-aliowed are used in the same manner 
as in SENSOR. But, here, they refer to the calculated value created by this FILTER. 
<sensor> is the label refening to the SENSOR supplying raw sensor data to this FILTER. 
<formula> is a string describing the combination of mathematical fiinctions used to 
translate the raw sensor data. so, for example, a formula string of "SLOPE LOG" is the 
equivalent of: 

d(log S)/dt, where S is the raw sensor data. 

Future enhancements to the FILTER construct will be the ability for expressing formulas 
in more natural algebraic terms. So, "SLOPE LOG", for example, wiU take on a form like 
dLOG 1 dt . 

3.2 Building a process model 

The first step in developing a process model is a through description of how the process 
runs, what information can be extracted about the process during a cycle run, what 
sensors are available to extract this information, and how is the sensor information related 
to application of heat andlor force to the material. These relationships can be investigated 
through techniques such as Design of Experiments or Taguchi methods. Once they are 
verified, a dependency network can be build from these relationships in order to specifL 
alternative paths for running the process cycle; depending on the sensor data patterns 
being extracted. This network can then be encoded as a process model. 

As a simple example, a molding process for a panel in a cabinet enclosure is now switching 
to a new material, requiring that pressure be triggered based on material temperature. For 
this material, a constant heat setting must be applied throughout the cycle. A sensor, called 
a thermowidget, was selected to retrieve in-process material temperature. Its operating 
range is 500°F and 70°F. So, its SENSOR definition is: 

( SENSOR 
(name thermowidget) 
(max-allowed 500) 
(rnin-allowed 70)) 

Two pressure applications are required by the process: an initial setting to distribute 
material throughout the mold and a final setting to complete the part. The initial setting 
must be applied when the material temperature reaches a value of 100°F and the final 
setting when the rate of change of the material temperature is 0. We first need a FILTER 
to define the slope of the temperature or: 



( FILTER 
(name thennoslope) 
(max-allowed 10) 
(rnin-allowed - 10) 
(change thermowidget) 
(using "SLOPE") ) 

We achieve the pressure application through two TASKs: 

( TASK 
(name fist-setting) 
(start-when "START') 
(look-for "thermowidget RISES 100 0.1 5") 
(then-do "PR 2") ) 

( TASK 
(name final-setting) 
(start-when "first-setting COMPLETE) 
(look-for "thermoslope DROPS 0 0.01 3") 
(then-do 'TR 5") ) 

Another TASK can be added to complete the cycle and release the finished part. 

4.0 Run-time environment 

A process model is executed through a QPA-CLIPS interpreter: a CLIPS knowledge base 
consisting of the defremplaie's defining the TASK, SENSOR and FILTER constructs, a 
rule set which carries out the interpretation cycle, and de&nctionYs supporting the rule 
set. Underlying this knowledge base are the user-defined hct ions integrating the process 
model with sensors and process equipment. 

4.1 The Interpreter 

At the core of the interpreter are a set of rules h c h  cycle through the cu~ently available 
TASKs in a process model and implement the 3-phase method for node traversal 
mentioned above. When the QPA-CLIPS environment along with the appropriate process 
model is invoked, control transfers to the TASK containing the pre-condition of START. 
From that p in t  on, the node traversal method e s o v e r .  The QPA-CLIPS interpreter 
knowledge base can be ported to any CLIPS-compatible platform. 

4.2 Sensor and controller integration 



Sensors are integrated through user-defined functions embedded within CLIPS. They 
currently interact with sensor hardware through serial (RS-232-C) communications. These 
hctions are the only platform dependent components within QPA-CLIPS. 

Integration of heat and force application is done through a memory mapping paradigm 
between sensor events and parameter settings where TASK actions, as defined in the 

Process 
Model 

Figure 3 

then-do clause, are mapped to the memory location of another control system (i.e. a PLC) 
which, in turn, directly drives process machine~y (see Figure 3). These new settings then 
trigger signals to heaters or motors driving the equipment. 

5.0 Current status 

A version of QPA-CLIPS has been demonstrated on a composite molding application. The 
system consists of a SPARCStation 2 running QPA-CLIPS linked to an Men-Bradley 
PLC5140 driving a molding press. It has successllly created a number of production 
quality parts for a jet engine. 

6.0 Future enhancements 

Though the current version of QPA-CLIPS has been demonstrated to work successfblly, 
several opportunities for enhancements have been mentioned in the description of its 
constructs. In addition, other opportunities for enhancements exist in the development and 
run-time environments of QPA-CLIPS . 

6.1 A GUI for QPA-CUPS 

Currently, a process model is created through the use of a text editor, such as ernacs or 
textedit. The completed model is tested on a simulated run-time environment. Taking a 
cue from the visual development tools such as those found under Microsoft Widows, a 
graphical development environment for a process model will greatly ease the development 
of a process model. The syntax of the QPA-CLIPS constructs are simple enough for 



process engineers to work with. Nevertheless, as process models grow in complexity, a 
need will arise for easy-to-use model navigation and debugging tools seamlessly connected 
to the simulated run-time environment. 

6.2 Automating process model creation 

Experience with developing process models has shown that the bulk of the time is actuaily 
spent in experimentation; trying to establish the relationships between sensor data and 
heavforce application points. What is needed to streamline this aspect of the model 
creation process is the partial or complete automation of the experimentation phase 
leading to the automatic creation of a process model; since a new material system will 
require a new process model. The work on DAT-GC by Thompson et al[4] offer a good 
start in that direction. 

6.3 Exploiting fuzzy linguistics 

In the definition of the look-for c h s e  of a TASK construct, one needs a rather accurate 
description of not only the goal or threshold value to be reached, but also a tolerance band 
around that value as well as a repeatab'ility count on the number of times in a row that the 
event must appear. There are cases where a less exacting orfizzy [5] description will 
suffice. So, using our example model from 3.2 above, the look-for clause for the final 
pressure application can then be: 

(look-for "thermoslope dropping IMMEDIATELY to ZERO") 

IMMEDIATELY is a fuzzy term similar to the repeatability count. ZERO, on the other 
hand, describes a fUzzy term associated with a range of precise values for a SENSOR or 
FILTEk which can be described with a new QPA-CLIPS construct such as: 

( BEHAVIOR 
(name <name>) 
(for <source>) 
(range <value-list>) ) 

where <name> is the fuzzy term, <source> is the label for the SENSOR or FILTER, and 
<value-list> contains the values defining the membership hnction [5] for this 
BEHAVIOR. 

6.4 Exploiting parallelism 

It goes without saying that node traversd within a process model is inherently a method 
that can easily converted to parallel processing. Having a parallel version of CLIPS 
operating in an affordable parallel processing platform will enable QPA-CLIPS to easily 
operate in a process control scenario requiring multiple sensors. 



7.0 Conclusions 

QPA-CLIPS, an extension of CLIPS for process control is a proven tool for use by 
process engineers in developing control models for forming or curing processes. Its simple 
syntax and integration into CLIPS provides a powerfbl, yet straightforward, way to 
describe and apply control of a process driven by sensor events, or distinct patterns in 
sensor data. Several enhancements have been suggested and currently strong interest exist 
in the automatic generation of process models and fuzzifying the description of sensor 
events. 

References 

[I]  Park, Jack, Toward the development of a &time expert system, 1986 Rochester 
FORTH Conference Proceedings, Rochester NY, June 1986, pp. 23-3 3 

[2] CLIPS Reference Manual, Vol. I, Basic Programming Guide, CLIPS Version 5.1, 
Sept. 1991 

[3] David, Rene and Hassane Alfa, Petri nets for modeling of dynamic systems - a 
survey, Aufomatica, Vol. 30, No. 2, pp. 175-202, 1994 

[4] Levinson, Richard, Peter Robinson, and David E. Thompson, Integrated 
perception, planning and control for autonomous soil analysis, Proc. CAIA-93 

[5] Terano, Toshiro, Kiyoji Asai, and Michio Sugeno, Fuzzy Systems Theory and its 
applications, Academic Press, 1992 





Session 2B: Fuzzy Logic, Neural Networks, and Program Understanding 

Session Chair: Bob Shelton 

< 7 

f%&W4M CAGE R4NK NO'T T?thlED 





Fuzzy Expert Systems Using CLIPS 

Thach C. Le 
The Aerospace Corporation 

Los Angeles, California 

Abstract 

This paper describes a CLIPS-based fuzzy expert system development 
environment called FCLIPS and illustrates its application to the simulated 
cart-pole balancing problem. FCLIPS is a straightforward extension of 
CLIPS without any alteration to the CLIPS internal structures. It makes use 
of the object-oriented and module features in CLIPS version 6.0 for the 
implementation of fuzzy logic concepts. Systems of varying degrees of 
mixed Boolean and fuzzy rules can be implemented in FCLIPS. Design and 
implementation issues of FCLIPS will also be discussed. 

I. Introduction 

Production systems, better known as data-driven rule-based expert systems, attempt to 
encode human problem-solving knowledge. The architecture of production systems 
originated from research in cognitive psycholog which observed that human behavior 
tends to be modularized and reactive in nature [If Consequently, the production system 
architecture was designed to allow for modularized and independent pieces of knowledge to 
be encoded in the form of if-then rules or production rules. One of the first 
implementations of a production system language is OPS5 (Official Production Systems) 
which is based on LISP. The Software Technologies Group of NASA at Houston, Texas 
later reimplemented a similar language called CLIPS (C-Language Integrated Production 
System) in C mainly to increase speed and portability. Because of CLIPS' flexibility and 
source code availability, it quickly became popular among expert system developers. Since 
its introduction several years ago, its has been frequently enhanced to embrace the latest 
advances in software technology. 

Fuzzy systems, based on fuzzy set theory, also seek to encode human problem-solving 
knowledge. One of the most important contribution of fuzzy logic to the field of heuristic 
systems is the introduction of the concept of linguistic variables [S ] .  Linguistic variables 
are linguistic terms that are used to represent qualities of objects or concepts as in natural 
languages. In fuzzy systems, linguistic variables are represented by a mathematical 
function from which a value can be derived to indicate the similarity of an object to the ideal 
form. The implication is rather significant: instead of modeling the real world a sa  discrete 
world, linguistic variables allow a whole spectrum of continuous possibility to be modeled. 
For example, instead of speaking about a world of discrete terms such as circles, squares, 
and triangles, one can use linguistic variables to describe a larger set of the objects in terms ' 

of the degree to which an object is similar to circles, squares or triangles. In addition to 
linguistic variables, there is a set of operations in a fuzzy system. In the last few years, 
fuzzy systems have proven their effectiveness in solving difficult problems, particularIy in 
the area of control [ 5 ] .  Several commercial hardware and software tools have been 
intrsduced recently to build fuzzy systems. 



The similar and complementary nature of fuzzy systems and expert systems have naturally 
suggested the idea of fuzzy expert systems in which the traditional Boolean production 
system architecture is extended to include the concepts of fuzzy systems. By combining 
the proven techniques of production systems with the fuzzy systems' representation and 
manipulation power, we believe the resulting system can effectively address even more 
challenging AI problems. Since the CLIPS source code is available at almost no cost, there 
have been attempts to extend CLIPS to a fuzzy expert system development environment. 
The most notable examples are the FuzzyCLIPS from the Knowledge Systems Laboratory 
of the National Research Council of Canada [6] ,  and, also using the same name, the 
FuzzyCLIPS by Togai Infralogics Inc. [7]. In this paper, we will focus on our own 
implementation. The similarities and differences of these CLIPS-based systems will be 
discussed at a later time. An important quality of FCLIPS is the simplicity of its design, 
while still maintaining the ability to support a wide range of fuzzy expert systems. 

In the following sections, we will describe the architecture of a typicaI Boolean production 
system exemplified by CLIPS, the architecture of a fuzzy system, the design and 
implementation issues of FCLIPS, the FCLIPS application to the cart-pole balancing 
problem, and future FCLIPS extensions. 

11. Production Systems 

Production systems are based on the principles of modularity and contextual dependent 
reaction in human behavior. A typical production system has three distinct modules, a 
production memory for containing production rules, a working memory for facts, and an 
inference engine for execution [l].  The production memory contains rules which have the 
form of: 

if <antecedent> then <consequent> 

An example of a CLIPS rule is as follows: 

(defrule My-House 
(the house number is 123) 
(the street name is Pennsylvania) 

=> 
(printout t "It is my house")) 

Antecedent, also called the rule's left hand side (LHS), contains Boolean predicates that 
state the conditions for the actions to take place as specified in the consequent, or the right 
hand side (RHS). A rule becomes a candidate for execution if its antecedent is satisfied by 
facts in the working memory. 

The working memory contains facts which describe the current state of a situation or a 
problem. The set of facts in the working memory is often changed as new data arrives or 
as the result of a rule being executed at each inference cycle. 

The inference engine decides which rule is to be executed given the current set of facts in 
the working memory. It first performs matching between rules and existing facts. In 
CLIPS this matching is implemented using Rete net 121, known as the best pattern 
matching algorithm. After matching, there may be more than one matched rule. The set of 
matched rules is called the conflict set. Only one rule from the conflict set will be selected 
to be executed via the process called conflict resolution. Once a rule is selected, its RHS is 



executed which often affects the working memory by adding, modifying or deleting facts 
from the working memory. As the result of the working memory being changed, a new 
conflict set is produced. The cycle goes on until the conflict set is empty or a halt 
instruction is encountered. 

The current version of CLIPS provides several powerful features to the basic architecture 
of production systems. It has a built-in object-oriented system which greatly enhances its 
representation capability. Instead of using attribute-value predicates as in OPS5 to model 
problems, one can now use classes and objects, which are more natural and expressive. 

Another important feature of CLIPS is modularity [8]. Rules that share some commonality 
can be grouped into a module. Modules allow the implementation of context-switching. At 
any time, only one module can be active and only its rules participate in the matching and 
selection process. The concept of modularity allows more efficient organization of the 
production memory and improves the scalability of a production system in terms of its 
scope and speed [3]. 

In general, production systems are quite effective in providing heuristic solutions to 
problems. They have been used in many real-world problems [ 5 ] .  But while object- 
orientation greatly improved the representation capability of production systems, the rule 
predicates are still constrained to onIy Boolean statements which are not aIways natural to 
model real-world problems. This is an area where fuzzy systems offer an attractive 
alternative. 

111. Fuzzy Systems 

Fuzzy systems are based on fuzzy set theory [4]. They are similar to Boolean production 
systems in their use of if-then rules. However, they are different in two major aspects. 
First, the LHS and RHS predicates of a fuzzy rule are fuzzy statements, not Boolean 
statements. Secondly, fuzzy rules whose RHS have linguistic variables describing the 
same subject, are all executed and collectively contribute to the final conclusion. In a 

. Boolean production system, rules compete to be solely executed. Example 1 shows fuzzy 
expert system rules: 

Rule - 1: if Temperature is Hot 
Pressure is High 

then 
set Change to Large 

Rule- 2: if Temperature is Cold 
Pressure is Medium . 

then 
set Change to Small 

Example 1: Fuzzy rules for a fuzzy system 

The terms "Hot", "Cold", "High", "Medium", "Large" and "Small" are linguistic 
variables. A linguistic variable describes tiie quality of a concept or an object in term of 
degree of truth. The degree of truth is defined by a membership function that maps the 
,domain of a concept into a degree of truth between 0 and 1. Figure 1 shows examples of 
membership functions of Temperature linguistic variables. 



, - ,+- 

1 
Cold Hot 1 .LOW Medium High Small 

0.6 0.8 0.5 

0.3 
0 0 0 

70 Temperature 20 Pressure 11 Change 

Figure 1 : Membership functions for Temperature, Pressure and Change 

Given a temperature value of 70, and a pressure value of 20, the statement "Temperature is 
Hot" in Rule 1 is evaluated to a truth value of .6. Similarly, "Temperature is Cold" is 
evaluated to .3, "Pressure is High" to .5, and "Pressure is Medium" to .8. 

The typical method of evaluating a rule is by taking the minimum of the truth values of the 
LHS of the rule and applying an alpha-cut [S]  to its RHS. The evaluations of Rule 1 and 
Rule 2 are shown in Figure 2. The results from both rules are combined using the 
maximum envelop operation and then defuzzified to give the final answer. There are 
several methods for defuzzification such as the centroid or the mean-of-max methods [5] .  
Figure 2 shows the defuzzification of the variable Change using the centroid method. 

Rule 1 

0 Large 
Change 

centroid Change 
Rule 2 .value 

0 
Change 

Figure 2: MIN-MAX operation and defuzzification using centroid method 

As new values of Temperature and Pressure become available, the evaluation cycle repeats 
and a new value for Change is generated. 

Fuzzy system technology has been applied successfully to many difficult control problems. 
It offers a straightfqpvard way to encode human experience of solving real control 
problems into machine automation. The features of linguistic variables and rule 
contribution from fuzzy systems have proven to be very effective in modeling and solving 
many problems for which the continuity of variables involved is critical. 



There have been several commercial tools developed to facilitate the implementation of 
fuzzy systems. However, they often allow only rules of common consequent and 
therefore, small in number. This small and monolithic characteristic of current Tuzzy 
system implementations prevents them from addressing problems that require deep 
reasoning such as those in the areas of diagnosis, planning, or design. 

Combining the best features of fuzzy systems and Boolean production systems will create 
a general system that can address more effectively a greater range of problem domains. 
Such systems are called fuzzy expert systems. In the following sections we will describe 
our fuzzy system extensions to CLIPS, including design and implementation issues. 

IV. Implementation of Fuzzy Expert Systems in CLIPS 

Our goal is to simply extend CLIPS to allow linguistic variables to be used in rules and to 
provide the necessary fuzzy operations to support them. The addition of support for 
linguistic variables in CLIPS is straightforward and does not pose any conflict with the 
original philosophy of production systems. However, the conflicting approaches of rule 
competition in Boolean production systems and rule cooperation in fuzzy systems needs to 
be resolved in a way that does not violate the original philosophies of either technique. Our 
approach to the CLIPS extensions is to preserve the integrity of CLIPS as much as possible 
and to only introduce new constructs when necessary. 

Linguistic VariabIe and Operations 

A linguistic variable is defined by a membership function. We implement a membership 
function as a CLIPS class called MFunc. A membership function can then be defined as an 
object instance of the class'MFunc. Its value is specified as a piece-wise linear function 
which is a sequence of (x,y) coordinate pairs in the form (xl y l  x2 y2 .... xn yn). For 
example, the Hot function is specified as follows: 

(make-instance Hot of MFunc (Func 0 0 10 1 50 0)) 

Once the linguistic variable is defined, a value, for example, 8, can be tested against the 
membership function to give the corresponding degree of truth, or truth value, using the 
function "deg". 

(deg 8 Hot) 

The above statement will return a truth value of .8. Another very useful function is the 
Boolean function "is" which checks out if a value is within the domain of a membership 
function. It returns true if the value is within the domain and false otherwise. For 
examples, 

(is 8 Hot) returns true, and (is -100 Hot) returns false. 

In addition to the class MFunc, a fuzzy variable is represented by the class FVar. For 
example, "Change", an object instance of the class FVar, is first defined as follows: 

(make-instance Change of War) 



A fuzzy variable can have a value of nil or of a piece-wise linear function. This value can 
be combined in the MIN-MAX fashion with another linear piece-wise function to yield a 
new value. 

Using the function "is" in the LHS, the fuzzy ruIe Rule - 1 in section I11 can be rewritten in 
the CLIPS defrule construct as follows: 

(defrule Rule-1 
(Temperature ?x&:(is ?x Hot)) 
(Pressure ?y&:(is ?y High)) 

=> 
(bind ?m (fmin ?x Hot ?y High)) 
(set Change Large ?m)) 

Since the LHS only contains Boolean predicates, it fits into the CLIPS defrule construct. 
Truth values of Temperature and Pressure are not evaluated until the rule is executed. This 
is designed to avoid unnecessary evaluations during the rule matching stage. If the rule is * 
chosen for execution, the MIN-MAX operation is performed as specified in the RHS. 

The function "fmin" returns the minimum value of the truth values in the LHS. The 
function "set" then uses this value to perform an alpha-cut on the membership function 
Large, which is then combined with the current value of the fuzzy variable Change using 
the maximum envelop operation. 

With a few new classes and functions, a fuzzy rule can now be written in CLIPS format. 
The next section discusses issues related to the interaction of multiple fuzzy rules. 

Fuzzy Processing 

When multiple fuzzy rules exist in the production memory, a fuzzy cycle has to be 
implemented so that the contributing results to fuzzy variables from each rule can be 
integrated into a single value. We achieve this goal in FCLIPS by having a fuzzy inference 
rule of lower priority or salience value which is executed at the end of each fuzzy cycle. 
The set of fuzzy rules in section I11 can be rewritten as follows: 

(defmodule Fuzzy-Module 

(defrule Rule-1 
(Temperature ?x&:(is ?x Hot)) 
(Pressure ?y&:(is ?y High)) 

=> 
(bind ?m (fmin ?x Hot ?y High)) 
(set Change Large ?m)) 

(defrule Rule 2 
(~emperature ?x&:(is ?x Cold)) 
(Pressure ?y&:(is ?y Medium)) 

=> 
(bind ?m (frnin ?x Cold ?y Medium)) 
(set Change Small ?m)) 

(defrule Fuzzy-Engine 
(declare (salience -10)) 

86 



?fl c- (Temperature ?x) 
?f2 c- (Pressure ?y) 

=> 
(retract ?fl ?f2) 
(<check stopping condition> ?x ?y) 
(cdefuzzify, apply and reset> Change) 
(<get new values for Temperature & Pressure>)) 

1 

Example 2: A CLIPS-based fuzzy module 

During a fuzzy cycle, the fuzzy variable Change accumulates the results from rules 
executed. At the end of the cycle, the Fuzzy Engine rule is executed. Change is typically 
defuzzified and the result is asserted into ?he working memory or sent to an external 
environment. 

To avoid potential interference from other rules in the production memory, this set of rules 
can be conveniently grouped into a CLIPS module. With a few extra f u u y  related classes 
and functions, CLIPS is now capable of supporting traditional fuzzy systems as described 
in section 111. There are no changes necessary to the conflict resolution or rule matching 
modules of CLIPS. Yet, a new kind of mixed systems is also now possible. In these 
systems, not only can the LHS of a rule have any number of mixed Boolean or fuzzy 
predicates, but the RHS can also. This is a major improvement from traditional fuzzy 
systems whose rules' RHS have to be about the same subject. 

Of course, due to the differences in the nature of production systems and f u u y  systems, 
there are several issues that need to be addressed for systems that allow mixed rules: (1) 
how to prioritize mixed rules in conflict resolution, (2) how to group fuzzy rules of 
different RHS' into fuzzy modules, (3) how to differentiate fuzzy cycles and Boolean 
cycles, and (4) how to propagate fuzzy conclusions. To illustrate these issues more 
clearly, we will use the examples of the following rules. The assumed truth values of 
antecedents are given on the right. 

truth values 

rule 1: if (A>10) 
(B is Small) 

then 
(set C to Large) 
(set D to Medium) 

rule 2: 

rule 3: 

if ' (A is Large) 
@ is Small) 

then 
(set C to Medium) 
(set E to Small) 

if (A>25) 
(X > 25) 

then 
(set E to Large) 

Example 3: Mixed rules with different truth values 



For the first issue, based on the truth values alone, how should these rules be prioritized? 
We argue that they all should have the same priority despite the fact that the truth values for 
some fuzzy predicates are less than others. The fuzzy statement "B is Small" with truth -i . 
value of .3 is no less significant than "A is Large" with truth value .7, because truth values 
in fuzzy logic are not the same as uncertainty values which have been used as a criteria for 
conflict resolution in some systems. "B is Small" with truth value .3 is a description with 
complete certainty of how small B is, which is indicated by the truth value of .3. Besides, 
in traditional fuzzy systems, a small truth value of a fuzzy predicate in a rule does not affect 
the rule's conclusion validity, but only the actual value of the conclusion. Consequently as 
long as a fuzzy predicate has a truth value of greater than 0 in FCLIPS, it is considered 
equivalent to a Boolean statement of value true. This interpretation is particularly 
significant in that it does not require extra processing for mixed rules during the rule 
matching stage. 

The second issue points to the fact that traditional fuzzy systems only allow rules that 
address the same subject on their RHS. In the example above, there is no obvious way to 
group these three rules into fuzzy modules since their RHS' are not exactly about the same 
subjects. Rule 1's RHS is about C and D, rule 2 C and E, and rule 3 E. It turns out that 
we don't have to group them, as the following discussion will show. 

The third issue concerns the interpretation of the significance of a fuzzy rule, a Boolean rule 
and a mixed rule. This interpretation is important for determining how conflict resolution 
should be changed. There are two interpretations for the significance of fuzzy rules and 
fuzzy modules versus a Boolean rule. In the first interpretation, a fuzzy module is 
considered equivalent to a Boolean rule in a Boolean production system, since all the rules 
in a fuzzy module can be thought of as being executed in  parallel and contributing to a 
single conclusion. This interpretation is valid and in common use [7]. It can already be 
implemented in FCLIPS by using the existing defmodule construct to group fuzzy rules of 
the same module, as shown in Example 2. 

In the second interpretation, all three kinds of rules are equivalent and compete for 
execution on the same grounds. This interpretation is intuitive and less restrictive, but it 
poses a question about when a fuzzy cycle starts and stops, i. e. when is a fuzzy variable 
defuzzified? In FCLIPS, this question of fuzzy cycle is resolved by introducing rules of 
higher salience value specifying defuzzifying conditions for each fuzzy variable mentioned 
in the rules' RHS. An example of a defuuifying rule for the fuzzy variable C in Example 3 
is as follows: 

Rule DefuzzifyingC: 
if (declare (salience 10)) 

(Timestamp > 10 ) 
(C not equal nil) 

then 
(<defuzzifying, apply and reset> C) 

There are similar defuzzification rules for D and E. The second issue concerning how to 
group rules into fuzzy modules is no longer an issue, because there is no fuzzy module, 
only defuuifying conditions for fuzzy variables in a rule consequent. Both interpretations 
are implementable under FCLIPS. The first is more traditional and of common use. The 
second is more general and interesting. 

And finally, the fourth issue concerns the multiple-step reasoning where concIusions 
reached remain in fuzzy form to match the rules in the following cycles. By avoiding 



defuzzification in intermediate reasoning steps, less information will be lost. Given the 
following two rules, 

Rule 1: if (A is Small) 
then (B is Large) 

Rule 2: if (B is Small) 
then (C is Medium) 

assume that Rule 1 is executed and generates a fuzzy value X for "B is large". The truth 
value for "B is Small" in rule 2 will then be calculated as [15]: 

truth value = 1 - MeanSquareError (X, Small) 

This operation is not yet (but will be soon) implemented in FCLIPS. Currently, B has to 
be defuzzified after rule 1 execution before being matched into rule 2 antecedent. 

In summary, FCLIPS is an extension to CLIPS to provide a fuzzy expert system 
development environment. Despite its simplicity, it is capable of supporting a wide range 
of fuzzy expert systems. An FCLIPS implementation has been fully prototyped and 
successfully tested in CLIPS code. It is currently being ported to C. 'In addition, a 
ToolTalk interprocess communication facility was added to FCLIPS to communicate with 
external processes. In the next section, an example using FCLIPS is described. 

V. Example: The Cart-Pole Balancing Problem 

The Cart-Pole Balancing problem, also called the Inverted-Pendulum problem, is a popular 
test case for fuzzy systems. In this section, we describe the structure and key components 
of a FCLIPS program that solves this problem. The problem is stated as follows: 

A cart is moveable along 1 dimension with a pole on top as shown inFigure 3. Its state 
variables, which include the pole angle, the pole angular velocity, the current position and 
velocity of the cart, are known. Calculate the appropriate force to apply to the cart to keep 
the pole balanced. 

Angular Velocity 

Force 

n - 
u w  

b Velocity 

Position 

Figure 3: Cart-Pole Balancing problem 



First, a function called "model" that simulates the dynamics of the cart-pole system is 
defined. It takes the applied force and the current state variables as arguments and generates 
a new set of state variables. 

(deffunction model (?force ?polePosition ?polevelocity 
?cartPosition ?cartVelocity) ...) 

Six membership functions for the pole angle or pole position, A-NegMed, A-NegSmall, 
A - Zero, A-PosSmall, A-PosMed, and A - VerySmall, are defined: 

(make-instance A-NegMed of MFunc (Func -50 0 -20 1 -15 1 -10 0)) 
(make-instance A-NegSmali of MFunc (Func -20 0 -10 1 0 0)) 
... (more make-instance's) 

And similarly, for Angular Velocity: Av-NegSmall, Av-Zero, Av-PosSmall, and 
Av-VerySmall; for Distance: D-Neg, D-Zero, D-Pos, D-VerySmall; for Velocity: V-Neg, 
V Zero, V-Pos, D-VerySmall; and for Force: F-NegMed, F-NegSmall, 
FINegVerySmall, F-Zero, F-PosVerySmall, F-PosSmall, and F-PosMed. 

The initial configuration of the cart-pole system is defined in the startup rule. The values 
can be changed for testing purposes. 

