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The Second International Workshop on Harmonic Oscillators was held at the Itotel tlacienda

Cocoyoc from Mal'ch 23 to 25, 1994. The Workshop gathered 67 participa_.ts; there were 10 invited

lectures, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five

sessions of this volume.

The Organizing Committee was asked by the chairmen of several Mexican funding agencies

what exactly was meant by harmonic oscillators, and for what purpose the new research could be

useful. Osciladores Armdnicos as we explained - is a code name for a family of mathematical

models based on the theory of l,i(' algebras and groups, with applications in a growing range of

physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum

optics and communication theory. Yet it is true that the Workshop - and these Proceedings--

are not by/for front-line industrial soldiers, but by/for strategic planners in the staff room, where

academic cm'iosity shouhl be quile welcome. While in Mdxico we have no dearth of academic

excelence (with tradition precisely in harmonic oscillators), local industry has yet; to train the

infantry to translate applicable science into applied research.

The Itarmonic Oscillators II Workshop was fund(_d and organized through the Centro

Internacional de Ffsiea y Matem_itieas Aplicadas (ClFMA). It is intended thai ClI.'MA

develop in Mdxico the manifoht activili('s pioneered by the International Centre for Theoretical

Physics, in Trieste, with special attention to the perceived scientific and technological needs and

strong points of this country and the Latin American r('gion. The Cuernavaca center adds to the

(existing networks initiated bv the Centro l,atino America.no de Ffsica, in Brazil, and the Centro

International de Ffsica, in (?olombia. Through the great generosity of the Moshinsky family il

was possible to announce at the Workshop l)inner that CIFMA is starting construction of it own

installations at the campus of the National and State universities in Cuernavaca. It was very

encouraging for our travails to see that. our guests renlarked the meeting's research atmosphere

more than the excelent weather.

Indeed, on a lighter note, Professor l{oy (]lauber declared he was on a secret, fact-finding

mission l'or the US Congress, to see if a.ft('r the NAFTA agreement all the harmonic: oscillators

would be rushing South ( with a 9iant suckin9 so_tnd, as KBW recalling RP's one-time one-liner

remarked) clue to better conditions. Yes, they were. We see the motion as harmonic.

Professor Young S. Kim touched a sensitive chord in physics when convening the very

successful first, llarmonic Oscillators meeting at the College Park campus of the University of

Maryland (March 25 28, 1992). [Proceedings: NASA Conference Publication 3197 (1993), Ed. by

D. Han, Y.S. Kim and W.W. Zachary.] An informal harmonic oscillators 'network' now exists

that is strengthened with these Proceedings. The Speakers of the Second Workshop will act as

a Standing Committee for further meetings. It is now up to the local organizers of the Third

Workshop to provide an attractive program for the tlarmonic Oscillators community to gather

again.

Timely technical help for the composition of this volume is gratefully acknowledged to

Natig M. Atakishiyev, Mesuma K. Atakishiy_'va, and (]uillcrmo Kr_tzsch, at IIMAS-UNAM in

Cuernavaca.

--TILE EDITORS
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ALGEBRAIC THEORY OF MOLECULES

F. Iachello

Center for Theoretical Physics, Sloane Physics Laboratory,

Yale University, New Haven, CT 065_0-81_0

Abstract

An algebraic formulation of quantum mechanics is presented. In this formulation, opera-

tors of interest are expanded onto elements of an algebra, G. For bound state problems in u

dimensions the algebra G is taken to be U(P + 1). Applications to the structure of molecules

are presented.

1 Introduction

The development of new experimental techniques is giving rise to a wealth of information on com-

plex systems. This information needs to be understood in terms of theoretical models which can,

on one side, describe the observations and, on the other side, make predictions for other experi-

ments. In view of the accuracy of the experiments, one needs new and more accurate mathematical

models. For quantum mechanical problems, a natural framework is provided by the SchrSdinger

equation. In complex systems, the direct solution of the multiparticle SchrSdinger equation be-

comes rather difficult and one many seek alternative methods. In this note, an alternative method,

called algebraic theory, will be introduced and discussed briefly. The method will then be applied

to the study of the structure of molecules. Problems of current interest in this field are, among

others, the substitution of atoms in a large molecule leading to a lowering of symmetry, the poly-

merization process in which dimers, trimers, ... are formed from the original molecule, the study

of new molecules, such as the cage fuUerene molecules, C60;..., and, particularly important, the

study of molecules at high excitation energy. An example of the latter will be presented.

2 Algebraic Theory

The logic scheme of algebraic theory is as follows:

Quantum mechanical problem

Algebraic Structure



Lie Algebras

Graded Lie Algebras

Infinite Dimensinal Lie Algebras (Kac-Moody)

q-Deformed Lie Algebras (Hopf)

..o

Observables

Spectra
Transitions

o**

Experiment

In the first step, all quantum mechanical operators of interest are mapped onto the elements

of an algebra, _. For example, the Hamiltonian operator is written as

H= Eo + _-_e_G_ + _-_u_G_Gz+... , G_eQ (i)

The algebra _ is called the spectrum generating algebra (SGA) and H is in the enveloping algebra

of _.

In some cases, it may happen that the Hamiltonian H contains only certain elements of _, the

invariant Casimir operators of G and of one of its subalgebra chains, _ D _' D G" D ... ,

H = f(C_) (2)

This case, called a dynamic symmetry, plays a special role in algebraic theory, since then the

eigenvalues of H can be obtained in closed analytic form in terms of the quantum numbers char-

acterizing the representations of G D G' D ....

Dynamic symmetries and spectrum generating algebras have been used in various contexts for

more than 30 years [1]. As a result of the systematic investigation and use in the context of nuclear

and molecular physics, initiated with the introduction of the interacting boson model [2] in 1974

and of the vibron model [3] in 1981, it has become clear that all quantum mechanical problems

in v space dimensions can be mapped onto the algebra U(v + 1) and all its states assigned to the

totally symmetric representation [N] of U(v + 1)[4]. Examples of this mapping are given in the

following section.

3 One dimensional!problems

To begin with, consider the single case of one space dimension, v = 1. A trivial application

of algebraic theory is provided here by the harmonic oscillator. The SchrSdinger (differential)

equation

2



1( d2H=_ - d-_

with eigenvalues En = (n + ½), and eigenfunctions

(the Hermite polynomials), can be mapped into

H = (ata + _) ,

with the same eigenvalues Em= (n + 1) and eigenstates2

In >= (n!)-_(a*)" I0 >

+x 2) , H¢,:ECm

e- ½x2

(3)

(4)

(5)

(6)

V(r) I

Vo

.... _V = I

FIG. 1. The Morse potential V(r).

Here

1(d)
The algebra is

H(2) = a,a t,l,a_a ,

[a, a t] = 1 (7)

(8)



called the Heisenberg, quantum mechanical or oscillator algebras [5]. The mapping produces a

great simplification both in the evaluation of the matrix elements of operators which are integrals
in the differential formulation

(3_2
(9)

and algebraic functions in the algebraic formulation

1,,, =< n' l f(a, at) l n > (lO)

A slightly more complicated problem is provided by the anharmonic Morse oscillator [6], Fig.1.

The SchrSdinger equation with

h 2 d 2

H- 2#dz 2 + V(x), V(z)= D[1-ezp(-flz)] 2 , (11)

with eigenfunctions

= N_z'7 -ve-_+½*3L2'7-2v-l(z)

1V_ # 1= 271e-zx , rl= _ D ,v = 0,1,...,v/ 2 ' (12)

and eigenenergies

1 1 h2fi/2 1 2E(v)=2hf_ (v+_) _ # (v+5) (13)

can be mapped onto the algebra _ = U(2) with elements F+, F_, F0, N and corresponds to the

dynamic symmetry U(2) D 0(2) of this algebra. The Hamiltonian is

'H=AC , C=F(_-N 2 (14)

with eigenenergies

E(m) = A(m 2- N2); m = N,N- 2,..., lo7"0 (N = odd or even ) . (15)

The eigenvalues can be brought into the standard vibrational form introducing v = (N - m)/2 ,

N N
_( g = even or odd) (16)E(v) = -4A(Nv- v2); v = 0,1,..., -_-or-_- =-

With some small changes this is seen to correspond to Eq.(13). The eigenstates can be written as

]N, v > and observables calculated as

< N,v' IT(G) I N, v > , (17)

where T (G) is the appropriate operator built from the elements of _. By making use of the

algebraic method, all results of the anharmonic Morse oscillator can be found easily. (Note that in



the association of the Morse oscillator with U(2) D 0(2) only the positive branch of O(2), m > 0,

has been used.)

As a third simple case, consider the anharmonic Phshl-Teller oscillator

D

V(_,) - cosh2a x

This potential can also be associated with U(2) D 0(2) and Hamiltonian [7]

(18)

H = AC (19)

with eigenvalaues

E(v) = -4A(Nv- v _) (20)

One can see from (16) and (20) that the Morse and Phshl-Teller potentials have the same bound

state spectrum (isospectral potentials). (This statement is not true in v = 2,3,... dimensions.)

The Morse and Phshl-Teller potentials in 1 dim belong to a class of potentials called exactly

solvable since their eigenvalues can be written in explicit analytic form. All exactly solvable

potentials in 1 dim have been classified.

The overall algebraic structure of 1 dim problems can be written as

U(2) D 0(2) _ U(1)

_c

H(2) D 0(2) _ U(1)
(21)

In this equation, the arrow with a c denotes a contraction of the algebra of U(2). (In addition

to the contraction V(2) _ H(2), _here is another one U(2) :_ E(2), where E(2) is the Euclidean

algebra not discussed here.)

4 Multidimensional problems

In more than one dimension, the connection between the Schrhdinger equation and the corre-

sponding algebraic equation is not so straightforward, with the only exception of the harmonic
oscillator and Coulomb problem. It is here that algebraic methods are particularly useful, since by

formulating directly the problem in an algebraic framework one can construct the spectrum and

calculate observables without reference to a specific form of the potential. The algebraic structure

of three dimensional problems can be written as [4],[8]

U(3) 3 0(3) D 0(2) (I)

/

U(4)

c_

\ (22)
0(4) D 0(3) D 0(2) (II)

I

H(4) D U(3) D 0(3) D 0(2) (III)

5



The chain (I) corresponds to SchrSdinger problems with PSschl-TeUer-like potentials, the chain (II)

corresponds to Morse-like potentials, while the chain (III) corresponds to the harmonic oscillator
in 3 dim.

In general, in v dim one has

u(v) ...
/

U(v+l) _ ...

%
c _ O(v + 1)

H(v+l) D U(v) D °,°

(23)

where now additional chains may appear in the reduction of U(v + 1). The five dimensional case,

v = 5, has been extensively investigated in the context of nuclear physics [9]

5 Algebraic Theory of Large Molecules

The algebraic approach of Sect. 2 can be used to study molecular structure. For reasons that will

be mentioned in the subsequent section, it is convenient to separate large molecules from small

molecules (large here means molecules with more than 4 atoms). In large molecules each degree

of freedom, x,y,z, is quantized with U(2) and the total spectrum generating algebra is taken to be

= _i @Ui(2) [10]. A calculation of spectral properties proceeds then as follows: In step 1, all

atoms are numbered, Af; in step 2, three coordinates are assigned to each atom for a total of 3 A/';

in step 3, each coordinate is quantized with U(2) D O(2), thus being treated as an anharmonic

oscillator; in step 4, the oscillators are coupled with Hamiltonians

3A/" 3A/"

H= _ h, + __, wij (24)
i=l i>_j=l

The structure of the Hamiltonian (24), when written in terms of the elements of the algebra G is

hi = col + Ai(_'oi - N,)' ,wij = Aij(F+i/__i + F-iF+i) (25)

The hi terms are diagonal in the basis Ui(2) D Oi(2) characterized by the quantum numbers

INi,v_ > discussed in Sect. 3, while the wij are given in Ref. [10],[11]. In the final step 5, the

spurious species corresponding to overall rotations and vibrations, are identified and removed by
diagonalizing the Harhiltonian

H'=H+A7 _ , (26)

where :P is a projection operator into the spurious species and A is taken to be a large number

such that the spurious species are moved to a large energy. The removal of the spurious species



leaves 3Af - 6 non spurious vibrations. This procedure produces the vibrational spectrum of the

molecule.

H

()

1

H 6

H

4

)
H

H

FIG. 2. Schematic representation of benzene ( C6H6 ).

In a similar way one can compute intensities of transitions. There are two types of transitions

of importance in mol_ecules, infrared (IR) and Raman (R) transitions. For infrared transitions,
the appropriate operator is a vector. Each component x,y,z of this vector is written in terms of

elements of G, i.e.

3At

_'x = __,o_i.xi, , i, = e -_'([_+'+f'-') , ... (27)
i=l

The matrix elements of the operator (27) (and Tu , Tz) are then evaluated algebraically. For

Raman transitions, the appropriate operator is a symmetric quadrupole tensor. The six compo-

nents of this tensor, x _, y2, z 2, xy, xz, yz , are also written in terms of G and their matrix elements

evaluated algebraically.

As an example of vibrational analysis of large molecules, consider the case of benzene, C6H6.

The benzene inolecule has the geometric structure shown in Fig. 2. A problem which arises in

large molecules is that of the discrete symmetry of the molecule. In the case of benzene, the

7



appropriate symmetry is _Ps_. The discrete symmetries of molecules can be simply implemented

in the algebraic framework. For example, consider the six stretching vibrations of the hydrogen

atoms in benzene. All hydrogen atoms are equivalent. The Hamiltonian (24) which describes

those vibrations
6 6

H = A,C,+  ,sM,j, (28)
i=1 i<j=l

where Ci and Mi_ are a short-hand notation for the terms in (25), must be such that one cannot

distinguish the equivalent atoms. Thus, all Ai's must be equal, Ai = A. In the interaction term,

there are three contributions, first, second and third neighbor interactions. These too must be
(IH) = _(tlt) The Hamiltonian H thus becomesequal, A!_) = )t (I) X(/.I) = _(II) and Aij' "'tJ

H = AC+ A(I)S (*) + )_(II)s(II) + )_(III)s(III) (29)

and is characterized by a smaller set of parameters. The operators C,S (I), S (I1), S (III) are ap-

propriate linear combinations of the Ci's and Mo's. A corollary of the algebraic method is that

certain linear combinations of the operators Mi3 are symmetry adapter operators of _D6h and the

irreducible representations of _6h are obtained automatically by diagonalizing them [10],[12].

Using the algebraic method discussed above it has been possible to study the complete spec-

troscopy of benzene [13]. This molecule has 12 atoms and thus 36 degrees of freedom, 6 of which

are spurious. The 30 non spurious species are shown in Table I.

TABLE I: Coordinates and symmetry species of benzene.

Coordinates

CH str&ch

CC stretch

CH in plane bend

CH out of plane bend

CC in plane bend

CC out of plane bend

Number

6

6

6

6

3+3

3+3

Species

E2g + Blu + Elu + Alg

Alg + B2u + Elu + E2g

EI_ + B2. + E2g + A29

Blu + E2g

B2g + E2g

Spurious

The calculation describes the observed vibrational states not only in the low excitation energy

region, fundamental vibrations, but also in the high excitation energy region, overtones. An

example is shown in Fig. 3. This region cannot be described in the harmonic approximation and

thus the use of algebraic methods based on the anharmonic Morse or P6schl-TeUer oscillators are

8



crucial for an accuratedescriptionof the observedspectra.

_-, 0.8

C

._ 0.6

•-_ 0.4
<
Z

or) 0.2

c
::J

I--

>-
I-
(1)
Z
I_U
t--
Z

0

8725

1

8775 8825 8875

31)CH
b

WAVENUMBERS [cm -1]

FIG. 3. (a) Opto-thermal spectrum in the region of the Av = 3 overtone of the

stretching CH mode of benzene. The full-line is a low-resolution experiment. (b) The

spectrum calculated by means of algebraic theory. From Ref.[14].
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6 Algebraic Theory of Small Molecules

For molecules with a number of atoms less or equal to four, it is possible to quantize each vector

degree of freedom, /" = (x,y,z), directly in terms of U(4). When quantized in this way both

rotations and vibrations are simultaneously included.

(b)

(o) (c)
y X

0 .._ _

r /--- "3 V
X Z o,trz L

Y

FIG. 4. Bond variables for small molecules.

It is also convenient to treat as vector variables the bond degrees of freedom, Fig.4, rather than the

coordinates of the individual atoms, thus avoiding the problem of spurious states. The quantization

scheme is thus here g = _i @Ui(4). This scheme has been extensively used to treat diatomic

molecules with U(4), triatomic molecules with U(4) @ U(4) [151 and four atomic molecules with

U(4) O U(4) O U(4) [16]. It has also been possible recently to study high order interactions such

as rotation-vibration couplings.

7 Conclusions

Algebraic methods have been used in recent years in the study of molecular structure. When

applied to this system, algebraic theory offers two main advantages: (i) The use of Lie algebras to

describe the interaction (Morse, P_schl-Teller, ...) allows one to extend the traditional harmonic

analysis to anharmonic analysis. One can thus deal easily with highly excited states of molecules

where anharmonicities play a crucial role (a subject of current experimental interest especially in

connection with intramolecular relaxation and energy transfer.) (ii) The use of algebraic operators

to couple the individual modes of a molecule allows one to construct symmetry adapted states in

a simple way. One can thus deal with complex molecules where discrete symmetries play a crucial
role.

The algebraic method can be used in molecules in two ways:

A) With rotation and vibrations treated separately. In this case the spectrum generating algebra
is

10



G = GnOT @ _VIB

_vIB = _@U,(2) (30)
i

B) With rotations and vibrations treated simultaneously. In this case the spectrum generating

algebra is

= _ @Ui(4) (31)
i

The latter case is more complete, but more difficult to treat than the former, since one has to deal

with the Racah algeb_ra of U(4).

In view of its simplicity, the method is particularly well suited for a studLy of complex systems

such as macromolecul_s, clusters, polymers, .... Work in this direction is in progress. An account

of the algebraic theory of molecules is given in Ref.[17] and the mathematical formalism of Sects.

5 and 6 is reviewed in Ref.[18].
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Abstract

For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law

oscillators with potentials V(r) = -7/r ", 7 > 0 and -oc < u < co. When the angular mo-

mentum is non-zero, these solutions lead to the classical orbits p(t) = [cos #(_(t) - _0(t))] 1/",

with # = u/2 - 1 ¢ 0. For u > 2, the orbits are bound and go through the origin. We cal-

culate the periods and precessions of these bound orbits, and graph a number of specific

examples. The unbound orbits are also discussed in detail. Quantum mechanically, this sys-

tem is also exactly solvable. We find that when u > 2 the solutions are normalizable (bound),

as in the classical case. Further, there are normalizable discrete, yet unbound, states. They

correspond to unbound classical particles which reach infinity in a finite time. Finally, the

number of space dimensions of the system can determine whether or not an E = 0 state is

bound. These and other interesting comparisons to the classical system will be discussed.

1 Introduction

This all really started in Moscow, in 1992. That is where I met my colleague, Jamil Daboul, at

the Second International Workshop on Squeezed States and Uncertainty Relations. It was held

at the Conference Center-Hotel that the Russian Academy of Sciences uses. Late at night Jamil

and I would get into sessions on life, physics, women, politics - you know, the usual stuff- while
we drank his scotch.

The physics came around to musings about why certain problems can be solved exactly while

others cannot, and the symmetries associated with such problems. There is a "folk-theorem" I

often think of, which certainly is not exact but also certainly is intriguing. This theorem declares

that if you can solve (or not solve) something classically the same is true quantum mechanically,
and visa versa.

1Email: mmn@pion.lanl.gov
2Email: daboul@bguvms.bgu.ac.il
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Things stood there until Jamil visited me last year, and we took things up again. While
wondering about the role of the Runge-Lenzvector in potential systems, a number of small
observationsstarted us down the line: a) the classicalorbit for the attractive --_//r 4 potential

with centripetal potential barrier can be solved exactly; b) this type of quantum system is usually

only discussed for E -¢ 0; c) for E = 0, both the classical and quantum equations are simpler.

Eventually we found out that all potentials of the form:

_ o'r_ r2.+ 2 , 7>0, -oo<v<oo, (1)

can be solved exactly, both classically and quantum mechanically, for zero binding energy, E = 0.

In what follows, it will be useful to switch back and forth between the variables v and # related

by
# = (v- 2)/2, v = 2(# + 1). (2)

Therefore, contrary to the usual scenario of solving a particular potential for all energies, one

could solve an infinite system of potentials for a particular energy. The physics that came out

was most amusing. In this piece I will report on this work; For further details you can consult a

letter on the new results for the quantum system [1], as well as longer articles on the classical and

quantum physics involved [2, 3].
In Section 2 I will demonstrate the solution to the classical problem. Section 3 contains

amusing specific examples of some of the classical trajectories. The quantum solution will be

given in Section 4. Section 5 contains interesting aspects of the quantum solutions, and then I

give a brief closing comment.
Before continuing, I wish to further parametrize the power-law potentials as

_ 9 2 Lg 9 2&--_ , p- /a . (3)
V (r ) =- r _" - P" 2ma2 p,

The dimensional coupling constant, % is more useful in classical physics. The dimensionless

coupling constant, 9 2, is more useful in quantum physics. Note, in particular, that the constant L0

becomes h in quantmn physics. Finally, the "effective potential," including the angular-momentum

barrier, is

L2 7 (4)
U(L,r) - 2mr2 r _

2 Classical Solution

Let us now obtain the classical solution.

condition

By substituting the angular-momentum conservation

(o = L/(mr 2) (5)

into the energy conservation condition

g-v=7 , + r 2] , (6)
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oneobtains (dr_ 2 r 2 2re(E- V)r 4

+ = )J (r)

This is essentially a first-order differential equation, which could be formally integrated. How-
' r "ever, for E = 0, it is much more emcient to solve Eq. (7) directly. Con_ertmg to the dimensionless

variable p = r/a and substituting V into Eq. (7

For u = 4 the right-hand side of this equation

circular orbit p = cos _ which we will discuss in

), we obtain

fl(4-u) = fl(2-2t,). (8)

is unity, so the solution is a cosine. This is the

the next section. Guided by this we multiply Eq.

(8) by fl2_-2 to yield
2

(pl,_ldfl'_ 2 . (dpt* __J + p2, = \#d_J +(p")2= 1 . (9)

Now, p" satisfies the differential equation for the trigonometric functions. Therefore, the general

solution of Eq. (9) is given by

y=cos #(_-_0)=cos[_(_-_0)] , (10)

or

[cos."
2

v--2

(11)

The phase, _0, is the integration constant.

Actually, for bound trajeclories, which are the case for v > 2, the angle _2 and the phase 90

both change value at the origin. There a particle is both at the end of a. particular orbit (which

starts and ends at the origin) and also a.t the beginning of the next orbit. 9 changes value because

of the use of polar coordinates and c20 does because of the singular nature of the potentials. One

has to be careful in matching solutions for bound orbils, and I refer you to Ref. [2] for the details.

For now just note that this problem can be taken care of, and we set _0 = 0 for the first orbit.

3 Classical Trajectories

3.1 Bound trajectories: 2 < v or 1 < #

For 2 < , or 1 < #, the trajectories go out of and back in to the origin in a finite amount of time.

The reason for this is that the dynamic potential dominates at the origin, but the centripetal

barrier dominates at a finite distance. The effective potential then asymptotes to zero from above

as r _ oc. This is shown in Figure 1.

These bound orbits have an opening angle at the origin of

27r 7r

(I). - - _ (12)
I/ -- 2 #
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05 1 1.5 2

FIG. 1. The effective potential obtained from Eq. (4) for u = 4 in units of g0/2,

as a function of p = r/a. The form is U(p) = 4/p 2 - 1/p 4.

The precession per orbit is

(1)P_= -I _-= _ _r, (13)

which means that if u is a rational fraction, the trajectory will close after a finite number of orbits.

The classical period of an orbit is

[ma2]v/-_ F(b) 1 1 u+9
r. = [LJ I_1F(b+ 1/2) ' b - -# + 2 - 2u --4 > 0. (14)

(Once again, see Ref. [2] for details.)

Starting with very large u, the first orbit describes a very thin petal. The second orbit precesses

by almost -rr, being a thin petal almost on the opposite side of the first orbit. As u gets smaller,

the petals become larger and the precession per orbit becomes smaller.

For example, the u = 8 case, has three petals. Here a petal is rr/3 wide and the precession per

orbit is -2rr/3. Thus, there are three orbits before the trajectory closes. Note that here the three

petals in a closed trajectory cover only half of the opening angle from the origin. We show this in

Figure 2.

The case u = 6 is very interesting. The width of a petal is 7r/2 and the precession is -r/2

per orbit. Here, the width of a petal and the precession are exactly such that there is no overlap

and also no "empty angles." It takes four orbits to close a trajectory. This is shown in Figure 3.

We see that the physical solution consists of two perpendicular lemniscates (figure-eight curves

composed of two opposite petals).
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3rd

1

2nd

first

FIG. 2. The first three orbits for u = 8. Each orbit is precessed -27r/3 from the

previous one, so that by the end of the 3rd orbit, the trajectory closes. In this, and

later orbits, we show cartesian coordinates for orientation.

4th

3rd
first

2nd

FIG. 3. The first four orbits for u = 6. Each orbit is precessed -7r/2 from the

previous one, so that by the end of the 4th orbit, the trajectory closes.
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FIG. 4. The orbit, for u = 4. It is _ circle, and repeats itself continually.

1 1

-1 -0.5

-1

0.5 1

FIG 5. The first two orbits for u = 3. Each orbit is precessed rc from the previous

one, so that by the end of the 2nd orbit, the trajectory closes.
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When we reach u = 4, the petals have widened so nmch that they form a circle. The circle

starts at the origin, travels symmetrically about the positive z-axis, and returns to the origin.

The precession is zero, so the orbit continually repeats itself. In Figure 4 we show this orbit.

As u becomes less than 4, we can think of a petal obtaining a width greater than 7r, i.e., an

orbit consists of two spirals, one out and one in, at opposite ends of the orbit.

Consider the special case u = 3. The width of tile double-spiral orbit is still given by tile

formula for (I)_, and is 2rr. Therefore, the first orbit begins and ends towards tile negative x-axis.

The precession is rr, so the trajectory closes after two orbits. We show this case in Figure 5.

As u approaches 2. the spirals become tighter and tighter and the precession (now clockwise)

becomes larger. In fact, tile spirals' angular variation as well as the orbit's precession both become

infinite in magnitude as u approaches 2.

3.2 Unbound trajectories: u _< 2 or t_ _< 0

When u reaches 2, there is a singular change. First, the double spiral 1)ecomes infinil(' il_ angular

width. But also, the joining of the two sides of the double spiral at p = I and c2 = 0 I)r('aks down.

It is as if a tightly-wound double spring broke. The ends spiral out to infinity. This special case

is a Cotes' (infinite) spiral. It takes an infinite time to r('ach infinity tr()ln the origin.

When the potential parameter u just. leaves that of the infinite sl)iral , l.hal is, when one barely

has u < 2 or # < 0, there is another change. Although the two ('ll([s of th(' entire trajectory still

reach to infinity and the spirals in and out ahnosl have infinite angular wi(ll.hs, the (lisl.an('(" of

closest approach jumps from p = 0 to p = 1.

As the value of u decreases, the value of the angular wi(tth of the trajectory, now given by

_, = 7r/l#l , also decreases accordingly. By the tim(, u = l, the angular width has de('reased to

27r. Eventually it becomes less than 7, meaning the orbit com('s in and out in the same half plane.

This happens for u < 0, i.e., when "the force becomes replllsiv(,.

When 0 < u < 9,,. the repulsive centripetal barrier dominates at slnall 'r whereas lhe attractive

potential V = -7/r _ dominates at large r. A typical shape is t'anfiliar from the l{('pl('r l)roblem.

Therefore, for 0 < u < 2, the I_ = 0 classical orbits are all unbounded. The distan('(,, ,, now

has a completely different interpretation. It, is now the distance of closesl apl)roach. Even so, the

formal solution (10) remains valid for negative values of t_.

As a first example consider the case u = 3/2 or # = -1/4. This orbit has a total angular

width of 47r. It is shown in the two drawings of Figure 6. The large-scale tirst drawing shows the

trajectory coming in from the top, performing some gyration, and going out at the l)ottonL The
i

small-scale second drawing shows the trajectory winding around twice near the origin, with the

distance of closest approach being one.

A second example is the exact Kepler potential, u 1 or # = -1/2 Eq. (10) gives

p-J/2 = cos_/2 , (15)

so that
I 1 1 + cos

- = (cos_/2) 2 - (16)
p 2

This is the famous parabolic orbit for the Kepler problem with E = 0. This orbit is shown in the

first drawing of Figure 7. The parabola yields an angular width of 27r, as it should.
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FIG. 6. A large-scale view, and a small-scale view near the origin, of the trajectory

for u = 3/2.
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FIG 7. From left to right, he trajectories for the cases i) u = 1, ii) u = 0, iii)

u = -2, and iv) u = -4. The curves are labeled by the numbers u.
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If we formally set v = 0 in the expression (3), we get a negative constant potential V(r) = -7.

Therefore, in this case the force vanishes and we have a free particle. Its orbit must be a straight

line. However, Eq. (8) shows that one still has the same type of solution, Eq. (11). Here it is

[ ]-1p = COS_ , X = rcos_ = a . (17)

This is the equation for a vertical straight line that crosses the x-axis at x = a, as required by the

initial conditions. This orbit is shown in the second drawing Figure 7, it subtending an angular

width of 7: from the origin.

For u < 0 or # < -1 the potentials V(r) in Eq. (3) are repulsive and negative-valued for

all r > 0, with V(r) going to -co at large distances. Since both the potential, V(r), and the

centripetal potential decrease monotonically, the effective potential has no minima or maxima.

Even so, for E = 0 these unbounded orbits behave qualitatively like those for 0 < u < 2. The

quantity a now labels the distance of closest approach and the solutions are given by the same

expression (10), which is also valid for all/_ < 0:

p = [COS'_9] 1/t_ = [COS [_1_9] -1/I/_] , # < 0. (18)

The most famous special case of these potentials is the "inverted" harmonic-oscillator potential,

with v = # = -2. The orbit is given by p = [cos 2_] -1/2 , so that

r2 r 2 x 2 y2 (19)
1 = _-cos2cp = _-(cos2 _- sin 2 ¢p)- a2 a2 •

Thus, the trajectory is a special hyperbolic orbit, whose minor and major axes are equal, b2 = a 2.

We show this orbit as the third drawing in Figure 7. Now the angular width has decreased to 7r/2.

As the last case, we consider the orbit for u = -4 or # = -3. This orbit is shown in the last

drawing of Figure 7. The orbit subtends an angle of 7r/3, again as it should. One sees that as u

becomes more and more negative, the orbits will become narrower and narrower. This is just as

in the bound case, where the petals became narrower and narrower as u became more and more

positive.

4 Quantum Solution

Consider the radial SchrSdinger equation with angular-momentum quantum number l:

[ h2 ( d_ 2 d l(l+l)) ]ER, = -_--_ _ + r dr r _ + V(r) R, . (20)

This SchrSdinger equation is exactly solvable for the potential of Eq. (3) for all E = 0 and all

-oo < u < cx_. To see this, set E = 0 in Eq. (20), change variables to p, and then multiply by

_p2. One finds

0 = p --dp + 2p - l(l + 1)+ R,(r). (21)
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This is a well-known differential equation of mathematical physics. For u :fi 2 or # ¢ 0, the
solution can be directly given as

Rl(r)=pl__ J ( 2g ) 1 J ( 9 )(_) k- 21p(_) = T (_/_) _ ' # # o. (22)

One actually has to be careful about when an absolute value of It is called for in the labels of the

solution, and whether the J Bessel functions are called for vs. the Y function. These details are

given in Ref. [3].

5 Properties of the Quantum Solution

5.1 Normalizable bound states: 2 < u or 1 < #

The normalization constants for the wave functions would have to be of the form

= (_) g (23)
P

Changing variables first from r to p and then from p to z = g/(IPlP'), and being careful about

the limits of integration for all #, one obtains

x_-2= I#_ z_ , (24)

where

II : , z(l+2/#) (_)(2) . (25)

This integral is convergent and given by

[t+_/2
Ii= 1 F(½+_) F\-]_ _) (26)

27r1/2 F ( 1 .__ 1)F (1 ___ _ ._ 1) '

if the following two conditions are satisfied:

2/+1 2

I#1 + a > -# + 1 > o. (27)

Eqs. (26) and (27) lead to two sets of normalizable states. The first is when

#>0 or u>2, />1/2. (28)

These are ordinary bound states and result because the effective potential asymptotes to zero

from above, as in Figure 1. In this case, for E = 0, the wave function can reach infinity only by

tunneling through an infinite forbidden region. That takes forever, and so the state is bound.

Note that the condition on l in Eq. (28) is the minimum nonzero angular momentum allowed

in quantum mechanics, lmin = 1. This agrees with the classical orbit solution which is bound for

any nonzero angular momentum. Also, the above E = 0 solutions exist for all g2 > 0, and not

just for discrete values of the coupling constant.
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5.2 Free states: -2 _< u _< 2 or -2 _< # _< 0

For -2 _< u _< 2 or -2 < # < 0 and l _> 1 (as well as the solutions with l = 0 and 0 < # or

2 < u) the solutions are free, continuum solutions. This is in analogy to the classical case, where

the trajectories are normal and free.

5.3 Unbound yet normalizable states: u < -2 or p < -2

There is another class of normalizable solutions which is quite surprising. For any l and all u < -2

or # < -2, one can verify that the conditions of Eq. (27) are also satisfied. Thus, even though

one here has a repulsive potential that falls off faster than the inverse-harmonic oscillator and the

states are not bound, the solutions are normalizabld

The corresponding classical solutions yield infinite orbits, for which the particle needs only a

finite time to reach infinity [2]. But it is known that a classical potential which yields trajectories

with a finite travel time to infinity also yields a discrete spectrtun in tile quantum case. This

discrete spectrum is obtained by imposing particular boundary conditions on the solutions, which

defines a self-adjoint extension of the Hamiltonian. (See Ref. [1].)