(defrule startup 
=> 

(assert (PolePosition 5)) 
(assert (PoleVelocity 0)) 
(assert (Position 0)) 
(assert (Velocity 0))) 

There are 9 rules devised to balance the pole position: 

(defrule Rule1 
(PolePosition ?x&:(is ?x A-PosMed)) 
(Polevelocity ?y&:(is ?y Av-Zero)) 

=> 
(bind ?m (fmin ?x A-PosMed ?y Av-Zero)) 
(set Force F-PosMed ?m)) 

(defrub Rule2 
(PolePosition ?x&:(is ?x A-PosSmall)) 
(PoleVelocity ?y&:(is ?y Av-PosSmall)) 

=> 
(bind ?m (fmin ?x A-PosSmall ?y Av - PosSmall)) 
(set Force F-PosSmall ?m)) 

... ( more defrules' ) 

And one deffuuification rule: 

(defrule engine 
(declare (salience -10)) 
?fl  c- (PolePosition ?x) 
?f2 <- (PoleVelocity ?y) 
?f3 c- (Position ?z) 



?f4 <- (Velocity ?w) 
=> 

(retract ?fl ?f2 ?f3 ?f4) 
(bind ?torq (cen~aid (send [Force] get-Val))) 
(bind ?vals (model ?torq ?X ?y ?x ?w)) 
(assert (PolePosition (nth$ 1 ?vals))) 
(assert (Polevelocity (nth$ 2 ?vals))) 
(assert (Position (nth$ 3 ?vals))) 
(assert (Velocity (nth$4 ?vals)))) 

; delete old facts 
; defuzzification 
; new values 
; create new facts 

The function "centroid" performs defuzzification using the centroid method 151. The new 
values can be sent to graphs, files or simulation. In our testing, the results were sent via 
ToolTalk to a separate graphic simulation process for displaying the cart-pole system 
behavior. After some tuning of the membership functions, the system was able to balance 
the pole. 

Conclusions 

FCLIPS is a simple and straight-forward implementation of a fuzzy expert system 
development environment based on CLIPS. The CLIPS object-oriented and modularity 
features were exploited to implement fuzzy logic concepts into CLIPS. Despite the 
simplicity of FCLIPS, it can be used to develop systems containing a wide range of mixed 
Boolean and fuzzy rules. With FCLIPS, fuzzy expert system solutions can be introduced 
to problems which typically require deep reasoning such as those in the areas of diagnosis, 
planning, or design. 

Bibliography 

[I] Brownston, L., Farrell, R., Kant, E., and Martin, N., Programming Expert Systems in 
OPS5, Addison Wesley Publishing Company, 1985. 

[2] Forgy, C., "Rete: A Fast Algorithm for the Many PatternIMany Object Pattern Match 
Problem," Artificial Intelligence, voi. 19, 1982, p. 17-37. 

[3] Le, T., Homeier, P., "Portable Inference Engine: An Extended CLIPS for Real-time 
Production Systems", Space Operations Automation and Robotics (SOAR '88), Dayton 
OH, July 20-23, 1988, Proceeding p. 187-192. 

[4] Graham, I. and Jones, P., Expert Systems - Knowledge, Uncertainty and Decision, 
Chapman and Hall, 1988. 

[5] Bezdek, J.C., Ruspini, E., Zadeh, L.A., et al, Fuzzy Logic Inference Systems, Short 
Course Notes, Intelligent Inference Systems Corp., 1993. 

[6]  FuzzyCLIPS Version 6.02 User's Guide, Knowledge Systems Laboratory, Institute 
for Information Technology, National Research Council of Canada. May 1994. 

[7] Teichrow, S. J., Horstkotte, R. E., Fuzzy-CLIPS, The C Language Integrated 
Production System with Fuzzy Logic Capability. NAS9-18335, August 17, 1990. 

[8] CLIPS Reference Manual, CLIPS Version 6.0, Software Technology Branch, Lyndon 
B. Johnson Space Center, June 2nd, 1993. 



NEURAL NET CONTROLLER FOR INLET PRESSURE 
CONTROL OF ROCKET ENGINE TESTING 

Luis C. Trevino 
NASA-MSFC, Propulsion Laboratory 

Huntsville, Alabama 

ABSTRACT 

Many dynamic systems operate in select operating regions, each 
exhibiting characteristic modes of behavior. It is traditional to 
employ standard adjustable gain PID loops in such systems where 
no apriori model information is available. However, for control- 
ling inlet pressure for rocket engine testing, problems in fine 
tuning, disturbance accommodation, and control gains for new 
profile operating regions (for R&D) are typically encountered 
[2]. Because of the capability of capturing i/o peculiarities, a 
using NETS, a back propagation trained neural network controller 
is specified. For select operating regions, the neural network 
controller is simulated to be as robust as the PID controller. 
For a comparative analysis, the Higher Order Moment Neural Array 
(HOMNA) method [l] is used to specify a second neural controller 
by extracting critical exemplars from the i/o data set. 
Furthermore, using the critical exemplars from the HOMNA method, 
a third neural controller is developed using NETS back 
propagation algorithm. All controllers are benchmarked against 
each other. 

I .  INTRODUCTION 

An actual propellant run tank pressurization system is shown in 
Figure 1.1 for liquid oxygen (LOX). The plant is the 23000 gallon 
LOX run tank. The primary controlling element is an electro- 
hydraulic (servo) valve labeled as EHV-1024. The minor loop is 
represented by a valve position feedback transducer (LVDT) . The 
major or outer loop is represented by a pressure transducer (O- 
200 psig). The current controller is a standard PID servo 
controller. The reference pressure setpoint is provided by a G.E. 
Programmable Logic Controller. The linearized state equations for 
the system are shown below: 

x2=5kg au- (0.8kg c+d) xl+x3 (1.2) 

where kg=l, servo valve minimum gain. Based on previous SSME 
test firings, the average operating values for each state 





variable are determined to be 

x1 = Pg:O-76 psig 

x2 = TU:150-300 RO 

where PB = bottom tank pressure 

x3 = VU:250-350 ft3 

x4 = L:0-1 inch 

TU = ullage temperature 

VU = ullage volume 

L = valve stem stroke length 

Using those ranges, the following average coefficients are 
algebraically determined: 

a = 120.05 d = 5995.44 

b = 89.19 f = 14.70 

c = 214.30 

11. Methodology 

Using a developed PID-system routine from [2], an i/o 
histogram is established in the required format per [I] for a 
select cardinality of 300. Figure 2.1 portrays the scheme. A 
ramp control setpoint signal (from 0-120 psig) served as the 
reference trajectory. The input portion of the histogram is 
selected to be a five dimensional (300x5) matrix, four 
successive delayed samples and the current sample. The output 
portion is a one dimensional (300x1) vector. Therefore, the 
i/o histogram is simply represented by a 300x6 matrix. 

2. Using the captured i/o data set and NETS back propagation 
algorithm, a neural network is next established with a 5-10- 
10-1 architecture. The trained network is next simulated as 
the controller for the system. Figure 2.2 illustrates the 
simulation scheme. 

3. Using a developed HOMNA (KERNELS) algorithm El], a reduced 
training i/o set is specified. The input portion of the set, 
llSw, will provide the mapping of real time system inputs to 
the neural net controller (NNC). The output segment of the 
set is represented by the last column vector of the i/o set. 

4. After configuring the reduced i/o set into the needed 
formats, using MATLAB, the gain equation (2.1) is executed. 



SYSTEM 
COMh4hND INLIT 
S n - P o r n  PRMURE 
60 . -. TO SSMC 

TRA* 
SERVE AS 

CONTROLLER 

SERVE AS 
CONTROLLER 

Figure 2.1 Scheme For Building i/o Histogram and Training Set 

where K = neural gains (row vector) for single neural layer 
Y = NNC controller output signature row vector 
S = established matrix set of step 3 
'4' = any (decoupled) operation: exponential, etc. 

For this project, Y was identical with that used in the 
literature of [I], namely the exponential function. I1Kl1 serves 
as a mapping function of the input, by way of llS1l, to the NNC 
output, u (j ) . Here, u ( j  ) serves as control input to the system 
and is determined by equation (2.2) [I] . 

where x(j) is the vector input. In accordance with the dimensions 
of the i/o histogram, a five dimensional input is used and is 
accomplished using successive delays. Namely, a typical input for 
any given sample is represented by 

The overall HOMNA scheme is embedded in the neural controller 
block of Figure 2.2 as a 5-5-1 architecture (single hidden 
layer). 



mLR 

u(i> PRISSURE 

I SYSTEM I 

I NtURAL x(i> 
CONTROLLER 

COh4MAND 

Figure 2.2. Simulation Scheme for NNC and System 

5. For select cases to be presented, integral control for the 
HOMNA system was presented according to the following scheme 
of [I]. 

where N = window (sampling) size 
y ( j )  = current system output 
- 
y(j) = desired output, or command setpoint, sp 

6. Using the training i / o  set of part 3, a separate neural 
network controller is established, again using NETS. The 
simulation scheme is similar to that of part 2. 

7. PID system response plots are generated for a further 
comparitive analysis. 



111. RESULTS 

Table I. Case Summary 

* Case for procedural step 6 

Figure 3.1 Case 1,3,  and 4 Simulation Results 



SETPOINT PRESSURE CONTROL - - - - - - - - - - - 

.o 

Figure 3.2 Case 2 Simulation Results 

u 
Eil 

I '10.d ' ' u . 3  ' ' '15.0 

SECOKDS 

Figure 3.3 Case 5 Simulation Results 

98 



SETPOINT PRESSURE CONTROL ---- ------- 

C3 

F 

.O 
SECONDS ' 

Figure 3.4 Case 6 Simulation Results 

Figure 3.5 Case 7 Simulation Results 



Figure 3.6 Case 8 and 10 Simulation Results 

Figure 3.7 Case 9 Simulation Results 

100 



SETPOINT - PRESSURE CORTROL ---- ---- - - -  
40.0 

I 

.o 
SECONDS 

Figure 3.8 Case 11 Simulation Results 

SETPOINT PRESSURE CONTROL ---- -------  
40.0 

35.0 

30.0. 

25.0 

C3 20.0 

15.0 

10.0 

5.0 

0.C: 

- 5.8 
.O 

SECONDS 

Figure 3.9 Case 12 and 14 Simulation Results 



SETPOINT PRESSURE CONTROL ---- -------  

.o 

Figure 3.10 Case 13 Simulation Results 

SETPOINT PRESSURE CONTROL ---- ---- - - -  

Figure 3.11 Case 15 Simulation Results 



IV. DISCUSSION AND CONCLUSIONS 

From Table 3.1 and the presented simulation results, the back- 
propagation trained and the HOMNA neural systems are proven to 
track varying command setpoints within the bounds of the training 
i/o histogram. Without incorporation of the integration scheme of 
[I], the HOMNA system still proved its tracking ability, though 
with varying levels of offsets. The proportional-integral- 
derivative (PID) system results exhibited no offsets due to the 
inherent integral scheme of the PID controller. From the 
simulation results, it is concluded that the integration scheme 
of [l] was simple to employ with equally satisfying results. Both 
back-prop trained, HOMNA, and PID systems proved their ability to 
accommodate for the varying levels of random noise injection. 

In the use of NETS for the back propagation trained neural net- 
work, the ability to adjust the learning rate, momentum term, and 
the scaling factor (globally or locally) allowed for various con- 
figurations for starting conditions in the training. For the this 
project, the default global momentum was used, 0.09. A global 
learning rate of 0.5 through 1 was used for all cases. A scaling 
factor of 0.1 was used for all cases. 

For the HOMNA trained system, larger i/o histogram sets were at- 
tempted with no significant difference in performance for select 
cases. With more effort or other techniques, it is believed that 
the difference could be corrected. In this project it was 
discovered that stripping the first few exemplar vectors from the 
i/o histogram (or the established training set) made a signifi- 
cant difference in the performance. For some cases, without 
stripping the first few inherent exemplar state vectors resulted 
in erroneous results ranging from wide dispersion (between set- 
point and system state) to complete instability. The justifica- 
tion for stripping the first few exemplars stems from the scheme 
of [I]. That is, for the first few exemplars there is always in- 
herent membership in the training set kernel. For select cases, 
the effects of stripping the exemplars before or after the Ker- 
nels algorithm software routine had no indicative difference. 

For the neural controller of step 6 (i/o training set generated 
by the Kernels algorithm) , Figure 3.11 illustrates that the con- 
troller can still track the command setpoint; however, the amount 
of offset, unseen in other backprop cases where the training set 
was the full i/o histogram (300 samples), is obviously due to the 
reduced size of the training set (40 samples). This was expected 
since the purpose of the Kernels algorithm is to select critical 
exemplars from a large data set. It is these critical exemplars 
that best represents the set (or population) as a whole. The 
choice of a back-prop trained or a HOMNA based neural controller 
to serve as a standalone or parallel backup to an existing PID 
controller is certainly realizable. 



REFERENCES 

1. Porter, W. A. and Liu, Wie, "Neural Controllers For Systems 
With Unknown Dynamics," The Laboratory for Advanced Computer 
Studies, The University of Alabama in Huntsville, March 
1994. 

2. Trevino, L. C., MODELING, SIMULATION, AND APPLIED FUZZY 
LOGIC FOR INLET PRESSURE CONTROL FOR A SPACE SHUTTLE MAIN 
ENGINE AT TECHNOLOGY TEST BED, Masters Thesis, The 
University of Alabama in Huntsville, June, 1993. 



CLIPS TEMPLATE SYSTEM FOR PROGRAM 3 LJa 73 
UNDERSTANDING 

. 
Ronald B. Fibine, PhD. 

Department of Computer Science 
Southeastern Oklahoma State University 

Durant, OK 74701 
finkbine@bab bage. sum. e h  

- ABSTRACT 

Program Understanding is a subfield of software re-engineering and attempts to 
recognize the run-time behavior of source code. To this point, the success in this area 
has been limited to very small code segments. An expert system, HLAR @&-Level 
Algorithm Recognizer), has been written in CLIPS and recognizes three sorting 
algorithms, Selection Sort, Quicksort and Heapsort. This paper describes the HLAR 
system in general and, in depth, the CLIPS tern&ates used for program representation 
and understanding. 

INTRODUCTION .- 

Software re-engineering is a field of Computer Science that has developed inconsistently since the 
beginning of computer programming. Certain aspects of what is now software re-engineering have 

. been known by many names: maintenance, conversion, rehosting, reprogramming, code beau-g, 
restructuring, and rewriting. Regardless of the name, these efforts have been concerned with porting 
system hctionality andlor increasing system conformity with programming standards in an efficient 
and timely manner. The practice of software re-engineering has been constrained by the supposition 
that algorithms written in outdated languages cannot be re-engineered into robust applications with 
or without automation. 

It is believed by this author that existing software can be analyzed, data structures and algorithms 
recognized, and progr.ams optimized at the source code level with expert systems technology using 
some form of intermediate representation. This intermediate form will provide a foundation for 
common tool development allowing intelligent recognition and manipulation. This paper describes 
a portion of the HLAR (High-Level Algorithm Recognition) system '. 
The Levels of d r - g  in the software re-engineering and Computer Science fields is displayed 



in Figure 1 '. The lowest of these, text, is 
realized in the simple file operations; 
o p e n i n g ,  r e a d i n g ,  
writing and closing. The next level is token 
understanding and occurs in compilers 
within their scanner subsystem. 
Understanding at the next level, stdement, 
and higher generally does not occur in most 
compilers, which tend to break statements 

[7] Program 
[6] Plan 
[5] Semantic 
[4] Compound Statement 
[3] Statement 
[2] Token 
[I] Text 

Figure 1: Levels of Understanding 

into portions and correctly translate each portion, and, therefore, the entire statement. One exception 
is the semantic level which some compilers perform when searching for syntactically correct but 
logically incorrect segments such as while (3 < 4) do S. 

intermediate form. The representation method 
used in this research project is the language ALICE, a very small language with a Lisp-like syntax. 
It is intended that programs in existing high-level languages be translated into ALICE for recognition 
and manipulation. This Ianguage has only five executable statements; -gn, Imp, call and goto. 
All syntactic sugar is removed, replaced with parentheses. Figure 2 displays a simple assignment 
statement. The goto statement is used for translating unstructured programs and the goal is to 
transform all unstmctured programs into structured ones. 

Software re-engineering requires that higher- 

FACT REPRESENTATION 

(assign x 0) 

Prior to initiation of the HLAR system, programs in the ALICE intermediate form are translated into 
a set of CLIPS facts which activate (be input to and llfill the conditions of) the low-level rules. Facts 
come in different types called templates (records) which are equivalent to frames and are " asserted" 
and placed into the CLIPS facts list. Slots 

level understanding take place and the act of . 
be on an Figure 2 : Assignment Statement 

(fields) hold values of specified types (integer, 
float, string, symbol) and have default values. 
As a rule fires and a fact, or group of facts, is 
recognized, a new fact containing the 
knowledge found will have its slots sled and 
asserted. Continuation of this process will 
recognize a larger group of facts and, hopefblly, 
one of the common algorithms. 

The m V g n  statement from the previous Figure 
is translated into the equivalent list of Edcts in 
Figure 2. This is a much more complicated 
representation, and not a good one for 
programmers, but much more suitable for an 

(general node (number 1) 
(sibling 0) 
(address n2.10.5n) 
(node type assign node)) 

(assign-node (number 1) 
(lhs nzde l\(rhs node 1) 
(general node 'parent 1 ) ) ' 
(identifier n5de (number 1) 

(operand 5) (name t t ~ n  ) ) 
(expression node (number 1) 

(operand 7 2)) 
(integer literal - node 

(number 1 ) 
(operand 2)(value 1)) 

?igure 3: Facts List 



expert system. 

The code of this Figure displays a number of different templates. The general-node is used to keep 
all statements in the proper order within a program and the node-vpe slot describes the type of 
statement associated with the node. The template assip-node with its appropriate number slot , its 
Ihs slot slot points to the number one operand-node, which is also pointed to by the operand slot 
in the number one identiper-node. The rhs-no& slot of the assignment points to the number one 
expression node and its operrmd_I slot points to the number two operand-node which is also 
pointed to by the operand slot in the number one integer_literaI-node. 

This is a more complex representation of a program than its &ICE form, but it is in a form that eases 
construct recognition. An ALICE program expressed in a series of CLIPS facts is a list and requires 
no recwsion for parsing. Each type of node 6.e. general, assign, idenhijier, integer literal, operand, 
expression) are numbered fiom one and referenced by that number. Once the  ICE program is 
converted into a f a s  list, low-level processing can begin. 

TEMPLATE REPRESENTATION % 

Templates in CLIPS are similar to records or fiarnes in other languages. In the HLAR system, 
templates are used in a number of different areas including general token, plan and knowledge 
representation. A properly formed template has the general form of the keyword deffemplate 
followed by the name of the template, an optional comment enclosed in double quotes and a number 
ofJieIdlocations identifling attributes of the template. Each attribute must be of the simple types in 
the CLIPS system: integer, string, real, boolean or symbol (equivalent to a Pascal enumerated type) 
and default values of all attributes can be specified. 

Cwently there are three types of template recognition; 
general templates are used to represent the statement 
sequence that constitute the original program., object 
templates are used to represent the clauses, statements 
and algorithms that are recognuied, and control 
templates are used to contain the recognition process. 

GENERAL TEMPLATES 

The names of all the general templates are listed in 
Figure 4. These are the templates that are required to 
represent a program in a list of facts having been 
translated fiom its original language which is similar to 
a compiler derivation tree. 

The general node referenced in this Figure is used to 
organize the-order of the statements in the program. 
Prior to the HLAR system being initialized, a utility 

general node 
argumenE node 
assign nEde 
call nEde 
define routine node 
definevariable node 
define-structur<node 
evaluafion node 
expression-node - 
if node 
loop node 
parameter node 
program nzde 
identifier node 
integer liEeral - node 
strut ref node 
struc-lennode - - 
Figure 4: General Templates 



program parses the ALICE program depth-&st and generates the hcts list needed for analysis. The 
general-node template is utilized to represent the order of the statements and contains no pointers 
to statement nodes. The statement-type nodes identified in the next section contain all pointers 
necessary to maintain program structure. Each token-type has its own templates for representation 
within an ALICE program. Included are node types for routine definitions, the various types of 
compound and simple statements, and the attributes of each of these statements. The various types 
of simple statement nodes contain pointers back to the general-node to keep track of statement 
order. These statement node templates contain the attributes necessary to syntactically and 
semantically reproduce the statements as  specified in the original language program, prior to 
translation into ALICE. 

In an effort to reduce recognition complexity7 which 
is the intent of this research, specialty templates 
for each item of interest within a program have been 
created. An earlier version of this system had different 
templates for each form, instead of one template with 
a symbol-type field for specitication. This refinement 
has reduced the number of templates required* thus 
reducing the amount of HLAR code and the 
programmer conceptual-difficulty level. The specialty 
templates are listed in Figure 5. 

OBJECT TEMPLATES 

spec call 
spec-~arameter 
spec exp 
spec-assign 
loop-algorithm 
speceval 
mini6um algorithm 
swap algorithm 
if argorithm 
soFt - algorithm 
Figure 5: Special Templates 

Expressions are the lowest-common denominator of program understdng. They can occur in 
nearly all statements within an ALICE program. To reduce the complexity of program 
understanding, each expression for which we search is designated as a special expression with a 
spec5e.d symbol-type identifier. Expressions and structure references present a particular 
problem since they are mutually recursive as expressions can contain structure references and 
structure refmaces can contain expressions. This problem came to light as the HLAR system became 
too b e  to m on the chosen architecture (out of memory) with the number of templates, rules and 
facts present at one time. Separation of the rules into several passes required that expressions and 
structure references be detected within the same rule group. Examples a[.] and a[i+l] > a[.] 
represent these concepts. 



- - 

encoding of the program. An example wodd be saving the contents of one specific location of an 
array into a second variable such as mall = a[O]. 

Figure contains the 
template for expressions. This 
template contains a number of 
fields for specific values, but most 
of interest is the field type-exp. 
Identifiers that represent specific 
expressions are listed as the 
allowed symbols. Complexity is 
reduced in this representation 
since multiple versions of the 
same statement can be represented 
by the same symbol. An example 
is two versions of a variable 
increment statement; x = x + 1 
andx=I+x .  

Recognition of various forms of 
the mszp statement occurs within 
the variable rules of HLAR 
Common statements such as 
increments and decrements are 
recognized, as well as very 
specific statements such as x = y / 
2 + I .  

Variable analysis is performed 
o m  one or more m 
statements. The intent is to 

Next come the multiple or compound statements such as the ifor loop statements. These statements 
are the first of the two-phase rules to fire apotential rule and an actwl rule. The potential rule 
checks for algorithm form as is defined against by the standard algorithm. The actual rule veriiies that 
the proper statement containment and ordering is present. This allows for smaller rules, detection 
of somewhat buggy source code and elimination of fake positive algorithm recognition. 

The loop and if statements are the first compound statements that are handled within HLAR. Both 
have an eval clause tested for exiting the loop or for choosing the boolean path of the iJ: Both of 
these statements require a field to maintain the limits of the control of the statement. Generally, a loop 
or if statement will contain statements of importance within them and the concept of statement 

class* variables according to 
their usage, thus determining 
knowledge about the program derived fiom programmer intent and not directly indicated within the 

(def template spec exp 
(field type exp Ttype SYMBOL) 
(default e e  none) 
(allowed-syfiibols exp none 

exp 0 exp 1 exp iz exp first 
exp-div ia 2 e@ plus id 1 
e--minl?s id 1 e ~ g l ~ s  id 2 
exp-minus-id-2 exp mult-id-2 - - 
exp-plus aiv-id 2 i 
exp-minus div i8 2 1 
exp-div prus id id-2 
exp-ge id idme@ gf const id 
exp-gt-id-id expxpgt-id - cokt 
exp-gt-id-minus id i 
exp-lt-id-minus-id-1 
exp-gt-strucid Etrucid 
exp-lt-strucid-strucid 
exp-lt-strucid-struc-s - id - 1 
exp-gt-strucid-id 
exp-ne-id true- 
exp-orgt-id min id 1 ne id t - - 
exp-or-gt-id-id ne - id-t - 
exp-stFuc7irEt)T 

(field id-1 (type INTEGER) 
(default-0)) 
(field id 2 (type INTEGER) 

( def ault-o ) ) 
(field id 3 (type INTEGER) 
(default-0)) 
(field exp nr (type INTEGER) 
(default 5) ) ) 

Figure 6: mression Template 

+ 



containment will be required to be properly accounted for. 

Higher-level algorithms, such as a swap, minimization, or sort, require that subplans be recognized 
first. This restriction is due to the size of the Clips rules. The more conditional elements in a rule, the 
more difEicult and unwieldy for the programmer to develop and maintain. 

Control templates are listed in Figure 7. These are 
used to control the recognition cycIe within Clips. 
Control templates are necessary after preliminary 
recognition of a& by apotential rule to allow for 
detection of any intervening and interfering statements 
prior to the firing of the corresponding actuul rule. 

Figure 8 is a hierarchical display of the facts fkom the previous Figure. It expresses the relationships 
among the nodes and shows utilization of the integer pointers used in this representation. 

o w - d o d e  1 €zpr&oa-node 1 

I I 
identifier node 1 @-d2 
value "xu- 1 

integer W-node 1 
value 1- 

Figure 8: Derivation Tree 

STATEMENT RECOGNlTION 

9 an example of the recognitionpr&ess.  hef first ~igure 9 : variable Increment 

This section will describe the recognition process of a 
simple variable increment as displayed in Figure 

rule firing dl recognize a special qression, an 
identifier plus the integer constant one. The second rule h g  will recognize a variable being assigned 
a special expression and a third rule wilt recognize that the identifier on the right hand side of the 
statement and the variable on the left hand side are the same, thus signifjing an incrementing 
assignment statement. 

( assign ( ) ) . 

These three rule firings process one statement and W e r  rule conditional elements will attempt to 
group this statement with related statements to recognize multi-statement constructs. An example 
would have this assign statement within a loop statement, and both preceded by an x = 0 



initialization statement. This would indicate that the variable x is an index of the loop statement. 

SUMMARY AND FUTURE RESEARCH 

This research has lead to the development of a template hierarchy for program understanding and 
a general procedure for developing rules to recognize program plans. This method has been 
performed by the researcher, but will be automated in hture versions of this system. 

There are currently three algorithm plans recognized inchding the selection sort (SSA), quicksort 
(QSA) and heapsort (HSA). The SSA requires 50 rule f i g s ,  the QSA requires 90 firings, and the 
HSA, the longest of the algorithms at approximately 50 lines of code and taking over 60 seconds on 
a Intel 486-class machine requires 150 firings. The complete HLAR recognition system contains 3 1 
templates, 4 functions, and 135 rules. 

The research team intends to concentrate on algorithms common to the numerical community. The 
first version of the HLAR system has been successfbl at recognizing smail algorithms (less than 50 
lines of code). Expansion of HLAR into a robust tool requires: rehosting the system into a 
networking environment for distributing the recognition task among multiple CPUs, automating the 
generation of recognition rules for improved utilityy attaching a database for consistent information 
and system-wide (multiple program) information, and a graphid user-interface. 

AUTHOR INFORMATION 

The author has: a B.S. in Computer Science, Wright State University, 1985; an M. S. in Computer 
Science, Wright State University, 1990; and a Ph.D. in Computer Science, New Mexico Institute of 
Mining and Technology, 1994. He is currently an Assistant Professor of Computer Science at 
Southeastern Oklahoma State University. 

REFERENCES 

1. 'High-Level Algorithm Recognition,' R. B. Finkbine, Ph.D. 
Dissertation, New Mexico Institute of Mining and Technology, 
1994. 

2. 'Pat: A Knowledge-based Program Analysis Tool,' M. T. Harandi 
and J. Q. Ning. In 1988 IEEE Conference of Software Maintenance, 
IEEE CSP, 1988. 



h - 
$Y- 
f,' 
ir 

AN IMPLEMENTATION OF FUZZY CLIPS AND ITS APPLICATIONS UNCERTAINTY 
REASONING IN MICROPROCESSOR SYSTEMS USING FUZZY CLIPS 

Yuen & Lam 

Abstract unavailable at time of publication. 



Session 3A: Data Analysis Applications 
-- 

Session Chair: Jim Harrington 





r 

USING EXPERT SYSTEMS TO ANALYZE ATE DATA 37079 
Jim Harrington 

Honeywell Military Avionics 
MS 673-4 

13350 US Highway 19 N. 
Clearwater FL, 34624 

harrington @ space .honeywell .com 

ABSTRACT 
The proliferation of Automatic Test Equipment (ATE) is resulting in the generation of large 
amounts of component data. Some of this component data is not be accurate due to the presence 
of noise. Analyzing this data requires the use of new techniques. This paper describes the 
process of developing an expert system to analyze ATE data and provides an example rule in the 
CLIPS language for analyzing trip thresholds for high gainhigh speed comparators. 

J 

INTRODUCTION 
We are seeing a proliferation of "Simple" Automatic Test Equipment (ATE) based on personal 
computers. Large quantities of test data is being generated by these test stations. Some of this 
data will not accurately represent the true characteristics of the equipment being tested, 
particularly when the power supply in the personal computer is being used to power the ATE 
circuitry. This paper discus3es a methodology for developing an expert system to examine the 
data files generated by the ATE. This expert system can be used to produce a data file 
containing the "most probable" data values with the effect of power supply noise removed. 
These "most probable" data values are based on specific statistical processes and special 
heuristics selected by the rule base. 

THE NEED FOR A NEW APPROACH OF DATA ANALYSIS 
Power supply noise can become a significant source of error during testing of high speedhigh 
accuracy Analog to Digital (AD) and Digital to Analog @/A) converters (10-bits or greater) or 
high speedhigh gain comparators. This power supply noise can cause: 

- erratic dab  values from an A/D converter, 
- wandering analog outputs (which can translate to harmonic distortion) from a D/A 

converter, and 
- false triggers from a comparator. 

A 10-bit AD converter, optimized to measure voltages in the 0 to 5 V range, has a voltage 
resolution of 4.88 mV (i.e., the least significant bit--LSB--represents a voltage step of 4.88 mV). 
The 5 volt power bus on a personal computer (i.e., an IBM or third party PC) can have noise 
spikes in excess,of 50 milivolts (mV). These noise spikes can, therefore, represent an error of 
greater than ten times the value of the LSB. 

Even though the noise spikes on the PC power bus are considered high frequency (above a 
hundred Megahertz), high speed A/D converters and high speed comparators can capture enough 
energy from them to affect their operation. 

The power supply noise is both conducted and radiated throughout the PC enclosure. Simple 
power line filters do not prevent noise from entering the ATE circuitry and affecting the tests 

Using Expert Systems To Analyze ATE Data 115 Honeywell Military Avionics 



being performed. Much of the noise is cyclic in nature, such as that resulting from Dynamic 
Random Access Memory (DRAM) refresh and 110 polling. Other noise can be tied to specific 
events such as disk access. 

The best method of improving the accuracy of the ATE is proper hardware design. Using power 
line filters does provide some noise isolation. Metal enclosures can also reduce susceptibility to 
radiated emissions. Noise canceling designs will also help. Self powered, free standing ATE 
which is optically coupled to the PC is probably the cleanest solution (from a power supply noise 
perspective). However, there are cases when an existing design must be used, or when cost 
and/or portability factors dictate that the ATE be housed within the PC. In these situations, an 
expert system data analysts can be used to enhance the accuracy of the test data. 

The Traditional Software Approach 
The traditional software approach to remove noise from a data sample is to take several readings 
and average the values. This approach may be acceptabIe if the system accuracy requirement is 
not overly stringent. A procedural language such as FORTRAN would be a good selection for 
implementing a system that just calculates averages. If AID or D/A linearity is being tested, the 
averaging approach may not be accurate enough. The problem with this particular approach is 
that all of the data values that have been "obviously" affected by noise (as defined by "an 
expert") are pulling the average away from the true value. 

The Expert System Approach 
An expert system could be devised to cull out the "noisy" data values before the average is taken, 
resulting in a more accurate average. The problem is to develop an expert system that can be 
used to identify when noise might be effecting a data value. 

THE PROCESS 
The first step in developing an expert system to remove noisy data from the calculations is to 
define how the noise affects the circuits. For example, a voltage ramp is frequently used to test 
the linearity of an A/D converter and the trip points of a comparator. How does noise on that 
voltage ramp affect the performance of the circuitry being tested? 

As a voltage source ramps down from 5 volts to QI volts, noise can cause high speed A D  
converters to output a data set with missing and/or repeated data values. Figure 1 shows the 
possible effect of random noise on the output of an A D  converter; the data line in this graph 
represents the source voltage that has been corrupted by noise and then quantized to represent the 
output of an A/D converter. Even though the general trend may be linear, the actual data is not. 

Noise on a QI to 5 volt ramp can cause a high speed comparator to change states too early or too 
late. Another common effect of noise on a comparator is a "bouncy" output (turning on and off 
in quick succession before settling to either the "on" or "off" state). Figure 2 shows the effect of 
noise on the output of the comparator. 

The next step is to identify how the noise appears on the output of the equipment being tested, 
As seen in Figure 1, noise can cause runs of numbers with the same output from the AD 
converter (e.g., three values in succession that the AD converter interprets as 4002 mV). We 
also see missing data codes (as in the run of 3919,3919,3933,3933--repeating the data values 
3919 and 3933 but missing the data values 3924 and 3929 mV). Figure 2 shows an unexpected 

Using Expert Systems To Analyze ATE Data 116 Honeywell Military Avionics 



"on" and "off' cycle from the comparator before the voltage ramp reached the true trip point of 
3970 mV. An additional cycle to the off state occurs at the end of the grapg as seen in the 
comparator output going to 0 V, it should have stayed in the high (+5 V) state. 

AID output 3919, 3919, 3933, 3933 
Improper slope and repeating data values 

3 a 3960 mV 
C 
3 

3940 mV 
u 

3920 mV 

f 
3900 mV 

Source (Input) Voltage 

Figure 1. AlD Output Errors Caused by a Noisy Voltage Source 

For brevity, the rest of this paper focuses on the comparator example; the approaches discussed 
for the comparator are directly applicable to the A/D converter as well. 

4050 mV 
Comparator trip leve 

4000 mV 
Q 
m 
9 5 3950 mV 
> 

3850 rnV --  c 
3800 mV --  

L 
a 
a 5 V O ~ S  
3 3750 rnv .- 
I 

3700 rnV - -  Comparator Output 

1 I I 
0 vans 

3650 rnV ,-- I 

Source (Input) Voltage 

Figure 2. Comparator Output With a Noisy Source Signal 

Using Expert Systems To Analyze ATE Data 117 Honeywell Military Avionics 



In most test set-ups, there will be no synchronization between any cyclic noise in the PC and the 
data acquisition process because most computer systems fill a buffer before dumping the data to 
the disk drive (this is ture unless the code generated for data acquisition goes through the specific 
process of "read data" "forced write to the disk" "read data" "forced write to the disk" etc.). This 
means that the cyclic noise will affect the data at random times during the data taking process. 
The non-cyclic random noise will, of course, appear at random times. Therefore, if we repeat the 
test multiple times, the noise should manifest itself at different places in the test sequence each 
time. 

The noise shown in Figures 1 and 2 is random, with peaks as high a 50 mV. These plots were 
constructed to demonstrate the effect of noise on the circuitry. Under normal conditions, with 
the test voltage generated in a PC, the actual source voltage would look like the data shown in 
Figure 3. The "Source Voltage ramp" in Figure 3 shows noise spikes as high as 65 mV at 
regular intervals. The area between the noise spikes has some low-level asynchronous noise. 
The results of the combination of low level random noise and high level cyclic noise on a 
comparator is shown at the bottom of the graph (the voltage trip level is still set at 3970 mV). 

4020 
0 

4000 - - 
3980 - a 3960 

C 

a 3940 % 
u 3920 
r 

3900 mmparator Output, +5V 
a ................................................................. 

3880 

3860 ......................... 

Source (Input) Voltage 

Figure 3. Noise Waveform During Test 

Table I lists the voltages at which the comparator output shifts between 0 V and 5 V. The table 
also shows the voltages of the initial "bounce" on and off ("Off to On #I" and "On to Off #I9'), 
and the inadvertent bounce off and back on ("On to Off #2" and "Off to On #3"). A basic set of 
rules starts to emerge when this noise spectrum is combined with knowledge of the effect of 
noise on the data taking process. 

DEVELOPING THE RULE SET 
Three sets of data were accumulated for each threshold analysis. These data sets were separated 
in time by only seconds as the ATE reset itself; this meant that the basic environmental factors 
were fairly consistent (an important factor when using any statistical process on data). The 
following rules are shown in order of precedence, from most important to least important. 

Using Expert Systems To Analyze ATE Data Honeywell Military Avionics 



Salience levels were used to ensure the most important rule would fire before a rule of lesser 
importance. 

Once the optimum data value is selected by a rule, the data is written to an output file. The old 
data is then removed from the fact list to prevent a rule of lower precedence from firing and 
changing the data value again. 

Table I. Comparator Input Threshold Voltage Test 

Rule 1 
The first rule developed was one of common sense. If the comparator does not show any 
bounces in any of the three data sets, and the data values are identical, that value should be used. 

Rule 2 
The second rule is similar. If two of the three data sets contain no bounces and the comparator 
output changes from @ V to 5 V at the same input ramp voltage, the data value found in those 
two data sets is used. This rule takes effect (is instantiated) regardless of the number of bounces 
in the third data set (i.e., the third data set could contain a single trip level or 3 trip levels--as in 
Figure 3--or 100 trip levels). In mathematical terms this is called selecting the mode of the data 
(i.e., the most commonly repeated value in a data set [I]). 

The second rule handles the possible situation of the noise spike occurring just prior to the time 
the true source voltage exceeds the trip level. The noise spike would cause the comparator to trip 
early. The philosophy behind the rule is that the high level noise spikes seen in Figure 3 can 
cause the comparator to switch early in one data set, but the probability of the noise spike 
affecting two data sets the same way is extremely low. 

This rule will also fire if none of the three data sets have bounces, and the values are the same. If 
both rule 1 and rule 2 fire, the trip level will be recorded in the output file twice. Repeated data 
in the output file can cause other data analysis programs to have problems. This is the reason the 
old data (the data used to infer the optimum trip level) is removed by each rule that fires; so that 
the rule with the highest precedence will remove the trip level data, preventing a secondary rule 
from also firing. 

The next rule handles the case where no bounces are detected, but the trip levels in the three data 
sets are all different. In this situation, it is difficult to determine which data set contains good 
data and which might contains noisy data. We decided to average the two closest together 

Using Expert Systems To Analyze ATE Data Honeywell Military Avionics 



values. This averaging represents the effect of finding a trip level that is between two steps in 
the voltage ramp (e.g., the addition of low-level noise causing the comparator to trip at one level 
one time and another level the second time). If all three data values are equally dispersed, the 
average of all three values is taken. The mathematics used to implement this rule in effect takes 
the median of the data when all three data sets were used (an easy way of selecting the average of 
three equally dispersed numbers). 

In hindsight, another method of approaching the same rule is to track the interval of the 65 mV 
noise spike. By tracking the last occurrence of comparator output bounces, the period of the 
large cyclic noise spike can be determined (this approach requires an additional pass through the 
data to determine the period of the cyclic noise). The period of the cyclic noise can be used as an 
additional constraint, and the data set(s) that are closest to the middle of their periods can be 
averaged. 

At this point, we have covered all of the easy rules. The following rules rely more on heuristics 
developed by the project research team (i.e., the domain experts). 

Rule 4 

The fourth rule covers the case when two of the data sets contain no bounces, but the data values 
are different, and the third frle contains bouncy data. In this situation, we decided to average the 
data from the two non-bouncy data sets. An additional precaution was added to this rule in that 
if either of the two values is more than +5% from the average value, the operator is notified of 
the comparator being tested and the two mp voltage levels. 

Rule 5 
If only one of the data sets doesn't contain bouncy data, the data value of that one data set is 
used. This rule covers the case when "the experts" feel that two of the data sets are affected by 
some high level noise spikes. It is "felt" that the one file non-bouncy data set contains the most 
accurate trip level on the most frequent basis. 

Rule 6 

The final case is when all three data sets contain bounces. This means that all three data sets 
have been affected by noise. In Figure 3, the noise spikes are only one reading increment wide. 
Both the on-off cycle and the off-on cycle are in the inverted state for one data reading. The 
difference between the first two data values in Table I is 2 mV; this is also true for the last two 
data values. The difference between the second and third data values is 4 mV, and the difference 
between the third and fourth data values is 46 mV. The comparator settles to the "On" state at 
3968 mV. The rule that forms out of this analysis is to select for the trip level (when the 
comparator turns "On") the voltage that has the greatest difference between it and the adjacent 
"Off' voltage (e.g., in Figure 3, the trip level would be selected as 3968 mV, the point which 
starts the 46 mV span before the next "Off' spike). 

The average of all 5 data values is 395 1.20 mV; an error of 16.8 mV compared to the 3968 mV 
trip level. The average of the 3 values which cause an "Off to On" transition of the comparator is 
3954 mV; an error of 14 mV. The increase in accuracy is easily seen in this example. But, we 
are not done yet. What if all of the transitions of the comparator occur at equal voltage intervals? 

Using Expert Systems To Analyze ATE Data Honeywell Military Avionics 



There is no clear cut heuristic when all of the "Off to On" and "On to Off" data values are evenly 
spaced. The system we developed defaulted to the first "Off to On" transition. Depending on 
the system implementation, the middle "Off to On" transition may be the best selection. 

The coding of this rule is a little tricky. The code in Figure 4 shows how this rule could be 
implemented in CLIPS. 

(defi le  Compromise "This rule finds the most probable data value out of a set of bouncesw 
(Evaluate-Data) ;flag fact that allows the compromise rule to function 
?Orig-Data <- (?set&set-llset-2lset3 $?data) ;get the data 
(test (>= (length $?data) 2)) ;test for bounces 

=> 
(retract ?Orig_Data) ;Get rid of the data set that is to be replaced 
(bind ?elements (length $?data)) 
(if (evenp ?elements) 

then 
(assert (?set 0)) ;Bit ended in original state--no data 

else 
(bind ?delta 0) ;Set up the variable to find the largest difference 
(bind ?y 2) ;Pointer to the first even number (position) data value 
(while (<= ?y ?elements) 
(bind ?x (- 5 1)) ;Pointer to the position preceding ?y 
(bind ?z (+ ?y 1)) ;Pointer to the position following ?y 
(bind ?test-val (abs (- (nth ?x $?data) (nth ?y $?data)))) 
(if (> ?test-val ?delta) 

then 
(bind ?pointer ?x) 
(bind ?delta ?test-val) 

) 
(bind ?test-val (abs (- (nth ?y $?data) (nth ?z $?data)))) 
(if (> ?test-val ?delta) 

then 
(bind ?pointer ?z) 
(bind ?delta ?test-val) 

) 
(bind ?y (+ 5 2)) ;Increment ?y to the next even position 

1 
(assert (?set =(nth ?pointer $?data))) ;put the new data on the fact list 

1 
1 

Figure 4. CLIPS Code Implementing Rule Number 6 

The actual searching of the data set is performed in the "while" statement found on the right hand 
side of the rule (the "then" part of the rule, found after the "=>" symbols). 

Rule 6 is be performed on all three data sets separately. Remember that this rule is invoked only 
when bounces are seen in all three data sets. This point helps to alleviate some of the worry 
surrounding the case where all of the trip levels are equally dispersed. Once all three data sets 
are evaluated and a single voltage level is selected, the three new values are put on the fact list to 
be operated on by the first 5 rules. Only rules number 1 through 3 actually apply since none of 
the data generated by rule 6 would contain bounces. 

CONCLUSIONS 
This process demonstrates a new approach to analyzing data taken by ATE. Increases in 
accuracy of 14 to 17 mV is demonstrated in rule 6. The other rules select the heuristic or 
statistical procedure used to determine the best data value from the multiple data sets provided. 
This paper illustrates the method of developing a set of rules, implementable in CLIPS, for 
defining the presence of noise in a data set and for removing the noisy data from the calculations. 

Using Expert Systems To Analyze ATE Data 121 Honeywell Military Avionics 



ACKNOWLEDGMENTS 
I would Iike to thank Richard Wiker and Roy Walker for their diligent work in helping to define 
the heuristics involved in the data analysis. 

REFERENCES 
1. Spiegel, Murray R., "Chapter 3: The Mean, Median, Mode and Other Measures of Central 

Tendency," SCHAUM'S OUTLINE SERIES: THEORY AND PROBLEMS OF 
STATISTICS, McGraw-Hill Book Company, New York, 196 1 ,  pp. 47 - 48. 

Using Expert Systems To Analyze ATE Data 

- - c 
E 

t 

Honeywell Military Avionics 



REAL-TIME REMOTE SCIENTIFIC MODEL VALIDATION 
370 75- 

Richard Frainier and Nicolas Groleau 
Recom Technologies, Inc. 

NASA Ames Research Center, rn/s 269-2 
Moffett Field, CA 94035- 1000, USA 

ABSTRACT 

This paper describes flight results from the use of a CLIPS-based validation facility to compare 
analyzed data from a space life sciences (SLS) experiment to an investigator's pre-flight model. 
The comparison, performed in real-time, either confiirms or refutes the model and its predictions. 
This result then becomes the basis for continuing or modifying the investigator's experiment 
protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator 
team are able to react to their experiment data in real time. This facility, part of a larger science 
advisor system called Principal-Investigator-in-a-Box, was flown on the Space Shuttle in 
October, 1993. The software system aided the conduct of a human vestibular physiology 
experiment and was able to outperform humans in the tasks of data integrity assurance, data 
analysis, and scientific model validation. Of twelve pre-flight hypotheses associated with 
investigator's model, seven were confirmed and five were rejected or compromised. 

INTRODUCTION 

This paper examines results from using a CLIPS-based scientific model validation facility to 
confirm, or refute, a set of hypotheses associated with a Shuttle-based life-science experiment. 
The model validation facility was part of a larger software system called "PI-in-a-Box" (Frainier 
et al., 1993) that was used by astronauts during the October, 1993 Spacelab Life Sciences 2 
(SLS-2) mission. The model validation facility (called Inms t ing  Data Filter in the PI-in-a-Box 
system) compares the output of the scientific data analysis routines with the investigator's pre- 
flight expectations in real-time. 

The model validation facility compares analyzed data from the experiment with the investigator's 
model to determine its fit with pre-flight hypotheses and predictions. The fit can be either 
statistical or heuristic. Deviations are reported as "interesting". These deviations are defined as 
"needing confirmation", even if not part of the original fixed protocol. If confirmed, then at least 
a portion of the theoretic model requires revision. Further experiments are needed to pinpoint the 
deviation. This idea is at the heart of the iterative process of "theory suggesting experiment 
suggesting theory". 

THE ROTATING DOME EXPERIMENT 

The PI-in-a-Box software system was associated with a flight investigation called the Rotating 
Dome Experiment (RDE). This was an investigation into the effects of human adaptation to the 
micro-gravity condition that exists in Earth-orbiting spacecraft. A sensation, called "angular 
vection", was induced in a set of human subjects by having them view a rotating field of small, 
brightly-colored dots. After a few seconds, the subject perceives that dhe  is rotating instead of 

. the constellation of dots. This perception of self-rotation generally persists throughout the time 
'that the dots are rotating, though occasionally the subject realizes that it is in fact the dots that are 



rotating. This sudden cessation of the sensation of vection is termed a "dropout". With the RDE, 
the field of dots rotates in a set direction (clockwise/counter-clockwise) with a set speed for 20 
seconds. There is a 10-second pause, and then the rotation resumes (though with a new direction 
andlor angular speed). There are six such 20-second trials for each experiment run. 

There are three experiment conditions for RDE subjects. In the first, called "free-float", the 
subject grips a biteboard with hidher teeth in front of the rotating dome (and is otherwise 
floating freely). In the second, called "tether", the subject is loosely tethered to the front of the 
rotating dome without the biteboard. In the third, called "bungee", the subject is attached to the 
"floof' of the laboratory by a set of bungee cords, again teeth gripping a biteboard. 

There afe eight main parameters measured with respect to angular vection during the RDE. Four 
of these parameters are "subjective", meaning that the subject consciously reports them by 
manipulating a joystick/potentiometer: These are the time interval from the start of dome rotation 
to the onset of the sensation of vection (measured in seconds), the average rate of perceived 
vection (expressed as a percent of the maximum), the maximum rate of perceived vection (also 
expressed as a percent of the maximum), and the number of times during a 20-second trial that 
the sensation suddenly ceases (the dropout count, an integer). The remaining four parameters are 
"objective", meaning that the subject's involuntary movements are recorded. These are the first 
and second head movements associated with the torque strain gage mounted on the biteboard and 
the same head movements associated with subject neck muscle activity detectors 
(electromyograms). These eight parameters were measured for each 20-second trial of a run. 

In the flight system, twelve distinct hypotheses were identified. These were all associated with 
the joystick-generated subjective parameters. They are: 
1. There should be some sensation of angular vection. . 
2. The average time for the onset of the sensation of vection for the six trials of a run should be 
greater than 2 seconds* . 
5. The average time for the onset of the sensation of vection for the six trials of a run should be 
less than 10 seconds. 
4. Early in a mission, before adaptation to micro-gravity is significantly underway, the average 
of the six trials' maximum sensation of vection should be less than 90%. 
5. Late in a mission, after adaptation to micro-gravity is complete, the average of the six trials' 
maximum sensation of vection should be more than 80%. 
6. Tactile cues decrease the sensation of vection, therefore, the average of the six trials' 
maximum sensation of vection for a free-float run should be more than that of a bungee run. 
7. The average of the six trials' average sensation of vection should be more than 30%. 
8. The average of the six trials' average sensation of vection should be less than 80%. 
9. Tactile cues decrease the sensation of vection, therefore, the average of the six trials' 
average sensation of vection for a free-float run should be more than that of a bungee run. 
10. There should be at least one dropout during a bungee run. 
11. There should not be an average of more than two dropouts per trial during a free-float run. 
12. The average of the six trials' dropout count for a free-float run should be less than that of a 
bungee run. 

MODEL VALIDATION 

Real-time, quick-look data acquisition and analysis routines extract significant parameters from 
the experiment that are used by the model validation facility (see Figure 1). With the RDE, 

*strictly speaking, the numeric value of this hypothesis (and most other hypotheses) was subject to adjustment on a 
subject-by-subject basis as a result of pre-flight "baseline data" measurements. This was due to the signscant 
variability between individual human subjects. 



predictions were formed on the basis of data from two sources. The first source was previously- 
collected flight data. (The RDE was flown on three earlier missions: SL- 1, D- 1, and SLS- 1 .) The 
second source was from SLS-2 crew responses recorded on earth before the flight during 
baseline data collection sessions. These predictions were used to define thresholds that, if 
violated, indicated significant deviations from the investigator's model. Many space life-sciences 
investigations (including the RDE) are exploratory in nature, and the investigator team expected 
significant deviations for perhaps 20% of the experiment runs. When detected, these deviations 
were made available for display to the astronaut-operator. It is then that the reactive scientist 
briefly reflects on the situation and try to exploit the information to increase the overall science 
return of the experiment. This would most likely result in a change to the experiment protocol. 

~iagnosis/Troubleshoo ting/lIepair 1 

( D a t a H ~ a t a  Integrity ~ssurancd 

Protocol ~anagement ]  

Figure 1: Flow of control. 

For the PI-in-a-Box system, the model validation facility was named the Interesting Data Filter 
(IDF). The IDF was a set of CLIPS rules and facts that compared current experiment results with 
the investigator's preflight expectations. There were approximately two dozen rulest and 40 facts 
that comprised the pre-flight hypotheses. 

FLIGHT RESULTS 

Results of the flight use with respect to the 12 hypotheses are listed in Table I: 
the first column identifies the hypothesis number from the list of hypotheses presented earlier. 
the second column is the binomial probability of observing the given outcome assuming 95% of 
the run results agree with the model. 
the third column is our conclusion with respect to the hypothesis given the overall SLS-2 flight 
evidence. The hypothesis is rejected when the probability of observing the flight results given 
the hypothesis is c 0.001; it is compromised when the probability of observing the flight results 
given the hypothesis is < 0.01; it is suspect* when the probability of observing the flight results 
given the hypothesis is c 0.05; and it is accepted otherwise. 

-- - - 

+see Appendix for listing of CLIPS rules. 
*?his case does not occur for this data set. 



the fourth column summarizes the mission results. This is expressed as a ratio where the 
denominator represents the number of experiment runs producing data that bears on the 
hypothesis and the numerator represents the subset of those experiment runs whose data 
supports the hypothesis. The entry "nla" denotes that the hypothesis was not applicable to that 
flight day. 
the last three columns present a more detailed view of the results from each of the three flight 
days (fd) when the system was in use. 

These results indicate that seven of 12 pre-flight hypotheses were accepted. Five hypotheses 
were either rejected or compromised, indicating a need to modify the existing model with respect 
to the pattern of human adaptation to weightlessness over time, with respect to the importance of 
dropouts as an indication of adaptation, and with respect to the influence of tactile cues. 

Table I: Flight data confmation of vection-related hypotheses. 

CONCLUSION 

A scientific model validation facility has been devised for space science advisor systems that 
appears to be a useful framework for confirming or refuting pre-flight hypotheses. This facility is 
a key step to achieving truly reactive space-based laboratory science. 

ACKNOWLEDGMENTS 

The authors would like to thank other members of the PI-in-a-Box team, past and present, for 
their efforts, especially Lyman Hazelton, Silvano Colombano, Michael Compton, IN Statler, 
Peter Szolovits, Larry Young, Jeff Shapiro, Guido Haymann-Haber, and Chih-Chao Lam. 
Thanks as well to NASA, and especially Peter Friedland, for management support. This work 
was funded by the NASA Office of Advanced Concepts and Technology A1 program. 

REFERENCES 

Frainier Richard, Groleau Nicolas, Hazelton Lyman, Colombano Silvano, Compton Michael, 
Statler I n ,  Szolovits Peter, and Young Larry, "PI-in-a-Box: a knowledge-based system for space 
science experimentation", A1 Magazine, Menlo Park, CA, vol. 15, no. 1, Spring, 1994, pp. 39-51. 



APPENDIX: MODEL VALIDATION FLIGHT RULE-SET 

;; ;these rules follow CLIPS v4.3 syntax 

;;start up IDF 
(defrule idf-startup 

(id0 
(disk-drive ?disk) 
(interface-directory ?dir) 
=> 
(bind ?predictions-file (str-cat ?disk ?dir "BDC-predictions")) 
(bind ?input-file (str-cat ?disk ?dir "idf-input")) 
(load-facts ?predictions-file) 
(load-facts ?input-file) 
(assert (idf-result not-interesting)) ; the default result 
(open (str-cat ?disk ?dir "idf-stats") idf-stab "ww")) ; no append wlo file size limit checking! 

;; formula: SD-square = (lln)(sum-of squares - (square of sum)ln) 
(defrule c o m p u t e ~ s t a t i s t i c s ~ f o r ~ s ~ ~ ~  

(declare (salience 10)) 
(?parameter trial-data ?tl ?t2 ?t3 ?t4 ?t5 ?t6) 
=> 
(bind ?sum (+ (+ (+ (+ (+ ?tl ?t2) ?t3) ?t4) ?t5) ?t6)) 
(bind ?sum-of-squares (+ (** ?tl 2) (** ?t2 2) (** ?t3 2) (** ?t4 2) (** ?t5 2) (** ?t6 2))) 
(bind ?mean (I ?sum 6)) 
(bind ?SD-square (I (- ?sum-of-squares ( I  (** ?sum 2) 6)) 6)) 
(bind ?SD (sqrt ?SD-square)) 
(assert (?parameter sum ?sum)) 
(assert (?parameter sum of squares ?sum-of-squares)) 
(assert (?parameter experiment-result ?mean)) 
(assert (?parameter standard deviation ?SD))) 

;;; Parameter-specific rules to detect interestingness 

;; ONSET-OF-VECTION 

;; Onset of vection is interesting if it's non-existent (that is, less than 0.03 seconds) 
(defrule no-vectiondetected 

(declare (salience 5)) 
(Onset-Of-Vection experiment-result ?x&:(< ?x 0.03)) 
=> 
(assert (no-vectiondetected))) 

(defrule no-vectiondetected--interesting 
(declare (salience 5)) 
(no-vection-detected) 
(Maximum-Vection-Intensity experiment-result ?x&:(< ?x 10)) 
=> 
(assert (Onset-Of-Vection conclusion potentially-interesting "No vection was detected."))) 

;; Onset of vection is interesting if it's consistently < threshold (but >= 0.03) 
(defrule onset-of-vection-less-than_2 

(Onset-Of-Vection experiment-result ?mean-found) 
(subject ?subj) 
(BDC-datum ?subj quick-onset ?threshold) 
(test (and (> ?mean-found 0.03) (< ?mean-found ?threshold))) 
=> 
(bind ?msg ( s t ~ c a t  'Mean onset of vection is less than " ?threshold " seconds")) 
(assert (Onset-Of-Vection conclusion potentially-interesting ?msg))) 



;; Onset of vection in flight is interesting if it's consistently > threshold 
(defrule onset-of-vection_greater-than-10 

(environment flight) 
(subject ?subj) 
(BDC-datum ?subj slow-onset ?threshold) 
(Onset-Of-Vection experiment-result ?mean-found&:(> ?mean-found ?threshold)) 
=> 
(bind ?msg (str-cat "Mean onset of vection is greater than " ?threshold "seconds")) 
(assert (Onset-Of-Vection conclusion potentially-interesting ?msg))) 

(defrule early-interestingmaximu-vection 
; Early in flight (Day 0 /Day I), maximum vection is interesting if it's consistently > threshold. 