5.4 Bound states in arbitrary dimensions

One can easily generalize the problem of the last. section to arbit.rary D space dimensions. Doing

so yields another surprising physical result.

To obtain the D-dimensional analogue of Eq. (21), one simply has to rf_place 2p by (D - 1)p

and l(l + 1) by I(1 + D - 2). The solutions follow sitnilarly as

,29,&,_) pD/_-, ( Ip- 21p(

_ ,jpD/2-1 (_)

To find out which states are now normMizable one [irst has to change the integration measure

from r2dr to rO-ldr and then continue as before. The end result is that if the wave ftmctions are

normalizable, the normalization constant is given by

aD(g) 2/_'= , (30)

where

II'D -- 27l'1/2 F (1 + 1)F (1 + _ + _)

which is defined and convergent for

(31)

21+D-2 2
+1 >-+l >0. (32)

#
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This yields the surprising result that there are bound states for all u > 2 or # > 0 when

l > 2 - D/2. Explicitly this means that the minimum allowed l for there to be zero-energy bound

states are:

D=2, lm_,_ = 2,

D = 3 , lmin = 1 ,

D = 4 , lmin = 1 ,

D > 4 , lm_n = O . (33)

This effect of dimensions is purely quantum mechanical, and exists for all central potentials.

Classically, the number of dimensions involved in a central potential problem has no intrinsic effect

on the dynamics. The orbit remains in two dimensions, and the problem is decided by the form of

the effective potential, U, which contains only the angular momentum barrier and the dynamical

potential.

In quantum mechanics there are two places where an effect of dimension appears. The first is

in the factor l(l + D _ 2) of the angular-momentum barrier. The second is more fundamental. It

is due to the operator

Uqm= (D-l) d (34)
p dp"

This is a new contribution to the "effective potential," and can be calculated [1]. The end result

is that given in Eq. (33).

The dimensional effect produces what amounts to an additional centrifugal barrier which can

bind the wave function at the threshold, even though the expectation value of the angular mo-

mentum vanishes.

6 Closing Comment

I hope you have found this discussion of anharmonic power potentials entertaining and enlight-

ening. Jamil and I certainly have. The intuition obtained into the workings and relationships

between classical and quantum physics has been delightful to us, to say the least.

Thank you very much.
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Abstract

We present a description of the vibrational excitations of methane by means of

an algebraic analysis of a model of coupled anharmonic oscillators.

1 Introduction

Consider an AB4-1ike tetrahedral molecule and suppose we are interested in describing its vi-

brational degrees of freedom. This can be aecoml)lished either in the framework of an integro-

differential scheme or by means of an algebraic approach. The former constitutes the traditional

method, which consists in parametrizing the Hamiltonian in terms of internal coordinates [1],

where the potential is modeled in terms of force field constants that can be obtained from

theoretical calculations or fi'om fits to spectroscopic data [2]. On the other hand, the algebraic

approach represents an alternative to the traditional methods based on the use of Lie algebras to

represent the interactions [3]. The algebra used to describe the vibrational degrees of freedom is

not unique. Michelot and Leroy, fi)r exmnple, use a unitm3" group U(n) as the dynamical group

of the system with n - 1 vibrational degrees of freedom [4], while Iachello and Oss introduce

an SU(2) algebra for each atomic degree of freedom [5]. In this work we carry out a complete

description of the vibrational excitations of tetrahedral molecules by assigning a U(2) algebra

to each interatomic potential.

2 Algebraic Model

The model is based on the isomoq)hism of the U(2) algebra with a one-dimensional Morse

oscillator, whose eigenstates may be l)ut into a one to one correspondence with a set of U(2) D

0(2) states, characterized by tim (luantuln numbers [[N],rn >, as long as the value of m is

restricted to be non-negative. In this space the Morse Hamiltoniml takes the simple form 72l =

25



AC2o(2), where A and N are related to the Morse potential parmneters and C2o(2) corresponds

to the square of the 0(2) invariant ol)erator [3].

[5

[5
FIG. 1. Assigmnent ()f the Ui(2) algel)ras to tetrahedral molecules.

For the description of a tetrahedral m()lecule we assign a Ui(2) algebra to each interaction

present, as shown in Fig. 1. The first four algebras have been chosen to correspond to the A-B

interactions, while the other six represent the B - B couplings. The molecular dynamical group

is then given by the product U _(2) x ... x U1°(2), and the most general Hamiltonian, up to two

body interactions, conserving the total number of quanta and invariant under the tetrahedral

group 7-d, can be written as

/t =/_'_"+/t B+ _?s-. (1)

The term _s describes the stretclfing degrees of fl'eedom and has the form

4 3 4 3 4

_2[S =A1EC2°'(2)+BI2E E C2°"(2'+)_12E E "A'4iJ

i=l i=1 j=i+l i=1 j=i+l

while 72/B is the bending contribution, given by

,0 {0_B=AsE(_°'(2'+B'%G E E C2oo(2)+

i=5 j=6 i=5,10

+ Bs,lo {d205,1o(2)+ d20.,s(2)+ d207,9(2)}

j=6 i=5,10 j=7,9 i=6,8

-1- AS,lO {d_5,,o -_- d_6,8 "1- d_7,9}

j=7,9 i----6,8
}
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The last operator, T_,r_--B, represents the stretching-bending interactions, which will be neglected

as a first approximation. In these expressions C2o;J(2) corresponds to the oiJ(2) Casimir in-

variant, while .Mij is the Majorana operator, which is related to the U_J(2) Casimir operator

[3].
The simplest ba_sis to diagonalize the Hamiltonian is the one associated to the local-mode

chain [3]

U(1)(2) ×... × U(4)(2) × U(5)(2) ×... × v(l°)(2) D O(1)(2) × ... x O(1°)(2) D 0(2)

i i I t I (2)
I[N1] , ... [N,] [N2] , ... , [N2] vl, ... , v,0; V>,

i

where below each group we have indicated the quantmn numbers characterizing the eigenvalue

of the corresponding invariant operator. The two boson numbers N1 and N2, are related to the

two sets of physical modes (stretching and bending). The quantum numbers vi correspond to

the number of phonons ix, each oscillator (vi = N_ _ ,hi), while V = E___°, vi.2
A simple analysis of an AB4 tetrahedral molecule [6] shows that it presents 9 vibrational

degrees of fi'eedom, flmr of them corresponding to the fundamental stretclfing modes (A1 ® F2)

and the other five to the fundamental bending modes (E _ F2). Comparing this result with the

local basis (2), we deduce that an unl)hysical ben(ling mode is 1)resent in the algebraic formalism.

We thus proceed to eliminate this spurious state both fi'om the Hamiltonian and the basis.

To accomplish this goal we first transform, for the one phonon case, the local basis to a

normal one, which carries the irreducible rel)resentations (irreps) of the 7"a groul). With this

change of basis we obtain the decoml)osition A1 • F: for the stretches and AI • E ® F2 for the

bends. From this result we readily identify the A1 bending mode as the spurious state. We now

eliminate this Sl)UriOUS state fi'om the space and proceed to construct the higher phonon basis

fi'om the physical one-phon(m set by means of the coupling coefficients C( ; )

v,+v,_r__ = _ C(F,F.2F; 7,727) v'g2r'-r, v_ g2_,r_ ,

_¢1 _t2

(3)

where F and 7 label the irreps of 7-_ and its coml)onents, respectively.

To eliminate the spurioLLs contributions fi'om the Hamiltonian we demand its null expecta-

tion value with respect to the one-phonon spurious fimctions [7]

< , 1kI/AIbending bending >= 0 , (4)

which leads to a constraint

4(1 - N_)A5 + 16(1 - 2N2)B_,6 + 4(1 - 2N2)Bs,,0 = 0

between the interaction l)arameters.

The vibrational energies are obtained by diagonalizing the Hamiltonian (1) with respect to

the normal basis (3), constructed fl'om the l)rojected one-phonon functions (A_, F2)-stretching

and (E, F2)- bending, taking into account the constraint (4).
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TABLE I. Experimental [2,6,9] and calculated energies (cm -_) for methane.

Normal Normal

V label F Expt. Calc. V label F Expt. Calc.

1 3

2

3

v4 F2 1310.0 1303.7

v2 E 1533.0 1520.4

vl AI 2916.5 2918.4

v3 F2 3019.4 3027.2

'A1 2474.5

2v4 , E 2476.4

F2 2614.0 2610.5
h,.

v2 + v4 _FI
2827.2

IF2 2830.4 2841.5
¢

2v2 _lA1 3003.7

E 3026.3

v, + v4 F2 4223.0 4222.0

A, 4330.9
va+v4 , E 4330.9

FI 4330.9

,F2 4319.0 4330.9

v2 + v3 IF, 4547.7

t F2 4549.0 4547.7

Vl + v2 E 4438.8

2vi A, 5788.0

v, + va F2 5861.0 5856.7

A_ 5974.4
2,/a 6004.7 6014.5

6047.7

3v4

v2 + 2u4

2v2 -b v4

F2 3624.3
, F, 3778.3

F2 3779.4

_A, 3920.4

I'A1 3925.7
E 3935.6

i E 3987.9

A2 4017.6

F2 4123.0 4123.9

FI 4260.4

IF2 4425.5
F2 4317.4

4387.6

[
/

v1+v2+v4 {.
Lz-2
:42
E

FI
/'/2 "JC /'3 + I'/4 _ F2

1A1

E

F1
F2

v, + 2v2 fA1

E
F2

2v2 "{-v3 IF,

2v, + '/4 F:

vl + v3 + v4 t'.A_E

F2

E

A,

2v3 +v4 _ F,

F2
F2
F,

2v, + v2 _E

v,+ v_+ '/3 i'F,

FI
v2 + 2v3 , F2

E

A2

A,
b

3v, AI

5775.0

5861.0

7514.0

5745.6

5759.9

5854.4

5854.4

5854.4

5854.4

5868.7

5868.7

5868.7

5868.7

5922.0

5944.7

6030.9

6053.5

6053.5

7091.7

7160.4

7160.4

7160.4

7160.4

7278.1

7308.4

7318.2

7318.2

7318.2

7351.4

7351.4

7318.2

7377.1

7377.1

7494.8

7534.9

7534.9

7568.1

7568.1

7568.1

8581.1
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Normal

label F Expt. Calc.

3v2

pl + 2u4

u3 + 2u4

l_ 4495.34510.9

IAi 4575.7
5392.8

5394.7

IF,2 55Ol.7
'F1 5503.6

F_ 5503.6

F2 5528.8

F,z 5637.7

A1 5637.7

E 5637.7

F, 5637.7

Normal

label F Expt. Calc.

2/] 1 "_ //3 F 2 8604.0 8603.0

AI_ 8725.5
//1 3u 2U3 8807 8794.1

8838.5

t_2 8900.0 8910.0

3u.3 FI 8944.8

AI 8982.1

9045.0 9034.5

3 Methane

In this section we al)ply this algel)raic al)l)roach to descril)e the vibrational levels of methane.

According to the Hamiltonian (1) tile munl)er of parameters is eight, plus the boson numbers

N1 and N2. The viln'on munber Nl can be fixed from the anhammnicity of the C - H bond,

while for the bending vibrations we have taken N2 fl'om the H - H interaction in H20 given

in reference [8]. From these considerations, the nunlber of free l)arameters is seven, taking into

account the constraint (4).

TABLE II. Paramc.ters of the Hamiltonian obtained in the least square fitting

(cm -1 ). The munbers of l)osons are taken to 1)e Nl =43 and N2=28.

Stretching Bending

A, BI_ A12

-13.2125 -0.6850 0.6328

A_ B5,6 B_,lo A5,6 A5,1o

35.4844 2.6492 -28.0164 9.0501 5.1799

The Hamiltonian (1) is diagonalized in the normal basis, built by repeated couplings of

the form (3). Since by construction this basis is symmetry adapted, the Hamiltonian matrix

separates into blocks corresponding to the irreps of "Td. In Table I we present the least square

fit for methane up to three quanta. Following Herzberg's notation [6], the four fundmnental

energies for A_, F2 (stretching) and E, F2 (bending) have been denoted by ui, u3, u2 and u4,

respectively. The final 1)arameters are given in Table II. The model in its simplest form (without
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including the V B-s interaction or higher order terms) seems to provide a good description of

19 experimental energy levels with an rms deviation of 12.16 cm -1.

4 Conclusions

We have presented a new method, which applied to an algebraic model of coupled anharmonic

oscillators is able to describe the complete vibrational spectrum of polyatomic molecules. We

emphasize that the method systematically incorporates group theoretical techniques which sim-

plify the diagonalization of the Hamiltonian and provide a clear methodological procedure that

can be applied to other molecules [10]. Although we have used the model in its simplest form, it

can be improved in the following ways: a) Inclusion of the stretching-bending interactions 1) s-B,

(b) Introduction in the Hamiltonian of higher order terms and (c) Addition of interactions which

do not conserve the total nmnber of quanta.
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Abstract

We describe a new method based on algebraic techniques, which leads to a model

of atom-diatom collisions.

1 Introduction

One-dimensional atom-molecule collisions have been studied using a combination of differential

and algebraic techniques in conjunction with time evolution operator methods for a variety

of molecular potentials [1]. For three-dimensional systems, however, one needs to resort to a

number of computational integro-differential techniques to describe such interactions [2,3]. In

recent papers we have proposed an algebraic framework based on the vibron model [4], that

leads to a three-dimensional scheme for such interactions [5], which starts from a U(4) × U(4)

description of three-atomic molecules. We then apply a coherent state method to one of the

U(4)'s, thus extracting a coordinate dependence for the interaction between one of the atoms and

the remaining diatom, while the latter is still described algebraically. The resulting Hamiltonian

is formally analogous to the ones used in one dimension [1] and can be solved in principle in the

interaction picture [5]. This is a difficult task, however, particularly with respect to assessing the

different degrees of approximation: involved. For this reason we consider here a one-dimensional

version of our model based on a U(2) × U(2) dynamical algebra, which is simpler to analyze and

already incorporates much of the complexity of the full three-dimensional model.

2 One-Dimensional Model

In our one dimensional model, the stretching vibrations of triatomic molecules are described in

terms of the dynamical algebra

U1(2) x U2(2) (1)
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by means of the Hamiltonian

fI= Eo(Ni,N2)+ AJ_, + BJ_2 +C]z, Jz, + D], . 32 +..., (2)

where _,, ]_, and ],, are the SUi(2) generators and N, the (fixed) total boson number associ-

ated to Ui(2). The dots at the end of (2) indicate that we may also need other combinations of

generators, such as "]_1 "]y2" Such Hamiltonians are well suited to describe stretching vibrations,

due to the connection that can be established between the U(2) algebra and the one-dimensional

Morse oscillator SchrSdinger equation [6]. We now introduce the coherent state basis associated

to bond number 2 [7],

1
l[N]r>= (st+ rti)Nlo> , (3)

x/N!(1 + r2)N

where s t, t t are two scalar boson creation operators through which the U(2) algebras are realized

[6]. Computing the expectation value of (2) in the basis (3) and carrying out the coordinate
transformation

e_bx/a °r= 2--e-bx/a° ' (4)

we arrive at a Hamiltonian of the form

H =/2/0 + _ + "_2 + 1)'3 , (5)

where

Ho = A]_, ,

9_ =" -/_(2e -b'i'° - c -2b=°/<'°)

17_= _-_:I:o,

(6a)

(6b)
(6c)
(6d)

and

&=-I(c+D)N]z, , (7a)

= -1BN(N- 1) , (7b)

1oNly1 (7c)_=-_

The potentials (6b) and (6c) generalize the typical interactions of exponential form (6d) used

in previous works [1]. For collision energies high compared with the vibrational excitations, we

may "freeze" the molecular coordinates and substitute ]=, and ]_, in (7a) and (7c) by their
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expectation values in the [jm > basis, leading to a well defined potential for which we evaluate

classical trajectories, associated to a classical Lagrangian of the form

L = e_2 + V,(z) + V2(z) + V3(z)
2

(8)

Substituting these trajectories x(t) back into (5) then leads to a time-dependent potential of

the form

?(t) = V,(t)L, + V2(t) + V3(t)J_, + V,(t)J_, , (9)

where V/(t) are obtained from (6), except for V4(t), which is identically zero.
We now use the interaction scheme, which is appropriate to determine time-dependent

solutions for namiltonians of the form/7/=/7/o + V(t), as in (5). The evolution operator in this

scheme satisfies the equation
^

ih°u(t) _ _.,O(t) , (10)
Ot

where

_,,,(t) = _'*'°('-")9(t)_ -ih_°('-'')

A great simplification, arises when Vint is a linear combination of a closed algebra.

particular case of SU(2), U(tl, t) can be expressed in the form

(11)

For the

Cr(t) = e-i/hgz(t)).e-i/t*9=( t) ), e-i/hga(t)), e-i/hg4(t) (12)

If this is the case, substitution of (12) into (10) gives rise to differential equations for g_(t) in

terms of the (known) potentials V_(t). Once U(tl, t) is known, the scattering matrix is defined

in terms of it as

S = gr(-c¢, oo) , (13)

i.e., the transition probabilities can be obtained through

P(Ijm >-+ Ijm' >)= I< jmlSljm' > 12

= d,m,(I Z e -i_'r J -rt/2)dJrm2(-Tr/2)dJ2m(/32)l 2
Tm2

(14)

where jSi = g_(-o¢, oc)/h and the d-functions are the usual aacobi functions appearing in the

definition of Wigner's D-functions [8].

3 Calculations

The main stumbling lblock for the evaluation of the evolution opperator is the calculation of

Vi.t(t) through (11). We proceed to discuss bricfiy some approximations tb carry out this task.
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a) Sudden Approximation

In the sudden approximation, the interaction time is considered to be very short. A Taylor

expansion of (11) along tl leads to

i ^ y(t)ly(t t,) + (15)
Vint(t) = V(t) + _[g0, - ...

which at zeroth order gives _nt(t) = V(t). This represents an approximation where all dy-

namical information of the molecular potential is lost in equation (10). We may then solve for

the classical trajectories using (12), in some cases analytically, which generalize results known

previously for the exponential interaction (6d) [9]. In this limit we are able to exactly reproduce

the analysis of Levine and Wulfman [10,11] and extend them to the more general interactions

in (6). We omit these results here for lack of space and refer the reader to reference [9].

i

b) Averaging Techniques for l?/,,t(t)

Since we are interested in comparing our algebraic methods with quantum mechanical ab

initio calculations (when these are available), we should improve the evaluation of _nt SO as to

introduce the dynamical effects of the molecular potential. The sudden approximation of the

previous subsection fails to account for the fine properties required. Fortunately, a quantum

mechanical calculation for the transition probabilities in the scattering of an atom from a one-

dimensional Morse oscillator has been presented by Clark and Dickinson [12], so we may gauge

our approximations by comparing with their results. Returning to eq. (11), we substitute (6a)
and make use of the commutation relations

[J_, jy] = -Jy - 2iJ,_ ,

[g_, Jx] = -Jx + 2ij_Jy (16)

After some algebra we find the expression

-i

_.t(t) = 2sin_owot) (-cos(2xowotJz)Jy + Jycos(2xowotJ_))

+ 2sin(xowot) (-cos(2XowotJ,)Jy + Jycos(2xowotJ,)) V3(t)

+ V,(t)Jz, + V2(t) , (17)

where xowo isthe standard anharmonicity parameter, which can be expressed in terms of the
A

Morse potential parapaeter through xowo = =£_. The problem with eq. (17) is that it no longer

satisfies being linear in the SU(2) generators, so (12) is not valid. To de_tl with this problem,

we proceed as follows. We apply Vint(t) to a Morse eigenfunction Ijrn > and insert a complete

set of states _, IJ# >< J#l to the resulting expression. Taking into account the selection rules

for Jy, which imply, # = m -4- 1, we find a state-dependent potential:

lYre(t)= _[c°s(2x°w°tm)-_V3(t)+-" cos(2xowot(mcos(xowot)+ 1))V3(t)[jm + 1 >< jm + 1[

cos(2xowot(m- 1)) V_ )+ cos(xo_,ot) , (t)ljm - 1 >< jm- 11) J_ + v,(t)L + v2(t) (18)

34



The m-dependent cosine functions, however, are practically the same for small values of the

phonon number v = j - m (large m values), so we can simplify (18) by averaging the excitation

to the two possible states # = m 4- 1, so we arrive at the simple m-dependent potential

"V,,,(t)= (cos(2zowotm)cos(xowot)Va(t)Jy

+ V,(t)L + Vz(t) , (19)

which is linear in the ._U(2) generators, so (12) is valid. Since we axe interested in comparing

our approach with the calculations of ref. [121 where only V3(t) ¢ 0, the potential (19) simplifies

further and only Jy remains. The evolution operator is then given by

(]m(t) = e-ig_(m't)j'ln , (20)

where

_2(m,t) = V3 cos(xowot)cos(2xowomt) (21)

The differential equation for the evolution operator then lead to exactly solvable forms for the

classical trajectories and to the asymptotic value of 92(m, t) (see below (14))

/:E cos(xowot) cos(2mxowo) sech 2 E t
& (m) = _- _ ,u

(22)

where E is the collision energy. From (14) this leads to the simple expression for the transition

probabilities
p(lj m >_ Ij m' >) J (23)= dm,m,(&(m')) ,

where

Z_(m') =
b2h

(2m'- 1)zC0 (2m'+ 1)x0 ] (24)
sinh((2m' - 1)x0k0) + sinh((2,n' + 1)x0k0)J '

with k0 = _X/t--_2_. In Table I we compare the results of our calculation, using (23), (24),
with those of Clark ahd

TABLE I. Comparison between the algebraic model and the Claxk-Dickinson ModeP 2)

Energy ( hw0 /2 units): 16

Final state

1

2

3

4

Initial State = 0

Clark-Dickinson

Probability

0.245000

3.38000E(-02)

2.72000E(-03)

1.61000E(-04)

Model

Probability

0.157837

1.45652E(-02)

8.65153E(-04)

3.71652E(-05)

Initial State = 1

Clark-Dickinson Model

Probability Probability

0.318000

5.72000E(-02)

5.16000E(-03)

0.253196

3.62444E(-02)

2.86219E(-03)
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5 7.44000E(-06) 1.22993E(-06) 3.24000E(-04) 1.50963E(-04)

Final state

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4

Energy ( hwo/2 units): 12

Initial State = 0 Initial State = 1

Clark-Dickinson

Probability

Model

Probability

Clark-Dickinson

Probability

Model

Probability

0.129000

6.65000E(-03)

1.49000E(-04)

1.48000E(-06)

4.95000E(-09)

0.124019

8.57432E(-03)

3.81572E(-04)

1.22807E(-05)

3.04486E(-07)

0.167000

8.41000E(-03)

1.38000E(-04)

7.01000E(-07)

0.208828

2.19917E(-02)

1.28983E(-03)

5.07090E(-05)

Energy ( hwo/2 units): 10

Initial State = 0 Initial State = 1

7.39000E(-02)

1.66000E(-03)

1.17000E(-05)

1.95000E(-08)
0.

0.105782

6.09133E(-03)

2.25776E(-04)

6.05219E(-06)

1.24982E(-07)

Energy ( hwo/2 units): 8

8.15000E(-02)

1.22000E(-03)

5.12000E(-06)

2.95000E(-10)

I

0.182403

1.58582E(-02)

7.71373E(-04)

2.51949E(-05)

Initial State = 0 Initial State = 1

3.15000E(-02)

1.85000E(-04)

1.18000E(-07)

0.

0.

8.66178E(-02)

3.98810E(-03)

1.18193E(-04)

2.53330E(-06)

4.18294E(-08)

2.28000E(-02)

3.07000E(-05)

1.37000E(-11)
0.

0.152903

1.05375E(-02)

4.08112E(-04)

1.06318E(-05)

Energy ( hwo/2 units): 6

Initial State = 0 Initial State = 1

7.31000E(-03)

2.30000E(-06)

0.

0.

6.64920E(-02)

2.29488E(-03)

5.09821E(-05)

8.19113E(-07)

1.25000E(-03)
0.

0.

0.120126

6.15327E(-03)

1.77900E(-04)
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5 0. 1.01384E(-08 ) 0. 3.46550 E(-06 )

Dickinson [12] for different collision energies and for two different initial states. Although our

results differ from the exact ones, particularly for higher final states where the probabilities are

very small, the general trend is reproduced remarkably well, taking into account our semicla.ssical

method.

4 Conclusions

The algebraic model seems to provide an attractive alternative to integro-differential techniques

for the description of atom-molecule collisions. The approximation methods developed for the

one-dimensional test model can be readily extended to the three dimensional case and applied to

real systems [2,3]. We are currently exploring the generalization of these techniques to include

reaction channels, which would represent an important development because of the relevance of

these processed in atmospheric interactions [13].
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Abstract

Fibonacci chainsare specialdiatomic,harmonic chainswith uniform nearestneighbour in-

teractionand two kinds ofatoms (mass-ratior) arranged accordingtothe self-similarbinary

Fibonaccisequence ABAABABA..., which isobtained by repeated substitutionof A _ AB

and B --* A.

The implications of the self-similarity of this sequence for the associated orthogonal polyno-

mial systems which govern these Fibonacci chains with fixed mass-ratio r are studied.

1 Introduction

Fibonacci chains are linear diatomic chains with nearest neighbour harmonic interaction

of uniform strength _; and the two masses (ratio r = ml/mo) follow the pattern of the binary

sequence {h(n)}_ ° obtained by repeated substitutions a in the following way.

a(1) = 10 , a(0)= 1 , (1)

startingwith 0. By definitiona(uv) = a(u)a(v) for any two stringsu and v. a"(0) ---H,,isa string

of length [H,,I= Fn+t, where F,,= F,-I + F,,-2,n = 2,3,...,F0 = 0, Fi = I are the Fibonacci

numbers, h(n) is defined to be the n'th entry of the half-infinitestringHoo := lim,,-,ooH,,.E.g.

Hs = as(0) = 10110101, h(1) = 1,h(2) = 0,etc. (i) iscalledthe Fibonacci substitutionrule,and

the masses of the half-infinitechain are taken to bc

mn = mh(n) , n = 1,2,... (2)

This sequence {h(n)}_ ° is self-similar because the string Hoo satisfies a(Hoo) = Hoo. Aperiodicity
follows from this invariance, or fixed point, property. (This sequence is in fact also quasiperiodic,

but this does not concern us here.)

Chains of this type have been considered as models of binary alloys [1]. For instance, one may

consider chains with an elementary unit determined by the first N members of the {h(n)} sequence

and repeat it periodically, using certain boundary conditions. This then corresponds to (AB) °°

chains for N = 2, (ABA) °_ chains for N = 3, etc.
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The dual of such chains (with equal masses but two spring constants n0 and tq following the

pattern of the Fibonacci substitution sequence) are related to one-dimensional quasicrystals [2].

One can also make contact to artificially manufactured superlattices [3].

Originally such Fibonacci chains were considered as models for the study of the regime in between

periodic and random structures.[4, 5].

The purpose of this worklis to write down the identities which are satisfied by the characteristic

polynomials of these Fibonacci chains due to the self-similarity of the substituiorl sequence {h(n)}

which determines the pattern of the masses of the oscillators. These identities will be expressed

in terms of the 2 × 2 transfer matrices M, which are unimodular and real. The matrix elements

are given by the characteristic polynomials {S(')(z)}, where r is the mass-ratio of the two types

of atoms and z is a normalized frequency squared (_ -_/2_0 _, _02 = ,¢/mo). The zeros of
S_)(z) determine the eigenfrequencies of finite Fibonacci chains with N atoms and both ends

fixed. One also encounters so-called first associated polynomials {S(')(z)}. They correspond to
a right shift by one unit in the substitution sequence. Hence, the zeros of S_)(z) produce the

eigenfrequencies of chains with masses mS(S) = too, ...,mh(N+l). Both r-families of polynomials

generalize Chebyshev's {Sn(y)} polynomials (S-1 = 0, So = 1, S, = yS,-1-Sn-2) to two variables
with the identification

sC,)(_)= _c,(_)= s.(2(_-4). (3)
They constitute, for fixed mass-ratio r, systems of orthogonal polynomials and have been studied

in some detail in refs.[6, 7, 8, 9].

2 Fibonacci Chain Polynomials

For the Fibonacci chains (tc, mh(n)) defined in section 1 the equation of motion for longitu-

dinal, time-stationary vibrations q,,(t) = q, ezp (iwt) are

q_+, + q,_-I - Y(n)qn = 0, n= 1,2,... (4)

with

Y(n) =_ 2(1 - w'/(2wX)) , w_ = R/mh(,_) . (5)

We use the two variablesr - ml/mo and z _= w2/(2w_). We put Y(n) = Yifh(n) = 1 and
Y(n) = y if h(n) = O. Hence

Y = 2(1- r_) , y = 2(1- _)

The equations of motion are rewritten with the help of the SL(2, R) transfer matrix R.:

R_ is either R1 or R0 depending on the Y(n) value, i.e P_ = Rh(,_).
chains considered here iteration leads to

q_ qo q0

(6)

(7)

For the half-sided infinite

(8)

40



with the inputs ql and 4o (the mass at site number 0 is irrelevant).
The recursion M. = R,_M._I with input M1 = R1 leads to

M. = S._I -S.-2 '

where the recursionformulae for the generalizedtwo-variableChebyshev polynomials are

S. = Y(n)S__I - S.__ , S_, = O, So = l ,

S. = Y(rL + 1)S.-1 - Sn-2 , S-1 = O, S0 = 1

M. is real and unimodular.

(0)

(10)

(11)

These polynomials generate certain combinatorial numbers [10]. The meaning of these numbers
can be understood if one uses the intimate connection of the Fibonacci substitution sequence with

Wythoff's A and B sequences

n--!

A(n) = n + _h(k) , B(n) = n + A(n). (12)
k=l

These sequences {A(n)}_° and { B(n) } _o cover the positive integers in a complementary way: every
number g > 0 is either an A- or a B-number. For an A-number n (i.e.'n = A(m) for some

m) h(n) = 1, and for a B-number n (i.e n = B(m) for some m) h(n) = 0. Wythoff's sequences

are a special case of Beatty sequences: A(n) = Ln_J, B(n) = Ln_2J, with _2 = _ + 1, %o> 0, the

golden mean.

The characteristic polynomials {S(r)(z)}, obtained from {S,_(Y,y)} by replacement of Y and

y according to eq.(6), constitute, for fixed mass-ratio r, a system of orthogonal polynomials.

{S(r)(z)} are the first-associated orthogonal polynomials.

3 Self-Similarity Identities

The string, or 'word', Hoo defined in section i is invariant under the inverse substitution a -1,

with _r-l(1) = 0, a-l(10) = 1. This is equivalent to the self-similarity of the sequence {h(n))_

which is shown in the FIG.

(1)

-1
O"

(1+1)

1 2 3 4 5

1 2

6 7 8 9 I0 Ii 12

6 73 4 5

[3 14 15 16

8 9 10

FIG. Self-similarity of the sequence {h(n)}_. Circles stand

for the value 1 (A-numbers n), and disks stand for the value

0 (B-numbers n). a-*(10) = 1 , a-*(1) = 0 . Level (1) is

mapped to level (l + 1) by a -1.
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The upper level, called (l) in the FIG., shows the numbers marked as A- and B-numbers. The

h(n) value is 1 or 0, denoted by a circle or disk, respectively. When the substitution a -1 is

applied one reaches the next higher level, called (l + 1) in the FIG., on which the same sequence

is reproduced. Let the position of the n's number at level (l) be z_ ) for I = 0, 1, .... Level I = 0 is

assumed to correspond to the original sequence. Then one finds for p E No = N U {0}

zCz+_) z(O
ACp) = S(_) ,

(t+_) z(t)
zB(p) : As(p)

(13)

(14)

where AB(p) stands for the composition A(B(p)) of Wythoff's sequences. E.g. The number

A(4) = 6 at level (l + 1) occurs in the FIG. at the same position as B(4) = 10 at level (l), or

B(2) = 5 at level (l + 1) corresponds to AB(2) = A(5) = 8 at level (I).

Iteration, depending on the parity of the level number, leads to

z(2k+,) _,(0)
ACp) = "B"+_(p) ,

z(2k+_) _.(o)
B(p) = "_AS_+'(p) ,

(2_)) ,_(o)Z : ._ABk(p),

4;) = "_B_+t(p)

(15)

(16)

Consider the level (l + 1) transfer matrix

satisfying the recursion relation

M iz+l) m(t+*) re(t+1) (17)= "'h(,) """h(1) ,

R(,+I) p(l)_(,) R_0) _ R0 = (_ --1) (18)

0 = , 1 0

Iteration leads, with Aim = M (°), to

R(,+I)= Mrs,+,) , m(,+l)= Mr(,+,),1 _0 (20)

with the Fibonacci numbers F..

Due to (15) and (16) one has

MA(2k+x) = Msk+t(p)(p)

M(21,+*)
s(p) = MAs_+t(v)

The recursion at each level is

, MA(}_ = MAB'(,) , (21)

M(t+x) R0+x) _,f(t+z) _,f(t+x) re(t+1) (23)

Combining iteration and recursion, in a systematic way, leads to transfer matrix identities for

level (0), i.e. for the original matrices M. of eq. (8). One finds alltogether six families of such
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identities, depending on the parity of the level one starts with and the specification of the index.

These identities are, for m 6 N and k 6 N,

(I) MB_+I(,_) = MF2_+I MAB_ACm) ,

(IIa) MB_A(ACm)+I) = MF2_÷, MB_+'(m) ,

(IIb) MB_A(B(,,)+a) = MF_+I MAB_+*(m) ,

(III) MABh(m) = MF2k MBkA(,_) ,

(IVa) MAB_A(A(m)+I) = Mf2(k+l) MAB_+*(m)

(IVb) MAB_A(B(m)+I) = MF2(_+,) MB_+2(m)

(24)

(I), (Ila), (Ilb) and (111) result from odd levels l= 2k -I: 1, with n put AB(m), AA(A(m)+ 1),

AA(B(m) + 1 and B(m), respectively. (Ili), (1Va) and (IVb) result from even levels l = 2k,

with n put B(m), A(A(m)+ 1) and A(B(m) + 1), respectively.