(environment flight) 
(day 011) 
(subject ?subj) 
(BDC-datum ?subj early-hi-max ?threshold) 
(Maximum-Vection-Intensity experiment-result ?mean-found&:(> ?mean-found ?threshold)) 
(not (no-vection-detected)) 
=> 
(bind ?msg (str-cat "Max vection intensity mean is greater than " ?threshold '%")) 
(assert (Maximum-Vection-Intensity conclusion potentially-interesting ?msg))) 

(defrule late-interestingmaximum-vection 
; Late in the flight, maximum vection is interesting if it's consistently < threshold 

(environment flight) 
(day ?day&:(> ?day 7)) ; "Late" is Day 8 or later 
(subject ?subj) 
(BDC-datum ?subj late-lo-max ?threshold) 
(Maximum-VectionJntensity experiment-result ?mean-found&:(< ?mean-found ?threshold)) 
(not (no-vection-detected)) 
=> 
(bind ?msg (sb-cat "Max vection intensity mean is less than " ?threshold 'T)) 
(assert (Maximum-Vection-Intensity conclusion potentially-interesting ?msg))) 

;; Max vection is interesting if tactile > free-float 
(defrule free-below-bungee--interesting--maximum-vection 

(bodygosition free-flt) 
(Maximum-Vection-Intensity experiment-result ?ff) 
(Maximum-Vection-Intensity runningmean ?val&:(> ?val ?ff)) ; bungee mean 
=> 
(assert (Maximum-Vection-Intensity conclusion potentially-interesting 

"Subj's max. vection < bungee wnd. max. vection"))) 

(defrule bungee-above-free--interesting--maximum-vection 
(bodyqosition bungee) 
(Maximum-Vection-Intensity experiment-result ?b) 
(Maximum-VectionJntensity runningmean ?val&:(> ?b ?val)) ; free-float mean' 
=> 
(assert (Maximum-vection-Intensity conclusion potentially-interesting 

"Subj's max. vection > free-float cond. max. vection"))) 

(defrule low-average-vection-intensity 
; Average vection intensity is interesting if it's consistently < threshold 

(environment flight) 
(subject ?subj) 
(BDC-datum ?subj lo-average ?threshold) 
(Average-Vection-Intensity experiment-result ?mean-found&:(< ?mean-found ?threshold)) 



(not (no-vection-detected)) 
=> 
(bind ?msg (str-cat "Avg. vection intensity mean is less than " ?threshold 'W)) 
(assert (Average-Vection-Intensity conclusion potentially-interesting ?msg))) 

(defrule high-average-vection-intensity 
; Average vection intensity is interesting if it's consistently > threshold 

(environment flight) 
(subject ?subj) 
(BDC-datum ?subj hi-average ?threshold) 
(Average-Vection-Intensity experiment-result ?mean-found&:(> ?mean-found ?threshold)) 
(not (no-vection-detected)) 

=> 
(bind ?msg (s&-cat "Avg. vection intensity mean is greater than " ?threshold "0")) 

(assert (Average-Vetion-Intensity conclusion potentially-interesting ?msg))) 

;; Average vection is interesting if tactile > free-float 
(defrule free-below-bungee--interesting--average-vection 

(bodygosition free-flt) 
(Average-Vection-Intensity experimentjesult ?if) 
(Average-Vection-Intensity running-mean ?val&:(> ?val ?ff)) ; bungee mean 
=> 
(assert (Average-Vection-Intensity conclusion potentially-interesting 

"Subj's ave. vection < bungee a n d .  ave. vection"))) 

(defrule bungee-above-free--interesting--average-vection 
(bodygosition bungee) 
(Average-Vection-Intensity experiment-result ?b) 
(Average-Vection-Intensity runningmean ?val&:(> ?b ?val)) ; free-float mean 
=> 
(assert (Average-Vection-Intensity conclusion potentially-interesting 

"Subj's ave. vection > free-float a n d .  ave. vection"))) 

;; DROPOUTS 

;; Number of dropouts is interesting if it's consistently 0 under tactile conditions 
(defrule interesting_dropouts_tactile 

(environment flight) 
(bodygosition bungee) 
(Dropouts experiment-result 0) 
(not (no-vection-detected)) 
r> 

(assert (Dropouts conclusion potentially-interesting 
"There were no dropouts with bungees attached"))) 

;; Number of dropouts is interesting if it's consistently >2 under free-float conditions 
(defrule interesting-dropouts-free 

(environment flight) 
(bodygosition free-flt) 
(Dropouts experimentjesult ?mean-found&:(> ?meanfound 2)) 
=> 
(assert (Dropouts conclusion potentially-interesting 

Wean  number of free-float dropouts is greater than 2"))) 

;; Number of dropouts is interesting if tactile consistently < free-float 
(defrule free-above-bungee--interesting-dropouts 

(bodygosition free-flt) 
(Dropouts experiment-result ?ff) 
(Dropouts runningmean ?val&:(> ?ff ?val)) ; bungee mean 
=> 
(assert (Dropouts conclusion potentially-interesting 

"Subj's dropout count > bungee a n d .  dropout count"))) 



(defrule bungee-below-free--interesting--dropouts 
(bodygosition bungee) 
(Dropouts experiment-result ?b) 
(Dropouts runningmean ?val&:(< ?b ?val)) ; free-float mean 
=> 
(assert (Dropouts conclusion potentially-interesting 

"Subj's dropout count < free-float cond. dropout count"))) 

;; ; OUTPUT STATS 

(defrule output-idf-stats 
(?parameter experiment-result ?mean) 
(?parameter standard deviation ?SD) 
(bodygosition ? a n d )  
(subject ?subj) 
=> 
(fprintout idf-stats ''Subject: " ?subj " Cond: " ?cond " " ?parameter " mean: " ?mean " SD: " ?SD crlf)) 

;; Output Interestingness info to "Session History" file for Session Manager 
(defrule record-interestingness--start 

(declare (salience - 100)) 
(?parameter conclusion ?interesting ?source) 
?f c- (idf-result not-interesting) 
(disk-drive ?disk-drive) 
(interface-directory ?interface-dir) 

=> 
(retract ?f) 
(assert (idf-result interesting)) 
(open (str-cat ?disk-drive ?interface-dir "history-session") history-session "a") 
(assert (record-interestingness))) 

; potentially-interesting => medium 
; certainly-interesting => high 
(defrule record-interestingness 

(record-interestingness) 
?int c- (?parameter conclusion ?interesting ?source) 
(subject ?subj) 
(bodygosition ? a n d )  
(current-step ?step) 
(this-session ?session) 

=> 
(retract ?int) 
(if (eq ?interesting potentially-interesting) 
then (bind ?level medium) 
else (bind ?level high)) 
(fprintout history-session "(int-hist class interesting session " ?session " step " ?step " subj " 

?subj " cond " ?cond " source " ?source " level " ?level ")" crIf)) 

(defrule record-interestingness-end 
(record-interestingness) 
(not (?parameter conclusion ?interesting ?source)) 

=> 
(close) 
(assert (ctrl--stop idf)) ; inhibit rules-control "abnormal" message 
(printout "hyperclips" "interesting")) ; return to Hypercard 

(defrule no-interesting-results 
(declare (salience -200)) 
(idf-result not-interesting) 

=> 
(close) 
(assert (ctrl--stop idf)) 
(printout "hyperclips" "as-expected")) ; return to Hypercard 



A CLIPS-BASED EXPERT SYSTEM FOR THE 
EVALUATION AND SELECTION OF ROBOTS 

3~076  

Mohamed A. Nour 
Felix 0. Offodile 

Gregory R. Madey 
(gmadey @ synapse.kent.edu) 

Administrative Sciences 
Kent State University 
Kent, Ohio 44242 

USA 

ABSTRACT 

This paper describes the development of a prototype expert system for the intelligent selection of 
robots for manufacturing operations. The paper first develops a comprehensive, three-stage pro- 
cess to model the robot selection problem. The decisions involved in this model easily lend them- 
selves to an expert system application. A rule-based system, based on the selection model, is 
developed using the CLIPS expert system shell. Data about actual robots is used to test the perfor- 
mance of the prototype system. Further extensions to the rule-based system for data handling and 
interfacing capabilities are suggested. 

INTRODUCTION 

Many aspects of today's manufacturing activities are increasingly being automated in a feverish 
pursuit of quality, productivity, and competitiveness. Robotics has contributed significantly to 
these efforts; more specifically, industrial robots are playing an increasingly vital role in improving 
the production and manufacturing processes of many industries [6]. 

The decision to acquire a robot, however, is a nontrivial one, not only because it involves a large 
capital outlay that has to be justified, but also because it is largely complicated by a very wide range 
of robot models from numerous vendors [6]. A non-computer-assisted (manual) robot selection 
entails a number of risks, one of which is that the selected robot might not meet the task require- 
ments; even if it does, it might not be the optimal or the most economical one. Mathematical model- 
ing techniques, such as integer programming, are rather awkward and inflexible in tackling this 
problem. The reason for this is that the robot selection process is an ill-structured and complex 
one, involving not only production and engineering analysis, but also cost/benefit analysis and 
even vendor analysis. Its ill-structured nature does not readily lend itself to tractable mathematical 
modeling. Therefore, nontraditional approaches, such as expert systems (ES) or artificial neural 
networks (ANN), seem intuitively appealing tools in these circumstances. 

When the decision maker (DM) is charged with making the selection decision, he or she is being 
called upon to play three roles at the same time, namely (1) financial analyst, (2) robotics expert, 
and (3) production manager. In other words, the decision maker would need to make three differ- 
ent (albeit related) decisions: (1) choosing the best robots that match the task requirements at hand, 
(2) choosing the most cost effective one(s) from those that meet the requirements, and (3) deciding 
from which vendor to order the robot(s). We shall call these decisions technical, economic, and 
acquisitional, respectively. Clearly, these are very complex decisions all to be made by the same 
decision maker. Supporting these decisions (e.g., by a knowledge-based system) should alleviate 
the burden from the decision maker and bring some consistency and confidence in the overall 
selection process. The success of the ES technology in a wide range of application domains and 
problem areas has inspired its use as a vehicle for automating decisions in production and opera- 
tions management [ I ,  191, as well as the robot selection decision [16, 171. 



In this paper, a three-stage model is presented for the robot selection process. The model is 
comprehensive enough to include the major and critical aspects of the selection decision. It is 
implemented in a CLIPS-based prototype expert system. The rest of the paper is organized as fol- 
lows. In the following section, we review previous work and, in the third section, we present our 
three-stage model to robot selection, In the fourth section, the implementation of the prototype 
expert system is discussed. Limitations of, and extensions to the prototype expert system with 
database management (DBMS) capabilities are provided in section five. We conclude the paper in 
section six. 

MOTIVATION AND RELATED WORK 

The application of knowledge-based systems in production and operations management has been 
investigated by a number of researchers [I]. In particular, the application of ES in quality control 
[3], in job shop scheduling [18, 191, and industrial equipment selection [ l  1,201 has been reported 
in the literature. The robot selection problem is prominent in this line of research [8, 15, 171. 

In an earlier paper by Knott and Getto [9], an economic model was presented for evaluating alter- 
native robot systems under uncertainty. The authors used the present value concept to determine 
the relative worthiness of alternative robot configurations. Offodile, et al. (14, 151 discuss the 
development of a computer-aided robot selection system. The authors developed a coding and 
classification scheme for coding and storing robot characteristics in a database. The classification 
system would then aid the selection of the robot(s) that can perform the desired task. Economic 
modeling can then be used to choose the most cost-effective of those selected robots. Other related 
work includes Offodile et al. [16], Pharn and Tacgin [17], and Wang, et al. [21]. 

A review of the above literature indicates that these models are deficient in at least one of the fol- 
lowing measures: 

Completeness: We suggested earlier that the robot selection problem involves three related 
decisions. The models presented in the literature deal invariably with at most two of these 
decisions. The other aspects of the selection decision are thus implicitly assumedto be 
unimportant for the robot selection problem. Experience suggests that this is not the case, 
however. 

Generality: the models presented are restricted to specific production functions, e.g., 
assembly. Many of today's production functions are not monolithic but rather a collection 
of integrated functions, i.e., welding, assembly, painting, etc. In particular, industrial 
robots are by design multi-functional and a selection model should be robust enough to 
evaluate them for several tasks. 

Focus: The focus in the literature is often more on robot characteristics (robot-centered 
approach) than on the task the robot is supposed to perform (task-centered approach). We 
posit that task characteristics should be the primary focus in determining which robot to 
choose, not the converse. 

We propose a three-stage model that captures the overall robot selection process, with primary 
emphasis being given to the characteristics and requirements of the task at hand. The proposed 
task-centered model is comprehensive in the sense that it covers the robot selection problem from 
the task identification, through robot selection, to vendor selection and, possibly, order placement. 
The model is also general in the sense that it applies to a wider range of industrial robot applica- 
tions. While this selection model is different from previous approaches, it incorporates in a sys- 
tematic manner all the critical decisions in any sound robot selection process. The sequential order 
of these decisions, and the related phases, is important from a logical as well as an efficiency 
standpoints. We cannot, for example, separate the technical decision from the economic decision, 
for a robot that is technically well suited to do the job might not be economical; and vice versa. We 



shall present our model in the following section and in the subsequent sections discuss its imple- 
mentation in a knowledge-based system. 

A THREE-STAGE MODEL FOR ROBOT SELECTION 

Figure 1 depicts the three-stage robot section scheme proposed in this paper. We present a general 
discussion of the scheme in the subsequent subsections. 

Technical decision: This is the first and the most critical decision to be made. It is the formal 
selection of one or more candidate robots that satisfy the minimum requirements and char- 
acteristics of the task to be performed. It is technical in the sense that it would normally be 
made by the production or process engineer upon a careful analysis of the technical charac- 
teristics of both the task and the robot. This decision is the most difficult of the three. A 
thorough analysis is required to arrive at the initial set of feasible robots. 

Economic decision: This is a decision involving the economic merit of the robot. More 
specifically, it is a decision about the most cost-effective robot alternative(s) considering 
both initial cost (purchase price) and operating costs. The purpose of the initial and operat- 
ing costs is twofold: (1) to allow for a rough justification for the robot, and (2) to allow for 
a choice to be made among rival robots. Suppose, for example, that we had a choice of two 
robots from Stage One (to be described shortly)--one which is adequate for the task and 
costs within reasonable range; the other is more technologically advanced but costs well 
beyond what is considered economical for the task in question. Clearly the estimated cost 
of the latter would force us to choose the former robot. 

Acquisitional decision: This is simply deciding which vendor to acquire the robot(s) from. 
The choice of a vendor is based not only on purchase price, but also on service and quality. 

The following three stages implement the above decisions in a systematic manner. 

Stage One: Technical Decision 

The purpose of this first stage is to determine a (possibly set of) robot(s) that most closely matches 
the task requirements. The starting point is the application area, or more specifically, the task itself 
for which the robot is needed. Thus, we need to determine in this stage the following: 

1. The application area, e.g., assembly, welding, painting, etc. 
2. The task within the application area, e.g., small parts assembly. 
3. The task requirements, e.g., precision, speed, load. 
4. The robots that most fully satisfy these requirements. 
5. Whether human workers can perform the task. 
6. Whether to go with robots or humans, if 5 above is true,. 

Identrfying Application: 

There is a wide range of applications, across various industries, for which industrial robots may be 
engaged. Both the application area and the narrow task within that application area should be iden- 
tified. Thus, within welding, for example, we would identify spot welding and arc welding. 

IdentIfLing Task Characteristics: 

This phase requires identification of all the task characteristics that influence the decision to employ 
humans or robots, and the selection among alternative, technically feasible robots. These character- 



istics will include, for example, the required degree of precision and accuracy; whether it is too 
hazardous, dangerous, or difficult for humans; and whether significant increases in productivity 
and/or cost savings would result. 

Stage 
One 

Identify Application + 
identify Task Characteristics c 

Robot or Human r"l 

Rank Robots a 

Technical ' Decisions 

Stage 
Two 

Stage 
Three 

I + + + 
Acquisition Cost Operations Cost Total CostKie Cycle Cost 

NPV Test? u 
List of Robots E b  
Rank Vendors 

= 

I Choose Most Favored 

Selected Robot and Vendor E 

Economic 
I Decisions 

Aquisitional 
Decisions 

Figure 1 : Three-Stage Robot Selection Model 

A precise task definition might also require a task classification scheme, more fine-tuned than the 
one suggested by Ayres and Miller [2]. Since the desired robot is a function of the complexities of 
the task in question, we suggest the development of a taskfrobot grid (TRG) to associate specific 
task characteristics with relevant robot attributes. Let Cij denote value j of task characteristic i, and 
A-. denote value j of robot attribute i, i=l, 2, ..., m; j=l, 2, ..., n. Here Cij is said to be compatible 'J wth Aij, for particular values of i and j, if Aij satisfies Cij. For brevity, we denote this relationship 



by Cij E Aij. Thus specifying task characteristic Cij would automatically call for a robot attribute 

Aij such that A*. at least satisfies the task requirement Cij, E i j .  
1J 

Stage Two: Economic Decision 

This stage can be called a cost justification stage. It utilizes the output from the first stage, which is 
one or more robots suited to the task at hand. The primary role of this stage is the identification of 
those robots that make economic sense to invest in; a present value approach is followed by the 
knowledge-based system to exclude all robots with net present value (NPV) less than their net cost 
(i.e., purchase price and operating costs). A ranking on the basis of the cost factor is then applied 
to the remaining robots, if any, i.e., to those passing the economic viability test. Thus, net present 
value analysis is used to determine whether it is profitable to employ any robot, given its net cost 
and the economic benefits (e.g., incremental cash flows) expected to accrue as a result of employ- 
ing the robot to perform the task. 

By the end of Stage Two we will have identified a subset of robots that are the most favorable in 
terms of performance as well as cost. Since a large number of vendors may be available, it is 
important to be able to get the "best" deal possible. This implies not only a good competitive price, 
but also acceptable quality, warranties, and a promise of support services. 

Stage Three: Acquisitional Decision 

In Stage three we have to rank, for every vendor, every robot that meets the choice criteria in 
Stages 1 and 2. The factors that are involved in these rankings are many. For example, Hunt [6] 
indicates that a certain study revealed the following factors as critical in the purchasing decisions of 
robots: design, performance, cost, maintenance, warranties, financial terms, and delivery terms. 
These can conveniently be grouped into four categories: (1) cost (purchase price and operating 
costs), (2) warranties, (3) quality (performance and design), and (4) service (support, financial and 
delivery terms). Maintenance is part of operating cost which is accounted for in Stage Two. 
Quality, services, warranties, and purchase price are the relevant factors in vendor selection. 
Purchase price has also played a role in the economic decision to determine the viability of each 
robot. Here, prices are used to compare vendors and rank robots accordingly. Therefore, for each 
vendor we rank the relevant robots on the basis of purchase price and the other three criteria 
(quality, warranties, services) and choose the most favorable vendorlrobot combination. 

THE KNOWLEDGE-BASED SYSTEM 

We implemented the prototype knowledge-based system using the CLIPS expert system tool [12]. 
CLIPS is a forwardchaining rule-based language that resembles OPS5 and ART, two other widely 
known expert system tools [5]. Developed by NASA, CLIPS has shown an increasing popularity 
and acceptance by end users [lo]. The two main components of this prototype, the knowledge 
base and the database, are discussed below. 

The Knowledge Base 

The primary focus of the selection model is the task characteristics, since it is these characteristics 
that determine what type of robot is needed. This emphasis is reflected in the knowledge base (KB) 
(or rule base) which captures the knowledge about different task requirements that are needed to 
justify the use of robots or humans and to specify a particular matching robot or robots. Thus, 
given certain task characteristics or requirements, the expert system will specify the most suitable 
robot configurations for performing the task. 



The KB also includes knowledge about robot costs and how to manipulate these costs to justify 
(economically) the use of the respective robots and rank those robots that are considered justifiable. 
Thus, given operating and purchase costs for each robot, the expert system ranks them on the 
combined cost criterion. Finally, the KB also includes knowledge to help vendor selection. 
Subjective multiple criteria are used to compare vendors with associated robots of interest. 

As a rule-based shell, CLIPS stores the knowledge in rules, which are logic-based structures, as 
shown in Figure 2. Figure 3 is a natural English counterpart of the rule in Figure 2. 

;Rule No 29. 
(Defrule find-robots-3rd-pass "Technical Features" 

?f <- (robot-2 ?robot) 
(Features (Accuracy ?vll) 

(Repeat ?v12) 
(Velocity ?v13) 
(Payload ?v14) 

1 
( Robot (ID ?robot) 

(Accuracy ?v21&:(<= ?v21 ?vll)) 
(Repeat ?v22&:(<= ?v22 ?v12)) 
(Velocity ?v23&: (<= ?v23 ?v13) ) 
(Payload ?v24&:(<= ?v24 ?v14)) 

1 
=> 
(retract ?f) 
(assert (robot-3 ?robot) . 

f - .  

Figure 2: Example Rule in CLIPS 

Rule No 29: Finds robots matching given technical 
features. 

I =F There is a robot for the application with the 
required grippers, 

AND This robot meets (at a minimum) the following 
technical features: Accuracy, Repeatability, 
Velocity, and Payload as specified by user 

I THEN Add this robot to the set of currently feasible 

1 robots. 

Figure 3: Example Rule in Natural English 

The Database 

The database is a critical resource for the ES; all details for robot configurations are contained in the 
database. The type of information stored for each robot includes: 

Robot class or model 
Performance characteristics 
Physical attributes 



Power characteristics 
A full-fledged system would include the following additional information to permit proper compar- 
isons among competing robots. 

Environment requirements 
General characteristics 
Operating costs 

Figure 4 shows the information stored in the database for a typical robot using CLIPS syntax. As 
the figure indicates, each robot has a set of physical and performance characteristics (e.g., type of 
end effectors, number of axes, repeatability, etc.) and a set of application tasks within its capabiI- 
ity. All of this information (and more) is supplied by robot vendors. 

(Robot (ID RT001) 
(Control S2) 
(Power E) 
(Axes 6) 
(Accuracy .2) 
(Repeat .05) 
(Velocity 145) 
(Payload 6) 
(Effectors adjust-jaw) 
(Jobs ML PT SA EA IN) 
(Vendor "IBM Corp.") 

(Vendor (ID VD001) 
(Name "IBM Corp.") 
(Robot-Info RTOOl 28500) 

(Service .95) 
(Warranty .8) 
(Quality -83) 

Figure 4: "Facts" Stored as Frames in a CLIPS Database 

Also contained in the database are vendor attributes such as service record, warranties, quality, 
robots carried and purchase prices (see Figure 3). The first three attributes are represented in the 
database by subjective scores (ratings), on a scale of 0 to 10. A "0" may indicate, for example, an 
F rating, "10" an A++ rating. This information could come from industry analysts and experts in 
the robotics industry. 

Illustration 

In this section we shall provide the results of a consultation with the prototype expert system using 
actual robotics data obtained from Fisher [4]. The first step in Stage One is to describe the applica- 
tion. For lack of space, we skip the dialogue that allows the decision maker to describe the task and 
its suitability for robots or human workers. On the basis of the information provided in that dia- 
logue advice will be given as to the choice between a robot solution or human workers for the task. 
Next, in Stage Two, economic analysis is performed, using information elicited through a similar 
dialogue as in Stage one, to determine the economic merit of each robot passing the technical test. 
This involves calculating a net present value (NPV) for the net incremental benefits resulting from 
employing robotics in the task under consideration. The NPV is then compared to the net cost 



(price plus operating cost) of each robot, and only robots whose net cost is less than or equal to the 
NPV are chosen. If no robot is found to meet this test, the system offers two reasons for the 
failure: 

1. that the task is not worth the required investments in robots, or 
2. that the database includes insufficient number of robots. 

In the last stage, Stage Three, the system elicits subjective input from the decision maker regarding 
the importance of vendor attributes, such as service or warranties. Again, the rating is on a scale of 
0 to 10; "0" indicates unimportant and "10" maximally important. This information is then used to 
compute a subjective score for each vendor, by weighting the analyst's ratings of each vendor with 
the input from the decision maker. Now, robots can be ranked by both price and vendor weighted 
score. Figure 5 shows the final results of this consultation. 

Indicate the importance of each of the following, 
on a scale from 0 to 10: 
1. Vendor service quality : 7  
2. Vendor warranties :8 
3. Product quality : 9  
4. Price : 6  

. . . . .  
Rank by Subjective score (S) or by Price (PI? p 

Robot Index 
----------- 
RT005 
RT007 
RTOll 

1 RT006 
RT008 
RT016 

Vendor Name 
----------- 
ASEA, Inc. 
Bendix 
Cincinnati Milacron 
Automatix, Inc. 
Bendix 
Kuka 

Price Score 

The net present value of cashflows: $129036.6 

* 

Figure 5: Subjective Values and Final Results 

LIMITAT IONS AND EXTENSIONS 

The description of the task as allowed by the current prototype provides only a broad definition of 
the nature of the task to be performed; it does not provide specific details or "tolerances." For 
exampIe, to increase the chances of a match, the user may be tempted to supply larger (less tighter) 
values for positional accuracy and repeatability. However, this may result in a large number of 
robots being selected and the prototype system allows ranking only through price and vendor 
attributes. To rank robots for each and every attribute, however, would probably be both unwieldy 
and unrealistic. - - 
Moreover, a knowledge-based robot selection system should provide a friendly interface that 
allows the decision maker to input English phrases to describe a particular application; the system 
would then use the task definition thus provided by the user to suggest applicable robot(s). 
Therefore, the crucial task of the knowledge-based system would be to make sense out of the 
English phrases supplied by the decision maker to describe the task. This implies that the knowl- 
edge-based system would have to have some natural language processing capability to properly 



associate the task description with meanings represented in the knowledge base. This, then, would 
pave the way for processing the applicable knowledge to reach a choice of a set of robots. 
Additionally, as mentioned earlier, the database component of the expert system needs to store a 
wealth of information about a wide range of robots and vendors. This information can be not only 
very detailed, but volatile as well, as the robot technology advances and as competition among 
vendor produces changes in vendor profiles. What all this amounts to is that the expert system 
needs to be able to survive the test of time and handle this voluminous data in a graceful manner. 
Current expert systems exhibit elementary data management capabilities which are inadequate for 
this inherently complex database. As Jarke and Vassiliou [7] indicate, a generalized Database 
Management System (DBMS) integrated in the ES may be necessary to deal with this database 
effectively. These authors sketch out four ways to extend expert systems with DBMS capabilities, 
not a l l  of which are relevant in any given circumstances. 

CONCLUSION 

We presented in this paper a robot selection model based on a three-stage selection process; each 
stage feeds its output into the next stage until a final robotfvendor combination is selected. We 
implemented this model in a prototype knowIedge-based system using the CLIPS expert system 
language. The prototype indicated that a full fledged expert system will be practical and can be 
extremely useful in providing a consistent and credible robot selection approach. 

Further work is needed to improve the granularity and natural language processing capability of the 
system. Also needed is research into possibilities of extending the database management capabili- 
ties of the robot selection system by coupling it with a database management system. 

REFERENCES 

1. Anthony, Tery B. and Hauser, Richard D., "Expert Systems in Production and 
Operations Management: Research Directions in Assessing Overall Impact," 
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, Vo1.29, No. 12,199 1, 
pp. 247 1-2482. 

2. Ayres, Robert U. and Miller, Steven M., ROBOTICS: APPLICATIONS AND SOCIAL 
IMPLICATIONS, Ballinger Publishing Co., 1983. 

3. Fard, Nasser S. and Sabuncuoglu, Ihsan, "An Expert System for Selecting Attribute 
Sampling Plans," INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 
Vo1.3, No.6, 1991, pp. 364-372. 

4. Fisher, E.L., "Industrial Robots Around the World," in Nof, S.Y., ed., HANDBOOK OF 
INDUSTRIAL ROBOTS, John Wiley & Sons, New York, 1985. pp. 1305-1332. 

5. Gianatano, Joseph and Riley, Gary. EXPERT SYSTEMS : PRINCIPLES AND 
PROGRAMMING, PWS-KENT Publishing Company, Boston, 1989. 

6. Hunt, V. Daniel, UNDERSTANDING ROBOTICS, Academic Press Inc., 1990. 

7. Jarke, Matthias and Vassilliou, Yannis, "Coupling Expert Systems With Database 
Management Systems," EXPERT DATABASE SYSTEMS: PROCEEDINGS OF THE 
FIRST INTERNATIONAL WORKSHOP,, L. Kerschberg, (Ed.), BenjarnidCummings, 
1986, pp. 65-85. 



8. Jones, M. S., Malmborg, C. J. and Agee, M. H., "Decision Support System Used for Robot 
Selection," INDUSTRIAL ENGINEERING, Vol. 17, No. 9, September, 1985, pp. 66-73. 

9. Knott, Kenneth, and Getto, Robert D., "A model for evaluating alternative robot systems 
under uncertainty," INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 
Vol. 20, No. 2, 1982, pp. 155-165. 

10. Martin, Linda and Taylor, Wendy, A BOOKLET ABOUT CLIPS APPLICATIONS, 
NASA, Lyndon B. Johnson Space Center, 199 1. 

11. Malmborg, C., Agee, M. H., Simons, G. R. and Choudhry, J.V., "A Prototype Expert 
System For Industrial Truck Selection," INDUSTRIAL ENGINEERING, Vol. 19, No. 
3, March 1987, pp. 58-64. 

12. NASA, Lyndon B. Johnson Space Center, CLIPS BASIC PROGRAMMING GUIDE, 
1991. 

13. Nof, S.Y., Knight, J. L., JR, and Salvendy, G., "Effective Utilization of Industrial Robots- 
A Job and Skills Analysis Approach," AIIE TRANSACTIONS, Vol. 12, No. 3, pp. 216- 
224. 

14. Offodile, Felix 0. and Johnson, Steven L., "Taxonomic System for Robot Selection in 
Flexible Manufacturing Cells," JOURNAL OF MANUFACTWUNG SYSTEMS, 
Vol. 9, No.1, 1987, pp. 77-80. 

15. Offodile, Felix O., Larnbert, B.K. and Dudek, R.A., "Development of a computer aided 
robot selection procedure (CARSP)," INTERNATIONAL JOURNAL OF 
PRODUCTION RESEARCH, Vol. 25, No. 8, 1987, pp. 1109-1 121. 

16. Offodile, F. O., Marcy, W. M. and Johnson, S.L., "Knowledge base design for flexible 
robots," INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, Vol. 29, 
No. 2, 1991, pp. 3 17-328. 

17. Pharn, D.T. and Tacgin, E., "DBGRIP: A learning expert system for detailed selection 
of robot grippers," INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 
Vol. 29,' No. 8, 1991, pp. 1549- 1563. 