E.g. (I) and (III) produce for m = 1, due to A(1) = 1, Bk+'(1) = F2k+3 and AB_(1) = F2(k+,),

identities which are the well-known recursion formula for transfer matrices with neighbouring
Fibonacci number indices

MFn+_ = MF___ MEn (25)

Not all eqs.(24) are independent. E.g. if one puts m = B(p) + 1 in (I), replaces k by k + 1 and

combines it with eqs. (IVb), with k _ k - 1 and m ---, p, one finds eqs. (IIa), due to the identiy

B(p)+ 1 = A(A(p) + 1) and eq.(25)for even n. tIowever, eqs.(IIa) provide identities for MBka(p)
which complement those obtained from eqs. (IIb).

It is possible to combine (I) of eq.(24) with (III) specialized to m ---, A(m) and use (I) again

with k --* k - 1 and m _ A2(m). Continuing this process one finds for k ff N and m 6 N

(I') MBk+l(m) = MF2_+I Mr2k "" " MF2 MBA2_(m)

(III') MAB_(m) = MF2_ MF,__, "" MF, MBA2_-,(,_) (26)

(I) and (III)in (24) can be replaced by both eqs. (26), and the other eqs. of (24) can be rewritten
using (26).

The sum of the indices $f the transfer matrices on the r.h.s, of eqs.(24) and (26) have to match

the index of the l.h.s. This fact produces families of identities among iterated Wythoff A and B

sequences. A detailed investigation of these Wythoff composites identities will be given elsewhere.

All of these identities can be rederived as corollaries of a new theorem relating two seemingly dif-

ferent unique number systems: the Wythoff- and the Zeckendorf- (or Fibonacci-) representations.

The transfer matrix identities (24) are equivalent to those for their matrix elements, i.e. the

characteristic polynomials {S_(Y,y)} and {,_,(Y,y)}. In order to derive them one rewrites the

indices of all matrix elements as Wythoff composites. Consider, for example, (I). For the elements

of MBk+,(m ) one employs the simple identities B_+l(m)- 1 = B(Bk(m))- 1 = A2B_(m) and

Bk+l(m)- 2 = ABABk-I(m). The last identity can be proved for m = A(p) and m = B(p)

separately. On the r.h.s, of (I) one rewrites the indices of the matrix elements with the ,help of

the identities F2k+l = Bk(1), F2k+l - 1 = A_Bk-_(1), F,k+_ - 2 = ABABk-2(1) for k = 2,3,...,

and Fz- 2 = 0. Moreover, ABkA(m)- 1 = BABk-*A(m), AB_A(m)- 2 = A3Bk-_A(m).
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Finally, (I) decomposes into the following four sets of eqs.

(I,(l,l)) SB_+,(_) = SB,(,)SABkA(_) -- SA'B'-'(_)SBAB_-'.*A(m)'

(I,(1,2)) S_i2B,(m) -_- SBk(1) SBAB'-IA(n'L) -- SA'Bk-'(I) SAsBk-lA(rn) '

(I,(2,1)) SA, B,(,,,) = SA,B,-*(,)SAB'A(.O -- SABAB'-'(1)SBAB'-'A(.,) ,

(I,(2,2)) S.BABk-'(._) -- SA"Bk-'(1) SBABk-IA(m) -- SABABk-'(1) SASBk-IA('n)

The last two sets of eqs. hold only for k = 2, 3, .... For k : 1 one has

(27)

SA'B(-0 = Y SABA(.,) -- SBAA(m) ,

= Y S AA(m)-- (28)

The other eqs. in (24) decompose in a similar way. The arguments of the polynomials is always

(Y,y), which can be replaced using eq.(6).
This concludes the derivation of the self-similarity eqs. for the Fibonacci chain polynomials. It is

clear that further work is needed in order to extract from this gamut of eqs. information pertaining

to chain properties, like structure of spectra and displacements.
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Abstract

We test an isospectral potential from harmonic oscillator

simulating H-bond interation in DNA macromolecules.

1 Introduction

In the context of Supersymmetric Quantum Mechanics (SQM), several new potentials have

been generated from shape invariant potentials[l] . In particular, with reference to the

harmonic oscillator[2-4]. However, to date, none of these new potentials have been applied

to real physical systems.

Peyrard and Bishop[5] have introduced a theoretical treatment of DNA. In this model,

starting from the classical Hamiltonian and using the transfer integral operator, the partition

functions follow from the eigenvalues of a Schr6dinger-type equation.

We intend, in this communication, to demonstrate the feasability of using a new potential
I

generated from the harmonic oscillator in the Schr6dinger-type equation to describe H-

bonds in DNA.

2 SQM

In SQM the nilpotent operators Q and Q÷ satisfy the algebra[6]

= H 2 Q+2{Q,Q+} ss;Q = =0 (i)
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which can be realized in a usual matrix form. In this case, the supersymmetric Halmitonian

+ - +

Hss consists of two partners H+ and H. which can be factorized in H+ = a a and H_ = a" a

(where a ÷ and a are bosonic operators), and they have the same spectra except for the

ground state, where only H+ has an eigenvalue equal to zero E+ = 0. The eigenfunctions of

H+ and H_ are related to one another by: _+ = a÷ _P. and qJ. = a qJ+, where the bosonic

operators are defined by:

+ d

a- = {T-dxx + W(x)}.

+

Redefining the operators a-

by Sukumar[7] , or the

operators:

(2)

, it is possible to obtain a family of Hamiltonians as shown

isoespectral potentials[2-4] . In this second case defining new

d

A+ = -T--_x + F(x) (3)

and imposing H. = A A + yields a general form to get F(x). The new Hamiltonian is written

as

d

H+ = A-A + - 2 _x F(x) (4)

and the eigenfunctions of the new Hamiltonian are related to the original Hamiltonian ones

• The missing ground state is obtained from A W+o = 0.

As an example, consider the original potential to be the harmonic oscillador, V(x)=x / . It

then follows[I-4] :

d 2 d exp(-x 2)

H+ - dx2 +x2-1-2dx F+ _Xexp(-za)dz (5)

I

W+,O = exp{-x 2 + _x
exp(-z 2)dz

2 }
F + Joexp(-y )dy

(6)

3 DNA Model
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Bishop& Peyrard'sDNA model includestwo degreesof freedom(un,v, ) correspondingto

displacementsof the basesfrom their equilibrium positionsalong the direction of the H-

bonds connectingthem. A harmoniccoupling due to the stacking interactionsbetween

neighboringbasesis alsoassumedwith the samecouplingconstant(k) for thetwo strands.

Eachbasehasthemassm.

TheHamiltonianfor thismodelis

_-_{pn2 k q 2 kH = ,_. _m + 2 (xn - xn-l)2 + -ln2m+ _(Yn - Yn-l)2 + V(Yn)}, (7)
n

where xn = (u. + vn )/4_, y, = (Un - vn )/4_, Pn = mxn, qn = mYn and V(y,) is the potential

for the hydrogen bonds. Using the transfer integral operators to solve configuration integral

energy the classical partition function can be obtained.

The temperature of denaturation of DNA can be monitored through the mean stretching

<y. >of the H-bond. Considering the limit of large N, only the ground state will be

important, and

< Y >=< ¢Do(Y) Y_o(Y) >= J"_o2(y)ydy , (8)

where O0 (y) is the ground state eigenfunction of a Schr6dinger-type equation:

1 d 2 1 2n
+ V(y)}_i(y)= {s i + -g-ffln-g77,}_i(y).

2132k dy z Lp pr,
(9)

It is important to note the mean value < y > depends on the form of the eigenfunction

O0(Y).

4 H-bond Potential

The Morse potential is usually used to simulate the H-bonds in DNA. However, we suggest

here that the potential generated from the harmonic oscillator using the superalgebra can

also be used. This potential has the form:
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which canberealized in a usual matrix form. In this case, the supersymmetfic Halmitonian

= a +Hss consists of two partners I-L and H. which can be factorized in I-I+ = a+a - and H. a-

(where a÷ and a" are bosonic operators), and they have the same spectra except for the

ground state, where only H+ has an eigenvalue equal to zero E+ = 0. The eigenfunctions of

H+ and H. are related to one another by: q-'+ = a+ q-'. and W. = a" W+, where the bosonic

operators are defined by:

d

a ± = {-T-_x + W(x)}.

+
Redefining the operators a

by Sukumar[7] , or the

operators:

(2)

, it is possible to obtain a family of Hamiltonians as shown

isoespectral potentials[2-4] . In this second case defining new

d

A + = :F_xx + F(x) (3)

and imposing H_ = A- A + yields a general form to get F(x). The new Hamiltonian is written

as

,4

H+ = A-A + - 2 _ F(x) (4)

and the eigenfunctions of the new Hamiltonian are related to the original Hamiltonian ones

• The missing groBnd state is obtained from A- _P+o = 0.
I

As an example, consider the original potential to be the harmonic oscillador, V(x)=x 2 . It

then follows[ 1-4] •

d 2 d exp(-x 2) (5)

_-x 2 - 1 - 2 _Xexp(_z2)dzH+- dx 2 dxF+

' rx exp(-z 2)dz

W+,o=exp{ -x2+_ + rZx 2 }"
F _e p(-y )dy

(6)

3 DNA Model
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Abstract

Alternative algebraic techniques to approximate a given llamiltonian by a harmonic oscil-

lator are described bol_h for tinle-indel)endent and tinie-dependent systems. We iapply tlit,l_b

to the description of a one (limensional atom-diatoni collision. From the restllting evohition

operator, we evaluate vibrational transition probabilities a.s well as othor time-dependent

properties. As expected, the ground vibrational state becomes a squeezed state (luring the
collision.

1 INTRODUCTION

Let us consider the t)roblenl of translation-vibration _,ll('rgy transfi,r in a coliuear collision I)(.twc(,en

a,n atom A and a diatomic nlolecule B(I. The system is described 1)y a llaliiiltollian II

7-t = 7% + 1,'s(x, t),

with the molecule modeled by a Morse llamiltonian

p2 )2
7-{o = _ -4- D(c -a_ -- 1

and we use a semiclassical approach [1] to construct an ef[ective time-dependent interaction 12¢

between the particle and the molecule.

A harmonic Hamiltonian is usl,ally related to 7-/o just by making a Taylor series expansion of
i

the potential around x = 0 and keeping up to second order terms. Itowever, as we shall show

here, this is not necessarily the best harmonic approximation to the Morse Hanailtonian.

In this work, we analyze the time evolution of several physical observables during the collision.

To that end, we obtain an approximate time evolution operator by algebraic means. The resulting

vibrational transition probabilities are compared with results obtained by other authors [2]. We

also evaluate the occupancy of the ground state and the dispersion of the relative position and

lriomentuila of the atoms in the diatomic molecule during the collision.

1Permanent Address: lnstituto de F_sica, Laboratorio de Cuernavaca, U. N. A. M., Apdo. Postal 139-B Cuer-

navaca, Morelos 62191, Mt_xico.
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2 ALGEBRAIC TECHNIQUES

As usual in this type of problem, we shall work in the interaction picture where the behavior of

the free molecule is separated from that of the total system. The observables O evolve in time

according to

O,( t ) = UtoOUo, (1)

where ld0 is the time evolution operator corresponding to the Hamiltonian "k/0, while the time evolu-

tion of states is determined by the operator/4/associated with the interaction picCure Hamiltonian

7-lz( t ) = eiu°(t-t°)/h'l) s( x, t )e -iu°(t-t°)/n. (2)

For both time evolution operators we shall make a harmonic approximationidescribed in the

following paragraphs.

a) On the harmonic approximation to the Morse Hamiltonian.

The harmonic approximation to the Morse Hamiltonian is usually carried out by just considering

the second order Taylor series expansion to the Morse potential

D(e -Ax _ 1) 2 _ DA2x 2. (3)

Let us consider the introduction of creation and annihilation operators with arbitrary scale pa-

rameter _ and a translation parameter d:

1 i
a = ---_. (c_x + -p)- d (4)

Vz (__

and
1 i

a I = -_(ax ap ) -- d. (5)

The usual commutation relation still holds and the position and momentum operators are given

by
' 1 c_

x- v_a(a + a t + 2d) p = _-_(a- at). (6)

In terms of a and a t tim Morse Hamiltonian can be written as

oo

7-lo = Y_ Gijat'a j
i,j=O

(7)

as can be easily shown using the fact

eel(a+ at) _ ectateaae-½C,:_" (8)

The coefficient Goo can be interpreted as an estimate of tile ground state energy on the harmonic

basis determined by the scale parameter a and the traslation parameter d. Invoking the variational

principle we choose them such that

OGoo
gg d= o= 0 (9)
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and 0G°° I_=_ 0 =0. (10)
Oa

By direct evaluation of these derivatives it can be shown that the variational conditions are

equivalent to the diagonalization of the approximate Hamiltonian

Ho = Z G_Ja''aj (ll)
0_<i+j<_2

taking it to a form similar to the one of a harmonic oscillator

Ho = Gllata + Goo, (12)

but with a variationally optimized Goo.

b) Nonperturbative approximate solution for tlle time-dependent interaction tlamiltonian.

In many scattering problems, a perturbative technique is applied to obtain the major effects of the

collision on the state of the system. Ill the case of a collision between an atom and a diatom, even-

though transition probabilities may be small, perturbative results differ significantly from exact

numerical results. Besides, as is well known, there are several successful nonperturbative methods

to deal with the parametric harmonic oscillator model. Taking this into account, harmonic ap-

proximations to the time-dependent interaction between an atom and a diatom have been studied

[3] [4]. In this section, we describe an iterative procedure which has proven to take advantage of

this fact in an optimized way [6]. This method has been applied to the calculation of vibrational

transition probabilities when the molecule is described by the usual harmonic oscillator derived

from a Morse potential.'

Once the time-independent Hamiltonian 740 has been approximated by the harmonic Hamil-

tonian Ito the evolution operator is simply

_-_0 = c-i/hG°°t c-i]hGaltata (13)

thus, the interaction Hamiltonian 7"11(t), can be easily written in terms of the creation and anihi-

lation operators a and a t

741(t) _, (o) _t' j (14)= _)ij (t),t t_

t,3

with the coefficients (I)l°) simple functions of time. Solving this problem corresponds to find an

evolution operator Lit(t) solution of the equation

ihOtblt = _l/g/, (15)

with the initial condition/4i(to, to) =/:.

In analogy with the time-independent problem we split 741 as a sum of two terms [6]

az(1) as(tO
"I'll = 'LI o + 'Vlo

(16)

with

.l(I) _ ¢l°)(t)at'a _ (17)
o<i+j<_2
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and
7/(11)1o = ¢l°)(tl.t'. j

3<i+j

Accordingly, the time evolution operator will be a product,

(18)

l/(1)_+(11)HI = 1o _"Io (19)

with U_/) such that

ihOtU;1o) = as(')U(t)'_,o lo u;l)(to, to) = I,

and L/}/1) an analogous solution for the effective Hamiltonian

(20)

_AI)t_(It)H(/) (21)7-/11 ='1'1o '_1o "4/o "

Due to the fact that the operators contained in "1-/(1) form a finite Lie algebra, the evolution
t t, i0

operator L/_/) can be expressed as a product of exponentials [7]

H}/)= l-[ e-_}°)_t'_' (22)
0_<i+j_<2

where the complex fimctions fl}°)(t) satisfy a set of coupled, first order differential equations which

can be solved numerically. With this expression for H}/) we can construct tile Ilamiltonian 7-/i,.

It again comprises a part which forms a finite Lie algebra and a part which does not. The time

evolution operator/./1(0/1) is then again written as the product of two evolution operators and we

can proceed in a completely analogous manner as hefore. The evolution operator obtained after

k-iterations/aClk would correspond to the product

= Uio')...u;'). (23)

To approximate HI by H1k corresponds to neglect the Hamiltonian "u(H)tvIt¢ with respect to "u(1)'_Ik"

We call this the time-dependent iterative Bogolubov transformation (TDITB) method in analogy

with its quite efficient time-independent counterpart [8].

3 AN EXAMPLE

Let us consider, a colinear collision of an ft2 molecule with an H_ atom. For the H2 molecule

the parameters of the Morse potential are taken to be A = 0.183385 and D = 2.33509 so that

comparison with the results of [2] can be done. To study how efficient is the TDITB method,

consider first the H2 molecule modeled by the usual harmonic oscillator. In Table I we show the

transition probability from the ground to the first excited vibrational state for several values of the

collision energy E = NEo, Eo = hw with 0v as given by Secrest and Johnson [5] and for different

levels of approximation [6].
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TABLE I. Transition probabilities using a harmonic oscillator representing the di-

atomic molecule and one (P0,) or two (P02) iterations for the time-dependent interac-

tion. Results are shown for comparaison with tlle Basis Set (BS) and Exact Quantum

Harmonic (UHA) of [5].

E/h 
4

6

8

10

12

16

Pm P02 BS UHA

9.20(-4) 9.73(-4) 9.84(-4) 7.20(-4)

3.5o(-2) 3.76(-2) 3.89(-2) 2.95(-2)
1.38(-1) 1.47(-1) 1.55(-1) 1.33(-1)

2.61(-1) 2.73(-1)2.87(-1) 2.92(-1)
3.45(-1) 3.49(-1) 3.59(-1) 4.28(-1)

3.44(-1) 3.29(-1) 2.96(-1) 4.07(-1)

The results obtained with a basis set expansion (BS) are exact numerical results within tile

semiclassical approximation. We also show in the table the exact quantum results of [5] (IIItA).

The transition probabilities using the TDITB method after one (P0_) or two transformations (P0'2)

are also reported. That is , Pol corresponds to al)proximating the time ew)lntion operator in the

interaction picture by

b/1 =/g10

with b/10 the operator which evolves according to the Hamiltonian _(I)i0 • Meanwhile P02 corresponds

to
lJ(1)L¢'(I) (24)

l_l = _1o II "

In the procedure for finding b/}0I) and/.g}_) ,up to quart, ic, 0 _< i + j _< 4, terms were kept.

Notice that for all the energies considered the transitions obtained after two transformations

are closer to the (BS) results than those obtained after one transformation. We also see that if we

compare our approximations with the exact quantum results (IIIIA) then for some energies the

first iteration gives closer results than the secon(I one. However this fact may be misleading since

in our case the exact results are those obtained in the. semiclassical approximation. Because the

difference between the results obtained after two transformations an(t the exact ones is very small

we did not pursue these transformations further. We believe that this example shows clearly that

our method deals quite efficently with the time-dependent anharmonicities.

Now, consider the H2 molecule modeled by the alternative harmonic oscillator defined using

the variationaly optimized displacement and scale parameters. In this case do = 0.17 while c_0

differs from the usual c_ in less than two percent. In Table II, we show the results obtained

for the transition probabilities from the lowest three states for several values of the collision

energy. This table also shows the transition probabilities obtained numerically for the exact

Morse potential (MP)[2] and the usual harmonic approxilnation (IItlA)[5]. These results do not

comprise the semiclassical approximation for the atom-molecule interaction and use is made of

the full exponential function.
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TABLE II. Transition probabilities using the modified harmonic oscillator for dif-

ferent energies and transitions. The upper value corresponds to Exact Quantum Morse

Results (MP), the next corresponds to our's and the last to (UHA).

E/fi_

6

10

16

. P(0-1) P(1-2) P(0-2) P(1-3) P(2-3) P(0-3)

7.31(-3) 1.25(-3) 2.30(-6)

2.00(-2) 2.75(-4) 1.44(-6)

2.95(-2) 1.42(-3)1.07(-5)

7.39(-2) 8.15(-2)1.66(-3)1.22(-3)5.47(-2)1.17(-5)

2.07(-1) 1.62(-1) 1.22(-2) 2.16(-3) 4.25(-2) 7.04(-5)

2.92(-1) 2.17(-1) 2.25(-2) 5.39(-3) 7.70(-2) 2.31(-4)

2.45(-1)

3.13(-1)

4.07(-1)

3.18(-1)
1.92(-1)
1.56(-1)

3.38(-2)
1.57(-1)
3.30(-1)

5.72(-2)

1.72(-1)

2.85(-1 )

3.34(-1)
2.07(-1)
1.89(-1)

2.72(-3)

3.30(-2)

9.88(-2)

We observe that our results are in general in better agreement with the exact quantal (MP)

results than the (UHA). If we compare P02 in Table I with the corresponding results in Table II

we see a large difference between them and this is due entirely to the slight change in frequency

that we have done defining the frequency of the transformed oscillator. Though the difference in

frequencies is rather small the differences in the values of the transition probabilities are rather

large, for example, for a collision energy E/hw = 4 we go from P02 = 9.73 × 10 -4 to 2.51 × 10 -4

which is very close to the (MP) value of 2.46 × 10 -4. This is an indication of the quality of the

approximation made for the Morse oscillator.

Once we have constructed the matrix elements of the time evolution operator, we can calculate

the survival probability, that is, the probability for the molecule to remain in the initial state. We

have done that from a time long before the collision takes place up to a time where the collision
is over.

We see that the collision lasts the order of 1.5 time units (tcot _ 3 x 10-14sec); the permanency

probability is one long before the collision begins and starts to decrese around to = -0.75 time

units reaching an asymptotic value at approximately t,s = 1 time units. The frequency of the//2

oscillator is w/42 = 8.054 x 1014/sec and the corresponding period is of the order of TH2 _ 3�2toot

so that the molecule is able to make a couple of oscillations before the collision is over. From this

figure it becomes evident why a perturbative treatment of the problem may lead to wrong results.

Although the asymptotic transition probability may be small, in a short interval around t = 0 the

state of the molecule highly differs from the initial state.

In the interaction picture, the creation-annihilation operators can be written in the form

a(t) = ,/,(t)at + d2(t)a+

where d_(t) are funtions of the time, and we have used the fact that the set of operators appearing

in the time evolution operators is closed under the operation of commutation. We can now consider

the time evolution of the expectation value of the momentum < p >, the coordinate < x > and

the dispersions Ax and Ap using the expressions for the momentum and the coordinate operators

in terms of the creation-annihilation operators.
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Figure 1: Time dependent survival probability for the ground state of an H2 molecule colliding

with a He atom for a collision energy E = 4hw.

It can be seen in figure 2 that, when the atom is far apart from the molecule, the average

value of the position operator in the ground state is zero as it should since we are dealing with an

effective harmonic oscillator.

As the atom approaches tile molecule, this one recedes, taking also negative values of the

momentum, when t _ 0 the momentum changes sign and the average value of the position initiates

an increase towards the origin. Since the collision time is larger than the frequency of oscillation,

the projectile is hit again and the oscillator's momentum changes sign, the position does not reach

the origin and moves away from the origin. After that, the projectile leaves the range of the

interaction and the molecule is left in an excited state as indicated by the oscillatory behavior of

the position and momentum operators around the zero value.
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Figure 2: Time evolution of the average values of P (squares) and X (continous line) as the

collision takes place.

Finally, in figure 3 we see that, since we begin with a minimum uncertainty state the dispersion

in each coordinate is _//i/2 and it remains being a minimum uncertainty state during the collision

because we are dealing with an harmonic oscillator.

However, due to the time dependence of the parameters defining the oscillator, we can see

that there is squeezing in the dispersions which become more pronounced as the energy increases.

Notice that as the projectile approaches the molecule, the dispersion in the momentum decreases

while that of the coordinate increases in such a way as to keep their product constant. The

squeezing of the dispersion reaches its peak value at the time of the collision (t=0). The presence

of squeezing is to be expected since the time dependence of the creation-annihilation operators

which define our harmonic oscillator has the form of a generalized Bogoliubov transformation.

Not long ago it was shown that states of light with nonclassical properties can be generated if the

frequency of the harmonic oscillator is swept as a fimction of time [12]. In that work, the authors

dealt with a simple time dependence for the frequency of the oscillator in order to obtain exact

analytical results. As we have shown here, the presence of these nonclassical properties is due to

the time dependence of the frequency irrespective of the fimctional form used to describe it.

4 CONCLUSIONS

In this work we have shown that a suitable harmonic approximation for the description of an

anharmonic potential like, for instance, the Morse potential, can yield very good results when

one is looking for properties like the transition probabilities between the vibrational states of the

oscillator. We found that a slight change in the parameters defining the oscillator with respect to
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Figure 3: Time evolution of tile dispersion of the coordinate and momentum values for tile ground

state of the molecule during the collision for E=4hw (thin lines) and E=12hw (thik lines).

their original values, when no ol)timization is made, can have a great importance for the evaluation

of transition probabilities. However, when we evaluate the dispersions and the average values of

the position and momentum operators we get essentially the same results for the oscillator before

and after the optimization, this leads us to believe that the non classical behavior that we have

found, like the squeezing, is a property of the system and not of the particular model we are using

for its description.

The method we have used can be taken as a starting point for more accurate calculations

when anharmonic potentials are studied. Here, we are searching for the best harmonic potential

to inimic the anharmonic one and at least part of the information coming from the anharmonic

part of the potential is accounted for with the use of the generalized Bogoliubov transformations.

Acknowledgements

We aknowledge partial support from DGAPA-UNAM through project IN101491

References

[1] M. S. Child, Molecular Collision Theory (Academic Press, London, 1974).

[2] A. P. Clark, and A. S. Dickinson, J. Phys. B, 6, 164 (1973).

[3] J. R_camier, D. A. Micha, and B. Gazdy, Chem. Phys. Lett. 119, 383 (1985);

59



[4] R. Gilmore, and J. M. Yuan, J. Chem. Phys., 86, 130 (1987).

[5] D. Secrest and B. R. Johnson, J. Chem. Phys. 45, 4556 (1966).

[6] J. R_camier, and J. Ortega, Mol. Phys., 73, 635 (1991).

[7] J. Wei and E. Norman, Proc. Am. Math. Soc., 15,327 (1964).

[8] R. Jg_uregui and J. R6camier, Phys. Rev. A, 46, 2240 (1992).

[9] H. K. Shin, Chem. Phys. Lett., 123, 507 (1986).

[10] J. R_camier,A.I.P. Conference Proceedings, 225,309 (1991).

[11] D. Stoler, Phys. Rev. D 1, 3217 (1970); H. P. Vuen, Phys. Rev. A, la, 2226 (1976).

[12] G. S. Agarwal and S. Arun Kumar, Phys. Rev. Lett., 67, 3665 (1991).

6O



P_

///.._  'JN95-22965

-7/

"" //

/

QUANTUM FIELD BETWEEN MOVING MIRRORS:

A THREE DIMENSIONAL EXAMPLE

S. Hacyan, R. J?mregui, C. Villarreal

Instituto de Fisica, U. N. A. M., Apdo. Postal 20-364,

Mdxico D.F. 01000,Mdxico

Abstract

The scalar quantum field between uniformily moving plates in three dimensional space is

studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison

of the resulting wavefunctions with their instantaneous static counterpart is performed via

Bogolubov coefficients. Unlike the one dimensional problem, "particle" creation as well as

squeezing may occur. The time dependent Casimir energy is also evaluated.

1 Introduction.

During the last twenty five years, much effort has been devoted to tile understanding of quantum

phenomena in systems under the influence of external conditions. In particular, Moore [1] initi-

ated the study of the quantization of the electromagnetic field in a cavity with perfectly reflecting

movable boundaries. Nowadays, it is recognized that this kind of system has several interesting

nonclassical properties. Among them, there is the possibility of producing a nonadiabatic distor-

tion of vacuum state leading to a modification of tim field (Casimir) energy [2], along with the

"creation" of photons [3]. It is also possible to obtain nonclassical statistical properties of the

photons inside such a cavity: squeezing [4] and nonthermal distributions [5] are expected.
In order to avoid technical complications, most investigations of tim field between moving

plates have been restricted to the one dimensional case. However, it is not obvious whether all the

results can be extrapolated to the three dimensional space. In this article, we study the quantum

mechanics of a scalar massless field propagating between two plates which approach or recede each

other with constant speed. The main results which follow are that the boundary conditions on the

moving plates produce squeezed states and a nonzero vacuum expectation value of the particle

number operator. These effects vanish in the one dimensional case [6]. The nonstationary Casimir

energy is also evaluated.

2 Quantum field between the plates

Consider two parallel'plates which are moving with a constant relative velocity.

coordinates for this problem are

t=Tcosh(, Z=Tsinh(,

The natural

(1)
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where z and t are the Minkowski coordinates. Taking -cx) < T, _ < _, the Milne coordinates

cover the entire past and future quadrants of the (z, T) plane.

The equation for a massless scalar field _ is:

r ¢ + 2 .+ (2)

Now, the world-line of each plate can be taken as ¢" = +if0, where (0 is the speed of each plate

as seen in their center of velocity frame. Dirichlet boundary conditions on the plates take the

simple form _p(-t-ff0 ) = 0. (It is also straightforward to impose Neumann boundary conditions.) It

will be convenient to normalize the field in a box with fixed walls with separation a and b in the
x and y directions

The general solution of the wave equation with the above boundary conditions can be de-

composed as the product of a function of _ and r, and a plane wave solution propagating in the

r -- {x,y} plane with wave vector k - 7r{n_/a,n_/b}. nxplicitely,

_/',,k- N_sin(kxx)sin(kuy) sin [v(_ + _0)] H_)(kT), (3)

where

N¢=_ _,a b¢o ] " (4)

is a normalization factor, H_ ) are the standard Hankel functions (j = 1,2), k - Ikl, and we

have defined u - nTr/2¢'0, n being a positive integer. In the future region, t > 0, H_ 2) and H_2 )

correspond to modes of positive and negative frequency respectively, while the opposite is true in

the past region, t < 0 (see, e. g.: [7][8]). We will denote the positive (negative) frequency modes
by ¢+ (¢-).

At this point, we note that the field between plates separated a fixed distance L is given by

¢,_,k = Ncei(kr-'_t)sin [n--_ (z + L/2)], (5)

where w = [k _ + (n_r/IJ)2] 1/2 and the normalization coefficient is now

This coefficient follows from the scalar product in Minkowski coordinates:

(6)

fL/2 .0¢2 ¢20¢ )(01, ¢2)t,_ -- --ij_L/2dz / dy dx(¢ 1--_ - _ , (7)

where the subindex Ins refers to the instantaneous frame: the integration is taken over the volume

enclosed by the fixed box at an arbitrary time t.

Hereafter, the field modes between nmving plates will be called dynamical modes, whereas the

modes between fixed plates will be called instantaneous modes. The crucial point is that between

moving plates, the positive frequency modes of the dynamical field are a sum of both positive and
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negative frequencymodes of the instantaneousfield betweenfixed plates. In general, any field
mode Cncanbe expandedin terms of _b,,as

= + z,.nc:, (8)
n Irl

where amn and/3ran are the Bogolubov coefficients, and the indices m and n describe the set of all

parameters characterizing the modes. In the particular case we are interested in, take ¢ and _/, as

the wave functions describing the fields between fixed and moving plates respectively. More pre-

cisely, consider a pair of plates of fixed separation L = 2 t tanh _0 which coincides instantaneously

at Minkowski time t with a pair of plates moving with relative speed v = tanh(2_0) (Fig. 1). Now,

the Bogolubov coefficients can be _calculated taking the scalar product between the ¢,, and ¢,,

modes over the hypersurface t = const, between the plates, (Note that for definitiveness we are

considering the future region t > 0 where the plates are separating but it is straighforward to

adapt the analysis to the past region.) Thus,

Otto,0 ,k,k' = (¢+,k, _m+ ,k' ) Ins (9)

and

_+,k,)in s (10)/3m,n,k,k,= (eLk,

The integration involved in Eqs. (9) and (10) is to be performed over the hypersurface t = const.

bounded by the plates with separation L = 2 t tanh _0, with t interpreted as a parameter. At this

point, we note that in any practical case, the velocities of the plates are non relativistic, that is

_0 << 1. This permits to make a convenient approximation which, together with the change of

variables z = t tanh _, simplifies Eq. (9) to the form:

c iwt (11)
- [dt-°w ,

with an analogous equation for/3. In this nonrelativistic approximation, it is very convenient to use

the asymptotic forms of the Hankel functions which are valid for indices with large magnitudes[lO]:

H}_)(kt) _ _2]-_(u 2 + k2t2) -'/4

exp [-uTr/2 -i(u 2 + k2t2) 1/2 + iuArsh(ulkt) - i7cl4] .

It finally follows that the Bogolubov coefficients can be approximated as

-i(kt) 2 ] e-"i/4+i"Ar'h(_/kOom,n,k,k, I + '

(12)

(13)

and

i_(kt) ] (14)
_m,n,k,k' '_ 5kk, 5m,. 4[u2 + (kt)213/2]

It is also worth mentioning that in tlm case when there are no plates, the/3 coefficient turns out

to be null when evaluated as a scalar product over the entire T = const, hyperplane (the interested

reader can check this point using the standard properties of the Hankel functions). This implies
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that the Milne vacuum is equivalent to the Minkowski vacuum (see ref.[8] for a discussion of this

point).

However, unlike the one dimensional case, the coefficient/3 is not null when the field is rec-

tricted between the moving plates; thus the Fock space defined by the dynamical modes {¢,k}

is nontrivialy related to the instantaneous Fock space specified by the fixed modes {¢,k}. which,

in principle, can be interpreted as the number of particles "created" by the motion of the plates;

this point will be further discussed in the next section.

In particular, the dynamical vacuum state 10 >by,, has a nonzero expectation value of the

number of "instantaneous" particles. Thus, the dynamical vacuum is a nontrivial distortion of

the instantaneous vacuum state 10 >1,_. Explicitly, the "particle" number density is given by the
distribution function

Pk,, = _ I/?k,n2 (kt)4
k,. = 16[_ + (kt)_]3' (15)

Notice, however, that the real character of this particles is intrinsically related to its measurability.

The Bogolubov coefficients also relate coherent and squeezed sates. A state which is originally

coherent according to a instantaneous configuration of the plates becomes a squeezed state with

variances [2]:

O'Pl ,PJ n

and

o_,,p_= hn _ _:i_j + _(_-_n_ + _-__:i) •

In our problem i denotes the set of variables k, n. So that,

(16)

{ a_"_ } =15_ +%,,v,

±

(kt)4 {1 T cos(2[u 2 + (kt)2]l/2)}5.16[v 2 + (kt)213

(kt) 2 sin(2[v2 + (kt)2] '/2)
5, 4[v2 + (kt)2]3p - (17)

and

xi,pj _
(kt) 4 sin(2[v2 + (kt)2] 1/2)

5,_ 16[v 2 + (kt)2] 3

(kt) 2 cos(2[v2 + (kt)2] 1/2)
5'¢4[/,2+ (kt)213/2 (18)

Thus, the squeezed ellipse in phase space rotates with its ellipticity vanishing as an inverse power
of time.

3 Casimir effect

Boundary conditions in any given system may alter its ground state. A well known example in

quantum field theory is Casinfir effect, i.e., the attractive force between two infinite conducting
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plates in otherwise empty space. A direct consequence of the existence of Casimir forces is that

mantaining even uniform relative motion of a pair of conducting plates requires external forces. It

is also expected that the Casimir energy for nonstationary boundaries differs from the stationary

case. In fact, one could think that the creation of particles with distribution (4.3) or the squeezing

(4.5) of originally coherent states take place at the expense of the Casimir energy between the

plates [2]. Notice, however, that such an interpretation is not obvious because the distribution of

particles (4.3) diverges when integrated over all momenta. This is a consequence of dealing with

idealized conducting plates.

The energy density for our nonstationary problem is given by [11]

lf0°¢e= - d_[b+(w, r) + b-(w, r)]
71

where/3+ denotes the Fourier transform of Wightman D + functions:

(19)

f_ 1, ,1 (20)= daei'aD+(T + ,) a, r - -54)
o_

it

1 1 1 1

D+(T+SO, (21)

The free Wightman function in Milne coordinates is given by

1 1

D_f(x'x') -- 4_-2 --T 2 -- T'2 + 2TT' cosh(_ =t=(_') + (y - V) 2 + (x -- x') 2 (22)

The boundary conditions in our problem can be easily imposed by image method. So that, for

two infinite plates

D±(x, x') - 1 _ 1
47_2 Z _T 2 _ Tt2 + 27T' cosh(( :t= (' - 4(0n) + (y - y,)2 + (x - x') 2 (23)

n:--OO

The energy of the field between plates per unit area is

1

7- d_ T eE= _ (o
(24)

When performing the _ integration two different contributions in the energy density arise. The

first one has terms independent of the _0 value. It is formed by the D + term and by the zero

mode term of D-. The Fourier tranform of the latter is the well known w/2 which gives rise

to infinite vacuum expectation value in free space. The second kind of terms correspond to the

Casimir energy per unit area, which is explicitely given by

Ec = -_2 (2T)a sh4(2n¢o)

In the nonrelativistic limit:

1

+ _ sh2(2n(,o)
(25)

1__ + (2;o.) "
(26)
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and the instantaneous separation of the plates is

1 3
i "_ 2r_0 - _r_ (27)

Thus, we recover the static Casimir energy and find the first order correction due to the movement

of the plates.

4 Concluding remarks

From the results obtaim_d above, it is clear that the three dimensional case contains many features
I

which are not present in one dimension. Roughly speaking, the one dimensional case corresponds

to the limit k = 0 of our fornmlas, that is, when there are no modes propagating parallel to the

plates.

The first thing to notice is that there is a squeezing of quantum states between the moving

plates, although with peculiar oscillating variances.

The other important result concerns the possibilty of creating "photons". If one believes

the standard interpretation of particle number (see, e. g. [3]), the motion of the plates creates

new particles with a distribution function given by Eq. (4.3). This interpretation is qualitatively

consistent with the change in Casimir energy due to the movement of the plates. In fact, whether

real particles are created is a question which can be settled only when an operational definition of

particle is given, for instance in terms of the interaction of the field with a well defined detector,

e.g. an atom.

The results presented here are still preliminary since we have analized only a scalar field.

The case of an electromagnetic field will be studied in a forthcoming publication. We expect

that by considering a more realistic field, several problems will become clearer. Among them, the

detectability of "created" particles by an incoming atom originally in an ordinary stationary state.

In any case, the problem seems to be sufficiently rich to deserve further considerations.
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Abstract

Rotor coherent state constructions are given for the Wigner supermultiplet SU(4)D

SU(2)xSU(2) and for the special irreducible representations [NO] of the SO(5)D SO(3)DSO(2)

group chain in exact parallel with the rotor coherent state construction for the SU(3)D

SO(3)D SO(2) case given by Rowe, LeBlanc, and Repka. Matrix elements of the coherent
state realizations of the group generators are given in all cases by very simple expressions

in terms of angular momentum Wigner coefficients involving intrinsic projection labels K.

The /C-matrix technique of vector coherent state theory is used to effectively elevate these

K labels to the status of good quantum numbers. Analytic expressions are given for the

(/C/Ct)-matrices for many of the more important irreducible representations.
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1 Introduction

In the past few years two types of coherent state constructions have been widely used to give very

explicit matrix representations of many higher rank symmetr_t groups. In both, the irreducible

representations of a larger group are constructed by an induction process from the irreducible

representations of a simpler subgroup, hopefully with completely known Wigner-Racah calculus.

In the more widely used first type of vector coherent state construction, [ll, [2], [3], state vectors

are mapped onto states of a multi-dimensional harmonic oscillator through a set of Bargmann

variables, z. This VCS construction has been widely used for many of the mathematically natural

group chains such as V(n) D V(n-1) x V(1) D U(n-2) x V(1) D... for which the subgroup chain

gives a complete labelling of the state vectors. In the more recent second type of coherent state

construction rotor expansions are used which are particularly effective for many of the physically

relevant group chains for which an SO(3) or SU(2) subgroup related to a physically meaningful

angular momentum is the important subgroup in the group chain.

In this talk I want to focus on three group chains with particular relevance for nuclear structure

problems: 1) The SU(3) D SO(3) D SO(2) chain of the 3-dimensional harmonic oscillator of

the nuclear shell model with good orbital angular momentum; 2) The SU(4) D SU(2) x SU(2)
Wigner supermultiplet with good spin and isospin needed to complement the orbital functions of

1); and finally, the SO(5) D SO(3) D SO(2) chain needed e.g. for the 5-dimensional harmonic

oscillator of the quadrupole phonon states of the Bohr-Mottelson collective model or for two of the

important symmetry group chains of the interacting boson model of Iachello and Arima, [4]. Like

all physically relevant group chains, all three suffer from a missing label problem. For all of them

many solutions have been proposed for this problem, some of them highly practical, others quite

elegant or numerically feasible; see e.g. the pioneering work of Moskinsky [5], [6], [7]. It is the

purpose of this presentation to try to convince you that the new rotor coherent state constructions

give a very elegant yet also very systematic and practical solution to the missing label problem.

Moreover the solution is essentially exactly the same for all three examples.

2 The Rotor Coherent State Expansion for the SU(3) D

SO(3) Case

For the SU(3) scheme in a basis of good orbital angular momentum a coherent state rotor expansion

has recently been given by Rowe, LeBlanc, and Repka, [8]. This construction is closely parallel to

the seminal work of Elliott [9], [10], [11] in which an angular momentum projection label, K, the

projection of the orbital angular momentum onto an intrinsic or body-fixed z'-axis is used in place

of the missing quantum number in the SU(3) D SO(3) D SO(2) scheme. Only a brief synopsis of

this work will be given, the details of the derivations being reserved for the second example.

In the rotor coherent state construction for SU(3) an arbitrary state vector, I_ >, is trans-

formed into its coherent state wave function, _(ft),

¢(n) = (1)

where [¢(_.) > is the highest weight state in the SU(3) D SU(2) x U(1) scheme, tIere R(l_) is a
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standard rotation operator

R(_) = ei°tL'ei13L'e i'rL_ (2)

where a,/_, 7 are Euler angles, Li are space-fixed components of the orbital angular momentum

operator, and where the scalar product is defined in terms of the standard angular measure

(Note, however, that the conventions for the R(f_) of ref [8]are somewhat differentfrom the

most widely used nuclear physics conventions [12].) If [_ > is expanded in angular momentum

eigenvectors [u;LM>, where t_ is shorthand for all additional quantum numbers, these angular

momentum base vectors are mapped into their coherent state realizations

= LM)
= LK)DL'M(D)

K

= _K c1"V -_ 1 D_,-M(ft). (4)

That is, angular momentum eigenstates are mapped into a basis of (normalized) D-functions which

form a simple orthonormal set with respect to the rotational measure of eq. (3). The symmetries

of the cl," are such that the symmetrized, orthonormal rotor basis

I {DL-M(f_) + (--1)X+"+LDLKM(f_)} (5)

(2L + 1)

167r2(1 + 5go)

is most convenient. Opcrators, O, are thcn mapped into their coherent state realizations, F(O),

through

r(o)_(_) = (¢(x.)lR(_)Olq,). (6)

It will of course be convenient to express all operators in terms of spherical tensors of rank, r, such
that

r(o_,)_(_) = (¢(_.)lR(f_)O21q,)

=
= (7)

k

The SU(3) group generators are the 3 components of the orbital angular momentum operators,

L_, and the 5 components of the Elliott (A#-preserving) quadrupole operator, Q_. The rotor

realizations F(L_) are given in terms of their usual Euler angle realizations

r(L0) - 1 O r(L+)=e+i'V{icot_O+ 0-_}, (8)i 07' 07

where F(Lo) has eigenvalue M, while F(L+), (F(L_)) are standard M-raising, (lowering) operators.

Eq. (7) shows that we need both the standard (right-action) rotor realizations of operators, 0,_,

as well as their left-action version which will be denoted by a [',

F(O_.)q'(_) = (¢(a,)lO_.R(a)lq,). (9)

71



The latter can be evaluated from the left action of the operator on the SU(3) highest weight state.

For the angular momentum generators

r'(Llk)_v;LM(_) = (¢(:_,,)[L1R(l'l)lv; LM)

= __, DLM(Ft)(¢(_,,,)[LIlu; Lt()
K

= __, D_.M(ft)_/L(L + 1)(LKlklL(K + k))(¢(_u)]v; L(K + k))
K

-- _ Dt(K_k)M(FI)_/L( L + 1)(L(K - k )lklLg) (¢(:_u)lv; LK), (10)
K

so that I'(L+), (F(L_)) are now K-lowering, (raising) operators, a well known property of the

intrinsic (body-fixed) components of angular momentum operators. The F(Lk) can therefore be

given in terms of their Euler angle realizations through the well known rotor expressions for

intrinsic components,

10 . i 0 /30__0 0
f'(L0) = i-O-_a; f'(L+) = e_:'_{ sin /3 07 /cot 04- _--_}; (11)

where ['(L0) has the simple eigenvalue K. The coherent state realizations of the quadrupole oper-

ator as given by Rowe, LeBlanc, and Repka [4] are

F(Q_) = (2_ + g + 3)D02m(12)_1 2_[L , Do_,_(fl)]

+_/_{n_m(fl)(# - I'(L0)) + n2_2m(gt)(/_ + F(Lo))}, (12)

i.e., these are expressed in terms of the very simple operators, L 2, f'(L0), and simple D-functions.

The well-known matrix elements of these D-functions in the orthonormal rotor basis of eq. (5) at

once lead to the (standard) angular-momentum reduced matrix elements

(K;L'[IF(Q2)IIK;L) = k/(2L + 1){(LK2OIL'K)[(2A + la + 3)

-_Lt(L ' + 1) + ½L(L + 1)] + 6t,-_(L12 - 2]U1)_(--1)L+_+I(# + 1),} (13)

((I( =I=2);L'IIF(Q2)][Ii;L) = (_--+I)(LIi2=I:2[L'(I,_=I=2)_f_5(# :F I(.)aKK ,, (14)

with O'gg' _-- V f_ for either K or K _ = 0, and O'KK, ---- 1 otherwise. The simplicity of this result

is negated partly by the fact that the F(Q_) are nonunitary realizations of these operators. In

order to translate the above nonhermitian matrix elements into the hermitian matrix elements of

Q_ in ordinary Hilbert space, the nonunitary realizations, F(O), of coherent state constructions

is converted to a unitary realization "),(O) via the/C-operator equation

,y(O) =/C-_ F(O)/C. (15)

Matrix elements of the K: and/C -x operators can then be used to convert the nonhermitian matrix

elements of F(O) to hermitian form _,(O) and hence directly to hermitian form in ordinary Hilbert

space. Thus

(v'; L'[]Q2]]u; L) = _ (_-'(L'))VK,(K';L'I]F(Q2)[IK; L)(IC( L))m, (16)
K,K _



where the new quantum numbers, v, are defined through the eigenvalues of the hermitian matrix

(/CK_¢) which can be calculated in coherent state theory by simple recursion techniques through the

known matrix elements of the group generators F(Q2). The (K_Kjt)NK, matrix elements, moreover,

can be given in simple analytic form [13] as functions of ,_,/t, and L. As a simple example, the

(K;K;t) matrix for the irreducible representations (,_2) with ,_-L = even is 2-dimensional, with K=2

or 0, in the basis of eq. (5), with

(jcjct)  = ½12( + 3) - L(L + 1)1C

(KjK;t)oo = [2()_ + 2) 2 - L(L + 1)]C

(Kj/CJf)20 = k/½(L - 1)L(L + 1)(L + 2)C, (17)

with
C = N/(A + 2- L)II(.X + L + 3)i], (18)

with

U (A - 1)!!(A + 4)1! for A = even, (19)
2(A + 3) for A = odd; U - A!!(A + 3)!!= +2)

where _!! = _ (_-2) ... 2 (or 1). The (/c/ct)-matrix can be converted into the needed matrix

elements of K: and/C -1 through the unitary matrix, U, which diagonalizes the hermitian matrix

lcJct = (20)
(g(joct)vt)_,_ A_,.

with
1 (21)= _

defined for all states v with non zero eigenvalue, A_. Note, that a zero eigenvalue A_ signals a

forbidden state. The matrix of eq. (17), e.g., has one zero eigenvalue for L = A + 2; so that there

is but a single allowed state for this maximum L-value. For L > (_+2) the matrix elements of

F(Q2) insure that all matrix elements of/C/C _f are zero. The/C-matrix technique of coherent state

theory thus effectively converts the Elliott K-projection label to the status of a good quantum

number.
It should, however, be stressed that the coherent state construction outlined here is very closely

related to the Elliott angular momentum projection technique [10]. The matrix elements of Q_

in the form of eqs. 13) and 14) have essentially been given by Elliott in ref. [10]. Except for an

overall normalization, (see eq. (19), which is related to the fact that the 1-dimensional (Kj/Ct) for

the minimum L-value of 0 (or 1) is chosen to be unity in the coherent state construction), the

(K_K_t)-matrix elements are given by tim overlap matrix of Elliott (see e.g., eq. (A.3) for A(KLK')

of ref. [11]; and the specific analytic functions given by Vergados for the lower #-values in table

2A of ref. t141).
What then are the advantages of the coherent state rotor construction? By mapping the SU(3)

angular momentum eigenstates onto the orthonormal basis, eq. (5), of the rotor expansion the

construction of matrix elements is split into two clearly separated simple steps: In step 1, ma-

trix elements of F(O) are given very simply in the orthonormal rotor basis where K defines the
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orthonormal states. In step 2, which is the unitarization process, K is converted to the quan-

tum number _ in ordinary Hilbert space. By relating v to the non-zero eigenvalues of (/CK_t) an

essentially author-independent choice can be made for the quantum number v. Although some

numerical work is required in the determination of the U-matrix elements which diagonalize the

multi-dimensional (/C)Ut)-matrices; no arbitrary choices are made in a Gram-Schmidt orthonor-

malization process, as in the Vergados basis [14], which is an attempt to make the Hilbert space

quantum number, (the x of ref. ([14]), as close as possible to the Elliott projection label K. (In
this connection, it is interesting to note that both x and v tend to pure K-values in the limit A

>> L as a glance at the special example of eq. (17) will verify.

3 A Double Rotor Coherent State Expansion for the

Wigner Supermultiplet SU(4) D SU(2) x SU(2).

A complete labelling scheme for the Wigner supermultiplet has been achieved by Draayer [15]

who used the Elliott angular momentum projection technique to augment the spin and isospin

quantum numbers (,3Ms), (TM:r) with the projection labels Ks and KT. In order to calcu-

late the generator matrix elements and SU(4) reduced Wigner coefficients in this fully labelled

but nonorthogonal basis, however, Draayer first calculates the transformation coefficients to the

canonical fully specified orthonormal U(4) D U(3) D U(2) D U(1) basis, leading to a somewhat la-

borious calculational algorithm. This example therefore will fully illustrate the power of the rotor

coherent state construction which leads in a very simple and direct way to the desired results.

The supermultiplet scheme is based on the four spin-charge states of a single nucleon, [msmt),
with nucleon, Ires mt >, with

1 1 1 1la) = I+_+_>, Ib)=l 2 2 >,
1 1 1 1

Ic) = I'+_-_>, Id) =l-_+_>. (22)

To gain the most convenient double rotor expansion it will be useful to define the basis states
Ii), i= 1,...,4, by

1 1

la) = _(I 1)+12)), Ib)=_(-11)+12)),

1 1

Ic) - v77 (13) + 14)), Id) = _(-I 3) + 14)), (23)

and define the 15 supermultiplet generators [17], S,T, and E = ar in terms of U(4) generators,
Cij,

Cij = Y]a_ia,_.i , i,j= 1,...,4 (24)
ot

where i, j give the spin, isospin quantum numbers and a stands for all additional (orbital) quantum

numbers needed to specify the single nucleon creation and annihilation operators. In terms of the
Cij the generators are

l(c12 "4- C_21 + _34 31- C43 )So =
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S+ =

S_ --

To =

T+ --

T_ =

E00 =

.E1o =

_]'-lO =

EOl =

E0_ I =

Ell =

.E_I_ 1 =

.El_ 1 =

E_II =

_(-Cla- C_3+ C,4+ C24- Ca,+ C32- C4,+ C42)

½(-Ca,- C3:+ C4,+ C42- C,3+ C23- C,4+ C24)

'C_( ,2+ C2,- C34- C4_)

l(C13 -_ C23 -_ C14 _-

I(c31 -_ C32 Jr C41 _-

_(C,,+ C22- C_ -

C24 'iF C31 - C32 - C41 71- C42)

C42 + C13 - C23 - C,4 + C24)

C44)

2--_2(C13 _- C23 - C14 - C24 - C31 -_- C32 - C41 _- C42),

1

2---_(-C31 - C32 _- C41 _- C42 _- C13 - C23 _- C14 - C24),

_(-c,_ - c_ - c,, - c_,+ c_,- c_ + c,_ - c,,),
272 (C31 71- C32 + C41 71- C42 - C13 Jr C23 - C24 -1- C14),

½(-c,, + c,, + c,_ - c,,),
1(-C,1+ C22- C,2+ C2,),

_(c_- c4.,-c_ + c_),
_(c_3- c_ + c_,- c,_). (25)

The SU(4) irreducible representations are labelled by 4-rowed Young tableaux partition labels

[fl,f2,f3,f4], by the SU(4) labels {A1, As, A3}, or by the Wigner supermultiplet (or standard Cartan

SO(6) labels (P, P', P")), with

A, = f,-A, ,A_=A-A, A_=A-A,

P = + 2A2 + = _(A1 -Ji- = _(A,- A3). (26)}(A1 A3), P' 1 A3), p. ,

These characterize the highest weight state 1¢) with

Cijl¢ >=0 for i<j
C,,1¢>= (A, + A_+ A_)I¢>,
C3_1¢)= A_I¢), C_,1¢>= O.

c_1¢)= (A_+ A_)I¢>,
(27)

The double rotor expansion uses the double rotation operator R(12) _ R(12s)R(itT), with

Euler angles as, fls, "Ts -= its and aT, fiT, 7T -- itT in the spin and isospin space. Draayer [15] has

shown that the set of states, {R (it) I¢)}, obtained by rotation of the highest weight state through

all possible angles as,..., 3'T span the full SU(4) space. Arbitrary state vectors Iq_) in this space
are now tranformed into their coherent state realizations with coherent state wave function

• (it) = (¢IR(_)I_). (28)

A state laSMsTMT) with definite spin and isospin quantum numbers is represented by

_oSM_M_(It) = (¢llt(it)l_SMsTM_)=

<¢IcWKsT I(T) DS,M_( ItslDT-_.M_.(ItT ).
I< S ,KT

(29)
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Draayer [15] has shown that the SU(4) irreducible representations [f_, f2, f3, f4] = {)_)_2,k3 }

are spanned by the double rotor wave functions with Ks,/iT-values restricted by

(Ks + KT) = -I-_1,-l-(_1 -- 2),d:(A_ -4),...,O(or 4- 1),

(Ks - KT) = :t:A3,-I-(A3 - 2),:t:(A3 -4),...,0(or-4- 1). (30)

Again, it will be useful to introduce symmetrized combinations of the D-functions. The double

rotor coherent state wave functions are then spanned by the symmetrized (normalized) double

rotor functions

1 [(2S + 1)(2T q- 1)]½

8r 2 [ 2(1 _ 6n-_so6_r_ J

t I_,_2+;_3+S+TDS tfl xDT tfl xl (31)x{DS'sMs(fls)DT'TMT(flT) + -h'sM  S) -KTMT 

and it will therefore be sufficient to choose Ks >_ 0, and for Ks = 0 : KT > O. The requirement S >

IKsl, T > IKTI together with the structure of the EEl-matrices will determine the multiplicity

of a given S, T value. For states with low values of S + T, for which the eigenvalues of K:K: t are

all nonzero (no redundant states), the number of occurrences of a given S, T will be determined

by the number of possible Ks, KT combinations. States with the maximum possible value of

S + T = A1 + As + ,ka = fl - f4, and with S(or T)>_ $(,kll + ,k3), always have an occurrence of 1.

For these S, T-values the/CK: t matrix always has only a single nonzero eigenvalue giving only a

single nonredundant or physically allowed state. In general, the states with S + T > ,k2 + 2 will

have K:/Ct-matrices with some zero eigenvalues and hence some physically forbidden states. Table

1 gives a specific example, the possible S, T-values for the irreducible representation [8620] With

{,_1)_2/_3) : {242}. In this case there are five possible symmetrized states of the type of eq. (31),

with KsKT = 20, 11, 1 - 1,02, and 00. Note that states with KsKT = 00 must have S + T =

even since A2 + A3 = even. States with both S and T > 2 can thus have a 5-fold occurrence for

S + T = even and a 4-fold occurrence for S + T = odd. The maximum S q- T-value is 8 in this

case. States with S + T = 8, S(or T)> 2, are all single as indicated in the first column of the

table. The/C/C Jr-matrix for this case has four eigenvalues of 0. In addition, it can be shown that

the/C/Ct-matrices for states with S + T = 7 have two eigenvalues of 0, thus reducing the possible

number of physical sta_es by two, while states with S + T = 6 lead to K:K:l_-matrices with one

eigenvalue of 0 reducing the possible number of physical states by one.

In the VCS rotor expansion operators, O, are transformed into their VCS realizations, F(O),

through 0[_) _ F(O)_(fl), with (cf. eq. (6)),

= (32)

The SU(4) generators, O = S, T, E are again of greatest interest. Again, both the left and

right realizations of S and T can be expressed in terms of ,the Euler angles as,/3s, 7s and aT,

3T, "rT as in eqs. (8) and (11). Now ['(So) has the simple eigenvalue Ms whereas f'(S0) has

eigenvalue Ks; while F(S+), (F(S_)are Ms-raising, (lowering)operators, whereas f'(S+), (f'(S_))

are Ks-lowering, (raising) operators; with similar properties for the F(T) and F(T).
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The generators E can be transformed into left-action operators via

r(EmsmT)_(a) = (¢lR(fl)EmsmT[ _)

: (¢I(R(a)E_sm_R-I(_))R(_)I _)

(¢[EkskTR(_)[ql) 1 1= Dksms(_S)Dkrmr(f_T). (33)
kskT

Using the properties of the highest weight state, eq. (27), and the specific expressions of the

generators, eqs. (25), it can be seen that

(¢lEoo

(¢lE+,o

(¢[E_,+1

= ½(_1+ 2_ + _)<¢I,
I

-_(¢IT_,= -_(¢lS+, (¢lEo+, = '

= ' To), = ½(¢1(_3• So+ To))._(¢1(-_, + So + (¢IE_,_, (34)

At this stage the usefulness of the transformation (22) can be appreciated. Although it seemingly

complicates the relations of the group generators in terms of the Cij, it can now be seen that the

transformation (22) makes it possible to express the operators Ekskr in their left actions on the

single highest weight state into equivalent left actions of components of S or T or the Cartan

generators C,. The relations (34) lead to

' D' flr(E_s_T)_(a ) = {[(A, + 2A2 + Aa)mo,,,s(fls) o_r(T)

1 tO1 D[,ms(fls)_(S_)]D_mr(_T )
t ,¢7_[ ,ms(_'_s)F(S+) -[-

' D' 'fl "D' D[,,_T(f_T)['(T-)] '-_ o_st sjt ,_.(_T)_(T+)+
' ' ' _(So)+_D,ms(fls)Dxmr(flT)(-A, + + f'(To))
1 1 I

+_m_,ms(fls)D_,mr(flT)(-A, - F(So)- F(To))
1 1 1

+_m,_s(fis)D_l.,r(DT)(A3 - F(So) + f'(To))

' ' fl ' F(So) f'(To))}(¢IR(U)I_>.+sD-,ms( s)D,mT(flT)(Aa + - (35)

Finally, using the identity

[S2,D_o,.,s(fls)] = x/_(D],,,s(fls)r'(S+) + D[,.,s(fls)F(S-)) + 2D_oms(fls), (36)

and the similar relation for the isospin operators, we obtain

F(E_T) = {½(A, + 2A2 + ha) + 2}D_oms(fls)D_..r(_T)

, , T2 Do'mr(fiT)l}2{[S2, D'o_s(fls)lD_-,r(flT) + Do,,,s(fls)[ '

+ _'D',._t'fls)'D',mr (_T)(--A, + I'(So) + ['(To))

' D' 'fl 'D' (flr)(--A, ['(So) - f'(To))+ _ -lms_ s) -_mT

'D _ "" _D' _fl+ _ ,_t_s, -im_ T)(_z--_(_o)+ _(To))
+ ½Dl_ims(_s)D_mT(f'lT)(A3+ F(So)- F(To)). (37)

This is the analogue of eq. (12). Using the symmetrized (normalized) rotor basis states of eq. (31)

the standard S and T-space rotational measure, and a standard definition of a spin, isospin reduced
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double-barred matrix element, together with the well-known triple D-function integrals, we obtain

(for the general KsKT case with Ks +/(T > 1) the result

<KsKT; S'T'IW(E)IIKsKT;ST)

= [(2S + I)(2T + I)]_<SKslO[S ;Ks}(TKTIO[T'KT}

x{' - ½s(s 1)-1 ' '_(AI -t- 2A2 -t- A3) -[- 2 1 , ,5S (S + 1) + + + + + 1)},_T (T 1) ½T(T

((Ks 4- 1 )(I(T -4- 1); S'T'[[F(E)I[KsKT; ST}

= ![(2S + 1)(2T + 1)]}(SKsl + IlS'(Ks + 1))<TKT1 4- IlT'(KT + X)>(-A, 4- Ks 4- KT),
2

((Ks ± I)(KT :F1);S'T'IIF(E)IIKsKm; ST)

= ![(2S + l)(2T + l)]½(SKsl + IIS'(Ks-4-l))(TKrl =FIIT'(KT :F 1)}(Aa=FKs =l:KT).(38)
2

11.1 1.
The special cases KsKT = _ 5, 7, -7, 10 and 01 will again require additional terms, (the analogues

of the special case K = 1 for eq. (13)). The details can be found in ref. [16]. As for the SU(3) case,

the reduced matrix elements of the F(E) are given by very simple expressions involving ordinary

spin (S) and isopin (T) Wigner coefficients with projection labels Ks and KT. Since the r(E) are

nonunitary realizations of the generators E these first have to be translated to unitary form via

' (]c]ct)-mat_ixthe ]C-operators through the analogs of eq. (15) and (16). The elements are now

calculated most easily through recursion relations such as

(]C]Cf(S',T'))_%I,T,,,,sK_=-,.-, , (Ks, Kr,;STIIP(E)III_s,I(r_,S'T'>(-""' • 1)s+r-s'-T'
• t -t

R S2 I_ T 2

(Kt& K_, ; S'T'llI_( E)l llis, KT1; ST)( ]C]C* ( S, T) )Ks, Kr, ;Ks=KT2
Ks h K T 1

(39)

If the quantum numbers (Aa + Aa)- are not too large, the dimensions of the (]C]C_f) matrices will be

of manageable size so that analytic expressions can be given for the matrix elements as functions

of S, T, and the SU(4) quantum numbers. As a special example, the irreducible representation

[flf2faf4] = [y + 2, y,0,0] = {A1A2Aa} = {2y0} has the simple (]C]C?)-matrix elements

(]C]Cf(S,T)),,,1, 7[(y+3)(y+4)-S(S+I)-T(T+I)]CF,

(]C]Cf(S,T))oo,oo = [(y + 3)(y + 2) - S(S + 1) - T(T + lilCF ,
1

(]C]Ct(S,T))11,00 = -[2S(S + 1)T(T+ 1)]TCF,

with common factor given by

CF =
Num

(y + 4 + S + T)!!(y + 2 - S - T)!!(y + 3 + S - T)!!(y + 3 - S + T)!!'

with Num given by

Num = (y + 4)!!y!!(y+ 3)!!(y+ 1)!!
= (y + 5)!!(V- 1)!!(V+ 2)!!(V+ 2)!!

for y----even,

for y=odd.

(40)

(41)

(42)
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Similar (/C/ct)-matrix elements are given in ref. [16] for most of the important SU(4) irreducible

representations.

For the Wigner supermultiplet therefore, as for the SU(3) D SO(3) scheme, the matrix elements

of double (spin and isospin-space) spherical tensor operators, (not necessarily group generators),

can be evaluated by a simple two-step process. By mapping the SU(4) states of good spin and

isospin onto the symmetrized orthonormal basis states of the double rotor coherent state expansion,

very simple expressions are gained for the reduced matrix elements of the F(O *s-r). By converting

the nonunitary F(O *s*r) to unitary form via the/C-matrix technique, these can then be converted

to standard Hilbert space matrix elements in which the labels KsKT are replaced with the quantum

numbers u which enumerate the nonzero eigenvalues A,, of the (/cK:t)-matrix. These A_ again

give an author-independent meaning to the quantum numbers, u, where now

(v, S,T,i]O_I[v, ST) y_ y_ _-1 ., .,.= (/C )_,.K,j,._(I_sI_T,S'T'llF(O_)]]KsKT;ST)(/C)_,-_,>,_
Ks_,'T I,"_t,"_

(43)
The/C-matrix thus effectively elevates the Draayer (Elliott-type) projection labels Ks, KT to the

status of good quantum numbers.

4 A Rotor Coherent State

SO(3) Chain

Expansion for the SO(5) D

Very recently, Rowe [18] has also given a vector coherent state rotor realization for the special

irreducible representations [NO] and [NN] of SO(5). With a slight change of emphasis [19] this

rotor construction can be put into exact parallel with that used for the SU(3) D SO(3) and

SU(4) D SU(2) x SU(2) group chains. In the SO(5) basis of good orbital angular momentum,

I[NIN2],...,..., LM), there are two missing quantum numbers, in contrast to the mathematically

natural basis I [N:N2] Srnstmt) which exploits the local isomorphism between S0(5) and Sp(4)

and labels the states with the quantum numbers of the SU(2) x SU(2) subgroup generated by two

angular momentum generators s and t (not to be confused with the spin and isospin of the last

section). For this reason it will be convenient to express the group generators in the Sp(4) notation

in terms of the particle creation and annihilation operators for a family of spin -3 particles with
1 1 3

states m = + 3, + :, _ 7, - : to be denoted by labels a, b, c, d, respectively. In order to generate
the rotor states in terms of a single intrinsic (maximal weight) state, it will be convenient to make

a rotation in the m = + 3, _ 3_2subspace, viz.

]a) - + 14)), Ib)= 12),,
Id) = '7 (-11) + 14)), Ic) = 13); (44)

where this will achieve the same purpose as the analagous eq. (23).

Since the totally symmetric SO(5) irreducible representations, [NO], are of greatest interest in

nuclear physics applications, we will focus on this case. The rotor coherent state can now again

be given in terms of a single intrinsic state I¢) via (¢lR(f_]_). For the totally symmetric irreps,
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[NO],I¢) is now chosen such that

(' } ( }[(ell - C44) -_'Smaz ]4)= -_N I¢)f(c,, c3.)I¢)= -sin,,

with

c3_ I¢) = 0; (c13- c,,) I¢) = 0.
I (C_, C4_)

(45)

(46)

t

The group generators are now given by the orbital angular momentum vector L, (a spherical

tensor of rank 1), and the 7 components of a spherical tensor of rank 3, 0 3. Eqs. (45) and (46)
assure that the left action of these octupole generators can be replaced by operators f'(Lk). In

particular,
5(¢1Oo = -(¢1(-_ + sg),

(¢[0_, = 2-_(¢[L-, (¢10+, = _7_(¢ [L+,

(¢1o+2 = o, (¢IO-2=-vr_(¢IL+,

(¢10+3 = _(¢l(L0 - N), (_1o__= @(¢l(Lo + 2N), (47)

leads to an expression for F(O_) in terms of the ['(Lk) and D_,,(_). Analogs of eq. (36) lead to

the simplest form for F(O,,)

5 2) 1 2= g[L, D3o,,]F(O,.) -Do3,,(_)(_I'(Lo) + 5g + +

+2-_aD3__,m(n)f'(L_) + _D_3,,(g_)(I'(L0 ) - N)

+v_D33,,(fl)(-_r'(L0) + _g + 2) - -_05[L2, Oh_3,,]. (48)

Note the parallels between tiffs expression and the comparable eqs. (12) and (37) of sections

2 and 3; but also note that in this case it was now not possible to eliminate both ['(L_) and

r'(L+). However, the K-raising matrix element of I'(L_) in combination with the K-lowering of

the D3_,,,(_) operator leads to a simple contribution to the matrix element diagonal in K in the

rotor basis, D_.M(_ ). The F(Om) of eq. (48) thus lead to very simple matrix elements in the rotor

basis with K t = K, K + 3, and K - 3. Williams and Pursey [20] have shown that the allowed K

sequences for the irreps [NO] are the following (with n = integer)

For N = 3n K-- ...,-6, -3, 0, +3, +6, +9, ...