18. Pluym, Ben Van Der, "Knowledge-based decision-making for job shop scheduling," 
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED 
MANUFACTURING, Vol. 3, No. 6, 1990, pp. 354-363. 

19. Shah, V., Madey, G., and Mehrez, A., "A Methodology for Knowledge-based Scheduling 
Decision Support," OMEGA: INTERNATIONAL JOURNAL OF MANAGEMENT 
SCIENCES, Vol. 20, No. 516, 1992, pp. 679-703. 

20. Trevino, J., Hurley, B.J., Clincy, V. and Jang, S.C., "Storage and industrial truck selection 
expert system (SITSES)," INTERNATIONAL JOURNAL OF COMPUTER 
INTEGRATED MANUFACTURING, Vol. 4, No. 3,199 1, pp. 187- 194. 

21. Wang, M-J., Singh, H. P. and Huang, W. V., "A decision support system for robot 
selection," DECISION SUPPORT SYSTEMS, Vol. , 199 1, pp. 273-283. 



Session 3B: Knowledge Acquisition and CLIPS/External Software Integration 

Session Chair: Keith Led 





ADDING INTELLIGENT SERVICES TO AN OBJECT ORIENTED SYSTEM. 

Bret R. Robideaux and Dr. Theodore A. MetzIer 

LB&M Associates, Inc. 
211 SW A Ave. 

Lawton, OK 73505-4051 
= - /o 

(405) 355-1471 

Abstract 

As today's software becomes increasingly complex, the need grows for intelligence of 
one sort or another to become part of the application- often an intelligence that does not 
readily fit the paradigm of one's software development. 

There are many methods of developing software, but at this time, the most promising 
is the Object Oriented (00) method. This method involves an analysis to abstract the 
problem into separate 'Objects' that are unique in the data that describe them and the 
behavior that they exhibit, and eventually to convert this analysis into computer code 
using a programming language that was designed (or retrofitted) for 00 implementa- 
tion. 

This paper discusses the creation of three different applications that are analyzed, 
designed, and programmed using the Shlaer/Mellor method of 00 development and 
C++ as the programming language. All three, however, require the use of an expert sys- 
tem to provide an intelligence that C++ (or any other 'traditional' language) is not 
directly suited to supply. The flexibility of CLIPS permitted us to make modifications to 
it that allow seamless integration with any of our applications that require an expert sys- 
tem. 

We illustrate this integration with the following applications: 
1. An After Action Review (AAR) station that assists a reviewer in watching a 

simulated tank battle and developing an AAR to critique the performance 
of the participants in the battle. 

2. An embedded training system and over-the-shoulder coach for howitzer 
crewmen. 

3. A system to identlfy various chemical compounds from their infrared 
absorption spectra. 

Keywords - Object Oriented, CLIPS 



INTRODUCTION 

The goal of the project was to develop a company methodology of software develop- 
ment. The requirement was to take Object Oriented Analysis (done using the Shlaer-Mel- 
lor method) and efficiently convert it to C++ code. The result was a flexible system that 
supports reusability, portability and extensibility. The heart of this system is a software 
engine that provides the functionality the Shlaer/Mellor Method (Ref. 2 & 3) allows the 
analyst to assume is available. This includes message passing (inter-process communica- 
tion), state machines and timers. CLIPS provides an excellent example of one facet of the 
engine. Its portability is well-known, and its extensibility allowed us to embed the 
appropriate portions of our engine into it. We could then modify its behavior to make it 
pretend it was a natural object or domain of objects. This allowed us to add expert sys- 
tem services to any piece of software developed using our method (and on any platform 
to which we have ported the engine). 

OBJECT ORIENTED METHODS 

The principal concept in an 00 Method is the object. Many methods include the con- 
cept of logically combining groups of objects. The logic behind determining which 
objects belong to which grouping is as varied as the names used to identlfy the concept. 
For example, Booch (Ref. 4) uses categories and Rumbaugh (Ref. 5) uses aggregates. 
Shlaer/MeUor uses domains (Ref. 3). Objects are grouped into Domains by their func- 
tional relationships; that is, their behavior accomplishes complementary tasks. 

Fig. 1 shows that the operating system is its own domain. It is possible the operating 
has very little to do with being 00, but it is useful to model it as part of the system. 
Another significant domain to note is the Software Architecture Domain. This is the soft- 
ware engine that provides the assumptions made in analysis. The arrows denote the 
dependence of the domain at the beginning of the arrow upon the domain at the end of 
the arrow. If the model is built properly, a change in any domain will only affect the 
domains immediately above it. Notice there are no arrows from the main application 
(Railroad Operation Domain) to the Operating System Domain. This means a change in 
operating systems (platfonns) should not require any changes in the main application. 
However, changes will be required in the domains of Trend Recording, User Interface, 
Software Architecture and Network. The extent of those changes is dependent on the 
nature of the changes in the operating system. But this does stop the cascade effect of a 
minor change in the operating system from forcing a complete overhaul of the entire sys- 
tem. 

While CLIPS could be considered an object, the definition of domains makes it seems 
more appropriate to call it a domain. 

THE SOFTWARE ENGINE 

The portion of the software engine that is pertinent to CLIPS is the message passing. 
The event structure that is passed is designed to model closely the Shlaer/Mellor event. 



RailRoad Operation 

Software Architecture 

Figure. 1: Domain Chart for the Automated Railroad Management System 
Copied from page 141 (Figure 7.4.1) of Ref 3 

We have implemented five (5) kinds of events: 
1. Standard Events: events passed to an instance of an object to transition the 

state model 
2. Class Events: events dealing with more than one instance of an object 
3. Remote Procedure Calls (RPCs): An object may provide functions that other 

objects can call. One object makes an RPC to another passing some parameters 
in, having some calculations performed and receiving a response. 

4. Accesses: An object may not have direct access to data belonging to another 
object. The data other objects need must be requested via an accessor. 

5. Return Events: the event that carries the result of an RPC or Access event 



The event most commonly received by CLIPS is the Class Event. CLIPS is not a true 
object. Therefore it has no true instances, and Standard Events are not sent to it. CLIPS is 
more likely to make an RPC than to provide one. It is possible that an object may need to 
know about a certain fact in the fact base, so receiving an Access is possible. Should 
CLIPS use an RPC or Access, it will receive a Return Event. RPCs and Accesses are con- 
sidered priority events so the Return Event could be handled as part of the function that 
makes the call. 

The events themselves have all of the attributes of a Shlaer/Mellor event, plus a few to 
facilitate functionality. The C++ prototype for the fundion Send-Mesg is: 

void Send-Mesg (char* Destination, 
EventTypes Type, 
unsigned long EventNumber, 
char* Data, 
unsigned int DataLength = 0, 
void* InstanceID = 0, 
unsigned long Priority = 0); 

The engine is currently written on only two different platforms: a Sun 4 and an 
Amiga. CLIPS, with its modifications, was ported to the Amiga --along with some appli- 
cations software that was written on the Sun-- and required only a recompile to work. 
This level of portability means that only the engine needs to be rewritten to move any 
application from one platform to another. Once the engine is ported, any applications 
written using the engine (including those with CLIPS embedded in them) need only be 
recompiled on the new platform and the port is complete. Companies are already build- 
ing and selling GUI builders that generate multi-platform code so the GUI doesn't need 
to be rewritten. 

The Unix version of the Inter-Process Communication (IPC) part of the engine was 
written using NASA's Simple Sockets Library. Since all versions of the engine, regardless 
of the platform, must behave the same way we have the ability to bring a section of the 
software down in the middle of a run, modify that section and bring it back up without 
the rest of the system missing a beat. In the worst case, the system will not crash unre- 
coverably. 

MODIFICATIONS TO CLIPS 

Since the software engine is written in C++, at least some part of the CLIPS source 
code must be converted to C++. The most obvious choice is main.c, but this means the 
UserFunctions code must be moved elsewhere since they must remain written in C. I 
moved them to sysdep.~. 

The input loop has been moved to main.c because all input will come in over the IPC 
as valid CLIPS instructions. The stdin input in CommandLoop has been removed, and 



the function is no longer a loop. The base function added to CLIPS is: 

(RETURN event-number destination data) 

This function takes its three parameters and adds them to a linked list of structures 
(see Fig. 2). When CommandLoop has completed its pass and returns control to main.c, 
it checks the linked list and performs the IPC requests the CLIPS code made (see Fig. 3). 
RETURN handles the easiest of the possible event types that can be sent out: Class 
Events. To handle Standard Events, some way of managing the instance handles of the 
destination(s) needs to be implemented. To handle Accesses and RPCs some method of 
handling the Return events needs to be implemented. The easiest way is to write a man- 
ager program. Use RETURN to send messages to the Manager. The event number and 
possibly part of the data can be used to instruct the Manager on what needs to be done. 

RETURN 0 
t 
extract parameters from call 

allocate a new element for the list 

fill in the structure 

add structure to the list 

I 

main () 
I 
init CLIPS 

begin loop 

Get Message 

.set command string 

call CommandLoop 

check output list 

if there are elements in the structure 
make the appropriate send messages 

end loop 
I 

Figure. 2: Pseudocode for function RETURN Figure 3: Pseudocode for main () 

Sending instructions and information into CLIPS requires a translator to takes Shlaer/ 
Mellor events and convert them to CLIPS valid instructions. In Shlaer/Mellor terms this 
construct is called a Bridge. 

With these changes CLTPS can pretend it is a natural part of our system. 

EXAMPLES 

This system has been successfully used with three different projects. An After Action 
Review Station for reviewing a simulated tank battle, an Embedded Training System to 
aid howitzer crewmen in the performance of their job and a chemical classifier based on 
a chemical's infrared absorbtion spectra. 



The After Action Review (AAR) station is called the Automated Training Analysis 
Feedback System or ATAFS. See Figure 4 for its domain chart. Its job is to watch a simu- 
lated tank battle on a network and aid the reviewer in developing an AAR in a timely 
manner. It does so by feeding information about the locations and activities of the vehi- 
cles and other pertinent data about the exercise to the expert system. The expert system 
watches the situation and marks certain events in the exercise as potentially important. 
ATAFS will then use this information to automatically generate a skeleton AAR and pro- 
vide tools for the reviewer to customize the AAR to highlight the events that really were 
important. I 



In an early version of the system, ATAFS was given the location of a line-of-departure, 
a phase-line and an objective. During the simulated exercise of four vehicles moving to 
the objective, CLIPS was fed the current location of each vehicle. CLIPS updated each 
vehicle's position in its fad base and compared the new location with the previous loca- 
tion in relation to each of the control markings. When it found a vehicle on the opposite 
side of a control mark than it previously was, it RETURNed an appropriate event to 
ATAFS. Upon being notified that a potentially interesting event had just occurred, 
ATAFS is left to do what ever needs to be done. CLIPS continues to watch for other 
events it is programmed to deem interesting. 

User Interface 

Fig 5: ET Domain Chart 



Embedded Training (ET) is a coaching and training system for howitzer crewmen. 
See Figure 5 for its domain chart. It provides everything from full courseware to simple 
reminders/checklists. It also provides a scenario facility that emulates real world situa- 
tions and includes an expert system that watches the trainee attempt to perfom the 
required tasks. During the scenario the expert system monitors the trainee's activities 
and compares them to the activities that the scenario requires. 

It adjusts the user's score according to his actions and uses his current score to predict 
whether the user will need help on a particular task. All of the user's actions on the ter- 
minal are passed along to CLIPS, which interprets them and determines what the he is 
currently doing and attempting to do. Having determined what the user is doing, CLIPS 
uses its RETURN in conjunction with a manager program to access data contained in 
various objects. This data is used by CLIPS to determine what level of help, if any, to 
issue the user. The decision is then RETURNed to ET which supplies the specified help. 

The chemical analysis system (Ref. 6) designed by Dr. Metzler and chemist Dr. Gore 
takes the infrared (IR) spectrum of a chemical compound and attempts to classify it 
using a trained neural net. In the course of their study, they determined the neural net 
performed significantly better when some sort of pre-processor was able to narrow 
down the identification of the compound. CLIPS was one of the methods selected. The 
IJ3 spectrum was broken down into 52 bins. The value of each of these bins was 
abstracted into values of strong, medium and weak. Initially three rules were built: one 
to identify ethers, one for esters and one for aldehydes (Figure 6). 

(defrule ester 
(bin 15 is strong) 
(or (bin 24 is strong) 

(or (bin 25 is strong) 
(bin 26 is strong)) 

(and (or (bin 22 is strong) 
(bin 23 is strong) 
(bin 24 is strong)) 

(or (bin 25 is strong) 
(bin 26 is strong) 
(bin 27 is strong))) 

(and (bin 28 is medium) 
(or (bin 22 is strong) 

(bin 23 is strong) 
(bin 24 is strong)))) 

=> 
(RETURN 1 "IR-Classifier" "compound is an ester")) 

Figure 6. Example of a Chemical Rule 



The results of this pre-processing were RETURNed to the neural net which then was 
able to choose a module specific to the chosen functional group. Later, the output from 
another pre-processor (a nearest neighbor classifier) was also input into CLIPS and ruIes 
were added to resolve differences between CLTPS' initial choice and the nearest-neigh- 
bor 's choice. 

CONCLUSIONS 

CLIPS proved to be a very useful tool when used in this way. In ET and ATAFS, the 
Expert System Domain could easily be expanded to use a hybrid system similar to that 
of the Chemical Analysis problem, or use multiple copies of CLIPS operating indepen- 
dently or coordinating their efforts using some kind of Blackboard. In many applica- 
tions, intelligence is not the main concern. User interface concerns in both ET and ATAFS 
were more important than the intelligence. ET has the added burden of operating in con- 
juction with a black box system (software written by a partner company). ATAFS' big- 
gest concern was capturing every packet off of the network where the exercise was 
occurring and storing them in an easily accessible manner. The flexibility of C++ is better 
able to handle these tasks than CLIPS, but not nearly as well suited for representing an 
expert coaching and grading a trainee howitzer crewman or reviewing a tank battle. 
While recognizing individual chemical compounds would be tedious task for CLIPS 
(and the programmer), recognizing the functional group the compound belongs to and 
passing the information along to a trained neural net is almost trivial. 

Expert systems like CLIPS have both strengths and weaknesses, as do virtually all 
other methods of developing software. Object Oriented is becoming the most popular 
way to develop software, but it still has its shortfalls. Neural nets are gaining in popular- 
ity as the way to do Artificial Intelligence, especially in the media, but they too have their 
limits. By mixing different methods and technologies, modifying and using existing soft- 
ware to interact with each other, software can be pushed to solving greater and greater 
problems. 



REFERENCES 

1. .Gary Riley, et al, CLIPS Reference Manual, Version 5.1 of CLIPS, Volume III Utilities 
and Interfaces Guide, Lyndon B. Johnson Space Center (September 10,1991). 

2. Sally Shlaer and Stephen Mellor, Obiect-Oriented Systems Analysis, Modeling: - the 
m. (P T R Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1988). 

3. Sally Shlaer and Stephen Mellor, Obiect Lifecvcles, Modeling the World in States. 
(Prentice-Hall, Inc., Englewood Cliffs, ~ e w  ~ e r s e ~ ,  i992). 

1, 

4. Grady Booch, Obied Oriented Desim with Applications. (The Benjamin/Cummings 
publishing company, Inc., Redwood C~Q, califo$a, 1991). 

5. James Rumbaugh, et al, object-oriented Modeling and Desim. (Prentice-Hall, Inc., 
Englewood Cliffs, 1991). 

6.  T.A. Metzler and R.H. Gore, Application of Hfid  A1 to Identification of Chemical 
Compounds, Proceedings of TECOM Conference on A1 and the Environment, Aberdeen 
Maryland, September 13-16,1994 



i 

CLIPS, AppleEvents, and AppleScrlpt: 
7 

Integrating CLIPS with Commercial Software 390 78 
Michael M. Compton 

cornpton@ptolemy .arc.nasa.gov 
(415) 604-6776 

Shawn R. Wolfe 
shawn@ptolemy.arc.nasa.gov 

(415) 604-4760 

A1 Research Branch / Recom Technologies, Inc. 
NASA Ames Research Center 
Moffett Field, CA 94035-1000 

.. 
Abstract: 

Many of t o w s  intelligent system are comprised of sberal softwaremodules, perhaps written in 
dfferent tools and languages, that together help solve the users' problem. These systems often 
employ a knowledge-based component that is not accessed directly by the user, but instead 
operates "in the background" offering assistance to the user as necessary. In these types of 
modular systems, an eficienr, jlexible, and em-to-use mechanism for sharing data between 
programs is crucial. To help permit transparent integration of CWPS with other Macintosh 
applications, the A1 Research Branch at NASA Ames Research Center has extendeq CLIPS to 
allow it to communicate transparently with other applications through two popular &a-sharing 
mechanisms provided by the Macintosh operating system; Apple Events (a "high-level" event 
mechanism for program-to-program communication), a& AppleScript, a recently-released 
scripting language for the Macintosh. This capability permits other applicatiom (nmning on either 
the same or a remote machine) to send a command to CLIPS, which then responds as if the 
command were typed into the CLlPS dialog window. Any result rencpned by the command is then 

Y 

automatically returned to the program that sent it. Likewise, CLlPS can send several types of 
Apple Events directly to other local or remote applications. This CLIPS system has been 
successfully integrated with a variety of commercial applications, including data collection 
programs, electronic forms packages, DBMSs, and email programs. These mechanisms can 
pennit transparent user access to the knowledge basZ from within a commercial application, and 
allow a single copy of the knowledge base to service multiple users in a networked environment. 

Introduction 

Over the past few years there has been a noticeable change in the way that "intelligent applications" 
have been developed and fielded In the early and mid- 1980s, these systems were typically large, 
monolithic systems, implemented in LISP or PROLOG, 4x1 which the inference engine and 
knowledge base were at the core of the system. In these "KB-centric" systems, other parts of the 
system (such as the user interface, file system routines, etc.) were added on once the inferential 
capabilities of the system were developed. These systems were often deployed as multi-megabyte 
"SYSOUTs" on special-purpose hardware that was Micult  if not impossible to integrate into 
existing user environments. 

Today, intelligent systems are _more commonly being deployed as a collection of interacting 
software modules. In these systems, the knowledge base md inference engine serve as a 
subordinate and often "faceless" component that interacts with the user indirectly, if at all. 

Several such systems have been deployed recently, by the Artificial Intelligence Research Branch at 
NASA's Ames Research Center: 

The Supemuid Helium On-Orbit Transfer system (& SHOOT) bas a modular expert system that 
monitored and helped control a Spac~Shuttle-based helium transfer experiment which flew 



onboard the Endeavor orbiter during mission STS-57 in June, 1993. In that system, a CLIPS- 
based knowledge system running on a PC laptop on the Shuttle's Aft Flight Deck was embedded 
in a custom-developed C program that helped crew members (and ground controllers) perform 
transfer of cryogenic liquids in mimgravity. 

The Astronaut Science Advisor (also known as "PI-in-a-Box", or simply "jPn") was another 
modular system that flew onboard the Space Shuttle in 1993 (131). [PIJ ran on a Macintosh 
PowerBook 170 laptop computer and helped crew members perform an experiment in vestibular 
physiology in Spacelab. This system was comprised of a CLIPS-based knowledge system that 
interacted with Hypercard (a commercial user interface tool h m  Claris Corporation and Apple 
Computer) and LabVIEW (a commercial data acquisition tool from National Instruments) to 
monitor data being collected by the crew and offer advice on how to refme the experiment protocol 
based on collected data and, when necessary, troubleshoot the experiment apparatus. In that 
system, U P S  ran as a separate application and communicated with Hypercard via specially- 
written external commands (XCMDs) that were linked into the HypeKard application. 

The Prototype Electronic Purchase Request (PPR) system ([I] and 121) is yet another modular 
system that motivated the enhancements being described in this paper. The PEPR system uses a 
CLIPS-based howledge system to validate and generate electronic routing slips for a variety of 
electronic forms used frequently at NASA Arnes. A very important part of the PEPR system's 
capabilities is that it is able to work "seamlessly" with several commercial applications. 

Interestingly, these applications represent a progression of integration techniques in which the 
knowledge-based component interacts with customdeveloped pgrams. This progression starts 
with tightly-coupled, "linked" integration of components (in SHOOT), to integration via custom- 
built extensions to a specific commercial product (in CPIJ), and finally to a general-purpose 
integration mechanism that can be used with a variety of commercial products (in PEPR). 

Requirements for the PEPR system 

A brief description of the PEPR system will help explain how we determined our approach to the 
pmblem of integrating CLIPS with other commercial applications. 

Our primary goal in the development of the PEPR system was to demonstrate that knowledge- 
based techniques can improve the usability of automated workflow systems by helping validate and 
route electronic forms. In order to do this, we needed to develop a prototype system that was both 
usable and provided value in the context of a real-world problem. This meant that in addition to 
developing the knowledge base and tuning the inference engine, we also needed to provide the 
users with other tools. These included software to fill out electronic forms and send them between 
users, as well as mechanisms that could assure recipients of these f o m  that the senders were 
really who they appeared to be, and that the data hadn't been altered, either accidentally or 
maliciously, in transit. We also wanted to provide users with a way by which to find out the status 
of previously-sent forms, in terms of who had seen them and who hadn't. 

Of course, we didn't want to have to develop all of these other tools ourselves. Thankfully, 
commercial solutions were emerging to help meet these additional needs, and we tried to use these 
commercial tools wherever possible. Our challenge became, then, how to best integrate the CLIPS- 
based knowledge system component with these other commercial tools. 

Our first try at component integration: Keyboard macros 

Our initial integration effort was aimed at developing a "seamless" interface between the knowledge 
system and the electronic forms package (which of course was the primary user interface). Our 



first try was to use a popular keyboard macro package to simulate the keystrokes and mouse clicks 
that were necessary to transfer the data from the forms program to CLIPS. The keyboard macro 
would, with a single keystroke, export the data on the form to a disk file, switch to the CLIPS 
application, and then "type" the (reset and c run) commands (and the requisite carriage returns) 
into the CLlPS dialog window. This would then cause CLIPS to read in and parse the data from 
the exported file. 

This worked fairly well, and was reasonably easy to implement (that is, it did not require 
modifying any software). However, the solution had several serious drawbacks. First, it required 
that the user have the keyboard macro software (a commercial product) running on his or her 
machine. Also, the macro simply manipulated the programs' user interface, and was therefore 
very distracting for the user because of the fluny of pull down menus and dialog boxes that would 
automatically appear and disappear when the macro was run. Most importantly, however, was that 
the keyboard macro approach required each user to have their own copy of CLIPS and the 
knowledge base running locally on their machine. This, of course, would have presented 
numerous configuration and maintenance problems; the "loadup" files would have to be edited to 
run properly on each user's machine, and fixing bugs would have involved distributing new 
versions of the software to all users (and making sure they used it). Another drawback was that 
we found that the keyboard macros would often "break" midway through their execution and not 
complete the operation. This would, of course, have also been very frustrating for users. As a 
result, this early system, although somewhat useful for demonstrations, was never put into 
production. 

Our second try: Apple Events 

Our next attempt at integrating the electronic forms package with CLIPS was motivated by a 
demonstration we saw that showed that it was possible to integrate the forms package we had 
selected with a commercial DBMS. In this demo, a user was able to bring up an electronic order 
form, and enter information such as, say, a vendor number. When the user tabbed out of the 
Vendor Number field, the forms software automatically looked up the corresponding information 
in a "vendor table" in a commercial DB running on a remote machine. The vendor's name and 
address automatically appeared in other fields on the farm. 

Of course, this sort of data sharing is quite common in many data processing environments. 
However, we found this capability exciting because it involved two Macintosh applications 
(including ow forms package of choice), from different vendors, cooperating across an AppleTalk 
network, with virtually no assistance from the user. This was exactly the sort of "seamless" 
behavior we were seeking. 

This functionality was provided by what are known as "Apple Events", a "high-level event 
mechanism" that is built into "System 7", the current major release of the Macintosh operating 
system. We were encouraged by the fact that the forms package we had selected supported the use 
of Apple Events to communicate with external programs. We thought it might be possible to 
implement our desired inter-program interface by making CLIPS mimic the DBMS application with 
respect to the sending and receiving of Apple Events. However, the particular set of Apple Events 
supported by that version of the forms software was limited to interaction that particular DBMS 
product. This was problematic for several reasons. First, the set of Apple Events being used were 
tailored to interaction with this particular data base product, and it wasn't clear how to map the 
various DB constructs they supported into CLIPS. Second, it would have required a considerable 
amount of programming effort to develop what would have been the interface between a s w ~ c  
foms product and a specific data base product. We wanted to minimize our dependence on a 
particular product, in case something better came along in the way of a forms package or a DBMS. 



So, we ended up not implementing the DB-specific Apple Event mechanism. However, we were 
still convinced that the Apple Event mechanism was one of the keys to our integration goals, and 
did implement several more general Apple Event handlers, which are described below. 

What are Apple Events? 

The following provides a brief description of the Apple Event mechanism. As mentioned above, 
Apple Events are a means of sharing data between to applications, the support for which is 
included in System 7. An Apple Event has four main parts. The first two components are a 4- 
character alphanumeric "event class" and a 4-character "event ID". The thki component identifies 
the ''target application" to which the event is to be sent The actual data to be sent is a wlIection of 
keyword/data element pairs, and can range from a simple string to a complex, nested data 
structure. (In addition to these, there are several other parts of the event record which specify 
whether a reply is expected, a reply time-out value, and whether the target application can interact 
with a user.) From a programmer's perspective, these events are created, sent, received and 
processed using a collection of so-called "ToolBox" calls that are available through system 
subroutines. 

Although Apple Events are a "general purpose" mechanism for sharing data between programs, 
programs that exchange data must follow a pre-defined protocol that describes the format of the 
events. These protocols and record formats are described in the Apple Event Registry, published 
periodically by Apple Computer. 

Event Class: MI sc 
Event ID: DOSC 

Target App: <ProcessID> 
Event Data: " ---- " 

" (load \"MYKB.CLP\") " 

Figure 1: An Example Apple Event 

Figure 1 shows an example of a "do script" event that might be sent to CLIPS. The event class is 
"MIS@', and the event ID is "dosc". The Cdash "parameter keyword" identifies the string as a 
"direct object" parameter, and is used by the receiving program to extract the data in the event 
record. The protocol associated with the "do script" event in the Apple Event Registry calls for a 
single string that contains the "script" to be executed by the target application. In this example, it's 
a CLIPS command for loading a knowledge base file. This example shows the simplest data 
format. More complex Apple Events may require numerous (and even embedded) keywddata 
pairs. 

The Apple Event mechanism is very powerful. However, we wanted a more flexible solution to 
our needs of integrating CLIPS with the commercial forms application. It would have required 
considerable effort to implement a Apple-Event based programmatic interface between CLIPS and 
the other applications with which we needed to share data. That is, we didn't want to have to code 



specific Apple Event handling routines for every other application we were using. This would 
have made it very difficult to "swap in" different applications should we have needed to. What we 
needed was a way by which we could use the power of Apple Events to communicate between 
CLIPS and other programs, but make it easier to code the actual events for a given program. 

Our third try: AppleScript 

Just as we were trying to figure out the best way to link CLIPS with the other programs we wanted 
to use, we learned about a new scripting technology for the Mac called AppleScript. This new 
scripting language provides most of the benefits of Apple Events (and is in fact based on the Apple 
Event mechanism) such as control of and interaction with Macintosh applications running either 
locally or remotely. In addition, it offers some other benefits that pure Apple Event pr0gpxmnh.g 
does not. For example, using AppleScript, one is able to control and share data with an ever- 
growing array of commercial applications, without having to understand the details of the 
application's Apple Event protocol. AppleScript comes with a reasonably simple Script Editor that 
can be used to compose, check, run, and save scripts. In addition to providing a l l  the constructs 
that one might expect in any programming language (variables, control, VO primitives) it is also 
extendible and can even be embedded in many applications. 

The thing that made AppleScript particularly appealing for our use was that it utilized the Apple 
Event handlers that we had already added to CLIPS. All that was necessary to permit the 
"scriptability" we desired was the addition of a new "Apple Event Terminology Extension" 
resource to our already-modified CLIPS application. This AETE resource simply provided the 
AppleScri t Editor (and other applications) with a "dictionary" of commands that CLIPS could 
understan f and the underlying Apple Events that the Applescript should generate. 

Another very appealing aspect of integrating programs with AppleScript is more and more 
commercial software products are supporting AppleScript by becoming scriptable. That of course 
makes it much easier to take advantage of new software products as they come along. For 
example, we recently upgraded the forms tracking data base used by the PEPR system. We were 
able to replace a "flat-file" data base package with a more-powerful relational DBMS product with 
only minor modifications to the AppleScript code linking the DB to the other applications. This 
would have been far more difficult (if even possible) had we relied solely on integration with 
AppleEvents. 

The main disadvantage to using AppleScript rather than Apple Events is that AppleScript is 
somewhat slower than sending Apple Events directly. However, the increased flexibility and 
power of AppleScript more than compensates for the comparative lack of speed 

tell application "CLIPSn of machine "My Macm1 
of zone "Engineeringw 

do script " (reset) " 
do script " (run) " 
set myResult to evaluate (send [wing-1] get-weight) " 
display dialog "Wing weight is " & myResult 

end tell 

Figure 2: An example AppleScript program 



Figure 2 shows an example script that could be used to control CLlPS remotely. There are several 
things to note in this example. First, the commands are passed to CLIPS and executed as though 
they had been entered into the Dialog Window. The example shows both the "do script" command 
(which does not return a result) and the "evaluate" command (which does). The example also 
shows a "display dialog" command which is built in to Applescript and displays the result in a 
modal dialog box. Of particular interest is that the CLIPS application is running on another 
Macintosh, which is even in anothm AppleTalk zone. 

Specific CLIPS Extensions 

The following paragraphs describe the actual CLJPS extensions that have been implemented to 
support the functionality described above. Note that some of these extensions were actually 
implemented by Robert Dominy, formerly of NASA Goddard Space Flight Center. 

Receiving Apple Events 

It's now possible to send two types of Apple Events to CLIPS. Each takes a string that is 
interpreted by CLIPS as though it were a command typed into the Dialog Window. The format of 
these Apple Events is dictated by the Apple Event Registry, and they are also supported by a 
variety of other applications. Note that CLIPS doesn't currently return any syntax or execution 
errors to the program that sent the Apple Events, so it is the sender's responsibility to ensure that 
the commands sent to CLIPS are syntactically carrect. 

The "do scriptn Event 

The "do script*' event (event class = MISC, event ID=DOSC) passes its data as a string which 
CLIPS interprets as if it were a command that were typed into the Dialog Window. It returns no 
value to the sending program. 

The "evaluate" Event 

The "evaluate" event (event class = MISC, event ID=EVAL) is very similar to the do script event, 
and also passes its data as a string which CLIPS interprets as if it were a command that were typed 
into the Dialog Window. However, it does return a value to the sending program. This value is 
always a sfring, and can be up to 1024 bytes in length. 

Sending Apple Events from CLIPS 

The two Apple Events described above can also be sent by CLIPS from within a knowledge base. 
Of course, the application to which the events are sent must support the events or an error will 
occur. However, as mentioned above, the "do script" and "evaluate" events are very common and 
supported by many Mac applications. 

SendAEScript command 

The SendAEScript command sends a "do script" event and can appear in a CLIPS function or in 
the right-hand-side of a rule. The syntax of the SendAEScript command is as follows: 

(SendAEScript <target app> <command>) 

In the above prototype, <target app> is an "application spectfication" and <corrrmana> is a valid 
command understandable by the target application. An application specification can have one of 
three forms; a simple application name, a combination application name, machine name and 



App1eTal.k Zone name, or a process identifier (as returned by PPCBrowser, described below). The 
SendAEScript command returns zero if the command is successfully sent to the remote 
application, and a variety of error codes if it was not. Note that a return code of zero does not 
guarantee that the command was successfully executed by the remote application; only that it was 
sent successfully . 
The following examples show each of the application specification types. 

CLIPS>(SendAEScript "Hypercard" "put \"hello\" into msg") 
0 
CLIPS> 

The above example sends a "do script" Apple Event to Hypercard running on the local machine, 
and causes it to put "hello" into the HyperCard message box. 

CLIPS>(SendAEScript "Hypercardn "John's Mac" "R&Dn "put \"hello\" into msgn) 
0 
CLIPS> 

The above example sends a similar "do script" Apple Event to Hypercard running on a computer 
called "John's Mac" in an AppleTallc zone named "R&D". Note that it is necessary to "escape" the 
quote characters surrounding the string "hello" to avoid them being interpreted by the CLIPS 
reader. 

SendAEEval command 

The SendAEEval command is very similar to the SendAEScript command, differing only in that it 
returns the value that results from the target application evaluating the command 

(SendAEEval <target app> <command>) 

The following examples show U P S  sending a simple command to Hypercard running on the 
local machine: 

CLIPS> (SendAEEval "Hypercard" "word 2 of \"my dog has fleas\" "1 
"dog" 
CLIPS> 

Note that the result returned by SendAEEval is always a string, e.g.: 

CLIPS> (SendAEEval "Hypercard" "3 + 6 " )  
"9" 
CLIPS> 

The SendAEEval colllflliind does not curzently support commands that require the target application 
to interact with its user. For example, one could not use SendAEEval to send an "ask" command 
to Hypercard. 

PPCBrowser command 

The PPCBrowser function permits the CLIPS user to select an AppleEvent-aware program that is 
currently running locally or on a remote Mac. This command brings up a dialog box from which 
the user can click on various App1eTal.k zones, machine names and "high-level event aware" 
applications. It returns a pointer to a ''process ID" which can be bound to a CLIPS variable and 
used in the previouslydescribed "send" commands. 



CLIPS> (defglobal ?*myapp* = (PPCBrowser) ) 
CLIPS> ?*myapp* 
<Pointer: 00FF85E8> 

The above example doesn't show the user's interaction with the dialog box. 

GetAEAddress command 

The GetAEAddress function is similar to PPCBrowser in that it MUrnS a pointer to a high-level 
aware application that can then be bound to a variable that's used to specify the target of one of the 
"SendAE" commands described earlier. Rather than presenting a dialog box to the user, however, 
it instead takes a "target app" parameter similar to that described above. 

(GetAEAddress <target app>) 

The following example shows the GetAEAddress function being used to specify the target of a 
SendAEEval function call. 

CLIPS> (defglobal ?*myapp* = (GetAEAddress "HypercardA "Jack's Mac" "R&Dw))  
CLIPS> (SendAEEval ?*myapp* "8 + 9") 
"17" 
CLIPS> 

Timestamp command 

Another extension we've made is unrelated to inter-program communication. We have added a 
~imestamp command to CLIPS. It returns the current system date and time as a string: 

CLIPS> (Timestamp) 
W e d  Sep 7 12:34:56 1994" 
CLIPS> 

Possible Future Extensions 

In addition to the CLIPS extensions described above, we are also looking into the possibility of 
implementing several other enhancements. First, we want to generalize the current Apple Event 
sending mechanisms to permit the CLIPS programmer to specify the event class and event ID of 
the events to be sent. This is a relatively straightforward extension if we limit the event data to a 
string passed as the "direct object" parameter. It would be somewhat harder to allow the CLIPS 
programmer to specify more complex data structures, because we would have to design and 
implement a mechanism that allows the CLIPS programmer to construct these more complex 
combinations of keywords, parameters, and attributes. We will probably implement these 
extensions in stages. 

Another extension we're considering is to make CLIPS "attachable". This would permit the 
CLIPS programmer to include pieces of AppleScript code in the knowledge base itself. This 
would significantly enhance the power of CLIPS, as it would make it possible to compose, 
compile, and execute AppleScript programs from within the CLIPS environment, and save these 
programs as part of a CLIPS knowledge base. 



Acknowledgments 

Some the extensions described in this paper were designed and implemented by Robert Dominy, 
formerly of NASA's Goddard Space Flight Facility in Greenbelt, Maryland. 

Also, Jeff Shapiro, formerly of Ames, ported many of the enhancements described herein to 
CLIPS version 6.0. 

References 
[I] Compton, M., Wolfe, S. 1993 Intelligent Validation and Routing of Electronic Forms in a 
Distributed Worwow Environment.. Proceedings of the Tenth IEEE Conference on A1 and 
Applications. 
[2] Compton, M., Wolfe, S. 1994 AI and Worwow Automation: The Prototype Electronic 
Purchase Request System. Proceedings of the Third Conference on CLAPS. 
[3] Frainier, R., Groleau, N., Hazelton, L., Colombano, S., Compton, M., Statler, I., Szolovits, 
P., and Young, L., 1994 PI-in-a-Box, A knowledge-based system for space science 
experimentation, AI Magazine, Volume 15, No. 1, Spring 1994, pp. 39-51. 



1 -? 
TARGET'S ROLE IN KNOWLEDGE ACQUISITION, ENGINEERING, 

VALIDATION, AND DOCUMENTATION 

Keith R. Levi, Ph.D. 
Department of Computer Science 

Maharishi International University 
1000 North Fourth Street, FB 1044 

Fairfield, Iowa 52557 
email: levi@rniu.edu 

ABSTRACT 
We investigated the use of the TARGET task analysis tool for use in the development of rule- 
based expert systems. We found TARGET to be very helpful in the knowledge acquisition 
process. It enabled us to perform knowledge acquisition with one knowledge engineer rather 
than two. In addition, it improved communication between the domain expert and knowledge 
engineer. We also found it to be useful for both the rule development and refinement phases of 
the knowledge engineering process. Using the network in these phases required us to develop 
guidelines that enabled us to easily translate the network into production d e s .  A significant 
requirement for TARGET remaining useful throughout the knowledge engineering process was 
the need to carefully maintain consistency between the network and the rule representations. 
Maintaining consistency not only benefited the knowledge engineering process, but also had 
significant payoffs in the areas of validation of the expert system and documentation of the 
knowledge in the system. 

INTRODUCTION 

Developing an expert system involves processes of knowledge acquisition, creation of a 
prototype rule base, creating a series of refinements to the prototype system, validating the 
system, and maintaining the system. Although these processes are conceptually separable, in 
actual practice they interact a great deal. The knowledge acquisition phase of this development 
process has long been recognized as the greatest challenge to building an expert system (Hayes- 
Roth, Waterman and Lenat, 1983). 

The TARGET (NASA, 1993) task analysis tool appears to be well-suited to assisting in the 
knowledge acquisition process in a way that should directly facilitate all the other phases of 
expert system creation. TARGET (Task Analysis Report Generation Tool) is a graphical 
network creation tool intended for modeling tasks that are primarily procedural in nature. An 
example of a TARGET generated network is shown in Figure 1. 

TARGET has mainly been used for knowledge acquisition, both as the initial phase of expert 
system development and also as a self-contained model of a given procedure. It was our 
expectation that in addition to facilitating knowledge acquisition for an expert system, TARGET 
would benefit the other processes of expert system development. First, it should benefit the 
initial creation of rules by acquiring knowledge in a form that is easily translatable into rules. 
Second, having a graphical representation of knowledge should assist in examining the rule 
base for areas needing further development and refinement. Third, the graphical representation 
should also facilitate validation by providing an easily navigable map of the entire knowledge 
base. And finally, it should aid system maintenance by providing documentation of the 
knowledge in the expert system in a manner complementary to that provided by the rule base. 



APPLICATION DOMAIN 

The application domain was a help desk for a commercial software product. Expert systems are 
becoming quite successful in this domain (Rewari, 1993). Perhaps the most prominent example 
is Compaq Computer, who have developed and fielded systems that recently received on of the 
American Association of Artificial Intelligence's awards for innovative applications of A1 
(Hedberg, 1993). Compaq estimates that their system saves them $10 - $20 million dollars 
annually in customer service costs. Hewlett-Packard, Digital Equipment Corporation, and 
Color Tile are other exampIes of companies that have developed help-desk expert systems 
(Arnold, 1993). Color Tile's system has reportedly enabled them to expand the services of their 
help desk, reduce average call time from ten to two minutes, and simultaneously reduce staff 
from twelve to seven people. 

The software product for our expert system, ClearAccess (ClearAccess Corporation, 1993), 
provides a common end-user interface to over 60 databases, including Oracle, Sybase, Ingres, 
DB2, IMS, Paradox, DBASE, and others. The system works in client-server architectures, 
allows database queries to be constructed using a graphical interface, and also interfaces with 
spreadsheet, wordprocessor, and graphics programs. It can be used in conjunction with a J 

spreadsheet program such as Microsoft Excel to create a spreadsheet front-end to a database. 

Technical support for ClearAccess is a signficant challenge for its help desk. In typical software 
companies, technical support personnel are often junior programmers or even non- 
programmers. There is high turnover since personnel are often promoted to development 
positions when they become more knowledgeable about the product. Technical support for 
ClearAccess is pdcularly challenging because of the breadth of knowledge required. 
Technical support personnel must be knowledgeable not only about their own product, but also 
about the many databases, spreadsheets, and other packages their system interacts with. Since 
ClearAccess usually works in a client-server network they must also be familiar with client- 
server and networking software and hardware. 

The help-desk expert system we developed for ClearAccess presently encompasses about 200 
rules and covers the most critical and common issues encountered by the technical support 
personnel. The expert system is a rule-based data-driven reasoning system for diagnosis, 
testing, and remediation of customer problems. The system is presently undergoing validation 
testing by the help-desk personnel. 

KNOWLEDGE 

The first stage in developing an expert system is the process of knowledge acquisition. This 
process traditionally involves two knowledge engineers interviewing a subject matter expert. 
One knowledge engineer has lead responsibility for conducting the interview. The other has 
lead responsibility for taking notes during the interview. In contrast to the traditional 
knowledge acquisition process we found that only a single knowledge engineer was needed 
when using TARGET. 

During a knowledge acquisition session the domain expert articulated tasks and procedures used 
by ClearAccess help-desk personnel for a given problem. As each task was articulated the 
knowledge engineer immediatly recorded these as nodes and links in a TARGET task network. 
The domain expert observed the network as the knowledge engineer entered it. The knowledge 
that was being communicated (or not communicated, in some cases) was immediatly obvious. 
In addition to facilitating knowledge acquisition by making it immediatly obvious what was 
being communicated, this procedure also provided an explicit visual trace of the knowledge in 
the system as the session proceeded. This was valuable because it allowed the domain expert to 



easily recall any earlier assumptions that she or he made in the course of a long line of 
reasoning. 

Figure 1 shows a fragment of the TARGET task network for problems associated with linking 
databases with spreadsheets such as Microsoft's Excel. One traces a problem solving session 
starting with the leftmost node and the following a path according to the comments in the nodes 
and the labels on the directed links between nodes. The hexagon nodes are decision nodes. 
There are always two or more arcs leaving a decision node. The text in the decision node poses 
some question. The arcs leaving the node are labeled with the possible answers to the question. 
The rectangular nodes are required tasks. They describe a task or procedure that must be 
performed Required tasks with heavy borders are terminator tasks. They indicate the 
completion of a process. 

Change the SCCLF' 

39 ? h a t  r*th=r :ha- 

i s  the a w n t  0 . . ~ n g  prr tr .  t h e  

d,l. recurnod 

What i s  Che 3.C 

I O C  ~ h t  ~llP0O 

Ne prob1.m. C1e 

r o c 1 3  

7 

Figure 1. A fragment of the TARGET task network for the ClearAccess technical support 
expert system. 

The network fragment shown in Figure 1 is only a portion of the network for dealing with 
problems involving ClearAccess and Excel. The total network for dealing with these problems 
presently has 46 nodes. The fragment pictured has 21 nodes. There are four other problem 
areas that the expert system currently covers. These areas have their own task networks, each 

.I 

containing from 40 to 50 nodes. 



KNOWLEDGE ENGINEERING 

The knowledge engineering process involves taking the information gained from the knowledge 
acquisition process and implementing it in a computer executable form. In this case we are 
implementing the information as forward-chaining production rules for the CLIPS expert 
system shell. Typically, the knowledge acquisition process produces textual notes which may 
or may not be accompanied by graphs, charts, or pseudo-code rules. In the present case, the 
knowledge acquisition process produces the TARGET task network. We found that translating 
the task networks into CLIPS rules was straightforward once we established guidelines for 
creating the TARGET representation. 

Rule Creation Phase 

Figure 2 shows two rules developed from the partial network shown in Figure 1. The first rule, 
Uask-clipboard-limit, comes from a hexagonal decision node. The second rule, CLsave- 
results-to-file comes from the rectangular required-task node that immediatly follows the 
decision node of the first rule. As illustrated in the first rule, decision nodes become queries 
when translated to CLIPS rules. The links leaving decision nodes become a menu of possible 
responses to the query. In this rule, the menu presented to the end user will simply have 
alternatives of "yes" or "no". This yes-no menu is produced by the yes function that appears in 
the assertion of the rule. The rest of the consequent has the effect of creating an attribute, data- 
returned-equals-clipboard-limit, and then assigning the appropriate "yes" or "no" value (selected 
by the end user) to the atmbute. This attribute-value pair is then asserted to the fact list. The 
antecedents of the rule are derived from all the assertions along the path leading to the decision 
node. 

(defrule CLask-clipboard-limit (defrule CLsave-results-to-file 
(phase clinks) (phase clinks) 
(subproblem unexpected-results) (subproblem unexpected-results) 
(unexpected-result-type truncated-data) (unexpected-result-type truncated data) 
(saving-results-file-or-clipbd clipboard) (data-returned-equals-clipboard-limit yes) 
= > (saving-results-file-or-clipbd clipboard) 
(assert (data-returned-equals-clipboard-limit = > 

=(yes "Is the amount of data being (msg "Change the script so that rather than 
returned equal to the clipboard limit using paste, the results are stored to a 
(64K: Windows, 32K: Mac)?")))) file; then open the file in the application.") 

(assert (saving-results-file-or-clipbd file))) 

Figure 2. Two CLIPS rules derived from task network displayed in Figure 1. 

It is important that all the nodes along the path to the decision node are involved in the 
antecedent of the rule. This serves to make the rule a self-contained piece of knowledge. 
This self-containment property is fundamental to having a comprehensible and well-structured 
rule-based expert system (Brownston, et. al., 1985; Igniiio, 199 1; Pedersen, 1989). 

The second rule in Figure 2 illustrates that required-task nodes will typically produce some 
notification message telling the user to perform some action. (Or, in a more automated # 

environment the expert system might perform the action itself). The consequent of the rule must 
assert a fact onto the fact list to represent that the indicated action has been performed. In this 
rule a message is given to the user to change the spreadsheet macro-script such that the results 
are stored to a file rather than using the paste function. A corresponding fact is then asserted to 



the fact list. Analogous to the case for decision nodes, the antecedents for this rule are &rived 
from all the assertions along the path leading to the required-task node. 

Rule Refinement Phase 

A greater challenge than creating a set of rules from the initial TARGET network was keeping 
the TARGET representation consistent with the CLIPS rules as we refined the system. Such 
refinements are a major part of the expert system development process. The usual case in 
developing an expert system is to quickly develop an initial prototype system consisting of a 
fmt-pass set of rules. Most of the work in developing the system is then performed as a 
process of trying out the prototype, adding new rules, and modifying rules as necessary. 

The difficulty in maintaining consistency arises because the expert system's behavior results 
from the knowledge as implemented in CLIPS rules and executed by the CLIPS inference 
engine. The knowledge underlying the system, however, is most easily analyzed in terms of 
the graphical TARGET representation. We found that it was quite convenient and informative r 
to use the TARGET nerwork as a guide to which parts of the expert system were incomplete or 
needed further refinements. 

For this knowledge engineering phase we used two PCs operating side-by-side. One was 
displaying the TARGET network and the other was executing the CLIPS expert system. We 
used the TARGET network as a navigation guide for testing the behavior of the expert system. 
We made only minor changes to the CLIPS rules during these sessions. We found it was much 
more efficient to make changes to the TARGET network during the session with the domain 
expert rather than to the CLIPS rules. We added new nodes to the network in some cases and 
in others modified existing nodes. We clearly marked any changes to the network so that we 
could return to them at a later time and make the necessary modifications to old rules or 
additions of new rules to the CLIPS rule set. 

This procedure was heavily dependent on maintaining a close correspondence between the 
network and rule representations. If there was not a close correspondence then we could not 
easify locate the network nodes to modify in response to desired changes in the behavior of the 
expert system. Or, we might make changes to network nodes, but if there is a lack of 
correspondence then it becomes quite difficult to locate the CLIPS rules that need to be changed 
in response to the network changes. We found that unless we were very careful and 
conscientious about maintaining this consistency the two representations quickly diverged and it 
became impossible to relate them. 

VALIDATION AND DOCUMENTATION 

Maintaining consistency between the network and rule representations was a lot of work. It 
required a significant amount of discipline and effort on our part. This was not surprising since 
the task network represents a type of external documentation for the expert system code. Most 
software developers tend to avoid careful documentation of their code unless they are required 
to do so. Such writing takes time and effort, and developers almost always feel that their code 
is clear and comprehensible--at least at the time they are writing it. This natural tendency to 
avoid documentation is even monger in developing expert systems where one uses a fast 
prototyping approach and code is typically written, tested, and then revised or discarded. 
It is almost always the case, however, that the code is never so clear and comprehensible to 
other individuals who might have to maintain the code at a later date. Further, it is common 
experience that the code becomes difficult to understand even for the original developer after a 
few weeks or ever a few days away from it. 



Thus, one significant benefit of maintaining consistency of the network and rule representations 
beyond its immediate benefit of aiding the rule refinement process is that it results in effective 
documentation of the knowledge in the expert system. Indeed, the two representations 
document the knowledge in the system in complementary ways. Rule-based representations are 
well-suited to documenting self-contained chunks of declarative knowledge (Brownston et. al., 
1985; Ignizio, 199 1; Pedersen, 1989). But they are not so appropriate for documenting the 
procedural flow-of-control among the chunks of knowledge. This information is implicit in the 
interaction between the entire rule set and the expert system inference engine. The task network 
representation, on the other hand, is well-suited to documenting the flow of control of the 
knowledge in the system. It is not so strong at representing the self-contained chunks of 
knowledge that are well-captured by production rules. 

This documentation of corporate knowledge is by itself of significant value to a company. It is 
also quite useful for validating the knowledge in the implemented version of the system. Given 
a task network representation that is closely related to the rule-based implementation of the same 
knowledge, it is quite straightforward to use the network to guide a domain expert in testing the 
system such that he or she evaluates at least one path to every final state in the system. 
Referring to the network fragment in Figure 1, one can see that it wouId be straightforward to 
use the network to direct answers to the expert system queries such that the network is 
navigated to each terminal node. After a terminal node is encountered the knowledge engineer 
(or domain expert) marks that node and its incoming link as having already been traversed. In 
this way it is easy to ensure that every terminal node has been visited at least once. 

UnIess the task network has a simple tree topology, this procedure does not guarantee that all 
possible paths through the expert system have been examined. This would require a more 
sophisticated graph traversal procedure. However, even this simple procedure should guarantee 
a much more systematic and thorough validation check of an expert system than is often done 
for rule-based expert systems. 

SUMMARY AND CONCLUSION 

First, we found TARGET to be very helpful in the knowledge acquisition process. It enabled 
us to perform knowledge acquisition with one knowledge engineer rather than two, and in 
addition it improved communication between the domain expert and knowledge engineer. We 
also found it to be useful for both the rule development and refinement phases of the knowledge 
engineering process. Its usefulness in this process required that we adopt guidelines for 
developing the network. These guidelines enabled us to easily translate the network into 
production rules. A significant requirement for TARGET remaining useful throughout the 
knowledge engineering process was the need to carefully maintain consistency between the 
network and the rule representations. Maintaining such a consistency not only benefited the 
knowledge engineering process, but also had significant payoffs in the areas of validation of the 
expert system and documentation of the knowledge in the system. We conclude that TARGET 
is a very useful tool for aiding the development of rule-based expert systems such as are 
typically developed with the CLIPS expert system shell. 

Finally, we propose that a promising area for future work is to automate the process of 
generating CLIPS rules from a TARGET task network. Such a facility would simultaneously 
eliminate the need to hand-code CLIPS rules and the problem of maintaining consistency 
between the task network and the production rules. The generality of such a rule generator will 
depend on the specific guidelines and restrictions that are placed on the construction of the task 
networks. 



ACKNOWLEDGMENTS 

Ahto Jarve provided very able assistance in performing much of the knowledge acquisition and 
knowledge engineering for the expert system described in the paper. Melinda Thomas and 
Patrick Geurin of Fairf~eld Software provided the domain expertise encoded in the expert 
system. I would also like to acknowledge the initial work on the Clear Access technical support 
expert system camed out by Dr. Ralph Bunker, Patrick Daley, and Slobodan Durnuzliski. 

REFERENCES 

Arnold, B., "Expert System Tools Optimizing Help Desks," SOFTWARE MAGAZINE, 
January, 1993, pp. 56 - 64. 

Brownston, L., Farrell, R., Kant, E., and Martin, N., PROGRAMMING EXPERT 
SYSTEMS IN OPS5, Addison-Wesley, Reading, MA, 1985. 

ClearAccess, "User's Guide," ClearAccess Corporation, Fairf~eld, Iowa, 1994. 

Hayes-Roth, F. Waterman, D.A., and Lenat, D., BUILDING EXPERT SYSTEMS, Addison- 
Wesley, Reading, MA, 1983. 

Hedberg, S. "The Evolution of Applied AI: A Report on the Fifth Innovative Applications of 
A1 Conference," A1 MAGAZINE, Fall, 1993. 

Ignizio, J., INTRODUCTION TO EXPERT SYSTEMS: THE DEVELOPMENT AND 
IMPLEMENTATION OF RULE-BASED EXPERT SYSTEMS, McGraw-Hill, 199 1. 

Ortiz, C.J., Ly, H.V., Saito, T., and Loftin, R.B. "TARGET: Rapid Capture of Process 
Knowledge," PROCEEDINGS OF TECHNOLOGY 2002: THE THIRD NATIONAL 
TECHNOLOGY TRANSFER CONFERENCE AND EXPOSITION, Vol 1, NASA, 
Washington, February 1993, pp 279-288. 

Pedersen, K., EXPERT SYSTEMS PROGRAMMING: PRACI'ICAL TECHNIQUES FOR 
RULE-BASED SYSTEMS, Wiley, 1989. 

NASA, "TARGET Reference Manual," Software Technology Branch, NASA, Johnson Space 
Center, Houston, Texas, November, 1993. 

Rewari, A., "A1 in Corporate Service and Support," IEEE EXPERT, Vol8:6, 1993, pp 5 - 40. 



Q-P?/~-- 

Session 4A: Aerospace Applications 

Session Chair: Melissa Mahoney 





An Expert S stem for Configuring a Network J $+v&dJ 
&r a Milstar Terminal 

P- 9 
Melissa J. Mahoney 

Dr. Elizabeth J. Wilson 

Raytheon Company 
1001 Boston Post Road 
Marlboro. MA 01572 

Abstract 

This paper describes a rule-based expert system which assists the user in configuring a network for Air 
Force terminals using the Milstar satellite system. The network configuration expert system approach 
uses CLIPS. The complexity of network configuration is discussed, and the methods used to model it 
are described. 

1. Introduction 

Milstar COMPLEXITY 

Milstar is a flexible, robust satellite communications system which provides world-wide communication 
capability to a variety of usus for a wide range of tactical and strategic applications. Milstar is interoperable 
requiring simultaneous access by Air Force, Navy and Army terminals. The transmiVreceive capability of these 
terminals ranges from small airborne units with limited transmission power to stationary sites with large fixed 
antennas. 

The wide range of applications of the Milstar system includes services capable of supporting status reporting, 
critical mission commands, point-to-point calls, and networks. The same system that provides routine weather 
reports must also allow top-level mission coordination among all services. This diversity results in traffic which 
is unpredictable and variable. The system must accommodate both voice and &ta services which can be 
transferred at different rates simultaneously. In order to protect itself from jamming and interference, the 
Milstar waveform includes a number of signal processing features, such as frequency hopping, symbol hop 
redundancy, and interleaving, some of which are among the network parameters defined at service setup. 

The configuration of each terminal is accomplished through the loading of adaptation data. This complex data 
set provides all the terminal specific and mission specific parameters to allow the terminal to access the satellite 
under the mission conditions with the necessary resources to establish and maintain communication. Network 
definitions are a subset of this adaptation data. 

Defining a network for a terminal is a challenging task requiring a large body of knowledge, much of it 
heuristic. The systems engineers who have been on the Milstar program for many years have amassed this 
knowledge; many of them have been reassigned'to other programs. Since the recent launch of the first Milstar 
satellite, testing activity has been very high and expertise in this area is not readily available. When testing ends 
and Milstar becomes fully operational, the terminals will be operated by personnel whose Milstar knowledge is 
considerably less than that of the systems engineers. To solve the problem of having a user with limited 
knowledge take advantage of the many network configuration capabilities of the Milstar system, one of the 
systems engineers proposed developing an expert system to encapsulate the vast amount of knowledge required 
to successfully design network definitions accurately and reliably. 

FWXWMM PAGE BUNK NOT flLlr'lED 



NETWORK COMPLEXI'R 

A Milstar network consists of 82 parameters which are interrelated. Some relationships are well-understood, 
but many are obscure. The few existing domain experts spend a significant amount of time constructing 
network definitions starting from a high-level mission description usually provided by a commanding authority. 
Not only should the network allow communication, but it should do so in a manner which makes optimal use of 
satellite resources. The expert, then, is faced with an optimization problem: to define a network whose 
parameters are consistent with each other whiIe minimizing the use of payload resources. 

The complexity of network configuration is compounded by the number and locations of the terminals which 
will participate in the network. Additional terminals add more constraints to the problem space. The resource 
requirements of different terminals may vary, and their locations may be dynamic, as in the case of airborne 
terminals. 

The complexity further increases when configuring a terminal to participate in several networks simultaneously. 
Certain resources cannot be shared among a terminal's active networks. 

KNOWLEDGE ACQUISITION 

Several system engineers were available as knowledge sources. Initially, they were asked to review each of the 
network parameters and to describe obvious relationships between them. Remarks about rules, exceptions, and 
values were recorded and coded into prototype rules. These ~ 1 e s  were reviewed with the experts and modified 
as needed to confm that the information had been accurately translated. 

In addition to interviewing the domain experts, scores of documents were read. Tables and charts were 
constructed to focus on the rehtionships between only several parameters at a time. Gradually, a hierarchy of 
knowledge was formed. 

The knowledge base was partitioned into functional areas (e.g., hardware parameters, mission-level parameters, 
terminal-specific parameters, and service-specific parameters). A knowledge engineer was assigned to each 
one. When it was deemed that most of the knowledge had been acquired in one of these areas, the entire 
knowIedge engineering team of four would check the functional arza's rules with respect to each network type 
(of which there are 11). This cross-checking resulted in more rules which captured the exceptions and special 
cases associated with the more general rules belonging to the functional area. 