For N = 3n+l K= ..., -8,-5, -2, +1, +4, +7, ...

For N = 3n+2 K= ..., -7,-4, -1, +2, +5, +8, ...

Starting with the simplest state for [NO] = [10], with L = 2, with the normalized rotor state
F

/16--_{D_.IM(Q) + D 2 (49)__,M(n)},

totally symmetric rotor states for N > 1 can be built up from simple products of D-functions.

In such a basis the reduced matrix elements of the F(O_) of eq. (48) are again given by

very simple expressions involving ordinary Wigner coefficients with projection labels K. The L:-

matrix technique of coherent state theory can again be used to convert these to the status of good

quantum numbers, v, through the eigenvalues A_ of the K:K:_-matrix.
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Table 1: The Possible ST-values for the Irrep. [8620]

(60)'

(61)' (50) 1

(62)' (51)3 (40)2

(52) 2 (41) a (30)'

(53)' (42)4 (31)4

(43)2 (32)4 (21)3

(44)' (33) 4 (22) 5

(34) 2 (23) 4 (12) 3

(35) 1 (24) 4 (13) 4

(25) 2 (14) 3 (03)'

(26)' (15) 3 (04) 2

(16)' (05)'

(06)'

T T T
4 2 1

(20)2

(11) 3

(02)2

(00)'

The numbers below the arrows give the number of zeros of the ()CK:t)-matrices in the columns

indicated by the arrows.
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Abstract

The following questions, concerning to the application of the harmoui(" oscillator r('l)r('sen-

tation (tieR)in the theory of scattering and reactions, are discussed: the fornlulation of the

scattering theory in lt0R; exact sohltions of the free niotion Schro('din_4('r equation in II()R;

separable expansion of tho short range potentia, ls an(I the (al(ullalion q_t lhe tihaso shifls:

"isolated states" as generalization of the Wigner-von Neumann bound stat(,,_ oml)(,(hl('d iu

continuum; a nuclear coupled channel prol)leui in tt0R; the (tescril)tion of true three t)_)(ly

scattering in It0R. As an illustration the soft <lipole mo<h' in the ll Li nu('h'us is ('ousi(l('r('(I
in a frame of the :_Li+n+n cluster ino(lel with laking into account ()t"thr('o I)ody ('(mliuuum

effects.

1 Introduction

Usually harmonic oscillator wax'(" functions are used for the (h,scrit)lit,tt of t)(,tud st at('s t,l (t,aaul utll

systems that belong to the discrete spectrum [1]. In this talk lhe al)l)lication ¢_f ill(' I_armouiv

oscillator (t1()) basis to the solution of the scattering I)roblem, i.e. in con, tinuum, will I)(, (liscussed.

This line of investigations was begun in Refs. [2] (see also th(' papers tit('(1 there) an(l i_i('-

pendently in the papers of Kiev [3] and Moscow [4] groups. The similar ai)t)roa('h, als(, ('onne('t('(l

with an application of the He basis to the scattering probh'm, was develoI)ed b.v the tlungariall

group [5].
In order to illustrate the essence of the approach to the scattering probh_m in the harmouic

oscillator basis, we shall consider at first the simplest problem of the scattering of a single 1)article

by the central potential V(r) [4]. Thus, we come to the Schroedinger equation

_ + t:(_.) ,/,_,_(r) = c_i,,,,(r). (I)

Its solution _,_m(r) = /_'_(r)Y_,.(_) will be sought in the form of an expansion in the eigeuf,_nct,ions

of the harmonic oscillator

ICl(r) = _ C.IR,.(r) (_)
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where

n (r) = (-1)" r(n + l + (3)

is the radial wave function of three-dimensional harmonic oscillator. Tl'/is wave function cor-

responds to the eigenvalues of the oscillator energy E_ _c = (2n + 1 + 3/2)hw [1]. The value

ro = (h/row) 1/2 is selected as a length scale in relations (1) and (2). Here w is the oscillator

frequency; the energy e = q2/2 is measured in units hw; the wave vector k is expressed in units

ro 1, q = kro is the dimensionless momentum. Substituting expansion (2) in (1) and multiplying

(1) scalarly by R,_Ytm, we obtain the following equation determining the wave function _tm in the

harmonic oscillator representation (HOR):

Y_(H,.,,v-*,.,.,e)C,vt=O, r_ = 0, 1,2, .... (4)
n t

Here, H = T + V and only the following matrix elements of the kinetic energy operator T = P2/2
are nonvanishing:

iI (_) 1 '/2T,_n-l=-'_ n n+l+

T,._ 2

(n + l ) (n + l + 3)

(5)

1/2

As to behaviour of the coefficient C,_t for n > N, their asymptotics are similar to the asymptotic

of the wave function in the coordinate representation [3] if r is substituted by 2nU%o:

Cnl _ 2nl/4_tm(2V/nro) , n --+ cxD . (6)

this result can be obtained if the WKB expression for the oscillator function R,_l(r) is substituted
in the expression for the coefficients

C,_t =< ¢_tm(r)lCt_(r) > (7)

and the integral (7) is calculated by the stationary phase method. The result (6) follows also from

the fact that the finite-qlifference equation

3

Cn-lt + (2n + l + -_ - q2) C,_t

_/2 C,_+u + 2 y_ < nllVln'l > Cn,t = 0
n ¢

(s)
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in the limit n >> v = I/2 + 3/4 can be replaced by the following second-order differential equation

[4]:

X[' l(l + 1)X ` _ fo°°V(x,x,)_xx,Xt(x,)dx +q2X, =0. (9)
x 2

Here x = 2(n + u) 1/2, Xt(x) = x_/2C,_t. The Eq. (9) should be solved at the boundary condition

- 1)=0. (10)

Thus, in the asymptotic limit for large n, the wave function of our system Xt for the partal

wave with angular momentum 1 in the HOR obeys the conventional Schroedinger equation with

nonlocal potential

g(x,x')_xx' _ 2 < ,algln'l > [(n + u)(n' + u)]1/4 (ll)

where the value 2(n + u)l/2r0 plays the role of coordinate . In actual calculations, the potential

matrix has to be cut off by the condition V,_,_, = 0, if n or (and) n' > N. Then a set of equations

(4) can be splitted in two parts:

N

a) n _< N , _ (H,,_,- eti,,v)Cn,t = --6nNTNN+ICN+ll, (12a)
nt=0

b) n >_ N + 1 , T,_,._!C,-lt + (T,.,,. - s)C,,.t + T,.,,.,+IC,.,+lt = 0. (12b)

Thus, the coefficients C,a with n > N obey the equation of free motion (12b) or, in the asymptotic

limit of continuous n, the Schroedinger equation of free motion

I(I + 1)X t + q2Xl = 0 .
X['

It means that the condition
Cnt ": 2 nl/4e-2"c_k (13a)

(where c = -k2/2 is the binding energy) must be satitfied for the bound states. The coefficients

Cnl for the scattering problem have the following asymptotic behaviour:

C_l "_ 2n 1/4 sin(2qx/_- br/2 + 6t) (13b)

where e = q2/2. According to Eq.(6) the phase shift 6t in Eq. (13b) coincides with the standard

phase shift of the wave function in coordinate spase. For the decaying resonance states, we get

(see in [31): C,_, "_ 27/,1/4e2iqvfn. (1 3C)

If the calculations are made up to sufficiently high values of N >> 1 it is possible to use the

asymptotic expressions (13) [3] At modest N it is necessary to use the exact, rather than

approximate, solution for the equation of free motion (12b) which was found in Refs. [2, 4] in

order to calculate the binding energy, the scattering phases etc. Before considering the solution

for the equation of free motion, we shall note that the solution for the set (12) is equivalent to the
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solution for the Schroedingerequation with Hamiltonian H = T + V N containing the many-term
separable potential

N

v N = _ < nllVln'l > Inl >< n'll (14)
n_n t

with harmonic oscillator formactors. The technique of solving such an equation in the frame of the

monlentum representation was described in [.,5, 6]. Here we shall describe an alternative method

for solving the same problem ill HOR.

2 Solution for the equation of free motion in the har-

monic oscillator representation

(:onsider first the case of positive energy e = q2/2 > 0. The Schroedinger equation of free motion

in the coordinate space has two linear-independent solutions (regular and irregular) [4]:

R,-¢_/ 1 lrr
, " -- j,(/,w) -,_ _ sin(kr - T) ,

t _ cos(kr - 7Z ) . (1 5)

In accordance with this, the finite difference equation of free motion (12b) will have also two

fundamental solutions in the HOR [4] namely the regular solution

, ('ero, + l+ q, a""tq_= \ PT,TL(1) r(l+_)¢'-'_/'_M(-'_'t+_ ;q')=
2

23/2

= (-l)'_R,a(q)_ 777gn'/4j,(2v/Tq)

satisfying the boundary condition (6) (,_o-'-ll = 0, and the irregular sohltion

(16)

"" v(.+t+77)

which is singular at, the point 7_.... 1.

1/2 (_l)tq_l_ 1

r(-t + ½) l- -
1 1

-I + 7; q_) =

23/2

71.1/2 nl/47tt(2V/-nq) (17)

The Casorati determinant K,a for these two solutions which plays the same role for the differ-

ence equations as the Wronskian for the differential equations [7] is of the form:

(wre9 ('_irre9 -- l
I(,d = T.+ln 'Jnl "-'nl

(,reg {--_trreg ---- --

_'n+ll v'n+ll 7fq
(18)

Since K,,.t # 0 for any values of n and 1, the expressions (16) and (17) constitute the fundamental

set of solutions for equation (12b). An arbitrary solution for (12b) may be presented as a linear
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combinationof fundamental solutions. In particular, tile solution for tile set (12) h)r n _> N must

be of the form
_re9 _ t "_irre9C,.(q) = cos_/,,. (q) + sin _.,,. (q) (19)

whence it follows that
(_ f_reg f, f_reg

'nlV'n+ll -- _)n+ll_'nl (20)
tan (51= p (wirre 9 f_ t.wirre9

t,nl_,n+ll -- V_n+ll_.,)tl "

The equivalent pair of fundanmntal solutions for the free motion equation has the asymptotic form

of the type of Hankel functions

4- (-tirregt ] • _re9C_(q) = .,,. tq, + <,,. (q) • (211

These solutions are useful for the calculation of the ,q'-matrix and analyzing the decaying (;amov

states. If we are interested in bound states (s = -k'e/2, q = ik) the solution for the equation of

free motion with a corresponding asymptotic

cbo_,,.t i t [_,r_g,-., ;r._j(ik) ],. (k) = p',_t tT._;+,-,,. ('2"2)

must be used. The numerical values of solutions (161, (171 can be o},tained by' using lhe t,ook [8],

where the function M(a, b; z) is tahulated. Similarly to the regular and irr(,glllar solutions of th('

" efree motion Schroedmg .r equation the functions r'_" and t_'i_",a -',_l " are oscillating functions of,i a)ul

the period of oscillations decreases with increasing energy g.

3 The solution of the scattering problem in HOR

Consider now the solution for set (12). It follows from equations (121 (.hat the coefficient C,,t for

n >_ N + 1 obey the equation of free motion with an appropriate asymptotic.., i.e. (',_l = ('°,_l,

where (7,°_ is the solution for the equation of free motion with asy)nt)totic (19), (21) or (22). Tim

coefficients (7,,z(7_ _> N + 1) form the "external" part of the wave flln('l.ion in ]l()t{. Th(' coefficients

C,_l(n _< N) behmg to the "internal" part of this function. The equation

plays a role of "fitting" condition of "internal" and "external" pa,'ts of the way(" function. The

r.h.s, of this equation has one of the form (19), (21) or (22). Into the left hand side of Eq. (23)

the solution of the set (12a) must besubstituted. The last one can be found in the following

manner [2]. At first we shall diagonalize the truncated tlamiltonian matrix ]]H,_,_,I[ using the

unitary transformation F, i.e. turn from C,_t to the new coefficients

N

C_l = _ rx,_C,a , A = 0, I,...,N . (2,1)
n=0

As a result of this transformation, equation (12a) takes the form

(E\ - s)(?'_l = --F.\NTNN+,("N+,I , A = O, 1, ..., N
I
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i.e.

and

CtAl = FANTNN+I CN+I l

EA -

N *

F;_,_FAN_r

Cn l = -- E _ Z -_ I N N -t- I (_ N -t- l l
_=0

whereE;, - is the eigenvaluesof the matrix IIH,-,'II _<N).
Substituting the "internal" solution (25b) at n = N into Eq. (23) we obtain

(25a)

(25b)

PNN+I 0 = 0CN+ll --CNI, PnN+I = E FAnF_NTNN+ 1 "
A=O EA -- g

(26)

0
If we deal with bound states of Gamov resonances, COt and CN+,t are the known functions of

energy (see (21) and (22)). In such cases the condition (26) is the transcendent equation which

may be used to find the energies c_ of the bound or resonant states. For the scattering problem,

we get in accordance with (19):
J

C_ 1 t'_re9 (wirre9=_N_ + tan 5t _NI

0 __ {wre9 g'_irre9
CN+,t 'JN+,t + tan 5t-- "JN+ll •

Substituting these expressions in (26), we find in accordance with Refs. [2]:

(27)

f'vreg f_reg

tan 5t = _Nt +PUN+, _N+tl (28)
(Tirreg {'_irreg "

, "_Nl + PNN+I _N+ll

It can be seen now that the scattering phase at an arbitrary energy _ can be obtained by diago-

nalizing the Hamiltonian matrix IIH,,,ell (n,n' <_ N) but one time.

In agreement with the Ritz variational principle, the negative eigenvalues Ea < 0 of the

Hamiltonian matrix ]lH,,vll (n,n' < N) may be treated as approximate values of the energies

of discrete levels of a particle in the studied potential. In this case the approximation accuracy

improves with increasing the size of the' matrix N. The question arises, what is the sense of the

matrix positive eigenvalues and of the respective wave functions? The question was answered in

works [2, 4, 9] as follows. In the limit c _ E_ expression (28) takes on the form

t_re9

tan 5t (E_) = - "__N+,t (29)
trre

N+ll

By comparing this result with formula (19) we get the coefficient r_gCN+tI(Ex) = 0 for E_. Thus,

by diagonalizing the Hamiltonian matrix IIH,,,,,I] (n, n' _< N), we find the solutions for equations

(12) in the region of the continuum at such discrete energies E;_ > 0 which correspond to the

vanishing of the HOR_ wave function C,_t(EA) at the point n = N + 1. The scattering phase
I

can be calculated at such energies using simple formula (29). In the asymptotic limit of high N,

the diagonalization of the Hamiltonian matrix on the cutoff basis n < N means the solution for

the Schroedinger equation (9) with the additional condition Xt(b) = 0, where b = 2(N + u) a/2,

i.e. when the system is placed within a rigid box of radius b. In this case the energy spectrum
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for equation (9) gets discrete and the energy of any level becomesa function of the position of
the boundary point b = 2[(N + u)h/mw] 1/2. The condition X_(b) = 0 is nothing other than the

equation for the P-matrix poles in the system of radius b described by the Schroedinger equation

(9) [10]. Thus the eigenvalues E_ of the Hamiltonian matrix ][H,,_,[[ are poles of the discrete

analogue of the P-matrix. The important point is a convergency of this approach. The practical

calculations [3, 4] show that for rather smooth potentials V(r) it is sufficent to use a number of

terms N .-_ 20 - 30 in the expansion (2) in order to calculate phase shifts and other scattering

characteristics in reasonable accuracy.Therefore the using of HOR, or J-matrix approach [2], is

a rather effective and practicable method for the study of continuum problems. Some additional

example of application of this method will be discussed in section 6.

4 Multichannel case

Let us consider the case of two open (binary, spinless) channel for simplicity. The wave function

has the form of a column

( I_1 ('')) (30)e(r) = e_(r)

and the Hamiltonian is the operator matrix of a size 2 x 2:

( H1, H12 ) (31)H = H21 H22

Let us assume that the wave function of the entrance channel _ha(r) is characterized by the following

asymptotic behaviour

_bl(r) ,-_ (¢-,k,_ _ ,q,,c_k,_)/,, (32a)

while in the second channel only the outgoing wave presents

1/2 ik2r¢:(,-)--,- ((,,,Iv:) '-_"21 e ) /"" (32b)

The transition into n-representation consists in the expansion of both channel wave functions

e,(,') = _ C,nl'_,"o,>,
n

_,_(,-)= _ c_,,,l.,,,'o_>, (33)
77_,

I

in terms of harmonic oscillator wave functions In,r01 >, [rn, r02 > with a unique frequency hw

while the linear scale parameters rOi = (h/lAicO) 1/2 can be different for the channels 1 and 2 if the

reduced masses #1 and #5 of two fragments in these channels are different. Assuming that it is

possible to restrict ourselves to a truncated matrix of the potential energy

v,,,,l,,, (o < ,,,,,' _ N,), V,2,,,,2,,,,(0 < m,.,' < N2),

Vln,2m, V'2m,ln (0 < n < N1,0 <_ tn < N2 )
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(generally speakingNI ¢ N2) we obtain the following set of equations for Cln, C2m coefficients

instead of Eqs., (12), (23), (27)

( H - E)C = -TO ° ,

C1N, = C ° _ -,o'IN1 ' ('2N2 = ('2Nz '

Co -,- _ q +_ln _- (ln .llCln ,n >_ N1 ,

C°m =-(q2/q,)'/2S2,C+,_, m >_ N2 . (34)

Here C is a column of N1 + N2 + 2 coefficients C1oCll...CINIC2O...C2N2, H is the matrix of

Hamiltonian in a truncated basis In, r01 >, Im,7"02 > (n < N_, m _< N_). The column TC contains

7NI,N,+ICIN_+ 1 in the N1 + l-th row and TN2N2+lC °only two nonvanishing elements, namely ' 0 '2N2+1

.,,_irreg
I"_<q 4- zt.ik are the same ones as in Eq. (21) As it:.in the last row. The functions Ci{ .... ik

was shown in Ref. [2, 11] the asymptotic of the function _/_+ = _=0C_ tn > is of the form

Ic exp(-t-ikr) for ---+oo. This fact, and the difference of roi in various channels are the origin of the

factor (q2/ql) _/2 in Eq. (3,1)instead of the usual velocities ratio (V2/Vl) 1/2 in Eq. (32). Solving

the Eq. (34) similarly to Eq. (12) we obtain the following results instead of Eq. (26)

(71 NI = ( '- -- +_

'2N2

where

= P,,(c,-N,+,-

,+

= ( _- ,+=--£'21C+N_(q2/q,) lf_ t:2, ( ,x,+, -- ,q'_(',N,+_+

+/2.22 (--(q2/ql _1/2¢' Q+ "_ (a5)

Pij = Z F,_NiF,\I% TNjN,+I •
,\ Ex - E

E_ is the eigenvalue of the truncated matrix H, (F,\0...F_N, ..-F_N2 ) is the corresponding eigenvector

of this matrix.

The relations (35) should be considered as the equations for elements of the ,q'-matrix. The

solutions of these equations are of the form
i

| [(G-Ul+ P,,Cl-X,+,)(G-x:+
SI1 : "_

q 1 2iP12P'n (36)
'-21 --

= P22C,2N2+l) -- P12P21CI+N,+I C+D [(CI+N, + P1,CI+N_+I)(C2+N_ + + 2N_+a]

Here the property of the Casorati determinant

TNN+I
CN c +

CN+_ 6X+l

2i

_q

was used. The elements ,_q_, ,q'_2 of the ,q-matrix can be obtained from (36) by substitution of

indices 1 and 2. Obviously the 5;-matrix is symmetrical in accordance with the tinw reflection
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symmetry of the Hamiltonian. As in the previoussection,tile eigenvaluesE x are the poles of the

discrete analogue of the P-matrix.

The eigenfunction0_ g,_ = _n FAn In > are discrete analogs of "prinfitives" (ill terms of the

paper [10]).

The expressions (36) allow us to find the nulnerical values of the ,%matrix dements and then

to calculate the cross-sections of elastic scattering and reactions

c*d = .Sll -- 1 , (37)

7I- , i2
G r _-_'12[,S 21 , (:{S)

the differential cross-sections, various polarization characteristics (taking into account the spin

degree of freedom) etc. If we want to describe the reaction with throe-h)ur fragments in the final

states it is necessary to extend the above developed formalism, which is valid only for two body

(binary) channels, to three, four body, collisions.

5 The description of "true" many body scattering in a

hyperspherical HOR

We restrict ourselves by the case of the so called "true" many body scattering (TMBS) when the

wave function of an A body system is in the a syml)totic rogion of the form

(39)

/9 2 A= _i=l(ri- R) 2 is a global radius in 3(A- 1) dimensional space, the angles _ are hyperspher

ical coordinates in thtis space. R is the center-of-mass of the system, })4_,(f_) is a hypersporical

harnlonic with a global momentum K, _/' substitutes all the rest quantunl l_unlb(,rs labelling lhis

harmonic. The approximation taking into account only l ho contribution of TMBS is valid if there

is a "democracy" in the A body system i.e. there is no pair of particles with donlinating interac

tion between them in comparison with the rest of the interactions. The TMBS - approxinlation is

applicable to a lot of processes of three, four body decay of light nuclei and hypernuch'i [17] (for

example disintegration 12C --+ 3o_ etc.).

For the description of TMBS we shall use ttle expansion of the A-body wave function I/,(F1 ...7_ )

in terms of A-1 body oscillator wave function (the center of mass variable R is excluded)

InK7 >= RnK(p)Y_,-.,(_) (40)

depending on hyperspherical coordinates p, gt:

= _ < nl('TlO > Inh"r > (41)
n/-_"/

Further consideration is totally parallel to sections 1-4 and we represent :the result in very short

form. Instead of Eq. (3) we have for the many body' case

-{3A-4)/2 (_£RNK(p)= p . (p), (42)
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2n! __C+,e_,2/2L_+,/.2(p2) (43)

£ = K + (3A - 6)/2, p is taken in units of r0. The Eq. (4) takes on the form

_, < nKTIH- EIn'K' _' >< n'K'7'[¢ >= 0. (44)
n,Kl..¢,

The kineticterm T in the Harniltonian H = T + V isdiagonal in the quantum numbers K and 7.

As for the main quantum number, n, the matrix is three diagonal with respect to n and its matrix

elements coincide with Eq. (5) except for substitution of l by 2. We also truncate the matrix of

potential energy V = _ia<j Vii to n _< N, K _< Km_x. Then for n >_ N the expansion coefficients

< nK-_l _, >- C,_ obey the three-term recurrent relation similar to Eq. (12b)

( ' ( )n(n + £ -t- -_) < n - 1K7]¢ > - 2n + £ +.3 _ q2 < nK' l > +

2)(n+l)(n+£+ < n+ 1K_'l¢ >= 0, q= •

This difference equation has two fundamental solutions

(45)

r,T_g I 2n! £+l _q2/2iZ+i/2[.,2,t

t w,

and

(46)

fo ° t_o.c tq )t_n.c (q') dq' (47)g _irre9 _ __ 2_qe9 "?)'P" .-_re9," t.,_reg

'_,_z _rCo.e (q) q2 _ qa

or the equivalent pair of solutions

/_reg[ ixr_reg ; l\

2q [o_ t_o_c tq )w,_l tq ) (48)
C,_ - "_g Jo q2 q,2 dq' "rcC o.c (q ) - :1: i O

The problem of TMBS is similar to the multichannel problem described in section 4. Thus the

wave function (39) with ingoing wave in some channel K070 and outgoing waves in each channels

K'7' under consideration takes on the form at n > N (in principle the truncation boundary N

may be different in the various channels KT):

- SK-y,K,-e C,_.e, (q) •< nKTl_b >= gt,.y,Ko.yoC:.c(q ) _ + (49)
K"y'

In analogy with Eq. (36) we can obtain

S = A-' B (50)

where

(A)K,._',K._ = PK"v',K'_CN+I£(q)+ -- _K'v,K"v'CN£(q)+ '

( B)K,-y,,I<._ = PK'.¢,K.yCN+lz(q) -- 5K',,I,'"¢CNz(q) , (51)
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PK._,K'._' = _ < NK.yiA >< AINK' 7' >E- E_ TNK',X+_t," •

E_ and < NKTIA > are eigenvMues and eigenvector components of the truncated Hamolt6nian

matrix < nKTIHln'K'7 ' > (n, n' <_ N). The poles of the ,q-matrix (i.e. bound states and (lamov

resonance states) can be found from the equation

det A = 0. (52)

Thus we have all expressions that are necessary for tile construction of the wave function for few

body states belonging to continumn or discrete spectrum ill the frame of TMBS approximation.

6 Soft dipole mode in llLi and three body continuum

In order to demonstrate the effectiveness of the HOR ill all analysis of concrete nuclear processes

the calculations of tile properties of tile low energy El excitations in the 11Li mlcleus wero done.

The remarkable feature of this nucleus is a I)resence of a large neutron halo formed by lw() neutrons

weakly bound with t h,_ _Li core. In this ('ontm(:t.ion the folh)wing model was used for the des('ript i(m
of this tmcleus.

6.1 The model

It was assumed that tile I1Li ground and contitmunl st, a l.('s can I)(, i111.(,rl)reted in the framework

of the three-l)o(ly cluster structure :)Li+7_ + n.

1) The cluster 9Li is sut)posed to l)e structureless and the excitations of ils internal degrees of

freedom are not considered.

2) We don't account for non-central components of the interaction between two valence neu

tr(ms and between valence neutron and Ill(' ('luster 9Li. Ther(,for('. lh(' way(" function can tu,

characterized by the three-body orbital angular momentum L, spin 5 = 3/2, total angular mo-

mentum a and its projection M.

3) Tile states with the total spin of tile valence neutron pair ,q = 0 are only considered, and

tile ground state three-body orbital angular momentum is supl)osed to be equal to zero: L = 0.

4) n -v Li interaction is described by the shalh)w t)otential of .]ohansen et al [13]. N N-int, eracl.ion

is described by the Gaussian potential [13].

5) Only democratic decay channels are allowed for.

The wave function of the system 9Li+n + n, g'aM(x,y), is expanded in three-body hyperspher-

ical functions, _t*_YJM(_I) (including the internal wave function of 9Li with a spin 3,' = 3/2)

_aM(X,y) = E ,/,(a)
K I_ ly

where K is hypermomentum, I_ and l._ are the angular inomenta corresponding to the Jacobi

coordinates

_/_T_w l_ mw rl + r2

x= _/_(r, - r2), Y = V_-l--h --( 2 r3), (54)
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respectively,m is the neutron mass, ri are coordinates of the valence neutrons (i = 1,2) and the

cluster 9Li (i = 3), p= (x 2 + y2)1/2 is a three-body hyperradius.
In the c. m. frame the Hamiltonian is of the form:

H=T+V12+I/13+V23, (55)

where T is the three-body relative motion kinetic energy operator, and V0 are the two-body

potentials. For the radial wave functions w/_"/'(g)t_l_(P)we have the usual set of the K-harmonic

method coupled equations (see, e.g., [12]). The equations are solved by expanding the radial wave

function.
OG

o/,(J) n(J) (56)
_'n K l_

n=0

in the six-dimensional harmonic oscillator eigenfunctions. To calculate the bound state energy,

i.e. to locate the corres_)onding £'-matrix pole', one should solve the nonlinea_ equation [ll]

det A (+) = 0 , (57)

where the matrix A is given by the Eq. (51).

For the continuum spectrum states we calculate ,q-matrix for any positiw' energy E using (50)

The interactions of the valence neutrons with each other and with the cluster ULi are described

by the potentials V_2(r_2) and Vla(rla) = V2a(r2a), respectively. We use the following parametriza-

tion of the potentials [13]:

7 (l) 2v,,(,.) = v.(.')exp [-( ./b j )1
• lj

VI !1) = --31 MeV, Vl(22}

1/]!2) =-7 MeV, VI_)=-1 MeV,

_{_ _2) exp[--(/'/bi3 ) 1,(1) 2

: 0, 1,{1) 1.8 fill;

b{l,) : 2.4 fro, b{2): 3.0 fro.

In the external asymptotic region u _> N we consequently allow for channels I' characterized

by K = K,,m_, I(-,,m, + 2,... (Kmin is the minimal possible value of h" for a given J) until the

convergence for all physical properties under consideration is achieved. The convergence is found

to be very good, and the allowance for the decay channels with K > K_i,_ + 2 do not yield any

visual variation of the results. So, we consider in the external asymptotic region n > N the

channels with K <_ I_[,,_i,_+ 2 only. Note, that components with all possible values of K _< N are

accounted for in the calculation of the wave function in the inner region n _< N.

The parameter hco is set to be equal to 7.1 MeV in our calculations. This value corresponds

approximately to the minimum of ground state energy E0.

6.2 The ground state

The results for the l lLi ground state for different values of the truncation parameter N are pre-

sented in the table 1. The variational ground state energies, E_ d), obtained by the pure diagonal-

ization of the truncated Hamiltonian matrix are listed in the second column, while the J-matrix

results, E0, which are the solutions of the eq. (57), are listed in the third column. It is seen,

that by locating the £'-inatrix pole using eq. (57) that is equivalent to the allowance for the
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Table 1" 11Liground state properties (seetext for details).

Truncation

boundary N

12

16

2O

24

Experiment

Ground state energy,

MeV

1/2 (d)
< 7"2 >lt

Neutron halo

mean square radius
1/2

< r2 >11 , fm
1/2

< 7"2 >11

2.83

2.91

2.98

3.04

Eo(dl Eo

-0.012 -0.150

-0.116 -0.199

-0.171 -0.225

-0.202 -0.240

-0.24710.080 3.16±0.11
L

3.31

3.29

3.31

3.32

long asymptotic tail of the wave function, we improve essentially the convergence for th(, bin(ling

energy'.

The results presented in the table 1 have been obtained using l,anczos smoothing (}f the three-

body potential energy matrix [5, 14].

The 11Li r.m.s, radius, < r 2 ..1/2-_11 , can be calculated by the following ('quatiom

9 h
= < p_ > , (.YS)< r2 >31 i-i- < r_ >9 -} 11 rn_

1/2
where < r 2 >9 is the 9Li r.m.s, radius and the mean square value of the hyt)erra(lius , < p2 >,

can be easily calculated using the ground state wave function. The values of < r 2 >1/2 (,t) aml

< r2 >1/2 obtained by the pure diagonalization of the truncated ttamiltonian matrix alhd witll the

allowance for the asymptotic tail of the wave function, respectively, are presented in the 1-th and
the 5-th columns of the table 1.

It is seen that in calculation of the ground state, the allowance tbr the wavv I'_lllclion asymp-

totics is very important for a weakly-bound system like llLi. The terms of exl)ansiol_ (56) with

the number of total oscillator quanta N __ 100 that cannot be obtained in the usual oscillator

basis variational calculations, play an essential role in the description of the transverse monlcntum

distribution, r.m.s, radius, etc. The convergence of < r 2 >1/2, transverse momentum distritmtiol_

and other properties of the wave function in the full d-matrix calculation is rather good. Nev

ertheless, it is seen that the r.m.s, radius converges to a value that is somewhat larger than the

experimental one, and the calculated transverse momentum distribution appeares narrower than

the experimental one. These shortcomings can be overcome by the adjustment of 7z "_Li potential.

We have not aimed to fit the potential to the llLi properties, we haw' just take its paranlelers

from ref. [13].

6.3 The soft dipole mode

The dipole transition operator in our model is of the form

N_ Z
A/I(EI#)- A ey Y_.({l) , (59)
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where e is the proton charge, A = 11, Z = 3 and the number of valence neutrons, N, = 2. The

operator (59) corresponds to the excitation of the three-body cluster modes only. The excitation

energy of the first excited state of 9Li is relatively high (---4 MeV). So, low-energy El-transitions

correspond to the excitation of the cluster degrees of freedom only and should be described by the

operator (59).

1.6-

1.4-

1.2-

1.0-

0.8-

0.6-

0.4-

0.2-

0.0
0.0

B(E1;i f), e 2 fm 2 / MeV

__

2 --)e---
3_-

I I

{1.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

E, MeV

Figure 1: (:omparison of our results for B(E1;g.s.--+ coT_tinuum) in llLi with results of other

authors. 1 this work (J-matrix method), 2 ref. [15]., 3 - ref. [16], 4 experimental data

parametrization of ref. [17].

The cluster reduced probability of the El-transition, B(E1; El - E0), associated with the

operator (59), is displayed on tile figure 1.

This figure shows the comparison of the results of out" calculations of cluster B(E1; El - E0)

with the parametrization of experimental data of ref. [17]. The agreement is reasonable. The

form of the B(E1; E l - Eo) peak is well reproduced, the discrepancy in the position of the

B(E1; El - E0) maximum is supposed to be eliminated by the adjustment of the potentials. The

results of the B(E1; El - E0) calculations of refs. [15, 16] are also depicted. All these colculations

give a low energy peak which can be associated with the soft dipole mode.

The soft dipole mode exhausts about 90% of the cluster sum rule (EWSR) associated with the

operator (59). The contribution from the soft dipole mode to the total EWSR is relatively small.

In the vicinity of the sharp/3(El; E l - E0) maximum at the excitation energy E _1-2 MeV only

,-_8% fraction of the total EWStt is exhausted. Nevertheless, the account for the soft dipole mode

results in an essential increase of the electromagnetic dissociation cross section of 0.8 GeV/nucleon

_Li beams on Pb and Cu targets. Using the sums of the ttLi and target nucleus charge radii as

impact parameter we obtain for the electrotnagnetic dissociation cross sections the values of 0.966

barn for the Pb target and 0.132 barn for the Cu target; tile corresponding experimental values
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are 0.890± 0.110 barn and 0.21±0.04barn, respectively [18]. E0- and E2-transitions give only
t.2% contribution in the cross sections. 1

Thuse, it is shown, that cluster model 9Li+n+n yields a good description of the ground state

properties and El-transitions in the llLi nucleus. The HOR may be used successfully in the

studies of weakly-bound systems with long-tailed wave functions, e.g., in tile study of neutron

halo properties. For both bound and continuum states tile correct account of the wave function

asymptotics in the framework of the oscillator representation of scattering theory is very important

in such studies. Low-energy El-transitions in laLi are of the cluster nature. The widths and the

position of resonant states calculated in the democratic decay approximation are in a reasonable

agreement with experiment.

Appendix. Isolated States. The scattering problem with nonlocal set)arabh" potential I "x

can display some peculiarities which we explain here using a siml)le example when lhe ttamiltoilial,

H is approximated by the matrix of a size 2 x 2 (i.e. N = 1). In specific situation when "1'ol = -I.{_l,

i.e. the nondiagonal matrix elements of the kinetic and potential energies cancellatc each other

H01 = 0, we obtain that the Harmonic oscillator wave function R00(r) is an eigcnfill.,tion of this

Hamiltonian corresponding to the eigenvalue E0 = Too + too. If E0 > 0 we find at, example of lhc

bound state embedded in continuum [19]. It is clear that the eigc,_l'unction Ho_,(r) is m,1 co|,m.ctc_l

with the rest basis states R,_0(r). Thus it is isolated from COlltillllUlll slates and can [)(, called al,

isolated states. The phase shift _50(/c) displays a narrow resonance near energy leo at small value

of hm. It transforms into the resonance of zero width when Itol ---+O.
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Abstract

A geometrical interpretation for the outer multiplicity p that occurs in a reduction of the

product of two SU(3) representations, (_., _,r) x (,_, #u) --+ _p(_, P)p, is introduced. This

coupling of proton (re) and neutron (v) representations arises, for example, in both boson and
fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises

the possibility of introducing a simple interaction that provides a physically meaningful way

for distinguishing multiple occurrences of (£, #) values that can arise in such products.

1 Introduction

The objective of our program in nuclear structure physics has been to bridge the gap that exists

between collective and shell-model descriptions of observed nuclear phenomena. Progress has been

slow because of the difficulty in making realistic shell-model calculations, at least when measured

against, tile background of the success of simpler collective models. Algebraic shell-model theories

come closest to realizing this objective. Regarding the latter, there are two basic types of algebraic

theories: those based on a bosch description of the dynamics, such as the Interacting Bosch Model

(IBM) [1], and those which treat the nucleons as fermions.
The first and most familiar algebraic fermion model is the Elliott SU(3) scheme. It is known

to work well for light (A <_ 28) nuclei [2]. Another is the Sp(3, R) (denoted Sp(6, R) sometimes)

or symplectic model which is a natural multi-haJ extension of the Elliott scheme [3]. For heavier

systems (A >_ 150) there are currently two algebraic models being employed: the so-called Fermion

Dynamical Symmetry Model (FDSM) which identifies s and d fermion pair operators that form

an algebra which closes under commutation (the SO(8) group for the n = 4 shell and Sp(6) for

n = 5 and n = 6, which has SU(3) as a subgroup) and gives a possible microscopic interpretation

of the IBM [4], and the pseudo-SU(3) model and its pseudo-symplectic extension which builds on

the concept of good pseudo-spin symmetry in heavy nuclei [5, 6, 7].

The common algebraic structure in these theories is the SU(3) group. This is understandable

because the angular momentum L and the deformation generating quadrupole operator Q - when

restricted to a single major oscillator shell - are generators of SU(3). In particular, large irre-

ducible representations (irreps) of SU(3) correspond to configurations of constant deformation. In
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the next sectionwe expandon the SU(3) - rotor connection, and in so doing establish a basis for

the geometrical picture of the SU(3) outer multiplicity that is presented in the subsequent sec-

tion. While no proofs are given, it should be clear from the discussion that' the proposed scheme

has potentially far reaching consequences regarding a physically motivated interpretation of the

outer multiplicity whenever there is an applicable group contraction-expansion procedure, which

is SU(3) _ T_ASO(3) in the present case. Here TsASO(3) is the symmetry group of the rotor.

2 SU(3)- Rotor Connection

A geometrical interpretation for SU(3) can be achieved by looking at a shell-model interpretation

of collective quadrupole motion as depicted in terms of a triaxial quantum rotor. The trick

that we apply is to first express the Hamiltonian for the rotor in a frame-independent form

because that expression can then be rewritten in terms of its corresponding microscopic operators.

The rotor is a particularly elegant example because this prescription is easy to apply and leads

immediately to the sought after shell-model representation. Furthermore, the operators that

enter into the expression have historical significance, dating back to Racah's pioneering work on

the SU(3) D SO(3) symmetry group [8]. Since the argument is illustrative it bears repeating, but

in an abbreviated form. A more complete description can be found in the book by Casten [9J.
The triaxial rotor Hamiltonian is given by

YnoT : AII_ + A2I_ + AaI_ (1)

where I_ (c_ = 1, 2, 3) is the projection of the total angular momentum on the a-th body-fixed

symmetry axis and A_ is the corresponding inertia parameter: As = 1/(2J_) where ,7_ is the

moment of inertia about the c_-th principal axis. This familiar principal-axis form can be rewritten

in a frame-independent representation by introducing three special scalar operators:

L 2= E_L_L, = E_I_,

Ot I'_ ,

= A_I_. (2)
c_,/3,'y c_

The L_ and Q_ in this equation are Cartesian forms for the total angular momentum and col-

lective quadrupole operators, respectively. (The superscript c appended to the Q denotes the

collective quadrupole operator which has non-vanishing matrix elements between major shells

(n' = n, n _ 2), in contrast with the algebraic quadrupole operators, Q_z, which have non-

vanishing matrix elemeats only within a major shell, n' = n.) The last expression given for each

scalar in eq.(2) is the form these operators take in the body-fixed, principal-axis system where

the eigenvalues of the Q_z are presumed to be sharp: (Q_z) = AaS_,z. These equations can be
inverted to yield the I_ in terms of L _, X_, and X_:

I 2 [()ki/_2/_3)L 2 -_-_ o_].,-L3 -'_
= (A _y'_ (A_)X_]/D_ where D_ _ 2A3 + A1A2A3. (3)

Substituting this result for the I_2 into eq.(1) yields

HROT = aL 2 + bX_ + cX_ ;
(4)
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where a, b and c depend on the inertia parameters and the eigenvalues of Q_:

Ot ot Ot

(5)

where a -¢/3 -¢ "_ -¢ a.
A shell-model image of the rotor Hamiltonian can be obtained by substituting single-particle

forms for the collective L_ and Q_ operators: L_ = E_ l_(i) and Q_ = E_ q_o(i). However, this

ignores the shell structure and the fermion character of the many-body system. It is important to

remember that while the L_ have non-vanishing matrix elements only within a major oscillator

shell, the Q_ couple shells differing by two quanta (n' = n, n :t: 2). Indeed, the off-diagonal

(n' = n + 2) couplings are about equal in magnitude to the diagonal (n' = n) ones. It follows
from this that operators like QC. QC and the X_ and X_ (even if used only as residual interactions)

can destroy the shell structure. This catastrophe can be avoided easily by simply setting all off-

diagonal couplings between major shells to zero, an action which corresponds to replacing the

Q_z operators by their algebraic counterparts, Q_. Elliott was the first person to recognize that

the Q_,z operators, along with the L_, generate SU(3), the symmetry algebra of the isotropic
harmonic oscillator Hamiltonian. The appropriate shell-model image of the rotor Hamiltonian,

eqs.(1) and (4), is thus given by

Hsu3 = Ho + a L2 + bX_ + cX_, (6)

where H0 is the harmonic oscillator Hamiltonian.
Shell-model values for the h_ are required to complete the mapping. This follows by equating

invariants of the two theories, a very natural thing to do since constants of the motion relate to

the important physics, which in turn should be independent of the particular description. Because

SU(3) is a rank two group it has two invariants: C2 with eigenvalue [A2 + Xit + #2 + 3(X + it)], and

C3 with eigenvalue [(A - it)()_ + 2it + 3)(2A + it + 3)/2], where X and it are SU(3) representation

labels with (X + it) and it, respectively, specifying the number of boxes in the first and second

rows in a standard Young diagram labeling of irreps of the SU(3) group. Note that C2 is of degree

two in the generators of SU(3) while C3 is of degree three. The symmetry group of the rotor

[T5ASO(3)] also has two invariants: traces of the square {Trace[(Q2)2]} and cube {Trace[(Q2)3]}
of the collective quadrupole matrix. The eigenvalues of these two invariant operator forms are

are the variables
2 2 ---*(k3) 2and A A2X3 (kfl)3 cos(33,), respectively, where (_, 3') shape

of the collective model and k 2 = _(Ar2) 2. The requirement of a linear correspondence between

these two sets of invariants leads to the following relations,

,_1 = -(A - it)/3, A2 = -(A + 2# + 3)/3, )_3 = "_t-(2/_ "Jr"it nt- 3)/3. (7)

This correspondence, in turn, sets up a direct relationship between the (/3, "),) shape variables of

the collective model and the (A, it) irrep labels of SU(3),

( v/-:3(it + 1)
f12_ 4. it: 3(A+it)+3] 3'=tan-1 \2A+it+3] (8)

5(Ar2) + + + ,
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Since A and # are positive integers, this translates into a regular grid when superimposed on a

traditional (fl, 7) plot, with fl the radius vector and 7 the azimuthal angle:

kfl_ = kflcos(7 ) = 2A + # + 3 k_y = kflsin(7) - # + 1
3 ' " (9)

Each (A, p)-irrep corresponds to a unique value for the (fl, 7)-pair. In the limit of large (A, p)

values the constant +3 factor in A2 and A3 can be dropped and in so doing one arrives at the

asymptotic results [3]. The +3 and +1 factors in _ and 7 as well as those in fl= and fly alsodisappear in this limit.

3 SU(3) - Outer Mulitiplicity

Having established the SU(3) - rotor connection, it is instructive to push the (fl, 7) *-_ (A, p)

connection to a consideration of a coupled double-rotor picture which is commonly used to describe

heavy nuclei in a collective model framework, see Figure 1 ahead, with one rotor representing the

protons (Tr) and another the neutrons (v). This associates physics with the SU(3) coupling picture

and, as we will see in greater detail later, it also leads naturally to a geometrical interpretation for

the SU(3) outer multiplicity label. This picture also suggests a natural way for parameterizing

the proton-neutron interaction in terms of the geometry of this simple scheme, for example, one

with final states of the same (A, p) but different multiplicity energetically separated from one

another due to a simple interaction that senses the relative orientation of the parent proton-neutron

configurations. We will return to this matter after making the geometrical picture quantitative
for the special case of prolate proton-neutron (Tr - v ) parent configurations.

To get a feeling for the proposed scheme, consider the special case of prolate _--u factors (7, = 0

and 7, -- 0) in the parent configuration. In this case it is sufficient to introduce a single angle

0 which measures the relative orientation of the principal axes of the two distributions; rotations

about either the proton or neutron symmetry axis effect no change, only rotations about an axis

that is perpendicular to the plane defined by the principal axes are distinguishable. (The scissors

mode used to describe I_(M1) strengths gets its name from this simple picture ... 0 measures the

angle between the two blades of the scissors. Also note that the Exclusion Principle, which applies

because the nucleons are considered to be fermions, is not violated by the coupling because the

two distributions are made up of different particle types.) For 0 -- 0 ° the two axially symmetric

ellipsoids overlap maximally (aligned principal axes) whereas when 0 = 90 ° the principal axes are
perpendicular to one another and the resulting overlap is a minimum.

The (fl, 7) value of the product can be determined once/_, _ and 0 are specified. Recall that

/3 and 3' are determined respectively by the trace of the square and cube of the quadrupole matrix,

see eq.(8), and that the quadrupole matrix of the joint distribution is just the sum of the separate

proton and neutron distributions, with the second (Q_) rotated by an angle 0 relative to the first

(Q_): Q = Q_ + RQ_,R -1 where R -- exp(i0 • fi) and fi points in the direction of _t_ × _ with _

and fi_ defined to be unit vectors that point respectively along the proton and neutron symmetry

axes. Or vice-versa, given/_, ft. and (fl, 7) one can clearly deduce the relative orientation angle

0. This construction corresponds to the (A., #. = 0) ® ()_, #. = 0) ---, _ ® (A, #) coupling in

the SU(3) case which is known to be simply reducible, that is, each of the allowed (A, #) irreps

in the product [(A, #) = (A_ + A_, 0), (A. + A. - 2, 1), (A, + A. - 4, 2), ..., (A> - A<, A<), where
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)_> = max()_,_, )_) and _< = min()_,, _,)], occurs once and only once. Arguing by analogy with

the collective model picture, it is relatively easy to see that a discrete orientation angle 0n can be

associated with the ()_ + _ - 2n, n) irrep in the product ()_, #_ = 0) ® (A,, #_ = 0) where n is

an integer given by n = 0 (0 = 0 ° --+11), 1,..., min(,k,_, )_) (0 = 90 ° --+J_).

I IfaI(v'Y')}d(V',¢ ')

relative orientation /

Q =;¥,e,

pa_", i_")

Figure 1: Schematic representation for the expansion of a product of two quadrupole mass dis-

tributions in terms of other quadrupole mass distributions. The upper product is for triaxial

quantum rotors, which are characterized by the (fl, 7) shape variables of the collective model

and have a [TsASO(3)] symmetry; the lower coupling is for (A, #) irreps of SU(3). The overlap

function fa is the inner product ((fl", ?")[(fl, 7); (fl', 7')}fl where f_ = (_p, 0, ¢) specifies the Euler

angles giving the relative orientation of the principal axes of the unprimed (J(fl, ?)}) and primed

(1(/3',-/)/) systems. In the SU(3) case, the decomposition is a sum of SU(3) irreps with integer

multiplicity p which can be determined by the Littlewood rules for coupling Young diagrams. The

multiplicity pn, like fn, can be related to the number of distinguishable orientations of the two

initial distributions that yield the final one.

Finding an expression for 0,_ in terms of (_,#,_ = 0), ()_,#, = 0); and the final ()_,#)

illustrates a prescription that can also be applied to the case of general shapes when the # values

of the factors (#_ ¢ 0; a = 7r, u) are non-zero. First of all note that the various (,_, #) values that

enter determine the ei_genvalues of the corresponding quadrupole matrix, see eq.(7). It follows from

this that an analytic form for 0n can be derived by requiring that the rootk of the characteristic
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equations for Q,_ + RQ_,R -1 and Q coincide: IQ_ + RQ_,R-11 ¢:_ IQI. The solution to the set of

equations that this condition generates, yields the following general result for 8, as a function of

A,_ and A_,:
8, = sin-l([n(X_ + A, - n)I(A_A_,)]'I2), (10)

where the integer index n = 0, 1, ..., min(A,, A_) = A<. Although this expression is symmetric

in A, and A_ and goes respectively to 0 ° and 90 ° for n = 0 and n = A< as required, it has no other

obvious symmetry properties, and in particular, note that the allowed _ values are not distributed

symmetrically about the 0 = 45 ° plane, a result that is related to the occurrence of the square

root in the argument of the inverse sine function.

When one of the two factor distributions is triaxial (V_ _ 0 and 7_ = 0 or % = 0 and 7_ _ 0)

the situation is only slightly more complicated. In this case two angles rather than one are required

to specify the relative orientation of the two distributions: _ as introduced above to specify the

relative orientation of the major axes, and another angle _ that specifies the rotation of the minor

axes of the triaxial shape relative to an axis that is perpendicular to the plane defined by the

principal axes of the two factor distributions. Only values of 0 and _0 that lie between 0° and

90 ° lead to distinguishable configurations. In the SU(3) case this construction corresponds to the

(A_,#_) ® (A_,#_) _ _ ® (A,#) coupling, where #_ _ 0 and #_ = 0 or #_ = 0 and #_ _ 0,

respectively. While this SU(3) coupling is more complicated than the previous case, it remains

simply reducible, that is, each of the allowed (A, #) irreps in the product occurs just one time.

However, because one of the two # values is now nonzero, the pattern of allowed final (X, #) values

is considerably richer than in the previous case: (A, #) = (A_ + A_, #>), (A_ + A_ - 2, #> + 1), ...,

(A,r+Av-I,#>-I), (A:+Au-3,#>),..., (A,r+A.-2,#>-2), (A,_+A.-4,#>-I),..., where #>

= max(#_, #_). The general result, (A_,/.t_) ® (A_, #_) ---* E,_., • (A, + A_ - 2n - m, #> + n - m),

requires one additional non-negative integer (m) that specifies the number of completed (three

box) columns in the final Young diagram.

In general one must deal with two triaxial shapes (% _ 0 and 7_ _ 0) and the corresponding

product distribution: (_, %) x (fl_, 7_) _ (/3, 7). The geometrical interpretation is considerably

more complicated in this case because three Euler angles (_, 8, ¢) are required to specify the relative

orientation of the factor distributions. For (_, 0, ¢) = (0 °, 0 °, 0 °) the major and minor axes of the

sub-distributions coincide (maximum alignment) whereas if (_,_, ¢) = (00,90 °, 0°) the semi-axes

(y) remain aligned but the major (z) and minor (x) axes of the two systems are perpendicular to

one another, etc. In the corresponding SU(3) case the allowed product configurations are again

determined by the Littlewood Rules but now for the coupling of two two-rowed Young diagrams.

There is a need for three (_,/_,¢) _ (m,n,p) rather than one [prolate shapes: (8) _ (n)] or

two [one prolate and one triaxial shape: (8,¢) _ (re, n)] quantum labels in this general case:

(A_,#,) ® (A_,#,) ---* (A_ + A, + m,#,_ + p_ + n)p, where p is a non-negative integer index

(p = 1,2, ...,pm,_) labeling distinct occurrences of the same (A,#) in the (A_,tt_) ® (A_,#,)

product. Working backwards, it should also be clear that the (/3, _,) _ (A, #) correspondence

can be used to give a Lgeometrical interpretation to the abstract group theoretical concept of
I

the outer multiplicity - at least for the SU(3) case - which has up until now escaped a simple

physical interpretation. Specifically, the multiplicity p, together with m and n, can be considered

to be a measure of the relative orientation oI the two factor distributions. In this way the first

(p = 1) occurrence of (A, #) corresponds to a parent configuration oriented with one set of angles

(_, 0_, ¢_) while the second (p = 2) solution corresponds to another set (_2, 02, ¢2), and so on.
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If Pma= = 1, the corresponding (A, #) distribution can only be realized in one way. With this

interpretation in hand the evaluation of reduced matrix elements and especially SU(3) coupling

and recoupling coefficients should be revisited, looking for asymptotic solutions that exploit the

geometrical concept of overlapping ellipsoidal mass distributions.

It is instructive to view the relationship between the rotor and SU(3) theories at a more

fundamental level. This can be achieved by comparing the algebras of their symmetry groups.

The symmetry group of the quantum rotor is the semi-direct product TsA SO(3) where T5 is

generated by the five independent components of the (spherical) collective quadrupole operator

(Q_) and SO(3) is generated by the angular momentum operators (L,). The generators of SU(3),

on the other hand, are the Q_ [see the discussion following eq.(1)] and the L, operators. If Q=

denotes a generic quadrupole operator, the commutation relations of the L_ and the Q_ are

[L,,L.] = -v/2< l#,lvll,p+u>L,+.,

[LI,,Q_ ] = -v_< lp, 2vl2, p+_>Q_+,,

_,Q, = c<2#,2vil,#+v>L_+.,

(11)

where c = 0 for TsA SO(3), (QX = QC), c = +3v/_ for SU(3) (Q= = Qa), and c = -3vfi-0

for a heretofore not mentioned group SI(3,R) [Q_ = Qb .., (x_pj + pjx,)] which is associated with

shear degrees of freedom. In eq.(I1) the < -,-I- > symbol denotes an ordinary SO(3) Clebsch-

Gordan coefficient. [All three of these groups, TsASO(3), SU(3) , and Sl(3, R), are subgroups

of the symplectic group Sp(3,R).] From these commutation relations it is easy to see how the

SU(3) algebra reduces to that of TsASO(3): if Qa is divided by the square root of the second

order invariant of SU(3) (Qa ,_ Qa/x/-_2 where by definition the invariant (72 = (Qa.Qa + 352)/4

commutes with the Qa and Lu operators), the first and second commutators in eq.(11) remain

unchanged, while the Lu+_ on the right-hand-side of the third goes over into L_,+_,/C2 and for

low L values in large SU(3) irreps, L_,+,,/C2 --* O. This renormalization of the Qa operator is a

group contraction process and the arguments presented show the SU(3) algebra reduces to the

algebra of TsASO(3) in the contraction limit, and consequently, the SU(3) theory reduces to that

of the quantum rotor. Differences between observables of the two theories occur because SU(3)

is a compact group with finite dimensional irreps while T5ASO(3) is non-compact with infinite

dimensional representations. Band termination and a fall-off in B(E2) strengths are examples.

4 Conclusion

A geometrical interpretation for the outer multiplicity p that occurs in a reduction of the product

of two SU(3) representations, ()_, #_) x (_, #_) -* _p(A, It)p, has been introduced. This struc-

ture arises, for example, in the coupling of proton (Tr) and neutron (v) representations that occur

in both boson and fermion descriptions of heavy deformed (rare earth and actinide) nuclei. At-

tributing a geometry to the proton-neutron coupling, raises the possibility of introducing a simple

phenomenological interaction that provides a physically meaningful way for distinguishing among

different (/k, It) and multiple occurrences of the same (,_, It) values that arise, for example, when

coupling deformed proton and neutron configurations in heavy deformed nuclei.
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Abstract

Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-

pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon

fields results for large coupling constants into an effective Hamiltonian which separates into

a one describing a scalar field and another one for a field with spin two. The ground state is

dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color

zero and spin two pairs. As color group we used SU(2).

1 Introduction

In this contribution we report on a possible non- perturbative treatment of Quantum- Chromo-

Dynamics (QCD). As the color group we use SU(2). We further restrict to gluons only because

due to their larger color charge, compared to quarks and anti- quarks, they will dominate at low

energy , e.g., in the vacuum state. As has been indicated by several previous contributions [1, 2]

the coupling to coloq and spin zero pairs are dominating the low energy structure of QCD, at

least in perturbative calculations. This leads to assume that pair correlations play an important

role in the lowest energy state (the vacuum) and that boson mapping techniques may help to

make more transparent the physical structure. Combined with many body techniques of nuclear

physics this can represent a possibility to solve non-perturbatively QCD. The method presented

in this contribution can, e.g., be applied to the Hamiltonian as proposed in ref. [3]. There the

complete Hilbert space in a finite universe (radius of several fm) is mapped to a model space of

constants modes only. The non- constant modes are taken perturbatively into account, leading to

renormalized interaction constants.

In section 2 we discuss the boson mapping after having introduced the Hamiltonian of constant

modes. Furthermore, we give the result of the mapped' effective Hamiltonian in the limit of

large coupling constant g. Finally in section 3 conclusions are given and future applications are

mentioned.

Zwork supported by Departamento General de Asuntos del Personal Acad_mico (DGAPA-UNAM)
_present address: Institut t'dr Theoretische Kernphysik, Universit_it Bonn, Nussallee 14-16, 53115 Bonn,

Germany
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2 A Boson Mapping of Pair Fields

Confinement properties of QCD are considered to be related to the infrared limit (large wave

lengths) of the QCD. Therefore, in order to get a first idea one may just restrict to constant

modes of gluons, i.e. the vector fields Aio are approximated by constant fields denoted by c/a.

Here i is the space and a the color index, both ranging from 1 to 3 (in SU(2)- color the gluons are

in the color T=I representation). With this the Hamiltonian of gluonic QCD aquires the form[4]

1 o2= ac,oac,o+ 9:[(E c,oc,o) - E(Z: (1)
• la ij a b

where g is the coupling constant. If the non constant modes are included perturbatively higher

terms will appear but the general pair structure, pairwise coupling to color zero (contraction over

the indices a or b), remains. In equ. (1), having contracted over the color index, only spin zero

and two pairs appear and therefore suggests to apply a boson mapping to the paired expressions.

One often redefines Ci_ _ 9-_Cia which as a result produces an overall factor 9 _ in front of the

Hamiltonian.

Normally boson mappings are related to boson creation and annihilation operators. For an

excellent review see ref.[5]. One distinguishes between two types of boson mappings: (i) the Dyson

(D) and the (ii) Holstein- Primakoff mapping (HP). The first one results into a non- hermitian

Hamiltonian and the latter into a hermitian one. Both are equivalent and the problem is well

defined but of course the HP gives a more pleasent hermitian structure of the Hamiltonian. Instead

of using boson creatiOn and annihilation operators we will use coordinate_[ Ci,, and derivatives

P_ - _ (for convnience we will use cartesian components, i.e. pia = pio). The reason for this
-- 0Cia

is the more simpler and transparent structure of the Hamiltonian which would be very complicate

in terms of the creation and annihilation operators. First we will give the Dyson mapping which is

completely analog to the one using creation and annihilation operators. Then we go from there to

the HP mapping which will be very different to the one in terms of creation and annihilation

operators!

The boson- pair mapping is given by

tl

1 __,(Pk'iq_'kPkj + Pkjqt-_'Pk'i) -- Pii
(__,,, PiaPj_)D - 2 k,k,

3 3 5

a k

(2)

with

[Pl.i, q,_,,,] = 61n6.i_ + 6i_6.i,_ (3)

In equation (2) the index D refers to "Dyson mapping". As can be seen the pair of derivatives

does not preserve their hermitian structure under the D- mapping. Also the operator in the last

line, which is introduced in order to obtain a closed algebra and is anti- hermitian in the original
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space, does also not preserve the anti- hermitian property in the mapped space. The q;./and Pii

are not yet normalized as can be seen from equ. (3).

That the hermitian properties are not preserved has to do with an additional assumption,

namely that the volume element is of the simple form dq (=l-l;<j qij). However, if one assumes

a more complicate volume element dqK2(q) (in the argument of K the notation q refers to the

dependence on all qij) we can choose then K(q) such that all hermitian properties are conserved.

In order to recover the simple volume element we have to redefine all operators of equ. (2) (denoted

now collectively by O) and the wave functions q by

(O)ttp = K(q)(O)DK-l(q)

(qJ)nP = K(q)(¢)D (4)

where the index HP inow refers to the Holstein- Primakoff mapping.

The difference to the HP mapping using creation and annihilation operators becomes obvious

when one remembers that in the latter the If is an operator depending on the Casimir operators

of the unitary group U(3)[5, 6] (the generators are given in the last line of equ. (2) when C_ is

substituted by a creation and Pi, by an annihilation operator) while in our proposal the K is a

function in the coordinates qij only. The equivalent in the other case would be a function in pairs

of creation operators. Besides this essential difference the HP mapping results always into a non-

polynomial function in the operators, except this does not represent a difficulty when we deal with

coordinates. Even if the function K is complicate we always can integrate numerically!

In order to determine the function K we require that the anti- hermitian property of (_, Ci, P/,
3

+ _6ij) is preserved, i.e.

(K(q)(y_ C,_Pj,, + _6ij)DK-l(q)) t
t1

which results into the condition

= -If(q)(y" C_Pj_ + _6ij)DK-'(q)
tl

(5)

Y'_(qlkpkiK(q)) = 3
ik -_K(q)

Y_(qikpkiZ(q)) = 0 ,for i C j
k

(6)

This implies that K(q) is a spin scalar and K -4 a sum of monomials of order 3 (note that
_ik(qikPkiqnn) = 2q,,).

Because of lack of space we cannot go into details here but merely give a rough description

of the results. The detailed analysis is given elsewhere[7]. The K(q) is a function in the pair

coordinates qlj. Instead of using decoupled indices we can introduce coordinates of a given spin,

i.e. q_ with l = 0,2. The exact dependence is obtained by using a linear combination of all

possible monomials of order three with total spin zero. After that we made a change of variables

by transforming q_] to an intrinsic system very similar to what is done in the collective model

of a nucleus where one transforms from the deformation quadrupole coordinate (which has also

angular momentum 2) to a system where the quadrupole operator is diagonal[8]. Also here appear
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some kind of "deformation" coordinates _ and 7. The physical interpretation is that they describe

the deformation (distribution) of the wave function in coordinate space. Also we have transformed

the coordinate q[0°l to x/_q[o°l = q + x/2_cos(7 + _). With this we obtain the final expression of the

exact mapping of the Hamiltonian. However, this expression appears complicate at first sight. It

gets more transparent when one developes around the minimum values of the potential. One finds
that in lowest order the Hamiltonian can be separated in a sum of a pure q and q_l dependent

part:

/_/q A 2 g3 + + q- d-qq_qq _qq 2

/:/z - 2x/Sg I - d-_ × dqt _lj° + _214c°s2(7 + -3) + I
(7)

where the square bracket with the cross (x) inbetween means standart angular momentum couling.

This result is only a good approximation when the coupling constant is large! Nevertheless we

can construct a basis of functions with which we can also diagonalize the general expression. The

interesting part of the above result is that we have a Hamiltonian in q which has a minimum in

its potential for values of q # 0! This has as a consequence that the ground state will contain a

q-condensate. The Hamiltonian in/_ is just an anharmonic oscillator, i.e., the ground state will

contain small admixtures in the spin two pair. Within a rough approximation, and taking into

account the relation of q with q[0°l and _, 7, we can state that within the model of constant modes

in QCD the vacuum state is dominated by a spin and color zero condensate.

3 Conclusions

We have applied a boson mapping technique to the model of constant modes of QCD. Instead of

using creation and annihilation operators we used coordinates and derivatives. The non- hermitian

Dyson mapping works very similar to the standart boson mapping[5, 6]. However, going from there

to the Holstein- Primakoff mapping is quite different! The mapped Hamiltonian of the model of

constant modes separates for large coupling constant into a part depending on q (essential the

spin and color zero gluon pair) and the other depending on the color zero and spin two gluon

pair. The spin zero part shows a minimum in the potential at values different from zero and

thus produces a spin and color zero condensate for the vacuum state. The spin two part is an

anharmonic oscillator and indicates slight admixtures of those bosons to the vacuum state. For

large coupling constant the Hamiltonian separates into a sum of a pure (q,p) and a pure (q_l,p_l)

depending part.
The model used is of course very simple. Nevertheless, using the more realistic Hamiltonian

of ref.[3] the principal qualitative results will not change. This contribution has to be seen as a

further step towards the non- perturbative description of QCD. The detailed analysis of the results

presented here are given in ref.[7].
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Abstract

A four-parameter potential is analyzed, which contains the three dimensional harmonic

oscillator as a special case. This potential is exactly solvable and retains several characteris-

tics of the harnmnic oscillator, and also of the Coulomb problem. The possibility of similar

generalizations of other potentials is also pointed out.

1 Introduction

Searching for exact solutions of the SchrSdinger equation has been an interesting challenge since

the early period of quantum mechanics. This classic area has gained new molnentum from the

recent introduction of SUl)ersymmetric quant,zm mechanics (SIISYQM) [1], which relates pairs of

essentially isospectral potentiMs to each other by nmans of (super)algebraic manipulations. (See,

for example [2] for a recent review on SUSYQM, and [3] and references for its relation to other

methods of analyzing isospectral potentials.) This new approach hell)ed to view old problems

from a new angle, and allowed unified, systematic treatment of previously unrelated results. New

solutions of the Schr_Sdinger equation have been described and classified, together with already

known ones. The most well known potentials have I)een shown to have the property of shape

invariance [4], a concept introduced in SIISYQM. Much less is known, howew_r, about the more

general Natanzon potentials [5], which are, in principle, solvable, nevertheless their practical use

is hindered 1)y their complicated mathematical structure. The techniques inspired by SI_SYQM

allow a straightforward gem'ralization of the simplest shape invariant 1)otentials, while avoiding

most of the mathematical COml)li('ations characterizing the general Natanzon l)otentials.

Here I discuss a potential which can 1)e considered the simultaneous generalizal ion of the three-

dimensional harmonic oscillator and (!oulomb potentials: these two shape invariant potentials

can 1)e obtained from it by tuning one of its four parameters. Its ('.ouloml) limit has ah'eady

I)een descril)ed [6], and here I discuss its connection with the harmonic oscillator. In contrast

with other anharmonic oscillators, this 1)ot(mtial converges to a finite value in the r -+ oc, limit.

It also inherited several charact(,ristics from its two "parent potentials", which may enabl(' its

applications to physical problems, where deviations from these two fundamental I)(_tentials are

relevant.

In Secti(m 2. l give a brief account of a simple procedure which can I)e used to deriw' exactly

solvable potentials. Section 3. coutains the main results of this contril)lltion, while in Section 4.

a summary is given and directions towards futher investigations are pointed ()11_.
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2 Transformations of the SchrSdinger Equation

Here I describe an old method of solving the SchrSdinger equation to demonstrate how a wide

range of solvable potentials can be derived in a relatively straightforward way. Originally this

procedure was used [7] to derive only some well-known potentials, but it can be shown that the

general Natanzon potentials can also be derived from it. This procedure was also connected to

the formalism of SUSYQM [8].

The solutim'ls of the one-dimensional SchrSdinger equation (with h = 2m = 1)

d2q/

-- + (E - V(x))qJ(x) = 0 (1)
d:1,2

are generally written as

*(:,:) = f(x)F(g(x)),

where F(g) is a special f,mction which satisfies a second-order ditferential equation

(2)

(I2F d F

dv_ +Q('J),57 + H.(,_)F(q) 0. (a)

Here Q(9) and R(g) are well k,,own for any sl,ecified sl)ecial funcl.io,, F(g), while f(x) and g(x)

are some fimctions to be determined. Substituting (2) in (1) and compa,'i,_g the results with (3)

we arrive at tile following expression [8] after some straightforward algebra:

E - V(,) - 2.0'(,) 4 \g'(:_) + (:/(*))2 H(_(,)) ', d:_ 4

Eq. (4) relates the only undetermined function g(x) to the difference of the energy E and tile

potential V(x). Observing that the energy term E on the left handside of Eq. (4) represents

a constant, tile authors of Ref. [7] equated certain terms of the right handside with a constant

to account for it. This results simple ditferential equations for !/(:r). The authors in Ref. [7]

applied this method to tile hyl)ergeometric and ('onll,u'nt hypergeometric fun,'tio_l and obtained

the solutions of some simple potentials.