In-house operations and maintenance training courses provided the knowledge engineers with an opportunity to 
learn Milstar as an Air Force terminal operator. This provided the hands-on training that taught lessons not 
documented in specifications. 

2. The Expert System 

SCOPE 

The scope of the task was to develop an expert system to assist the user in configuring a network definition for a 
single terminal. This scope represents the necessary fust step in later building an extended system which will 
address the issues of multiple terminals and multiple networks. 

SYSTEM COMPONENTS 

The expert system consists of three major components: a graphical user interface (GUI), a rule and fact base, 
and an interface between those two components. The GUI performed the more trivial consistency checks 
between the input parameters. For example, if a voice network is king configured, then the only valid &ta rate 
for the network is 2400 bps. The GUI ghosts out all other choices. The GUI also checks the syntax and ranges 
of user-entered data. 



The interface code controls the flow of the expert system. It reads in the user-supplied input items, translates 
them into facts, loads the appropriate rules; when the rules have finished firing, the interface code passes their 
results to the GUI. This process continues as the user moves between the screens. 

Rules and facts were used to check the more complicated relationships between the parameters. Rules were not 
used to perfom trivial tasks (e.g., syntax checking) nor inappropriate tasks (e.g., controlling the flow). 

SOFTWARE TOOLS 

CLIPS was chosen for this project because of its forward-chaining inference engine, and its ability to run as 
both a standalone and an embedded application. Other benefits were its object-oriented design techniques and 
its level of customer support 

The rules and facts were developed, tested and refined on a Sun workstation under UNIX. They were ported to 
an IBM 486166, the target environment. A point-and-click graphical user interface was developed for the PC 
using Visual Basic. Borland C++ was used to write the interface code between the GUI and the CLIPS 
modules. 

Currently, the expert system contains about 100 rules and 1000 facts. 

OBJECTS 

CLIPS Object-Oriented Language (COOL) was used where appropriate. 

In the problem domain, terminals are represented as objects having amibutes such as a terminal id, an antenna 
size, a latitudeflongitude location, and a port usage table. The port usage table is made up of 34 ports. A port is 
an object which has attributes such as data rate and i/o hardware type. Terminals are objects to prepare for 
future expansion to the analysis of a network definition for multiple terminals. 

CLIPS offers a query system to match instances and perform actions on a set of instances. For example, CLIPS 
can quickly find the terminal requiring the most robust downlink modulation by keying off each terminal's 
antenna size and satellite downlink antenna type. Satisfying the needs of this terminal would be a constraint to 
ensure reliable communication among a population of terminals. 

TEMPLATES 

Valid parameter relationships are defined using templates and asserted as facts during system initialization. For 
example, only a subset of uplink time slots are valid with each combination of data rate, uplink modulation, and 
uplink mode. Figure la shows a table relating these parameters. Figure lb  shows a template modeled after this 
table. Figure lc shows a deffacts structure which will assert the facts contained in the table by using the 
template. 

RULES 

Several rules exist for most of the 82 parameters. The left-hand side of each rule specifies a certain combination 
of patterns which contain some bounded values (i.e., network parameters that already have values assigned). 
The right-hand side of each rule performs three actions when it fires. Fist, it assigns a suggested parameter 
value. Second, it creates a multifield containing other valid, but less optimal, parameter values. And, third, it 
creates an explanation associated with the parameter. The GUI highlights the suggested value, but allows the 
user to change it to one of the other valid choices. Figure 2 shows a rule which fires when the expert system 
does not find any valid uplink time slots. [* The problem of refiring needed to be addressed. Refrring occurred 
because when a rule modifies a fact, the fact is implicitly retracted and then reasserted. Since the fact is "new", 
the rule fires again immediately. This problem was solved by including a check in the antecedent whether the 
valid choices multifield is currently the same as what the rule will set it to be. If the fields are identical, then the 
rule will not refire.] 



EXPLANATIONS 

The explanation associated with each parameter reflects the left-hand side of the rule which ultimately assigned 
the parameter's value. An explanation template contains the text, and a flag to indicate whether a positive rule 
fied (i.e., a valid parameter value was suggested), or a negative rule fied (i.e., the expert system could find no 
valid value for the parameter based upon preconditions). In the latter case, the GUI immediately notifies the 
user that the expert system is unable to proceed, and it states a recommendation to fix the problem. Normally 
the user is instructed to back up to a certain parameter whose current value is imposing the unsatisfiable 
constraint The explanation facility is invoked by pointing the mouse on the parameter and clicking the right 
button. 

OUTPUT 

After the user has proceeded through the screens and values have been assigned to all network parameters, she 
may choose various output media and formats. In production, the completed network will be converted to 
hexadecimal format and downloaded into the terminal's database which is then distributed to the field. 

FUTURE EXTENSIONS 

As stated earlier, a terminal class was established to allow for future expansion to the analysis of a network with 
respect to multiple terminals. Taking this idea one step further would involve creating a network class, and 
making a network definition an instance of it. Multiple networks could then be considered simultaneously when 
writing rules to suggest values for certain parameters. For example, a terminal cannot participate in two 
networks which use the same uplink time slot. Advancing the expert system to this level of consistency 
checking would improve its utility significantly. CLIPS promotes a modular approach to design which allows 
the developer to plan for future extensions like these. 

3. Conclusions 

An expert system has proven to be a valuable m l  in the configuration of Milstar terminal network parameter 
sets. The generation of these parameter sets is compIex and primarily heuristic lending itself to an expert 
system approach. CLIPS and COOL has provided an effective and efficient development environment to 
capture the knowledge associated with the application domain and translate these relationships into a modular 
set of rules and facts, The decision to use rules vs. facts, CLIPS vs. C++, rules vs. GUI was made after careful 
consideration of the overall implementation strategy and the most efficient means to provide the expertise. 

The complexity of the problem domain, variety of sources of expertise (design engineers, operational support. 
and program documentation), and broad and varying scope of the applications has made this project a 
significant knowledge acquisition challenge. The knowledge engineering team approach has been successful in 
translating the vast and subtle nuances of the implementation strategies and in developing a synergetic 
composite of the available expertise. 

The combined use of rules, facts, objects, C++ code, and a graphical interface has provided a rich platform to 
capture the Milstar knowledge and transform this knowledge into a modular tool staged for expansion and 
improvement 

References 

1. Basel, J., D'Atri, J. and Reed, R., "Air Force Agile Beam Management", Raytheon Company, 
Equipment Division, Marlborough, Massachusetts, June 15,1989. 

2. Giarratano, J. and Riley, G., EXPERT SYSTEMS: PRINCIPLES AND PROGRAMMING, ed. 2, 
PWS Publishing Company, Boston, Massachusetts, 1994. 

3. Vachula, G., "Milstar System Data Management Concept", GMV:92:05, Raytheon Company, 
Equipment Division, Communication Systems Laboratory, Marlborough, Massachusetts, February 7, 
1992. 



Primary U/L Channels 

Secondary U/L Channels 

Figure la: Table Relating Uplink Time Slot, Uplink Mode, 
Uplink Modulation and Data Rate 

; valid-dr-ts 

; this template sets up associations of uplink mode, 

; uplink modulation, and data rate/timeslot pairs 

(deftemplate valid-dr-ts) 
(field ul -mode 

(type SYMBOL) 
(default ?NONE)) 

(field u l  -modulation 
(type SYMBOL) 
(default ?NONE)) 

(multifield dr-ts 
(type ?VARIABLE) 
(default ?NONE)) 

Figure lb: Template Corresponding to Table in Figure la  





(valid-dr-ts (u 1 -mode SECONDARY) 
(u 1 -modulation HHRFSK4) 
(dr-ts 300 bps with time slots 5-6 

(valid-dr-ts (u I-mode SECONDARY) 
(u 1 -modulation HHRFSK8) 
(dr-ts 300 bps with time slot 7 
150 bps with time slots 5-6 
75 bps with time slots 1-4)) 

(valid-dr-ts (ul-mode SECONDARY) 
(u 1 -modulation HHRFSK16) 
(dr-ts 150 bps with time slot 7 
75 bps with time slots 5-6)) 

(valid-dr-ts (ul -mode SECONDARY) 
(u I-modulation HHRFSK32) 
(dr-ts 75 bps with time slot 7)) 



(defrule 12bults-009 
" this rule fires when the terminal's required d l  modulation is more robust than the implied d l  modulation 

using any u/l time slot." 
(oumet (name data-rate) 

(value ?dr-value)) ; get value of data-rate 
(oumet (name ul-mode) 

(value ?ul -mode)) ; getvalueoful-mode 
(oumet (name ul -antenna-type) 

(value ?ul-ant-type)) ; get value of ul-ant-type 
(oumet (name net-type) 

(value ?net-type)) ; get value of net-type 
?fact <- (oumet (name ul-time-slot) . get address 

(choices $?oldchoices)j ; of time slot 
(test (neq $?oldchoices =(mv-append nil))) ; don't refire (* see note) 
(terminal ?term-id) ; get the terminal id 
(ulmodmap (ant-size =(get-ant-size ?term-id) 

(ul -ant ?ul-ant-type) 
(ul-modulation ?ul-mod-terminal)) 

; get the minimum 
; ul mod this terminal 
; can use given its antenna size 
; and the ul antenna type 

(oumet (name ul -modulation) 
(value ?ul-mod-type)) ; get the dl modulation type 

(valid-ul-quad (data-rate ?&-value) ; get all valid modulations 
(u 1 -mode ?u 1 -mode) ; for this data rate 
(ul -mod-type ?ul-mod-type) 
(ul -mods $?all-valid-mods)) 

(most-to-least u 1 ?u 1 -mode $?allmods) ; get all modulations 
(test (more-robustp ?u 1-mod-terminal (Tirst $?all-valid-mods) $?alirnods)) 

; if the terminal's 
; required robustness is 
; more robust than the 
; most robust implied 
; modulation 

(valid-dr-ts (ul-mode ?ul -mode) 
(ul -modulation ?ul -mod-terminal) 
(dr-ts $?all-dr-ts)) ; get all pairs of valid data rates 

; and timeslots for this modulation 
?explain c- (explanation (param-name ul-time-slot) ; get previous explanation 

(text ?oldtext)) ; associated with this 
; parameter 

Figure 2: Rule Using the Facts Showil in Figure l c  

178 



(modify ?fact (suggest nil) ; no suggested value 
(choices =(mv-append nil))) ; no valid choices 

(if (neq ?net-type MCE) ; tailor the explanation 
then ; to the network type 
(bind ?newtext 
(str-implode 
(mv-append 
(str-explode "This terminal cannot reliably support this service's data rate u sing the current 1111 antenna 
type. U sing any time slot with this data rate would imply an insufficient u/l modulation for this 
terminal. Either use a stronger u 11 antenna type, or lower the data rate. To satisfy this terminal's u/l 
modulation requirements, the valid data rateltime slot pairs are:" 
$?all-dr-ts 

;end append 
;end implode 
;end bind 

else 
(bind ?newtext 
(str-implode 
(mv-append 
(str-explode "This terminal cannot reliably support this service's data rate u sing the current u/l antenna 
type. U sing any time slot with this data rate would imply an insufficient u/l modulation for this 
terminal. Either use a stronger u 11 antenna type, or lower the data rate. To satisfy this terminal's u/l 
modulation requirements, the valid data rateltime slot pairs are:" 
$?all-dr-ts 
(str-explode". Since this is an MCE network, time slot 4 should be used.") 

;end append 
;end implode 
;end bind 

) ;end if 

(explain ?explain ?old text ?newtext YES) 

Figure 2: Rule Using the Facts Shown in Figure l c  (cont'd.) 



Expert System Technologies for 
Space Shuttle Decision Support: 

Two Case Studies 

Christopher J. Ortiz David A. Hasan 
Workstations Branch (PT3) LinCom Corporation 

Johnson Space Center 1020 Bay Area Blvd., Suite 200 
Houston, TX 77058 Houston, TX 77058 

chris.ortiz@jsc.nasa.gov hasan@gothamcity.jsc.nasa.gov 

Abstract 

This paper addresses the issue of integrating the C Language Integrated 
Production System (CLIPS) into distributed data acquisition environments. In 
particular, it presents preliminary results of some ongoing software development 
projects aimed at exploiting CLlPS technology in the new Mission Control Center 
(MCC) being built at NASA Johnson Space Center. One interesting aspect of the 
control center is its distributed architecture; it consists of networked workstations 
which acquire and share data through the NASAIJSC-developed Information 
Sharing Protocol (ISP). This paper outlines some approaches taken to integrate 
CLlPS and ISP in order to permit the development of intelligent data analysis 
applications which can be used in the MCC. 

Three approaches to CLIPSfISP integration are discussed. The initial approach 
involves clearly separating CLlPS from ISP using user-defined functions for 
gathering and sending data to and from a local storage buffer. Memory and 
performance drawbacks of this design are summarized. The second approach 
involves taking full advantage of CLlPS and the CLlPS Object-Oriented 
Language (COOL) by using objects to directly transmit data and state changes 
from ISP to COOL Any changes within the object slots eliminate the need for 
both a data structure and external function call thus taking advantage of the 
object matching capabilities within CLlPS 6.0. The final approach is to treat 
CLlPS and ISP as peer toolkits. Neither is embedded in the other, rather the 
application interweaves calls to each directly in the application source code. 

Introduction 

A new control center is being built at the NASA Johnson Space Center. The 
consolidated Mission Control Center (MCC) will eventually replace the existing 
control center which has been the location of manned spaceflight flight control 
operations since the Gemini program in the 1960s. This paper presents some 
preliminary results of projects aimed at incorporating knowledge-based 



applications into the MCC. In particular, it discusses different approaches being 
taken to integrate CLIPS with the MCC lnformation Sharing Protocol (ISP) 
system service. 

MCC and ISP 

The new control center architecture differs significantly from the current one. The 
most prominent difference is its departure from the mainframe-based design of 
the existing control center. The new MCC architecture is aggressively 
distributed. It consists of UNlX workstations (primarily DEC AlphafOSF1 
machines at present) connected by a set of networks running TCPIIP protocols. 
Exploitation of commercially available products which will be relatively easy to 
replace and upgrade has been a prime motivating factor in this change. 
Particular attention has been paid to the use of standard hardware, and 
commercial off-the-shelf (COTS) software is being used wherever possible. 

With a mainframe computer at the center of all flight support computation, the 
process of presenting telemetry and computational results to flight controllers 
was really a matter of "pushing" the relevant data out of the mainframe onto the 
appropriate flight control terminals. In recent years, the task of acquiring 
telemetry on the system of MCC upgrade workstations has been a matter of 
requesting the telemetry data from the mainframe. The central computer has 
sewed as the one true broker for telemetry data and computations. 

In the distributed MCC design, the notion of a central telemetry and computation 
broker has disappeared. In fact, terminals have disappeared. The flight control 
consoles consist of UNlX workstations which have access to telemetry streams 
on the network but must share data instead of relying on the mainframe for 
common computations. 

Software applications running on the MCC workstations will obtain telemetry data 
from a system service called the lnformation Sharing Protocol (ISP). ISP is a 
client/server service. Distributed clients may request ISP support from a set of 
"peer" ISP servers. The servers are responsible for extracting data from the 
network. Client applications needing those data initiate a session with the 
sewers (possibly from different machines), using the ISP client application 
program interface (API). These clients subscribe to data from the ISP servers, 
which deliver the data asynchronously to the clients as the data change. 
Parenthetically, the ISP API provides data source independence. Thus, ISP 
client applications may be driven by test data for validation and verification, 
playback data for training or live telemetry for flight support. 

It is the intent of the new MCC architecture that hardware (workstations, routers, 
network cabling, etc ...) will take a backseat to the "software platform". ISP is a 
prominent element of this platform, since it is the data sharing component of the 
system services in addition to providing a telemetry acquisition service. Indeed, 
the architecture presupposes that many of the functions previously handled in the 
mainframe program (e.g., display management, limit sensing, fault summary 



messages, "comm fault" detection) will now be carved up into smaller, easier to 
maintain application programs. 

ISP supports the integration of these applications by allowing clients to receive 
data that have been published by other clients. These shared data will in many 
instances be computations which were previously handled internally to the 
mainframe, e.g., spacecraft trajectories and attitude data, but with greater 
frequency, the shared data are expected to be "higher order information" derived 
from analyses of telemetry data. 

Some of the data analysis necessary for the generation of this higher order 
information will be derived from rule-based pattern matching of telemetry. One 
example of this is the Bus Loss Smart System which is used by EGlL flight 
controllers to identify power bus failures. Another example discussed later in this 
paper is the Operational Instrumentation Monitor (oimon) which assesses the 
health of electronic components involved in the transmission of Shuttle sensor 
data down to Earth. 

Rule-based applications can capture the often heuristic procedures ~~ised by flight 
controllers to perform their duties. A number of such applications are currently 
under development by flight control groups where the knowledge-based 
approach contributes to getting the job done "better, faster and cheaper". CLlPS 
is being used in a number of these. In the discussion that follows, methods for 
combining the telemetry acquisition and data sharing functionality of ISP with the 
pattern matching capabilities of CLlPS are discussed. 

An Embedded Approach 

CLlPS is a data-driven language because it uses data in the form of facts to 
activate and fire if-then rules which result in a change of execution state for the 
computer. CLlPS was designed to be embedded in other applications thus 
allowing them the ability to perform complex tasks without the use of complex 
programming on the part of the rule developer. Since ISP is a transport protocol 
for both receiving and transmitting information, it only makes sense to find a way 
to integrate the two toolkits to provide CLlPS developers with a reliable transport 
mechanism for data. 

In our work using ISP and CLlPS we have taken two approaches in integrating 
the two toolkits. The first was to directly embed ISP within CLIPS and provide a 
simple set of user-defined functions which allow the CLlPS developer to 
communicate via ISP. The second approach was to use both toolkits as peers 
allowing the developer to have complete control over the integration. 

The first method of embedding ISP into CLlPS grew out of three separate 
attempts to balance data, speed and ease of use concerns for the application 
developer. The first attempt at integration (Figure 1) consisted of creating a 
separate data layer with which ISP and CLlPS could communicate. This layer 
provides a storage location for all the change only data that ISP receives as well 



as hiding the low level ISP implementation. This approach provided several 
challenges in how ISP and CLIPS would communicate with the data layer. 

I Data Layer I 

TCP / IP H 
Figure 1 : The first attempt at integration 

A simple set of commands was added to CLlPS to aid in the communication with 
ISP. 

(connect-server [CLIPS-TRUE / CLIPSFALSE] ) 
(subscribe-symbol [symbol-name] [CLIPS-TRUE / CLIPS-FALSE] ) 
(enable-symbols [CLIPS-TRUE / CLIPSFALSE] 1 

The connect-server command establishes or disconnects a link with the ISP 
server and registers the application as requesting ISP data. Likewise, 
subscribe-symbol, informs .the ISP server of which data elements are 
requested or no longer needed by the application. The enable-symbols 
command begins and ends the flow of data to the application. 

Other API calls were added to CLlPS to enable an application to publish data to 
the ISP server for use in other CLIPS or ISP only applications. 

(publish-symbol [ symbol-name] [EXCLUSIVE I ) 
(publish [ v A L U E / L I M I T / S T A T U S / M ~ ~ ~ ~ ~ ~ ]  [symbol-name] [data] 
[time] ) 
(unpublish-symbol [symbol-name] 1 

The publish-symbol command informs the ISP server that the CLIPS 
application wants permission to send data under a given symbol-name. The 
optional EXCLUSIVE parameter informs the server that the requesting application 
should be the only application allowed to change the value. 

The final set of APls allows ISP to communicate with CLlPS in the form of facts. 

(want-isp-event [CYCLE/LIMIT] [CLIPS-TRUE/CLIPS - FALSE]) 

The want-isp-event command will activate or deactivate cycle or limit facts to 
be published in the fact list. 

This first attempt provided a solid foundation for communication between the two 
tool kits. However, the use of a separate data layer proved to be cumbersome to 



implement. The data layer needed to have a dynamic array and a quick table 
look-up mechanism as well as a set of functions to provide CLlPS with the ability 
to check values. Each time a rule needed a data value, an external function 
would have to be called. This proved to be a costly option in the amount of time 
needed to call the external function. A better method was clearly needed. 

Our second attempt at integration ISP and CLlPS consisted of the elimination of 
the data layer (Figure 2). All of the ISP data would be fed to CLlPS via facts. 
This method had several advantages. First, it reused the ISP functions 
developed earlier. Second, it allowed CLlPS to store all ISP data as facts. 
Finally, CLlPS application developers could do direct pattern matching on the 
facts to retrieve the data 

I CLlPS 6.0 1 

TCP I IP H 
Figure 2: Removal of the data layer 

The use of facts provided a few smaller challenges in the update and 
management of the fact list. There needed to be a way to find an old- that 
had not been used and retract it when new data arrived. This could be done at 
the rule level or in the integration level. At the rule level, the application 
programmer would be required to create new rules to seek out and remove 
obsolete facts. At the integration level, time would be spent looking for matching 
facts with similar IDS to be removed. 

The final approach at integration of ISP with CLlPS involved the use of the CLlPS 
Object-Oriented Language (COOL). Each data packet would be described as an 
instance of a class called MSID. The MSID class would provide a data storage 
mechanism for storing the data name, value, status, time tag, and server 
acceptance information. 

(defclass M S I D  
(is-a USER) 
( ro le  concrete) 
(pattern-match reactive) 
( s l o t  value ( create-accessor read-write) (default  0 . 0 )  ) 
( s l o t  s ta tus  ( create-accessor read-write) (default  0 . 0 )  ) 
( s l o t  time (create-accessor read-write) (default  0 . 0 )  ) 
( s l o t  accepted (create-accessor read-write) 

(default CLIPS-TRUE) ) 
) 

A second advantage of using the object implementation consists of inheriting 
constructors and destructors. When an instance of the MSID class is created, a 



constructor is activated and the symbol is automatically subscribed. On the other 
hand, when an symbol is no longer needed a destructor is activated and the 
symbol is automatically unsubscribed. Constructors and destructors free the 
application programmer from worrying about calling the appropriate ISP APls for 
creating and deleting symbols. 

(defmessage-handler MSID init after() 
(subscribe-symbol (instance-name ?self) CLIPS TRUE) 

1 
- 

(defmessage-handler MSID delete before() 
(enable-symbols CLIPS-FALSE) 
(subscribe-symbol (instance-name ?self) CLIPS FALSE) - 
(enable-symbols CLIPS - TRUE) 

1 

( definstances MSIDS 
( S02K6405Y of MSID ) 
( S02K6205Y of MSID ) 
( S02K6026Y of MSID ) . . a  

( S02K6078Y of MSID ) 
1 

Creating and subscribing symbols are automatically handled by COOL. One of 
the only ISP implementation details that the application programmer needs to be 
concerned is to enable the symbols and to schedule which ISP events are to be 
handled. 

(defrule connect 
?fact<- (initial-fact) 

r> 

(retract ?fact) 
(enable-symbols CLIPS TRUE ) 
(want-isp-event LIMIT-CLIPS-FALSE ) 
(want-isp-event CYCLE CLIPS-TRUE ) 

1 

Another clear advantage of using objects, like facts, is the ability to do direct 
pattern matching. As the ISP data changes, a low level routine updates the value 
in the affected slot. CLIPS could then activate any rule which needed data from 
the changed slot and work with this information on. 

(defrule Valuechanges 
?msid <- (object ( is-a MSID ) ( value ?value)) 

=> 
(update-interf ace ( instance-name-to-symbol ( 

instance-name ?msid) ) ?value ) 
1 

After working with the integration of CLIPS and ISP there is an advantage that 
CLIPS/COOL bring to bear on the ease of use for linking CLIPS with external 



'real time' data. One such application that used this integrated technology was a 
prototype to display switch positions from on-board systems to Space Shuttle 
ground controllers. The prototype was up and running within three days. The 
display technology had already been developed as part of a training tool to help 
astronauts learn procedures for the Space Habitation Module. The display 
technology was then reused and combined with CLIPS and ISP to monitor 
telemetry and react whenever subscribed data were detected. CLlPS was 
needed deduce single switch settings based on the downlinked telemetry data. 
FOP example, several parameters may contain measurements of pressure across 
a line. If most of the pressure sensors begin to fall low, then a pressure switch 
might have been turned off. 

An Open Toolkit Approach 

So far, the discussion has focused on integration of CLlPS and ISP by 
embedding ISP into CLIPS. This has the advantage of hiding the details of the 
ISP client API from developers of CLlPS applications; however, it is easy to 
imagine applications which are no more "CLIPS applications" per se than they 
are "ISP clients". CLlPS and ISP provide distinct services, so it is not 
immediately obvious which ought to be embedded in the other, or whether 
embedding is even necessary. 

The third approach we used to integrating CLlPS and ISP was implemented into 
the oimon application, discussed below. Instead of embedding ISP inside CLIPS, 
the two APls are treated as "peers" within the application. Consider the following 
definitions: 

open system: a system which makes its setvices available through a 
callable API, 

open toolkit: an open system which permits the caller to always remain 
in control of execution. 

The primary distinction between these two is that open systems may require that 
the caller turn over complete control of the application (e.g., by calling a 
MainLoop ( )  function). 

Open toolkits permit the caller to exploit the systems' functionality while 
maintaining control of the application; it real-time applications, this can be 
critical. Examples of open toolkits include the X-toolkit, the lSlS distributed 
communications system, and TclKk. Figure 3 depicts a number of the CLlPS 
and ISP API functions. Although both have functions which will take control of 
the application (i.e., Run (-1) and ItMainLoop ( )  ), the use of these functions is 
not required; lower level primitives are available to fine-tune execution of the two 
Systems (i.e., Run ( 1 ) and ItNextEvent ( )  , ItDispatchEvent ( )  ). By the 
definitions above, both CLlPS and ISP are open toolkits. As a result, they may 
both be embedded in a single application which chooses how and when to 
dispatch to each. 



ISP: - ItInitialize ( )  
- Itpublish ( )  , Itsubscribe ( ) 
- Itconnectserver(), ItDisconnectServerO 
- ItNextEvent 0 ,  ItDispatchEvent ( )  

CLIPS: - InitializeCLIPS (1 
- Assertstring (1 
- Reset ( 1 

Figure 3: Elements of the CLIPS and ISP appication program interfaces 

The Operational Instrumentation Monitor (oimon) is being developed as a MCC J 

application run at Instrumentation/lntegrated Communications Officer (INCO) 
console workstations. The program is useful to other non-INCO flight controllers, 
since it publishes (via ISP) the status of certain electronic components which may 
affect the validity of data in the telemetry stream. The paragraphs which follow 
outline oimon and discuss how ISP and CLIPS have been integrated into it as 
peer open toolkits. 

ground station 

flight support software 

sensors 

Figure 4: Shuttle sensor "channelization" 

Figure 4 presents a summary of the data flow originating at sensors on board the 
Shuttle (e.g., temperatures, pressures, voltages, current) and ending up on a 
flight controller's display or in some computation used by a flight control 
application. The significant aspect of this figure is that there are a number of 
black boxes (multiplexer/demultiplexers -- MDMs and discrete signal conditioners 
-- DSCs) which sit in the data path from sensor to flight controller. A number of 
these black boxes (the so-called operational instrumentation (01) MDMs and 
DSCs) are the responsibility of the INCO flight control discipline. There are other 
black boxes managed by other disciplines, for example the "flight critical" MDMs. 
The oimon application is concerned with the 01 black boxes. 



Failure of an 01 MDM or DSC can corrupt the telemetry data for a number of on- 
board sensors. As a result, most flight controllers and many flight control 
applications are interested in the status of MDMs and DSCs. Instead of requiring 
that each consumer of telemetry data individually implement the logic necessary 
to assess MDMfDSC status, the INCO discipline will run oimon as an ISP client 
which publishes the status of the 01 MDMs and DSCs. Any consumer of data 
affected by a particular 01 black box may subscribe to its status through ISP and 
thus effectively defer 01 MDWDSC to the INCO discipline. This deferral of 
responsibility to the appropriate discipline is one of the benefits of a software 
architecture which promotes data sharing between different applications on 
different workstations. 

The oimon application is a C-language program which makes calls to the ISP API 
to obtain its input data, the CLIPS API to execute the pattern matching necessary 
to infer the MDM/DSC statuses, and the ISP API to publish its conclusions. 
There are no explicit parameters in the downlist which unambiguously indicate 01 
black box status, and this is the reason CLIPS is needed. The major elements of 
oimon of relevance here are 

*a set of CLIPS rules which implement the pattern matching, 
.callback functions invoked whenever a telemetry event occurs, 
*assertions of CLIPS facts from within the callback functions, and 
*a main loop which coordinates CLIPS rule firing and ISP event dispatching. 

A template of oimon is shown in Figure 5. 

... 
sprintf ( fact, . . . ) ; 
Assertstring (fact) ; 

main 0 t ... 
ItAddCallback( ... isp-events ... ); 
while (True) { 

while ( moreISP ( ) ) { 
ItNextEvent ( . . . ) ; 
ItDispatchEvent ( . . . ) ; 

1 

while ( moreCLIPS () ) { 

Run(1); 
1 

1 
I 

Figure 5: oimon code template 



The CLlPS rule base is constructed so as to implement a number of tests 
currently used by INCO flight controllers to manually assess MDMIDSC status 
and to enable/disable some tests based on the results of others. In particular, 
these tests are (1) the MDM wrap test, (2) MDM and DSC built-in test equipment 
tests, (3) power bus assessment, and (4) a heuristic test developed by INCO 
flight controllers to deduce 01 DSC status based on a handful of telemetry 
parameters which are connected to the DSCs through each of the DSC cards 
and channels. 