Considering the particular example of the confluent hypergeometric function F(-n,/3;g(x))

and introducing tile simple g(x) = ph(x) substitutio,_ we get

E,,-V(.)
2

_ h"'(x) a (h"(,,.))
2h,(.) 4 \ h,(,,,)}

4 h(x------_p ,z + -(h'(x) -_- + (h(x)) 2 2
(5)

Identifying one of the last three terms on the right-hand side of Eq. (5) with a constant, the three

shape-invariant potentials of the confluent hypergeometric case, the three dimensional harmonic

oscillator, the Coulomb problem and the Morse potential, are recovered. These potentials appear

in the radial SchrSdinger equation, therefore in what follows I shall replace x with r.
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3 Generalization of the Harmonic Oscillator Potential

A straightforward way of generalizing tile simplest possible solvable potentials to more general

ones is identifying combinations of several terms oll the right-hand side of (5) with a constant.

This procedure recovers the Natanzon confluent potentials [5], the solutions of which contain

confluent hypergeonmtric functions. The most general six-parameter version of these potentials

can be obtained by considering the combination of all three terms on the right-hand side of (5),

which explicitly contain parameters, however, the technical difficulties increase considerably in

this case. The problem remains relatively easy to handle if we take the combination of two such

terms only. Considering the differential equation

(h'(x)) 2 1 + = C (6)

corresponds to "mixing" the harmonic oscillator and the Coulomb potentials: 0 _ 0 recovers the

latter one [6], while 0 _ oo combined with C = C'0 yields the former one. (See Eq. (5)). The

Coulomb limit has been discussed in detail in Ref. [6], and here we h)cus on the harmonic oscillator

limit. The potential described here and in Ref. [6] is essentially the same for any finito value of O,

nevertheless, it is more convenient to use different notations when we discuss its com_ection to the

two limiting case. In order to make the h)rmalism of the two limits compatible with each other,

here we follow the notations of Ref. [6] as closely as possible.

As described in [6], the differential equation (6) can be solved explicitly for the inverse r(h)

function only:

This function, of course, can be used to determine h(r) as well to any desired accuracy.

(7)

h(r)

2©

5

I@

5

0

T...... _ T • ]

/i_ 1/

,//

-- //S: ?./"

I"

FIG. 1. The h(r) function defined by Eq. (7), displayed for 0 = 0.1, 1, 10, 100, oo

and C = 1. (Curves lying higher correspond to higher value of 0.)
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We have plotted h(r) in Fig. 1. for several values of the paraineter 0. As discussed in Ref. [6],

h(r) can be approximated by C,'2/4 ,lear the origin, and asymptotically follows h(,') --_ (CO)'/2r

in tile r _ :x_ limit, which correspond to tile h(r) functions characterizing the, harmonic oscillator

and Coulonlb problems, resl)ectively. (See e.g. Ref. [8].) The range of the transition between

these two regions is governed by the 0 parameter: it moves towards larger values of r as 0 increases

(see Fig. 1.), and disappears completely in the 0 _ oo (harmonic oscillator) limit.

Substituting h(v) into (5) and removing the u-dependence fiom the potential terms by intro-

ducing the constant

D= T+? n+ (8)

(which amounts to a specific choice of p - p,_,) we arrive at the following potential

and energy eigenvalues

)
These formulas differ f,'ona the corresponding ones in Ref. [6] only in a shift of the energy scale

and in the usage of slightly ditferent parameters. The changes reflect the difference between the

(:oulomb and harmonic oscillator linfits of the general problem containing both potentials as a

special case. These diiferences, however, do not essentially influence the form of the wavefunctions:

(,l/4p,, _ { F(7_ + fl)

)r(/:3) + 2, )0-1 +

×(1 + h(,')lO)'14(h(r))_-YZe×p (-P_-'_ h(r)) F(-n, t3; p,_h(r)). (11)

(Here and in Eq. (10) 7_ denotes the number of nodes in the radial wavefunction.)

can ex )ect from 6 , these formulas reduce to the corresponding forAs we - t ( ) .......... __ ones the harmonic
oscillator in the 0 _ oc limit, if we introduce the notation w = CD 1/2 and l= /J- 3/2. In

t)articular, the two last terms in (9) vanish and tile first and second terms transform into the

harmonic oscillator and centrifugal terms, respectively. We have displayed V(r) and the position of

some of the lowest lying energy eigenvalues in Fig. 2. for some values of parameter 0. As it can be

seen there, the oscilla.tor character of the potential strenghtens with increasing 0. V(r) is oscillator-

like near the origin, and approximates the (3oulomb potential (with Ze 2 = Ca/2D0a/2} for large r.

The domain of oscillator-like behavior expands with increasing 0: this is related to the structure

of h(r) discussed previously. (See also Fig. 1.) Also, the energy spectrum is oscillator-like~_for

small values of n, and Coulomb-like for.large n: E,, converges to E,,--.o_ = V(r --+ oo) = CDO.

See Ref. [6] for a more det_dled descriptitm of V(r) in terms of powers of r.
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FIG. 2. Potential V(r) in Eq. (9) displayed together with tile lowest-lying energy

levels for 0 = 1, 10, 100 and _. Tile other parameters are (_ = 1, D = 5 and/_ = 1.5

in all cases. V(r_ ec) = CDO in each case.

Similarly to the (:oulomb limit discussed in [6], this potential can be rewritten into the sum

of a central, centrifugal and/-dependent part:

v(,.) = Vo(,.)+ v_(,.)+
l(l+ 1)

1, 2

(12)
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where

and

-- h(,.) :30 50 (1a)
v0(r) = CD 1+ h(,.)/O 160(1+ h(,')/O)2 + 160(1 + h(,')/O)a'

Vl(,')- l(l + 1) ( C, "'2 ) l(l + 1)v(r ) (14),.2 4h(,.)(1+ h(,.)/0) - l - ;_ .

The definition of l is, however, different in tile two limits: I =/3/2 - 1 for tile C'oulomb [6], and

I =/3 - 3/2 for the oscillator limit. (Fig. 2. displays potentials with l = 0 only.) Also in contrast

with tile Coulomb limit, v(r) in Eq. (14) does not vanish for large values of ,', rather it goes to

tile value -3/4. This, again, is the consequence of tile asymptotical Coulomb-like character of

v(,.).
It is remarkable, that E,, depends on the combination 2n +/3 only (i.e. on 2n + l + 3/2

in the oscillator limit), therefore the generalized harmonic oscillator potential has a degeneracy

pattern similar to that of tile harmonic oscillator. In other words, tile terms representing the

anharmonicity do not relnove the degeneracy of tile energy levels.

This generalization of the harmonic oscillator potential could be applied to physical problems,

where an attractive (',oulomb potential is distorted by an oscillator-like potential component for

small values of r. This is the case, for exainple, for a finite, homogenous, spherical charge distri-

bution, but ill that case the resulting potential can strictly be separated into two domains, where

it _:ra.ctly follows ,.2 like aill(I r-l-like behawmr. Tile potential discussed here Call t)e considered a

deviation from this siml)le model problem. An example for a similar situation is discussed in Ref.

[9] in connection with a I)otelttial ext)erienced by electrons ill certain crystal etlvironments.

Finally, there are some other potentials occupying a similar intermediate position between the

simple shape-invariaut l)otentials and the general Natanzon potentials. Some of these, like the

Woods-Saxon [10] and (linocchio [11] potentials have been found earlier, while some others, the

"Pill" [12] potential an,I those ill Refs. [13,14,15] have been identified only recently, mainly in

SIISYQM related studies. See Ref'. [6] for more details.

4 Summary

Here 1 have analyzed a four parameter potential, which contains both the harmonic oscillator and

the (',ouloml) potential as special cases. I have interpreted this potential as the generalization of

tile harmonic oscillator potential, and have established that it is a special admixture of a long-

range attractive (_oulomb term, and an oscillator-like term near the origin. This is also reflected

ill the structure of tile energy sl)ectrum.

Exact analytical solution of tile radial Schr6dinger equation can be obtained for any partial

wave, however, an angular momentum -dependent term appears for 1 _ 0. A renlarkable finding

is that tile anhartnonicity appearing in tile general form of tile potential does not remove the

degeneracy of the energy levels.

Similar generalizations of the harmouic oscillator and other well-known potentials are also

possible by considering further simple differential equations similar to that in Eq. (6). These

subclasses of the Natanzon potentials seem to be suitable for applications, because they have
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more flexible shap(, than the simplest solvable potentials, but may still remain relatively simple

to handle mathematically.
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Abstract

We discuss the selnimicroscopic algebraic cluster m_)(lel intro(luced recently, in which the

internal structure of the nuclear clusters is deseril)ed l)y the harmonic oscillator shell model,

while their relative motion is accounted for by the Vibron model. The algebraic formulation

of the model makes extensive use of techniques associated with harmonic oscillators and

their symmetry group, SU(3). The nlodel is al)pliod l_ some cluster systems and is found to

reproduce important characteristics of nuclei in the ,sd shell regi(,n. An approximate .S'U(3)

dynamical symmetry is also found to hold for the 12C + 12(, system.

1 Introduction

The harmonic oscillator and the SU(3) group haw, proven to be illvalnabl(, t()ols of nuclear physics.

(See, e.g. Ref. [1].) These concepts cat_ be used to describe complex physical systems in a relatively

straightforward way by utilizing the advantages of the group theoretical description. The harmonic

oscillator picture has been found to be a suitable approach to various nuclear excitations, which

sometimes could also be related to each other in terms of it.

Clustering can be considered a special collective excitation of certaiJl nuclei. The structure of

these (mainly light) nuclei can be interpreted in terms of a picture based on the relative motion of

two (or more) nuclear clusters. In order to describe these nuclear systems cluster models have to

take into account the relative motion, as well as the internal structure of the clusters. These models

generally differ in their basic model assumptions, mathematical formulation and, consequently,

also in the range ofltheir applicability. Microscopic cluster models apply effective two-nucleon

forces and rigorously take into account the effect of the ]'allli principle I)y using antisymmetrized

wavefunctions. However, fully microscopic calculations may turn out t() be prohibitively difficult

for a large number of realistic cluster systems. Phenomel_ologic cluster models, which are based

on less strict modelLassumptions may have a wider range of applicability, and are generally used

to describe a large amount of experimental data in a systematic way. Semimicroscopic cluster

models utilize the advantageous sides of microscopic and phenomenologic models by combining

the microscopic (antisymmetrized) basis with phenomenologic cluster-cluster interactions. This

allows calculations in a wider range of nuclei without forgetting about the fermionic nature of the

nucleons, i.e. without abandoning the Pauli principle.

From the technical l)oint of view, most of the cluster models al)ply the geometric description,

i.e. they use(Hllcleon nucleon or cluster cluster) potentials and work in the geometric space, while

121



some others prefer the algebraic description in terms of creation and annihilation operators and

the second quantized fomlalism. Harmonic oscillators appear in a natural way in both approaches

and offer a convenient way of interrelating them.

Recently we have intoduced a semimicroscopic algebraic cluster model [2,3] which makes ex-

tensive use of the harmonic oscillator picture in describing the relative motion as well as the

internal structure of the clusters. In the first applications of the model we tested its ability of

reproducing certain features of realistic cluster systems and tried to estimate the validity of the

harmonic oscillator picture it is based on.

2 The Semimicroscopic Algebraic Cluster Model

Our earlier attempts of describing various nuclear cluster systems in terms of a pheolmmenologic

cluster model, tile Vibron model [4] and its extensions have revealed [5,6] that these models can

not distinguish between Pauli-forl)idden and allowed states: complete forbidden shells can be

excluded I)y a simple rllle, the Wilderniuth condition, but no such distinction can be made within

allowed shells. These studies, however, haw_ also pointed out the importance of the 517(3) group

as a possible of tool combining the relative motion and the internal structure of the clusters. This

group appears in a special limit of the Vibron model accounting for the relative motion sector,
and it can also be used to describe the internal excitations of the individual clusters. These

preliminaries have pave(1 the way to the introduction of the semimicroscopic algebraic cluster

model [2,3].
hi this model the internal strllcture of a cluster is described in ternis of the .q'l/(3) (harmonic

oscillator) shell niodel [7], therefore its wavefunction is characterized by the 1i_J7"(4) @ I;c(3)

symmetry, where (? refers to cluster, and /fs'r(4) is Wigner's spin-isospin group [8]. The relative

motion of the clusters is accounted for by the vibron model with If/d4) grou 1) structure [4]. The

rel)resentation lal)els of the gt'(,ll) chain

/;_T(4) {O//c, (3) _ U_/(4)® Uc2(3) @_fIR(4)

provide us with the quantum numliers for the basis states of a two-cluster system. From this set we

have to skip those states, which are Pauli forlJi(hlen, or which correspond to spurious excitations of

the center of mass. A S_ml)le recipe for eliminating these states is applying a matching requirement

between the quantum numbers of tile shell model basis of the whole nucleus and its cluster model

basis [2,3]. This recipe is based on the connection between the harmonic oscillator shell model and

harmonic oscillator cluster Inodel [10]. This procedure corresponds to a special truncation of the

extensive shell model basis in the sense, that only those states survive, which are Pauli-allowed,

and are relevant to the cluster structure under study.

When the internal structure of each cluster is described by a single uST(4) @ Uc(3) represen-

tation, then the physical operators of the system can be obtained in terms of the generators of the

/f/_r(4) C_ Uc,(3)c'o Usr(4)¢,,)lrc:_(3) ¢'4/ird4) group. In such a case the description is algebraically
closed, i.e. the matrix elelnellts can be deduced by means of group theoretical techniques. In the
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limiting case when tile Hamiltonian is given by the invariant operators of (1), then tile eigenvalue

problem has an analytical solution, and a U(3) dynamical symmetry is said to hold.

Tile problem carl be simplified further if one or both of tile clusters are even even nuclei

(i.e. they consist of even number of 1)rotons and neutrous). In this case the clllsters are said to

be U_T(4) scalars, furthermore, if the clusters are closed shell nuclei, then they are also Uc(3)

scalars. In this case these groups and the quantum numbers associated with them do not appear

explicitly ill the formulas. In Ref. [3] the formalism is presented in detail tot the l;c(3) 0 Un(4)

and l&,, (3) ® Uc_(3) <_ UR(4) models, as well as for" the restricted u_T(4) ¢'3 U6.(3) (;_ UR(4) model.

In this latter case tile restriction implies that only spin and isospin free interactions and a single

u_'T(4) representation are considered. If both of the clusters are USr(4) and Uc(3) scalars, the

model reduces to that of the simple vibron model with a basis truncation corresponding to the
Wildermuth condition [5].

Here we give a brief a ccomit of the tTc(a) uR(4) model, which is able to describe two-

cluster systems in which one of the clusters is a closed-shell nucleus (e.g. 4He, 160, or 4°(7a),

while the other one is an even-ewm nucleus. In this simple case tile basis states can ])e labeled

without explicit reference to tile usr(4) group, (unless some higher excitations of the non-closed-

shell nucleus are also considered), and the chlster model basis states are characterized by the
representation labels of the group chain:

Uc(3) _*017R(4) D Uc,(3)(.o/7n(3) D 5'/fc(3)(::),S'/,rR(3) D ,q'/.r(3) D O(3) D 0(2)

[['z{:,nc','zc],[N, 0,0,0], [n_,0,0,], (A,,,#(,), (,,_,0) , (A,#),KL,L , M).

(2)

The irreducible representations (A, tt) of ,qU(3) a ro obtained by. taking the, outer product of

(At:, t_c) _,.) (7_,_,0). N stands for tile maximal number of tile excitation quanta assigned to the

relative motion, arr_t it determines the size of the model space. The angular momentum content

of a (A,#) representation is given by tile usual ,'elations of tile Elliott model [7]. For technical rea-

sons, however, it is more convenient to use the orthonormal SU(3) basis of l)raayer alld Akiyama

[11], rather than tile Elliott basis, which is not orthogonal. The parity of the basis states is de-

termined by tile parity assigned to the relatiw, motion" 1% = (-l)'_-. (Tl'_e internal states of the

non--U(3) scalar cluster carry positive parity [}7 (-1 c c c= )"_ +"2 +"_, unless major shell excitations
of tile clusters are also considered.)

Tile coupled wavefunction can be expressed in terms of NU(t) D 0(3) Wigner coefficients:

[(At, #c ), N(n_, 0); (A,/_)k LM)

= _ _ ((Ac',I,c)xc.LcMc,;:V(,,,_,O)LRMR[(A,I_)xLM}
xcLcMc LRMR

×1( Ac, #c)Xc LcMc}lN (,,,, O)LRMR). (3)

The physical operators can be constructed from the generators of the groups present ill group

chain (2). Ifi particular, the most general form of the Hamiltonian can be obtained in terms of

a series expansion of these generators. In tile simplest case, however, when we use the SU(3)

dynamical symmetry approximation, and consider only one Uc(3) representation to describe the

structure of the non-closed shell even-even cluster, the energy eigenvalues can be obtained in a
closed form"

E = _ + 7n,_ + _5,_2 + qC2(A,#) +/tL(L + 1). (4)

123



In this approximation the energy levels can easily be assigned to rotational bands labeled by the

quantum numbers n_(A, tt)X. (See Eqs. (3) an([ (4).) Bands following an approximate rotational

pattern usually appear in the energy spectrum of nuclear cluster systems.

The electromagnetic transition operators are also constructed fi'om the group generators, which

automatically implies selection rules in the dynamical symmetry approximation. The electric

quadrupole transition operator, for example, is written as the sum of the rank-2 generators of the

Uc(3) and the UR(3) groups:
T(E.2) = qnQ(_) + qcQ_). (5)

The matrix elements of the operators with the basis states (3) are calculated using tensor algebraic

techniques [12].
The formulation of the Uc_(3) QOU(;2(3) (_ I/n(4) and uST(4) ® Uc(3) ® U/_(4) models can

be done via a straightforward generalization of the results presented here. These models can

also be used away from the SU(3) dynamical symmetry limit: in this case the diagonalization

of the Hamiltonian becomes necessary. Although the interactions applied in this approach are

phenomenological ones, ti_ey can be related to the effective two-nucleon forces, due to the use of

the microscopic 5'U(3) cluster model basis. See Ref. [13] for the details.

3 Applications

The applications of hhe semimicroscopic algebraic cluster model have b_n carried out so far

within the ,5'U(3) dynamical symmetry al)proximation. This approximation allows exact analytical

expression of the energy eigenvalues and electromagnetic transition rates in terms of reduced

matrix elements, (11e[)sch-(lordan coetiicients, etc. obtained from the algebraic description. Its

validity, and also that of the underlying oscillator picture can be estimated Ifrom the comparison

of the results with the corresponding experilnental data.

As an illustrative example we present here the description of the T = 0 states of the 24M 9

nucleus in terms of a 12(-: + 12C cluster model [14]. The structure of this nucleus has been studied

carefully via various reactions both in the ground-state region and in the ragion of molecular

resonances observed in 12C + v2c heavy ion collisions. These experiments have resulted a large

amount of experimental information on the structure of the 24Mg nucleus. Most of the theoretical

investigations have focused only on one of the two regions mentioned above, and relatively little

effort has been put into their simultaneous investigation.

Our aim was to give a ratified description of these two domains in terms of the Uc,(3) ®

uc (3) ® uR(4) model. In this description the internal structure of the _(" clusters is accounted

for by the (Ac:,#c) = (0,4) Uc(3)representation, which corresponds to an oblate deformation

in the geometric picture. We have analyzed about 150 experimental levels in the energy range

of 0 to 40 MeV (see Fig. 1.), and nearly 100 electric quadrupole transition probability data in

our study, which is a more complete account of the energy spectrum and E2 transitions of the

'24Mg nucleus than any previous model calculation. We have displayed tlie B(E2) values for the
in-band transitions in Table I. Our results for interband E2 transitions are also satisfactory. The

fact that most of the transitions forbidden by the selection rules due to the SU(3) dynamical

symmetry have very weak experimental counterparts seems to indicate that the 5;U(3) dynamical

symmetry approach is a realistic approximation of the actual physical situation here. The model
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was able to describe tile general features of tile moleular resonance spectrunl as well. E2 transition

probabilities calculated for in-band transitions within this region were significantly smaller than

most of the corresponding results of other models. The example of the 12C + ]2C system

demonstrated that a large number of experimental data, including the ground state region as well

as the highly excited molecular resonances can be reconciled in terms of relatively straightfl_rward

calculations, which is one of the major advantages of the semimicroscopic algebraic cluster model.

1111 I I I I I I I I I I I
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14 16

+ +
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6 8 10 12 1 3 5 7 9

J

FI(;. 1. Positive- and negative-parity T = 0 energy levels of the "24M 9 llucleus

displayed separately in rotati(mal diagram fi)rm [14]. Circles (o) staad for states with

uncertain J_ assignment. The lines denote the position of the calculated model bands.

(Dashed lines indicate bands with _ = 0, which contain only ew;ry seco]ld possible J

value.)

Similar conclusions have Seen drawn from another application of the model to the 14C: -_ Ot

system in terms of tile restricted UST'(3) _._Uc(3) _//t_(4) model, describing the T = 1 states of the

1so nucleus [15]. Being a considerably less complex nuclear system than 12C + 12C, this example

also allowed comparison of our results with those of microscopic calculations. \Ve have found

strong correlation between these two data sets, which seems to indicate, that the semimicroseopic

algebraic cluster model approximates certain microscopic features reasonably well.

The model has been applied in other areas of nuclear physics as well, where the cluster picture

may be relevant. In particular, tile link betweell SUl)erdeformed and cluster states of c_-like

(N = Z = ¢'vc7_) nuclei has been discussed [16]; the allowed and forbidden binary fission modes
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of ground--state-like configurations in sd-shell nuclei have been studied [17]; and tile possibility

of describing exotic; cluster radioactivity has been pointed out via the example of 21°Pb + 14C

clusterization of tile 2'24Ra nucleus [18]. In this latter case tile model has to be adapted to heavy

nuclei by introducing the pseudo-,5'U(3) scheme.

TABLE I. In-band transitions for tile "24M 9 nucleus. See Ref. [14] for the sources

of the experimental data. The quantun nmnbers 7_,(A, p)\' assigned to the bands are

also displayed.

J_(Exi) J'](E_f) B(E2)E_p B(E2)Th ,,,(A,#)X

2+(1.37) 0+(0.0) 21.0 + 0.4" 21.0 _ 12(8,4)0

4+(4.12) 2+(1.37) 37.8 + 3.0 28.0

6+(8.11) 4+(4.12) 38:1:13 27.1

8+(13.21) 6+(8.11) 30 4- 14 23.1

3+(5.241 2+(4.24) 38.0 + 5.5 37.5 , 12(8,4)2

4+(6.01) 2+(4.24) 18.7 =l=2.4 11.4

5+(7.81) 3+(5.24) 35.0 + 17.5
5+(7.81) 4+(6.01) 24 + 10 19.5

6+(9.53) 4+16.01) 18 + 8 18.0

7+(12.35) 5+17.81) 21 + 14 19.7

8+114.15) 6+(9.53) 9.l + 2.4 13.7

2+(8.65) 0+(6.43) 14.0 4- 4.3 12.4 12(6,2)0

6+(12.86) 4+(9.30) l l.2 + 2.1 12.2

5-(10.03) 3-(8.36) 20+_ 3,1.7 13(9,4)0

7.-(12.44) 5-(10.03) 51 ± 10 32.3

5-(13.06) 3-(10.33) 22 + 4 28.[ 13(8,3)1

4-(9.30) 3-(7.62) 29 + 6 35.1 13(b.. )3

5-(11.60) 3-(7.62) 4.6 + 1.4 7.3

5-(11.60) 4-(9.30) 37 4- ll 31.8

Used to fit model parameters.

4 Summary and Outlook

We have discussed the new semimicroscopic algebraic cluster model, in which a harmonic oscillator

picture is used to account for the internal structure and the relative motion of nuclear clusters.

The model combines a microscopic harmonic oscillator basis with phenomenologic interactions

fornmlated in algebraic terms. Its first applications to realistic nuclear systems have shown, that

it is able to describe a large amomlt of experimental data in a coherent way, and also s_ms to

reproduce certain microscopic effects reasonably well. The 5'lf(3) dynamical symmetry limit of

tile model was fomld to be a realistic apl)roximation tk_r several .sd shell nuclei.
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Tile model can be developed further along several lines. First, the treatment of cluster systems

with arbitrary open-shell structure can be considered by introducing spin and isospin degrees
of freedom. The formalisnl of tile model can also be extended to incorporate several internal

configurations, including major shell excitations. Furthermore, by considering symmetry breaking

terms in the Hamiltonian a more realistic description of lmclei can be given, relaxing, for example
the selection rules imposed by the ,57/(3) dynamical symmetry.
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Abstract

The mapping of a rotational dynamics on a harmonic oscillator one is considered. The

method is used for studying the stabilization of the rigid top rotation around the intermediate
moment of inertia axis by orbiting particle.

1 Introduction

The quantum rotation is a specific type of excitation of microscopic system" hadrons, nuclei,

molecules, and even atoms. The rotational excitations of molecules and nuclei have been studied

in more detail. Electronic excitations are much higher than vibrational ones for most so-called

"normal" molecules. Therefore they may be described adequately in the Born-Oppenheimer ap-

proximation. There is no analog of the Born-Oppenheimer approximation for atomic nuclei. Yet

the occurrence of the rotational bands with strong (nearly 100 single particles) E2-transitions

between neighboring states shows the existence of the collective rotation. All nucleons participate

cooperatively into this collective motion with internal degrees of freedom being frozen completely

or partly. The rotational excitations are grouped into rotational bands having states characterized

in simplest case of a rigid axially-symmetric top by the energy (h = 1)

E = I(I 4- 1)/23,

and quantum number I of the total angular momentum. _ is a moment of inertia.

non-axial system is a rigid asymmetric top with the Hamiltonian

(1)

A simplest

H = A,I 4-A:I 4-AJ , (2)

where I_ are the projections of tile total angular momentum operator on the BFF (body-fixed

frame) axes a = 1,2, 3. The rotational constants Ao = 1/(2_) depend on the principal moments

of inertia _. The rotational band of an asymmetric top consists of rotational multiplets, i.e., of

the levels with the same value of the quantum number I. Besides I, these levels are characterized

by the irreducible representations of the group D2 = {1, _1, _2, _3}, which contains the identity

operator and three 180 ° rotations around the BFF axes _(Tr) = exp(-iTrI_). The irreducible

representations of D2 are labeled al, a2, bl, b2. They correspond to the eigenvalues r, = +1 of the

operators N_. The subscripts 1 and 2 label even and odd symmetry levels with respect to the N2

rotation, a and b label even and odd symmetry levels with respect to the Na rotation. Note that
rlr2r3 = 1 is true for each four representations.
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Different methods are used to solve the Hamiltonian (2). As the first step we will calculate

the classical rotation energy E as the function defined in the system phase space (a rotational

energy surface). The phase space of a rotational motion is formed by three Euler angles ¢, 0, _b

and three conjugated momenta p¢,P,_,P¢. The absolute value of the angular momentum I and its

projection Ix = PO on the z-axis of the space-fixed frame are the integrals of motion. It is suitable

to do the canonical transformation [1] to new conjugated variables I and qt, Ix and q_, 13 and q.

Since q1 and q, are cyclic variables, the phase space of a rotational motion is two-dimensional. It

is convenient to map it on the surface of the sphere of the I radius with a center in the origin

of the BFF. The point on the sphere with coordinates 0 and _0 determines the orientation of the

vector I in the BFF. The canonical transformation enables us to relate the conjugated variables 13

and q to the angles 0 and _o. For Ix = qt = 0 and an arbitrary q, we have 'cos 0 = 13/1, _0 = _ - q.

Thus, the trajectories of the tip of I on the phase sphere are classical trajectories of the system

in its rotational phase space. When the rotational energy is close to AaI 2 or A3I 2, where Ax and

A3 correspond to the smallest or the largest moment of inertia, the classical trajectories are small

ellipses around axes 1 or 3. They represent precession motion around these axes. The trajectories

close to axis 2 with the intermediate moment of inertia are unclosed. They represent unstable

motion. A small deviation from this axis takes a top away from it.

2 Precession motion

Let us begin with classical precession. It is described by the Euler equations

i_ = {H, 1_}, a = 1,2,3, (3)

for the projections of the vector I on the BFF axes. In this equation {...} are the Poisson

brackets. Let us introduce the classical concept of stationary rotation axis defined by the three

equations {H, 10_} = 0. The stationary states I0 are identical with the fixed points of the energy

surface. There are three stationary axes coinciding with the principal axes of a rigid top. For

small precession around axis 1 (lx _ 1; 12, 13 << 1) Eqs. (3) have the form

-/2= -(Aa- Ax)11a, (4)
J3 = (A2 - Ax)112.

They describe a harmonic oscillation motion

12(t) = iov/-Aa/Ax - 1 coswnt,
la(t) = -ioCA2/A, - 1 sinwx,t,

(5)

with small amplitude i0 and frequency

Wax = 21v/(A2- Ax)(A3- A,). (6)

In the BFF, the I vector precess around axis 1 and, in the laboratory frame, the top precess around

the angular momentum I. It follows from the stability condition w2 > 0 that the precession motion

around the axis with the smallest or the largest moment of inertia is stable and around the axis

with the intermediate one is unstable.
To obtain the energy level structure of a rotational band corresponding to a precession motion

one must quantize this motion. It can be done by different methods.
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Holstein-Primakoff Representation of Angular Momentum Operators. The method developed

by Marshalek for a quantized rotator [2] is based on the one boson realization of angular momentum
operators [3]

11 = I -- b+b, I+ = I_ + ii3 = b+v/2I - b+b = (I_) +, (7)

in the space of wavefunctions

(b+)1-K

_,, = _ as-,[(]_- h_.v],/2 10), (8)
K=-I

where u is the quantum number of a state in a rotational multiplet. The state [ 0) corresponding

to K = I is a vacuum state of the boson creation and annihilation operators b+, b. For describing

precession motion we expand the square-root operator in I+ and I_ in the series of a small quantity

fi/I, where fi = b+b is the boson number operator. In the harmonic approximation (n << I), the

Hamiltonian (2) is quadratic in boson operators

I I

H= AII 2 + _(A2 + A3)+ I(A_ + A3- 2A1)b+bw -_(A2 + A3)(b+bw bb). (9)

The Hamiltonian (9) can be diagonalized by a canonical transformation

b= lull- IriS=l, (10)

to new boson operators fl and 3+. The energy of the lowest levels is given by

E,,_=AiI(I+1)+w11(n+l/2), n = 0,1,2, .... (11)

The quantum number n describes the precession motion. For the state with n = 0 the wave
function

_I0 _---J U [-1/2 exp (_-_ub+b +) [ 0), (12)

localizes near rotational axis 1. It corresponds to the sharply localized orientation of the angular

momentum I along the positive direction of axis 1. Eq. (12) is not the eigenfunction of D2

symmetries. Thus, the harmonic approximation is a "symmetry-breaking approximation." Being

a linear theory it cannot describe tunneling the vector I through a potential barrier separating

two degenerate minima.

Bargmann Representation [4]. Let us consider the complex variable

0

( = x + iy = e '_cot _, (13)

which is the stereographic projection of a point on the pha.se sphere with polar angles 0 and
on the plane passing through the south pole. As shown in Ref. [5], it is possible to construct the

SU(2) group representation in the space of the polynomials

I

_(()= _ _K_-_,+s. (14)
K=-I
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The angular momentum operators in this representation have the form

I1=I¢+7(1-_2) , Is=-iI(+ (1+(2) , I3=-I+_d-_.

Many problems in nuclear and molecular physics can be treated by this approach [6]. With the

operators (15), the SchrSdinger equation for a top is reduced to the Heine equation [7]. To describe

for example the precession motion around axis 3 we should consider the approximation I _ I<< 1.

Approximate Solution of Reccurence Relations. This method is based on the approximation of

recurrence relations by a second-order differential equation for high-I values [8]. The eigenfunction

of the Hamiltonian (2) can be written in the form

/

alK_,DMK(Vg),I_IMv= E ' (16)

K=-I

where M and K are the quantum numbers of tile operators Iz and I3 respectively. DIMK is

the Wigner function depending on the Euler angles v_. For the coefficients a1K_, the three-term

recurrence relation is obtained

PKaI,K-2,v + (HKK -- Elv)alKu + PK+2aI,K+2,v = O, (17)

where

HK = HKK = + + -- -- (18)1(2A A, A )K
PK=HKK-2 = [(I-K 2)(I K- - + )(I+¼(a,- As) + + 1)(I K 1 K)] 1/s.

By using the small parameter 6 = [I(I + 1)] -1/2 let us introduce the continuous variable k = K£
We will treat the coefficients P and H as the smooth functions of this variable. As a result, the

recurrence relation (17) may be rewritten in the form of the SchrSdinger equation

I(I + 1)Hal_(k)= Eh, a,,(k), (19)

with the Hamiltonian

H = [P(k + 26) + P(k)] cos 2ib_ + i[P(k 4- 26) - P(k)] sin 2i6_ + H(k), (20)

where/_ = -id/dk is the canonically conjugated momentum to the coordinate k.

In the harmonic approximation K << I, Eq. (19) is reduced to the second-order differential

equation

d'2atv +2m[E - A,I(I + 1) - V(K)]a,,, = 0, (21)
dK 2

in the space of quantum numbers K. The equation describes the motion of the angular momentum

I with effective mass m = 1/[2(A2-Ai)I(I+ 1)] in potential V(K) = (Aa-A_)K 2. This harmonic

oscillator has the energy spectrum (11) and the wave function

aIn= L2-_nl.VTr(2-I_ 1) H n I'iV-_7-- f exp 21 + 1 '
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where w = [(A3 - A,)/(A2 - A,)] '/2, and H,_ is the Hermite polynomial. We have again a sharp

localized state with broken symmetry.