The oimon application is still under development. However, preliminary 
experience with it suggests that the integration of CLlPS and ISP as peer toolkits 
called from a main application is not only feasible but easily implemented. 
Preliminary experience with this approach to CLIPS/ISP integration has revealed 
one advantage of it over embedding ISP in CLIPS. Under certain circumstances, 
the invocation of CLlPS functions can invoke the CLlPS "periodic actionw. When 
CLlPS is embedded in ISP, this can cause ISP events to "interrupt" the execution 
of the consequent of an ISP rule. In the peer toolkit approach, ISP functionality is 
not invoked using the CLlPS periodic action and thus this behavior does not 
exist. Subsequent testing of oimon will focus on tuning the event- 
dispatchinglrule-firing balance to ensure that oimon is neither starved of 
telemetry nor prevented from reasoning due to high data rates. 

Summary 

This paper has outlined three approaches we took to integrating the CLlPS 
inference engine and the ISP client API into single applications. A summary of a 
'data layer" approach was given, but this approach was not actually 
implemented. A similar method was also described in which ISP API calls are 
embedded in CLIPS, and ISP event processing is handled as an ISP "periodic 
action". The CLlPS syntax for this approach was presented. A quick prototype 
was developed based on this second approach, and the prototype demonstrates 
the soundness of the technique. In particular, it permitted very rapid 
development of the application. Unlike the first two approaches, the third 
approach we discussed did not embed ISP in CLIPS. Rather the CLlPS and ISP 
APls are invoked as "peer toolkitsw in the C-based oimon application. This 
application is currently being tested against STS-68 flight data, but additional 
development is expected. Preliminary results from oimon suggest that the peer 
toolkit approach is also sound. The possibility of ISP events interrupting the firing 
of ISP rules is eliminated in the oimon approach, since ISP is invoked directly 
from the application instead of being called as a CLlPS periodic action. 

References 

Paul J. Asente and Ralph R. Swick, X Window System Toolkit, Digital Press, 
1990. 



Joseph C. Giarratano and Gary Riley, Expert Systems Principles and 
Programming, PWS Pub. Co. 

Joseph C. Giarratano , CLIPS User's Guide, NASA JSC-25013 

John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994. 

G. Riley, CLIPS: An Expert System Building Tool, Proceedings of the Technology 
2001 Conference, San Jose, CA, December 1991. 

The lSlS Distributed Toolkit Version 3.0 User Reference Manual, lsis 
Distributed Systems, 1992. 



The Meteorological Monitoring System for the Kennedy 3 Q& 
Space CenterICape Canaveral Air Station 

P- /o 
Allan V. Dianic 

(alland@fisher.css.gov) 
ENSCO, Inc. Applied Research and Systems Division 

Me1 bourne, Florida 

Abstract 

The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many 
weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times 
each year, are obvious examples of operations whose success and safety are dependent upon 
favorable meteorological conditions. Other operations involving NASA, Air Force and contractor 
personnel -- including daily operations to maintain facilities, refurbish launch structures, prepare 
vehicles for launch and handle hazardous materials -- are less publicized but are no less weather- 
sensitive. 
The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, 
disseminates and monitors near real-time and forecast meteorological information to assist opera- 
tional personnel and weather forecasters with the task of minimizing the risk to personnel, materi- 
als and the surrounding population. CLIPS has been integrated into the MMS to provide quality 
control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS 
including requirements, actual implementation details and results of performance testing. 

1.0 Introduction 

The Meteorological Monitoring System (MMS) is designed to operate in a networked environ- 
ment for the support of meteorological and operational personnel (see Figure A. 1 on page 7). The 
MMS consists of a Preprocessor (PPR) and one or more Monitoring and Display Station (MDS). 
The MMS Preprocessor acquires data from sensors located in and around the KSC/CCAS area, 
and places them into one of the MMS data classes. These classes categorize data into common 
types for uniform processing (see Figure A.2 on page 7). The data are then subjected to a quality- 
control check by an embedded CLIPS implementation and disseminated to the network of MMS 
Monitoring and Display Stations (MDS). The MDS, using a second MMS implementation of 
CLIPS, provides the end user with a tool to monitor weather and generate warnings and alerts 
when weather conditions violate published criteria. The system maintains a database of operations 
and associated weather criteria for the user to select. Once activated, the meteorological con- 
straints for an operation are transformed into a series of CLIPS rules which, along with a current 
stream of near real-time and forecast data, are used to trigger alarms notifying the user of a poten- 
tially hazardous weather condition. Several user-defined functions have been added to CLIPS, 
giving it the ability to access MMS resources and alarms directly. 
The use of CLIPS for this effort was in lgge part a research effort: we were interested in making 
use of a tool that could add a great deal of flexibility and power to the QC and monitoring tasks. 
However, we were concerned about its implementation and the extent to which performance 
would have to be sacrificed in exchange for thar flexibility. This paper describes aipects of the 
MMS relevant to CLIPS including requirements, actual implementation details and results of per- 
formance testing. The conclusion will discuss the overall success of the effort and future expan- 



sion possibilities. 
The MMS was tested on a DECstation 5000/125 uses a MIPS R3000A processor running at 25 
MHz with 32 megabytes of memory. This was a capable mid-level workstation in 1991, but is 
slower than comparably priced systems currently available. The system was developed under 
Ultrix using C, CLIPS version 5.0, X windows and SL-GMS, a tool for dynamic graphical screen 
management. 

2.0 Quality Control 

Quality control is a function that attempts to identify and tag erroneous weather measurements 
and observations. Missing or invalid data may be introduced by hardware or software failures and 
must be identified so that they do not negatively affect the operation of the MMS. 
The MMS Preprocessor is responsible for acquisition, quality control analysis and dissemination 
of meteorological data. CLIPS has been embedded in the quality control (Data-QC) module, and 
analyzes each data point processed by the system. The Preprocessor currently ingests a minimum 
of 1000 weather measurements each minute; currently these data are contained in approximately 
11 kilobytes of ASCII text. 

2.1 implementation 

Data-QC runs as a background process monitored by the system health facility. During initializa- 
tion, the data templates representing MMS data classes are loaded into the shell. Data-QC then 
waits for a message from the data ingest routine indicating that a set of data is ready to be ana- 
lyzed. The process executes a Unix 'fork' after identifying the data class of the incoming data. 
While the parent process waits for the child to complete, the child loads raw data into the shell 
using the proper data template. QC rules are loaded next, and the shell decision process is initi- 
ated. 
Quality control rules for each data class are structured to operate in two layers. The first layer of 
rules performs the actual analysis of the data while the second provides the mechanism for saving 
the data following the operation. The order of execution is controlled by setting the salience of the 
rules such that the second layer follows the first. For example, 'windspeedqc' is a first level rule 
which evaluates wind facts for a specific condition (a value outside of a range). When the condi- 
tion is satisfied (wind speed in error), the fact being examined is retracted and reasserted with the 
appropriate QC tag. The second level rule 'windsavefacts' exists only to save each fact using the 
user defined function 'record-met-fact,' After the shell concludes execution, the child process 
saves the list of recorded facts to a disk file and sends a control message to trigger dismbution of 
the data to the MMS network. The child process then terminates, and the parent waits for the next 
message. 
The current set of rules implements simple range checking. A more sophisticated set of analysis 
rules could be easily developed and implemented. Quality control rule files are stored in a stan- 
dard - - - location - - - - (a library directory) and are reloaded for each execution, thus allowing for changes 
to be made while the Preprocessor continues to operate. Each data class-has its ownrule file, and 
modified rules will take effect during the next execution cycle for the affected data class. 



2.2 Performance 

The use of U P S  for the QC function adds to the power and flexibility of this facility; however, 
the capabilities of the shell must also be considered in terms of its ability to complete all tasks 
within specified time requirements. If it cannot, then an alternate method would have to be imple- 
mented. 
The CLZPS/QC processing times were obtained by inserting time checkpoints at different loca- 
tions in the code and performing a series of test executions. The data obtained from these tests 
were used to calculate the maximum, minimum and mean performance times for each data class 
currently processed. The data, summarized in Table 2.1, expresses both a base processing estimate 
and three total processing estimates. The base estimate expresses the maximum, minimum and 
mean time for the quantity of data expected to arrive each minute. The total processing estimates 
are based on the average performance of the shell's processing of lightning data. The minimum, 
maximum and average times are multiplied by the number of lightning strikes (20,60 or 100) and 
added to the base processing estimate listed in the fist section of the table. 

Table 2.1 CLIPS/QC Performance (all times are in seconds) 
Class Iterations Data Pts Maximum Minimum Average 

per Iteration 
Wind 37 62 6.870 2.150 3.936 
Temperature 37 69 4.850 1.470 2.378 
Elec. Potential 31 625 22.430 7.540 1 1.457 
GeneralMet 37 1 0.340 0.180 0.241 

--------- --------- --------- 
Base Processing Estimate 34.490 1 1.340 18.012 

Single Lightning 220 1 0.380* 0.180 0.240 
Strike 

Total processing estimates including lightning: 
Total/20 strikes 42.090 14.940 22.8 15 
Totd60 strikes 57.290 22.140 32.420 
Total/lOO strikes 72.490 29.340 42.026 
* The maximum value within 3-standard deviations was used, above which there 
were only four points: 0.410,0.430,0.560,0.590. The sample standard deviation 

The performance of the shell in this implementation is well within the time requirement for han- 
dling expected data loads. The minimum one-minute data load had an average processing time of 
18.012 seconds, which is only 30 percent of the maximum available time. In the MMS's current 
environment (Florida), lightning activity is a daily issue during the summer months. Data loads in 
excess of one strike per second are experienced frequently and such loads increased the average 
processing time to 32.420 seconds (54 percent of maximum); 100 smkes per minute required 
42.026 seconds (70%). These results confirm that CLIPS can handle such a task in a near real- 
time environment. Admittedly the current rules are very simple, but this was necessary to validate 
a minimum ability to operate in this environment. The unanswered question remaining to be 
explored concerns enhancements to the complexity of QC rules and the effect such enhancements 
would have on processing times. While such a discussion is not within the scope of this paper, it 



seems that enhancements are possible. Average idle time for the QC function was 18 seconds 
(30%) out of each minute, which would indicate available capacity for more sophisticated analy- 
sis techniques. Additional consideration must be given to the fact that newer, faster hardware 
would certainIy provide faster processing of shell tasks. 

3.0 Monitoring 

The MMS Monitoring and Display Station (MDS) is responsible for receiving, monitoring and 
displaying meteorological and forecast data. CLIPS has been embedded in the monitoring (Data, 
Monitor) module and controls the activation and deactivation of alarm conditions based upon data 
and constraints. The MDS provides the user with all the necessary user interfaces for controlling 
and observing Data-Monitor activity. 

3.1 Implementation 

Data-Monitor consists of two separate processes; the MonitoringController and Monitoring 
CLIPS. Monitoring-Controller runs as a background process monitored by the system health 
facility. Monitoring-CLIPS is a module containing both CLPS and user definetl functions. 

MonitoringConnoller waits for a message from the another MDS process which would indicate 
a change in status (i.e. new meteorological data received, operation activation, monitoring pause 
or resume). The conuoller uses a simple scheduling control mechanism to record such events and 
trigger shell executions. When a shell is to be executed, the controller retrieves all active meteoro- 
logical constraints and builds CLIPS rules to search the fact base. Rules for each data class are 
written into separate disk files. Monitoring-CLIPS is started by MonitoringController through a 
Unix 'fork' to process rules and data for a specific data class. One Monitoring-CLIPS is started 
for each data class scheduled to be processed. The Monitoring-Controller then waits for the chil- 
dren to complete their executions. 

MonitoringCLIPS initializes the shell, loads the data templates representing MMS data classes 
and then loads data for the class specified. Rules built by the controller are loaded last, and then 
the shell is executed through a 'RunCLIPS' function call. The monitoring rules are built differ- 
ently based upon the current violation state of each constraint. An unviolated constraint is trans- 
lated into a 'normal' rule set consisting of two rules. A consthint currently in violation is 
translated into a 'deactivation' rule set consisting of three rules. 

The first rule of the 'normal' set verifies the existence of at least one applicable data point and 
asserts an enabling fact if such a point is found. The left-hand side (LHS) of the main constraint 
rule checks the existence of the enabling fact and examines the appropriate meteorological facts 
and QC tags. If the LHS is satisfied, the RHS will trigger an alarm signal using the user defined 
functions 'mtu~set~violation' and 'send~activation,message7 so that the user interface will acti- 
vate a visual and audible alarm. 

The fist rule of the 'deactivation' set is the same as that in the 'normal' set, as is the LHS of the 
main rule; however, the RHS differs in its structure and function. Since the goal of the 'deactiva- 
tion' set is the opposite of the 'normal' set, its function is to search for a counterexample to the 
premise that no violation exists. If the counterexample exists in the fact base, the RHS will retract 
the enabling fact asserted in the first rule and undefine the third rule of the 'deactivation' set. No 
additional alarm is generated, and the screen icon in the user interface will continue to indicate a 



violation. Without the existence of a counter example, the RHS of the third rule will clear the vio- 
lation by using the user defined functions 'mtu-set-violation' and 'send~deactivation~message.' 
A practical example of the monitoring function may be found by considering the following sce- 
nario: a payload canister is to be hoisted at KSC launch complex 39A. The meteorological con- 
suaints for that operation include a steady state wind limit of 17.2 knots and the absence of actual 
or forecast lightning activity within a 5 nautical mile radius. An MMS user could activate the 
'Hoisting' operation from the list of those available, which would retrieve the associated con- 
straints, load them into the monitoring table and notify the Monitoring_Controller process. Rules 
for wind q d  lightning strike data will be built from the constraints using the 'normal' form, and 
the two shells will be scheduled to execute. For wind class data two rule sets would be built: 
Hoist-1, which will alert when wind reported by sensor 9 exceeds of 17.2 knots, and Hoist-2, 
which does the same using sensor 10. The execution sequence for the wind class rules are 
depicted in Figure B.l on page 8. Notice that the Hoist-1 rule violates after finding the sensor 9 
wind speed of 19 knots at time=O. The violation continues as the measurement for time=l still 
exceeds the threshold. Finally at time=2 the sensor 9 wind speed has passed below 17.2 knots. 
Notice that from time=O through time=2 that sensor 10 was reporting invalid wind speed datum, 
and the Hoist-2-enable rule didn't fire; only when a valid measurement anived at time=3 did 
Hoist-2-enable find a valid wind speed, and therefore assert the enabling fact (enable-Hoist-2). 

3.2 Performance 

The monitoring of meteorological measurements and observations can be greatly enhanced by the 
use of an expert system shell. In addition to finding violations of individual meteorological 
parameters, special sets of rules could search the fact base for a number of different conditions 
which may signal the onset of severe or threatening weather. The concern in using CLIPS, or any 
other shell, is one of performance. While the monitoring task has a less smngent time requirement 
than that of CLIPSIQC, it is difficult to express that value as a specific number. Processing cer- 
tainly must be completed within the time period of the data, which is generally one minute. Occa- 
sional spikes above that level are acceptable so long as the overall performance does not exceed 
that level. 

The CLIPS/Monitoring processing times were obtained by inserting time checkpoints at different 
locations in the code and performing a series of test executions. Tests were performed using the 
full MDS software with a test driver providing a full set of meteorological data at noxmal inter- 
vals. The number of constraints and facts were varied to test the performance characteristics of 
this implementation. Time samples were taken for constraint levels of 1, 10,20,30, ..., 100 and for 
fact levels of 0, 100, 200, 300 ,..., 1000. 

The performance of the shell was well within the time requirements stated above. Results from 
the test sample data set, consisting of 1038 time samples and summarized in Table 3.1, indicated 
that average performance for a heavy load will require about 15 seconds for setup (i.e. fact asser- 
tion, rule construction and loading) and about 30 seconds for the shell to complete processing. 
The resulting total of approximately 45 seconds is only 75% of the one minute target. Such results 
bode well not only for the ability of CLIPS to handle the current workload, but its ability to handle 
more complex tasks involving more a greater number of facts and more complex rules. 

Additional performance analysis has been provided in Appendix C on page 10. Included in this 
appendix are three graphs that describe the manner in which actual shell processing time was 



observed to vary in response to different combinations of values for the number of constraints and 
the number of facts. (Note: These times exclude the amount of time required to build rules and 
assert meteorological facts.) 

Table 3.1 Monitoring Performance Tables (all times in seconds) - 

Setup Times Facts 
Constraints 100 500 lo00 

Mean- Uan sa&! Mean SuLDa! 
1 2.03 0.03 7.92 0.48 15.40 0.95 
10 2.27 0.27 7.70 0.39 15.16 1 -04 
30 2.18 0.18 7.83 0.02 15.00 0.55 

Processing Times Facts 
Constraints 100 500 loo0 ~~ Mean Std Dev Mean s!dDa! 
1 0.22 0.04 1.04 0.38 1.84 0.32 
10 1.52 0.03 7.04 0.70 13.99 1.14 
30 3.59 0.01 16.58 0.13 28.01 0.86 
50 4.13 0.23 15.85 0.20 29.82 0.49 

An interesting CLIPS performance characteristic is the apparent "levelling-off' of the processing 
time around 30 constraints. This can be seen in the bottom figure of Appendix B, which shows 
"crunch time" (i-e. shell processing time) as a function of the number of constraints for selected 
levels of the number of facts. In each of the curves in this figure, the observed processing time 
increases in a roughly linear fashion when the number of constraints was less than about 30, and 
the slopes of these curves increase as the number of facts increases. After 30 constraints, however, 
these curves level-off to be nearly horizontal. At this point, the effect of increases in the number 
of constraints on processing time is quite minimal. This is significant when we consider that the 
MMS monitoring tabIe is currently capable of holding 1000 constraints. Since the performance 
times seem to level-off above a relatively modest number of constraints, activation of a much 
larger group should not result in excessively large execution times. 

4.0 Conclusion 

The CLIPS expert system shell performs well in both MMS implementations. Although neither 
the quality control nor the monitoring implementation constitutes a complex use of expen sys- 
tems technology, this application of CLIPS is useful in several ways. First, it  is currently func- 
tional and useful, and data are processed and monitored in an effective manner within all time 
requirements. Second, enhancements are possible that would more fully exploit CLIPS capabili- 
ties. Third, the system has potential for growth through the utilization of a more powerful set of 
rules and the use of another CLIPS tool known as COOL (CLIPS Object Oriented Language). The 
primary objective of the MMS project was to create a system that would be useful to weather 
forecasters and operational personnel. We believed that CLIPS could greatly enhance the system 
and help us to reach our objective, but we also had reservations concerning implementation and 
performance. It is now clear that the inclusion of CLIPS was a proper decision based upon its per- 
formance and capabilities. 



~ ~ ~ e n d i x  A MMS Architecture 

Preprocessor 

Monitoring & 

Stations 

CLlPSIMonitoring 

Figure A. 1 MMS network overview 

Input Data Strearn(s) 
Data Acquisition 

Wind Temperature General-Met Lightning- Electrical- 
Smke Potential 

Data A lasses 

Figure A.2 MMS data classes 



Figure B. 1 Monitoring Scenario 

198 

Time 

0 

0 

0 

1 

Appendix B Sample Monitoring Scenario 

Fact Base - 
Sen 9 Spd 19 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 16 QC-Ok 

Sen 12 Spd 15 QC-Ok 

Sen 13 Sjd 16 QC-Ok 

Sen 9 Spd 19 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 16 QC-Ok . 

Sen 12 Spd IS QC-Ok 

Sen l3 'pd l6 QC-Ok 
enable-Hoist1 

Sen 9 Spd 19 QC-Ok 

Sen 10 Spd 99 QC-Bad 

SenIlSpd16QC-Ok 

Sen 12 Spd 15 QC-Ok 

Sen 13 Spd 16 QC-Ok 

Sen 9 Spd 18 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 15 QC-Ok 

Sen 12 Spd 13 QC-Ok 
I 

Sen 13 Spd 16 QC-Ok 

Sen 9 Spd 18 QC-Ok Hoist WIND 1 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 15 QC-Ok 

Sen 12 Spd 13 QC-Ok 

Sen 13 Spd 16 QC-Ok 

enable-Hoist-] ................... ... ................ - I - *. 
Sen 9 Spd 18 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Rules Alarms 

Sen 12 Spd 13 QC-Ok 

Sen 13 Spd 16 QC-Ok 

- 

New data received, rules built and loaded. 

.___.*~.*-.~~l.l......--...----.......~...-. 

IHoifClmainI 
Hoist-1-enable fin& data, asserts enabling 
facr, and undefrnes itself. Hoist-2-enable 
finds no data (sensor 10 QC is bad). 

.------.-----*--.--------------.--.*---------...*..-.------*..-.....-.. 

Hoist 1 main jinds wind violation, triggers 
alarmaEd retracts enabling fact. 

Hoist-I-main ha5 wind violarion, undefines 
deactivation rule and retracts enabling fact. 

-.--------------.-------.----------------- 
None 

-.*..-.*.-..-..-----.---*.-...--.------------- 
Hoist WIND 

Hoist WIND 



Figure B.2 Monitoring Scenario (continued) 

199 

- ~~ 

Time 

2 

--------- 
2 

,-..----.- 
2 

3 

3 

3 

Alarms 

HoisC2_cnablcslWIND 

-------------** 

Hoist - 
.---.---------.. 
None 

None 

None 

Hoist WIND 

Fact Base 

Sen 9 Spd 17 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 13 QC-Ok 

Sen 12 Spd 12 QC-Ok 

Sen 13 Spd 13 QC-Ok 

Sen 9 Spd 17 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 13 QC-Ok 

Sen 12 Spd 12 QC-0k 

Sen 13 Spd 13 QC-Ok 

enable-Hoist1 
*----__.-l---.-l---.-..-.----.-.- 

Sen 9 Spd 17 QC-Ok 

Sen 10 Spd 99 QC-Bad 

Sen 11 Spd 13 QC-Ok 

Sen 12 Spd 12 QC-Ok 

Sen 13 spd 13 Q C - O ~  

Sen 9 Spd 17 QC-Ok 

Sen 10 Spd 19 QC-Ok 

Sen 11 Spd 15 QC-Ok 

Sen 12 Spd 14 QC-Ok 

Sen 13 Spd 16 QC-Ok 

Sen 9 Spd 17 QC-Ok 

Sen 10 Spd 19 QC-Ok 

Sen 11 Spd 15 QC-Ok 

Sen 12 Spd 14 QC-Ok 

Sen 13 Spd 16 QC-Ok 

enable-Hoist-1 

enable-Hoist-2 

Sen 9 Spd 17 QC-Ok 

Sen 10 Spd 19 QC-Ok 

Sen 11  Spd 15 QC-Ok 

Sen l2 'pd l4 QC-ok 
Sen 13 Spd 16 QC-Ok 

Rules 

..... .;.. ..;. ::::.>:.>::,:..,>, .;....<. :..?.....:.A. .: :.; 

[^--I (I .:.:.; ................... Q.: ....... :.,:.: ...... :.:.:.: ................... 

:::*:s:::::{::::<:::::*.:::::i'.:::j::::*:::*:::::;:<$:;:;($:2;:;:; ; $ @ . # , . @ @  2 
:.:,; ;., ,,:.:, :.:.:.:::*:::*:,: .* ::,:.:.: .x.:. ............................. 

New data received, rules built and loaded. ~ _ ~ ~ _ ~ _ _ _ ~ ~ ~ . 1 ~ ~ ~ ~ ~ ~ . ~ ~ . - - - . - ~ ~ . - ~ ~ ~ ~ ~ ~ ~ . . * . * . . . . . . . . .  

.......... :.~:,::ii':i.:ix:::~:,:.. .,.y+: .... ..:.:c.x.:.:.:.:rii:.:;. . "........... ; ....... ; .....; ...> ........ -1 

...........,.. ........ .............. ............ .., :.... =.:.% ...i... :... 

.:.::.x$:.?:.:>,::::::*:*::,~:<~~t$j~:;$${~~~:;:;i:~;;:;::> :$=& i"r:J)eacrx v&*:z: 71 :: .................................. ...... ; .......... ....-..... ..................... r:,:.~.:.~.:.:.:.:.:.:.:.: 

Hoist-1 -enable finds data, asserts enabling 
fact and undefrnes itself. Hoist-2-enable 

no data (sensor I O N  is bad), ._.-.-.--.- .---.-.------.-.- -1-1.11----- -.--...--- 
I 1  

Hoist-1-main finds no violation. Deactivation 
rule clears indicator, retracts enabling fact. 

)I -1 

New data received, rules built and loaded. .~~~~~~~~~.-~..-~----~.--..-..~.~..~.~~~-....*...................-..~.....*......*..-..*....------.----.--..-.--.---. 

p z i z F l r ]  
Hoist-1 -enable finds data, assens enabling 
fact and undefines itself. Hoist-2-enable 
finds data, asserts enabling fact and 
undefines itself. 

.---------.------*----.----..----.--------.------..--...--.-*--..-..-....-..-...-.-.-...*...--------------..--------- 

jxzGzl p z z z l  
Hoist I main finds no violation. 
~o i s t~2~main f ind . s  wind violation, triggers 
alarm and retracts enabling fact. 



~ ~ ~ e n d i ;  C CLIPSlMonitorlng Performance Graphs 

Crunch 

crunch Time vs. Number of Constraints 

Crunch Time vs. Number of Fods 

40: 

30. 
C 
8 
U 

RULES -- 1 ..- ... - - - -  10 
20 ...... 

. - .- 30 
- 50 1 0 0  

C 

V C 2 
0 

1 0  
. - . . - .- - C '. _ _ - - -  

,__--- - 
.C -* C .  - 

C:c:'-.... - - -  _ . . . - " -  
*,..<.;:.-- - - -  _. .C ..- 

#:.-:- .,> ,,.- -- ,,. 

0'i,47. * ---'.-L-- --- ------------ 1 

0 100 200 300 400 500 600 700 800 900 1000 
# Focts  





REPORT DOCUMENTATION PAGE Form Approved 1 OMB No. 0704-01 88 
I 

Public nporting bvdan for t b r  collection of information i t  enimatwf to average 1 b u r  per response, including tk time for reviewing instruniom, wrching existing &ta m-a, 
gatharing and maintaining the (btd ns#led. and mmpfating and reviewing the collection of Information. Send wmmernr rcgsrding this budan estimate or any othsr aspect of this collsclion 
of information, includirg qgestions for reducing tfds burden. to W a a h i ~ m n  Headqwrters Services. Directorate for information Operations and Reports, 1215 Jefferson Davis Highway. 
Suite 1204, Arlington, VA 22202-4302, and to the Office of Mampsment and Bujget. Paprwork Redunion Project 107044188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 1 2. REPORT DATE 1 3.  REPORT TYPE AND DATES COVERED 

Third CLIPS Conference Proceedings - Volumes I and II 

Novi94 I Conference Proceedings, September 1994 
4. TITLE AND SUBTITLE 

I 

1 1. SUPPLEMENTARY NOTES 

5. FUNDING NUMBERS 

Gary Riley, editor 

7. PERFORMING ORGANIZATION NAME61 AND ADDRESS(ES) 
Lyndon B. Johnson Space Center 
Houston, Texas 77058 
I-NET, Inc. 
Houston, Texas 77058 

9. SPONSORlNGlMONITORlNG AGENCY NAME(S) AND ADDRESSfES) 

National Aeronautics and Space Administration 
Washington, DC 20546-0001 

Available from the NASA Center for Aerospace Information 
800 Elkridge Landing Road 
Linthicum Heights, MD 21090-2934 
(301) 621-0390 Subject Category: 61 

13. ABSTRACT (Maximum 200 words) 

8.  PERFORMING ORGANIZATION 
REPORT NUMBERS 

S-785 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

NASA CP- 10162 

1 2a. DISTRIBUTION/AVAILABlLlTY STATEMENT 
UnclassifiedKJnlirnited 

Expert systems are computer programs which emulate human expertise in well defined problem domains. The potential payoff 
from expert systems is high: valuable expertise can be captured and preserved, repetitive andlor mundane tasks requiring 
human expertise can be automated, and uniformity can be applied in decision making processes. The C Language Integrated 
Production System (CLIPS) is an expert system building tool, developed at the Johnson Space Center, which provides a 
complete environment for the development and delivery of rule andfor object based expert systems. CLIPS was specifically 
designed to provide a low cost option for developing and deploying expert system applications across a wide range of hardware 
platforms. The development of CLIPS has helped to improve the ability to deliver expert system technology throughout the 
public and private sectors for a wide range of applications and diverse computing environments. The Third Conference on 
CLIPS provided a forum for CLIPS users to present and discuss papers relating to CLIPS applications, uses, and extensions. 

$ 

12b. DISTRIBUTION CODE 

14. SUBJECT TERMS 

Expert Systems, Programming Languages, Computer Techniques 

15. NUMBER OF PAGES 
40 1 

16. PRICE CODE 

OF ABSTRACT 
20. LIMITATION OF ABSTRACT 

Unclassified 
NSN 7540-01  -280-5500 Standard Form 2 9 8  (Rev 2-89) 

Prescribed by A N 9  Std. 239-1 8 

Unclassified Unclassified Unlimited 