The rotational dynamics of real many-body systems is more complicated than that of a rigid

top because of the centrifugal and Coriolis forces. However the harmonic approximation can

be used in this chase to understand the physical nature of the phenomenon under study. The

example is bifurcations in quantum rotational spectra considered in Ref. [9]. In the next section

we consider another problem having a bearing on a precessional motion.

3 Precession Motion around Intermediate Moment of In-
ertia Axis

As we proved above, the rotation of a rigid top around the intermediate axis is unstable. This is

not a case if a system has additional degrees of freedom apart from rotational ones. We are going

to consider a particle coupled with an asymmetric rigid top. This is the situation of one-electron

Rydberg states in triatomic molecules, such as 1420 [10], and rotational bands in odd deformed

nuclei [11].

The Born-Oppenheimer approximation breaks down in the molecular Rydberg spectra. As the

total angular momentum I increases, the rotational levels pass from thmd's case (a) or (b) (the

strong-coupling scheme), where the electronic splitting is large compared with the rotational one,

to the Hund's case (d) (the weak-coupling scheme), where it is small. The model of an isolated j-

complex is widely used for the description of the transition from strong to weak coupling in nuclear

[11] and molecular [12] physics. This approximation is valid if coupling the states of a j-complex

with other Rydberg states is small compared to the Coriolis coupling. The assumption means

that one-particle angular momentum j is an integral of motion. As I increases, the momentum

j decouples from the molecular ion core and couples to the axis of rotation with the maximal
moment of inertia.

Let us consider the effective Hamiltonian describirig the two degrees of freedom: rotational and

one-particle. The rotational part of the Hamiltonian is the kinetic energy of a rigid top. We will

use the self-consistent field approximation for describing one-particle motion. The non-spherical

part of this field can be written in terms of the particle multipole momenta qau(r) as follows:

V = _, Qauq_u(r), where A-values are even for the reflection symmetric field. For an isolated

j-complex, the one-particle part' of the Hamiltonian can be expressed in terms of the spherical

tensor operators Tau(j). Thus, the effective [tamiltonian of the system for an isolated j-complex

is algebraic with symmetry SU(2) ® SU(2). We consider this Hamiltonian in the quadrupole

approximation when the components of mean field V with A > 2 are smaller than the ones with

A = 2. It is convenient to write the Hamiltonian in the coordinate system fixed by the principal
inertia axes:

H = y_[A_,(I_ - j_)2 + 9_J]], (23)
ot

where 91 = -g2 = (go sin 7)/v_, 93 = 9o cos 3' (-c¢ < 90 < +c¢, 0 ° < 3' < 60 °) are the parameters

of the quadroupole part of the self-consistent field, which is diagonal in the considered frame. In
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classical mechanics, the system dynamics is described by the equations of motion:

(24)

where repeated indexes are summed.

The stationary state I0 and j0 of Eqs. (24) is determined by the eight algebraic equations

since the two integrals of motion 12 and j2 exist. Therefore, the stationary state with an arbitrary

orientation does not exist. There are two types of stationary states of Eqs. (24), corresponding to

the lowest level of the rotational multiplets. The three aligned states So : Is = I, jo = j, a = 1,2, 3

with the energy
Eo = Ao(I - j)2 + goj2, (25)

have the parallel vectors I0 and J0 aligned along axis a. In the three plane stationary states Soz,

these vectors are placed in the (a/3)-plane. As I increases the sequence of stationary states So and

So_ with the minimal energy for given I leads to the aligned state with the maximal moment of

inertia. The transition from aligned state So to plane one Son is accompanied by the bifurcation

of the C2v-type [9] at the critical angular momentum

The index a denotes the axis from which the angular momenta I0 and j0 decouple, while index

/3 denotes the axis to which they approach. Both indexes (a/3) denote the plane, in which these

vectors move for j < Iot_ < I < Izo. Another pair of critical momenta determines the similar

bifurcation points in the region I < j. The expression for these values is the same as Eq. (26)

except the sign before a square root. We will consider below only the region I > j in the case

when Aa < As < A3, go > 0.

The precessional motion near the stable stationary state is described by linearized set of Eqs.

(24). Four linear differential equations describe two normal modes corresponding to the small

harmonic oscillations of vectors I and j. The frequencies of these modes are obtained as the roots

of a biquadratic equation. We begin our consideration with the precession near the Sl-state in

the weak-coupling limit AoI >> goj. To simplify expressions let us use assumption I >> j. The

precessional mode with smaller frequency wlx (6) represents the precession of the vectors I and

j with different amplitudes. While the I vector circumscribes according to Eqs. (5) an elliptical

cone around axis 1 with the amplitude i0, the amplitude of the j vector is j/I times smaller that

of the I one. Thus, this mode involves the precession of core angular momentum vector R = I-j,

which coincides, in considered approximation, to rigid top precession. Another normal mode with

the frequency w12 = 2IAx, which is equal to the core angular velocity around axis 1, involves the

uniform rotation of the angular momentum vectors around this axis with identical amplitudes:

I_(t)=j2(t)=iocoswl2L Ia(t)=ja(t)=iosinwx2t. (27)

Consequently the momentum R does not participate in this motion.

Now we consider precession near the stationary state $2, corresponding to the central axis. An

orbiting particle stab!lizes this state due to the anisotropic (quadrupole) interaction with a top.
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The small valuesof (A2 - A1)/A2 favors stability of the aligned state $2 lowering its energy E2

relative to E1 (see Eq.(25)). To clarify the physical picture we will use the approximations I >> j

and (A2 - A1)/A1 << 1 in describing precessional motion. The smaller frequency

0.)21 = 2 [(A2- A1)(A3 - A2)(I_1 - 12)] 1/2 (28)

vanishes at the critical momentum I21 (26). The time-dependence of the angular momentum
components for this mode is defined by

Ia(t) = io[Aa/A2 - 111/_cosw21t,

I3(t)=-io[(A2/A1-1)(I_1/I 2 - 1)]l/_sinw_,t,
(29)

and j(t) = (j/I)I(t). The interpretation of this result is straightforward. Since the amplitude of the

j-vector is small compared to that of the I ones, the considered mode represents the precession of

the core angular momentum R similar to the rigid top precession (5). Yet unlike the latter, the tips

of vectors I and j move on elliptic orbits stretched along axis 1 if the angular momentum I is close

to I21. This is just a consequence of the bifurcation, which shifts the angular momentum vectors

into the (12)-plane. For another normal mode of frequency w22 = 2IA2, the time-dependence of

angular momentum components has the same form as in Eq. (27).

Thus, we have shown that the precession motion around the axis with intermediate moment of

inertia is possible for a system consisting of a particle anisotropically coupled with an asymmetric

top. The isolated j-complex approximation is used in considering this phenomenon. To examine

it one can solve the classical equation of motion for a particle coupled with an asymmetric top

without this restriction. The equations involve two different time scales: fast particle motion and

slow core rotational motion. After averaging on the fast motion, one can obtain the closed set of

nine equations for components of I and particle angular and quadrupole momenta. The averaged

equations can describe the stabilization phenomenon and the precession around intermediate axis.

This insight into the problem reveals the close relationship of our stabilization effect with that of

the Kapitza pendulum [13]. Another intriguing analogy is the new discovery in planetary science

where it has been shown recently [14] that the Moon stabilizes the chaotic wobble of the Earth's

rotational axis, which is unstable due to orbital coupling with other planets. Thus, without the

Moon, large variations in obliquity resulting from the chaotic wobble might have driven dramatic

changes in the Earth's climate. There are two fundamental distinctions of our problem from

considered above: we deal with the isolated and quantum system.

The above found precessional frequencies are associated with the splitting between the lowest

levels of a multiplet. To obtain this result one must quantize the precession motion. It can

be done by using the Holstein-Primakoff representation. The result for lowest multiplet levels

corresponding to the stationary state So is

E1n = Eo(I)+ 03ctl(nl-4- 1/2)+ woe(n2 + 1/2) (30)

where E_ is given by Eq. (25), and nl and n2 are the numbers of bosons in corresponding mode.

The boson operators b+ and bk connect the odd and even with respect to Ithe C_-transformation

states inside a rotational multiplet. Consider, for example, the precession around axis 1 in the

weak-coupling limit. In this approximation, any rotational multiplet (I-mnltiplet) consists of R-

multiplets with the quantum numbers R = I-j +m, m = 0, 1,...,2j. The levels in R-multiplets
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with the same quantum number _R but different I are degenerated. The frequency (6) describing

the precession of the R-vector is equal to the splitting between the lowest levels al and bl (or

32 and b_) in a R-multiplet. Another frequency w12 = 2IA1 is equal to the splitting between

the lowest levels of adjacent R-multiplets belonging to the same I-multiplet. The situation for

the precession around the intermediate axis is more complicated. According to the precessional

approximation, the lowest states of a multiplet involve two groups of roughly equidistant levels,

which are described by Eq. (30). But a smaller frequency vanishes in a critical point and the

precessional approximation becomes inappropriate in this region. This means the redistribution of

multiplet levels, which provides a method for the identification of the intermediate axis precession

in an experiment.
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Abstract

Riemann ellil)soids model rotating galaxies when the galactic velocity field is a linear

function of the (tartesian coordinates of the galactic masses. In nuclear physics, the kinetic

energy in the lixLear velocity field approximation is known as the collective kinetic energy.

But, the lilw;_r alq>roxim,tion nogl_,('ts illtrillsic degrees of freedom associated with nonlinear

velocity tiehls. To r(,u_ov_, this limitali(m, the theory of symI)lectic dynamical symmetry

is develol)ed for classical syst(_llls. A classical 1)hase space for a self-gravitating syml)lectic

system is a co-adjoillt orbit _t' tlw mm('Oml)act grou l) Sp(3,R). The degenerate co-adjoint

orbit is the 12 (lim('llsiOlUfl homogen(,ous sl)ace $I)(3,R)/U(3), where the maximal compact

sul)groul) U(3) is the symmetry group or the harmonic oscillator. The Hamiltonian equations

of motion ozLeach orbit form a I,ax system ,-_"= IX, F], where X and F are elements of the

syml)lectic Li(, algel)ra. The ('lements of the matrix X are the generators of the symplectic

Lie algebra, viz., th(, oh(,-bo(ly collective quadratic functions of the positions and momenta

of the galactic l,i;_._(,s. Th(, matri× F is composed fi'om the self-gravitating potential energy,
the anglllitr velo(ily. }ill(] th(, hy(h)stati(' pressure. Solutions to the Hamiltonian dynamical

system on Sl)(:l,l()/U(:l) aw giw,, I)y syml)lectic isospectrM deformations. The Casimirs of

S1)(3,1{), equal to the, tr;l('_,s of pow(,rs of X, are conserved (luantities.

1 Riemann Ellipsoids

A remarkal)ly unitid pirtllr(" ()f rotating syst(_lns is attained by adol)ting an algebraic perspective.

(',lassical rotating I¥_¢1i_,s s,wh as g_,laxies (l),_riod--10_ss), stars (106s), and fluid droplets (Is), and

quantum rotating _,_t(:](_i (10-_°s) may I)(, descril)ed it_ terms of a sing]e'subgroup GCM(3) (for

general collective moti(m ill 3 dim,'usi(,lls) of the noncompact symplectic Lie group Sp(3,R). In

classical physics, th¢' (;(:M(3) tlw(,ry is id(,_ti('al to the Riemalm ellipsoidal model [1, 2, 3].

A Riemalm ,q[ip._d(I is _l ll.if()rm (l('l_sity tl_fid with aa ellipsoidal boundary whose velocity field

is a linear functi(m of tlw im'rtial t'ram( _ (lartesian position coordinates )(. The isodensity surfaces

of ('lliptical galaxi(_s aw v(_ry twarly ,,llil)soidal [4]. Linear velocity fields _7L (the superscript L

indicates a laboratory ira,trial t'ram_' (l_ta_tity) span the dynamical continuum from rigid rotation,

_L(,_) = ugL X ,X_, t.o irrotatio_ud flow, _ x 17L = 0. Thus, Riemann ellipsoids can model a wide

claus of rotating syst(_ms.

Tlw principal Mm of this pal,_,r is to i)r(_sent the classical symplectic model with particular em-

l)hasis upon its relatio_shil_ with tlw [(ie'man_ ellil)soidal model [5]. But first the Riemann model

and its e(luival(_n(( , to tlw alg(,l)raiu (;(:M(3) t,l_(_ory will be reviewed. To describe a linear velocity

fiehl, tlw dynami('al grotal_ (;('_l(:l)uolttaiHs t lw g[_m_ral linear grou l) (;L(3,R) as a subgroup. In
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addition, to characterize the size, deformation, and orientation of an ellipsoid, the GCM(3) Lie

algebra includes tile inertia tensor.
There are several adwtntages to adopting the powerful dynamical group method. First, the

Euler fluid equations of motion for a Rienmnn ellipsoid can be proven to form a Hamiltonian

dynamical system [3, 6]. A Riemanll ellipsoid phase space is a co-adjoint orbit of GCM(3), and its

Poisson bracket is inherited from the Lie algebra structure of GCM(3). Moreover, this Hamiltonian

system is a special Lax pair system [7]. Second, the group method is not restricted to continuum

fluids. GCM(3) dynamical symmetry applies equally well to discrete systems of particles. Third,

GCM(3) dynamical symlnetry also applies to some quantum rotating bodies. For example, the

Bohr-Mottelson irrotational surface wave model of collective rotational and vibrational states

forms an irreducible unitary representation of GCM(3) [8, 9, 10]. Finally, GCM(3) symmetry

suggests a natural extension to symplectic Sp(3,R) dynamical symmetry [11]. The latter replaces

the collective kinetic energy of the GCM(3) theory by its exact microscopic expression.

The hydrodynamic Itiemann ellipsoidal model provides a physical interpretation to the abstract

GCM(3) theory: The length C of the Kelvin circulation vector, a constant of the motion for a

frictionless, holnoentropic fluid flow, is the Casimir invariant for GCM(3) [6].

The velocity fields of rigid rotors and irrotational droplets have very different Kelvin circulation

vectors C. Suppose the rotating system has an ellipsoidal boundary with semi-axes lengths ak.

The inertial frame Kelvin circulation vector, projected onto the kth body-fixed axis, is defined as

the line integral of the wqocity fiehl U around the boundary of the ellipse Dk in the i - j principal

plane for i, j, k cyclic. According to Stoke's theorem, these line integrals equal the surface integrals

of the curl of the velocity lield,

M S_ 17. dl= M /JD _ X U. d,_, (1)(:k = 5--7 5--7

where U denotes the projection of the inerti_d frame velocity field onto the body-fixed axes, and

M is the fluid's mas_.

By definition, the curl of the velocity field of an irrotational droplet is zero, and, hence,

the Kelvin circulation of a,l irrotational fluid vanishes, C = 0. For a rigid rotor velocity field,

x U = 203. Because 7raia.i is the area of the ellipse Dk, the rigid rotor circulation components

equal Ck = (2M/5)a,ayk • For _t general linear velocity field, the curl is a constant vectorfield V x

---- (+ 203, where (is called the u,fiforna vorticity. As the uniform vorticity ranges continuously

from zero to the negative of twice the angular velocity, the complete Riemann sequence from rigid

rotation to irrotationa.l flow is traversed.

2 GCM(3) Dynamical

The symplectic algebra, Sp(3,R ) consists

• lL

7/0

Symmetry

of the inertia, virial momentum, and kinetic tensors [11]:

= _ m_,X_,iX_j,

= Y_..¥c, iP, j, (2)
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where the sums are carried over the particle index e, = 1,..., A, m_ denotes the mass of particle

a, and )_,, /3 are the inertial frame vector Cartesian position and momentum of particle oc. In

fluid dynamics, the stuns over 1)articles are replaced by integrals over tile density distribution, e.g.,

Q/_ - - 3-= f p(X))_i._.id' ._.. The Poisson 1)rackets close to form the symplectic algebra:

= k.j-- ,

{QL, Nk_ } = gii,oL + ¢5,,oLk

{NL,T L} : bitT 5 + 6ikT_

{QL,T_. ] } = 6i,,.N_ + ¢5i,N;L + _5.ikNi_ + 6jtN L.

The generaJ collective _otion (;(?M(3) sul,algebra includes only the inertia tensor QL and the

virial momentum tensor N)). The rotational ROT(3) subalgebra is spanned by just the inertia

tensor and the antisylnnlet, ric part of the viral momentuln tensor, viz., the angular momentum
L_=e. L , •,akN_j. The Lie algel,ra (,L(3,R) of the general linear group is generated by the virial

momentum tensor, and the Lie algebra SO(:]) of the rotation group is. generated by the angu-

lar momentum. The inerti_ tensor generates a 6 dimensional R 6 abelian Lie algebra. GCM(3)

and ROT(3) are semidire,'t sum Lie algebras of the abelian ideal R 6 with GL(3,R) and SO(a),
respectively.

In the principal axis frame, the inertia tensor (_) is, by definition, diagonal, and its eigenvalues

are l_roportional to tl,e S_lllared axis lengths a[ of the inertia ellipsoid.

Although the exact kim'tic te,sor 7;a is not an element of GCM(3), its linear velocity feld value,

the collective kinetic tensor, is a t'llnction of the algebra generators, [12] t = tN • Q-a . N. The

Kelvin circulation of a linear velocity tiehl may be expressed in terms of the GeM(a) generators

as C_,. = ekij(Q -lfz . N • Qll2)ia.

Time evolution in the classical collective models based upon ROT(3), GCM(3), and Sp(3,R)
is governed by Hamiltonian dynamics of a special type known as a Lax system. Consider first

the simple case of R()T(3) for which the dynamics corresponds to guler rigid body rotation. If

the inertia ellipsoid is rotating with an angular velocity _ij = ei:kwk and Lq = Nij - Nji is the

angular momentunl tetlsor, then Hamiltonian dynamics is given by

(3)

In terms of vectors, this eq,tation is the familiar law _ = -03 × /_ that. determines the precession

of the angular monwl,tllm vector in tlw body-tixed fi'ame.

A matrix equation of the form ._" = IF, X] is called a Lax equation and X - F are referred to

as a Lax l)air [13, 14]. A ltset'ltl l_roperty of any Lax equation is that the trace of any power of X

is conserved. Let 11, _lenote the t.r_we of the pth power of the matrix X.

I,, = 1 Tr( X )v. (4)
P
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For any Lax equation, it is evident that every 17, is a constant of the motion,

iv = T," (X"-' " ._') = Tr (.V v-'' [F, X])= Tr(XV-'FX- XVF)
=0. (5)

In tile case of the Euler equation, 12 = -f-" f- is tile negative of the squared length of the angular

momentum vector. If p is odd, then Iv is zero. If p > 2 is even, then Iv is a function of the squared

length of the angular momentum vector. Thus, there is only one independent invariant among

the Lax invariants.

Suppose that X(t) is a solution to the Lax equation, ._" = [F, X], corresponding to the initial

condition X = X0. If g(t) is a smooth curve of invertible matrices satisfying the matrix differential

equation _ = F "g with the initial co,ldition g = I, then the solution to the Lax equation is just

the isospectral defo,'mation,
X(t) = g(t)" Xo'g(t)-'. (6)

This is proven using the idelltity d9 -1/dt = -9-1.09 -1. If 12 is constant, the matrix differential

equation g = l_ • 9 t\,r the Euh'r equatio_t has the unique solution g(t) = exp(f_t) for the initial

condition g(0) = I. Thus, y(t) is a curve in the rotation group SO(3), and the isospectral

deformation L(t) = 9(t)Log(t) -1 describes explicitly the precession of the angular momentum

in the body-fixed frame rt,sulti1,g from the rotation g(t) of the intrinsic frame relative to the

laboratory frame. [h,caus(' of the choice of i,litial conditions for g, L0 rbpresents the constant

angular momentnln w'(:tor in the im,rtial laboratory frame.

To present the tiJll¢" evoiltti(m for l{iemann ellipsoids as a Lax system, suppose the potential

energy in the body-Iix('([ ['rail,' I." = I/(at,a2, a3) is a smooth function of the axes lengths. For

a star or galaxy, I/ is tl,, at.tr_(liv(' gravitati(mal self- energy. For a nucleus, V may be approxi-

mated by the sum of the' atl r_,'tiw' sllri'_l(_e em,rgy and the repulsive Coulomt) energy. Define the

Chandrasekhar l)otelLtial _m'rgy t_.us_,r IV in the rotating frame to be the diagonal matrix,

ov
l+',j = .--, (7)

Oa_

and, to impose a constraint to ('(mstallt volume, define the pressure tensor 1-I = pv to be the

product of the hydrostatic IJressul'e p times the ellipsoid's volume v = 4rcala2a3/3. Hamiltonian

dynamics for RiemaIl_l ('llil,s(fids is give, as fi_llows [7]:

Theorem. If the il,_rtia ellil)soi,l is r_,tating with an angular velocity _i = _ijkWk, then the

Riemann ellipsoid Hamiltoniazl dyllamical system is equivalent to the Lax system, X = [/7, X],

where the 6 × 6 real matrices .\" and F in the body-fixed fi'ame are given by

The quadratic Lax inwl, riallt equal,_ the negative of the squared length of the Kelvin circulation

vector, 12 = Tr(N 2 - t • Q) = _(,2. '1"1_("I_igher order Lax invariants are either zero (odd powers)

or are functions of tl,, ('irculatitm \,ecttff's S(lU_.red length.

The phase sl)ac( • lt_r _ l(it,t_al_t, ellil)soid obeying the Lax equation is a co-adjoint orbit of

GCM(3):
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Theorem. Each Riemann ellil)soid orbit is ¢liffeomorphic to some coset space of GCM(3). The
coset depends upon the value of the circulation C:

,, ¢, _ ,
(,CM(3)/, 0(2) R 12x52, C:_0, dim= 14

Oc = G'CM(:3)/5'O(:]) _ R 12, C = 0, dim = 12 (9)

The degenerate orbit is diffeomorphic to 12-dimensional Euclidean space. This irrotational

flow phase space, coordinatized by c_2u,Tr2_,,o0,_'0 for the quadrupole and monopole degrees of

freedom, was quallltized by A. Bohr. The generic orbits C 5_ 0 were undiscovered for many years

because the significant role of Lie groul)s in this problem was not appreciated by the Copenhagen

school. The generic orbits _.re diffeomorphic to tile Cartesian product R 12 × $2 of Euclidean space

with the two-dimensional sphere. The topology of the sphere forces the circulation to be quantized

to integer multiples of/) i, a way parallel to the usual angular lllOlllentull] quantization. Thus, tlle

spectrum of tile Sqllar,_d le,gth of the, (lllalltllnl circulation operator is quantized to C((7 + 1)h 2,
where (7 is a nonnegative iut_,ger.

3 Sp(3,R) Dynamical Symmetry

Classical symplectic SI)(3,R) time evolHtion in tile rotating fl'ame is given I)y the Lax equation,

A" = [F, X], if, in the Lax m_.trix X, the linear al)l)roximation t to tile kinetic energy is replaced

by its exact expression 7'. ll_ this w_L.y, the restriction to linear velocity fields of tile Riemann

GCM(3) model is removed in the s.yinl)lecti( Sp(3,l_) theory.

The symplectic (ouservatioLl laws are provided by the Lax invariants Ip. The quadratic Casmir

invariant of the syml)lectic algebra is the (lu_tdratic Lax invariant, (,(2) = Tr(N 2 _ Q . T). Note

that for a linear velocity fi(-'hl, the quadratic symplectic invariant simplifies to the negative of tile

squared length of the Kelvin circulation vector. The odd order invariants vanish. Tlle quartic
symplectic Casimir invariant is the quartic Lax invariant,

C (4) = T,[(NQ - Q'N)(TN - 'NT)] - 1/2Tr [(N 2 - QT)2]. (10)

There is only Olle nlol( _ independent (',asimir and Lax iuvariant C (6) = 16; tile higher order invari-

ants are flmctionaIly _lel.qM(,ltt ulmll the thr(_e independent Ca_simirs C(p) - Ip for p = 2, 4, 6.

Since the matric(_s X and F are elenlents of the syml)lectic Lie algebra, the following theorem
may be proved:

Theorem. Every solutiou to the classical syml)lectic Lax system is given by a isospectral trans-
formation g(t) E SI)(3,R) al)plied to the initia.I state

x(t) = ,j(t) •Xo. 9(t)-', (ll)

where X0 and X are elements of the syml)lectic Lie algebra sp(3,R). Tile group element g(t) is a

solution to tile matrix differ(_utial ('(lu_ttio_l g = F 9 with the initial condition g = I if and only if

X is a solution to the Lax ('(lllati(m with the initial condition X -- X0.
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Consider the co-adjoint orbit of the symplectic group through the point X,

Ox = {g" X .g-' I g _ Sp(3, R)}. (12)

The co-adjoint orbit is regarded as a surface in the Euclidean symplectic dual space, sp(3, R)'. A

manifold that intersect each co-adjoint orbit exactly once is called a "traqsversal." A transversal

"T for the symplectic co-adjoint group action is provided by a three-dimerlsional surface [15, 16]

((0.) ,}7- = ,__= ,5' 0 _ sp(3,R)" [ S=diag(sl,s_,s3 •

Transversal points correspond to elementary systems for which the virial momentum tensor van-

ishes, N = 0, and the inertia and kinetic tensors are equal and diagonal, Q = T = S. Since the

inertia and kinetic tensors are positive-definite, the physically relevant transversal consists of only

those points for which S is positiw_-definite, .si > 0.
An orbit of the transversal point ._' E 7- is diffeomorphic to a coset space of the symplectic

group modulo the isotropy subgroup. These isotropy subgroups may be proven to be subgroups

of the unitary group,

{(U-V) ,, i U iV U(3)} (14)U(3)__ V U _,p(a,R) + _ ,

and, thereby, the coset spaces are given explicitly as follows [15, 16, 5]:

Theorem. The symplectic t,hase spaces are diffeomorphic to coset spaces of Sp(3,R):

{ .b'p(3, l_)/[U(l) x U(1) x U(1)], sl distinct, dim = 18
Os = ,b'p(3, R)/[I/(2) x U(I)], s, = s2 -7/:s3, dim = 16

,','p(3, I_)/U(3), sl = as = s3, dim = 12

(15)

The degenerate orbit Sp(3,R)/U(3) is diffeomorphic to the complex Siegel half- plane. In future

work, the dynamical system on the Siegel halt:plane will be reported.

142



Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No.
PHY-9212231.

References

[1] S. Chandr_sekh_r, Ellipsoidal Figures of Equilibrium (Yale Univ., New Haven, 1969).

[2] J. Binney and S. Tremaine, Galactic Dynamics (Princeton Univ., Princeton, 1987), Section
2.3.

[3] G. Rosensteel and Huy Q. Tran, Astrophys. J. 366, 30 (1991).

[4] D. Mihalas and J. [_i_,,'._,, (;ah_,'/ic Astronomy (Freeman, San Francisco, 1981), Section 5.2.

[5] G. Rosensteel, Astr,,l,lLys..I. 416, 2.91 (1993).

[6] G. Rosensteel, A,m. Phys. (N.Y.) 186, 230 (1988).

[7] G. Rosensteel, Al)pl. Math. Lett. 6, 55 (1993).

[8] A. Bohr and B. Motwlso,,, Nuch,ar Structurt (Benjamin, Reading, Mass., 1975), Voi. II.

[9] G. Rosenst,_el a,,d l).J. Row¢', A,,,_. Phys. (N.Y.) 96, 1 (1976).

[10] ().L. Weaver, R.Y. ('_._._,,,, _,,,I I..('. Bi_,denharu, Ann. Phys. (N.Y.) 102, 493 (1976).

[11] D..J. Rowe, Rep. l'r,,g, l'lLys. 48, 1,119 (1985).

[12] R.Y. Cusson, Nuc[. ['hys. All4, 289 (1968).

[13] P. Lax, Comm,m. Pure. Appl. Math. 21,467 (1968).

[14] Ju. Moser, Adv. Math. 16, 197 (1975).

[15] T.A. Springer and R. Steinberg, Lectllre Notes ill Mathematics 131 (Springer, Berlin, 1970).

[16] P. Kramer, A,,,,. l'hys. (N.Y.) 141, 2,54,269 (1982)

143





/ FfS//4
/' /

N95- 22974

SHAPES AND STABILITY OF

ALGEBRAIC NUCLEAR MODELS '

Enrique Ldpez-Moreno

Departamento de F@ica, Facultad de Ciencias UNAM

Octavio Castafios

Instituto de Ciencias NucleaTes, UNAM

Apdo. Postal 70-543, 0_510 Mdxico, D. F., Mdxico

Abstract

A gcncralization of the procedure to study shapes and stability of algebraic nuclear models

introduced by Gilmore is presented. One calculates the expectation value of the hamiltonian

with respect to the coherent states of the algebraic struct,u'c of the system. Then equilibrium

configurations of the resulting energy surface, which depends ill general on state variables

and a set of parameters, arc classified through the Catastrophe theory. For one and two-

body interactions in the hamiltonian of the interacting boson model-l, the critical points

are organized through the Cusp catastrophe. As an example, wc apply this Separatrix to

describe the energy surfaces mssociatcd to the Rutcnium and Sam,'u'ium isotopes.

1 Introduction

The geometry of algebraic zmclear models can be studied by means of the time-dependent varia-

tional principle [1], [2]. This formalism provides us with a classical limit of the nuclear model, in

particular we are mainly concerned with the static properties of the hamiltonian function (energy

surface) associated to the considered algebraic nuclear nmdel. In general these hamiltonian func-

tions depend on state variables and a set of parameters, then the appropriate mathematical tool

to determine the most general behaviour of their equilibrium configurations is the Catastrophe

formalism [3].

A conncction between the interacting boson modcl-l(IBM-1) [4] and the geometrical approach

of Bohr-Mottelson [5] was done by expressing the IBM-1 hamiltonian in terms of shape variables.

This can be achieved by means of the intrinsic boson states defined by [6] or by the corresponding

coherent states [2]. Analysis of shape and ph_e transitions in this model have been done by [7],

[8]. In this work wc apply the procedure introduced in Ref. [2] to the interacting boson model,

but for the general hamiltonian of one and two-body central interactions involving s and d bosons

[4] and determining its associated Scparatrix. Wc show that the equilibrium configurations can be

i Work supportcd in l)art by i)roject UNAM-DGAPA IN103091.



classified through the Cusp catastrophe, this means that two parameters are enough to describe

the most general energy surface. Therefore this analysis generalize those presented previously

[4], in which only transitions between pairs of exact SU(5), 0(6) and SU(3) symmetries are
considered. In the last decade, effective hamiltonians of the IBM-1 have been used to describe

energy spectra and transition probabilities of chains of isotopes and isotones [9], [10]. In particular,

the effective hamiltonians for Ru [11] and Sm [12] isotopes were determined, i.e., the best choice of

the parameters of the general IBM-1 hamiltoniml that reproduced the corresponding experimental

data. Using these effective hamiltonians we construct their cncrgy surfaces and show that their

critical points follow a curve in the parameters space organized by the Cusp Separatrix. This let

us to know: i) How many equilibrium configurations yield the system and ii) If the behaviour of

the model around the critical points may or may not be approximated by an harmonic oscillator.

In the Second Section we review how the energy surfaces can be determined considering a

hamiltonian constructed ill terms of the generators of a Heisenberg-Weyl algebra. In the Third

Section a brief summary of the IBM-1 is presented. In the Fourth Section, an analysis of the

shape and stability of the most general energy surfaces of the IBM-1 is made, also the curves

associated to the Ru and Sm isotopes arc plotted in the parameters spacc. Finally some remarks

arc indicated ill the last section.

2 Energy Surfaces of Algebraic Models

Tile energy surfaces (ES) of algebraic models can be determined by means of the coherent states

of the associated algebraic structure of the hamiltonian. As an cxamplc, a hamiltonian written in

terms of thc generators of a Hciscnbcrg-Wcyl algebra is considered, i.e.,

H=cob tb+c2 (bt2+b 2)+el (b t+b), (i)

wherc the operators bt and b satisfy standard creation and annihilation commutation relations.

Although this hamiltonian can bc solved analytically by 'means of a Bogoliubov transformation,

wc use it to illustrate the procedure to construct the coherent states and the ES of an algebraic

model.

The coherent state is defined by the action of the raising generator on the vacuum state [1]

I-) = exp( " bt)10). (2)

The Baker-Campbell-Hausdorff formulas can be used to calculate the overlap of two coherent

states and the coherent state representation of the creation and annihilation boson operators

(_'la) = exp (_'_') ,

0

( lb =

Then the energy surfacc is given by

(3)

((_lbt = _(a'l • (4)

E(a) - lira Hlcr)
o'-*o <"'l") (5)
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Substituting the expressions (1), (3) aud (4) into the previous one, one gets the result

E(p) = (Co + 2c2)p 2 + 2clp ,

where the reality condition a - a* - p was also used.

(6)

3 The Interacting Boson Model

In 1975 this model [4] was introduced to describe collective properties of even-even nuclei far from

closed shells through the interactions between two kinds of bosons, one with angular momentum

L = 0 (the s-boson) and anothcr with angular momentum L - 2 (thc d-boson). The six possible

boson states give risc to a U(6) group structure. Thc bosons represent pairs of fcrmions, the

s-boson reflects the strong pairing attraction of identical nucleons whereas the d-boson is a result

of the weaker J = 2 + attraction [4]. Thcrefore nuclei arc pictured as systems of s and d bosons,

whose number is equal to half the number of the valence nucleons, the core being considered inert.

When a shell is more than half full, hole-pairs are counted instead of particle-pMrs.

The most gcncral one and two body hamiltonian that conserves thc total number of bosons is

HIBM = £, N_ + Ed Nd +
2 _ + 1 [[d t x d t] It.] x [d x d] [t.]] [0]

L=0,2,4

'U0

+ _ ([[d t xd t][2]xd][°]s+s t [d t x[d xd][2]][°] )

+ V ([[dt x d t] [0] s 2 + st2 [d x d] [0])

+ v/5u0 s ts[d t x0][°]+u2s t2s 2, (7)

where the sets of boson operators s, s t and d_,, d_, satisfy the following, diffcrent from zero, com-
mutators

Now, we construct the cohcrent state of a six dimcnsional harmonic oscillator, following the

procedure indicatcd in thc previous section. However in this case the associated group is compact

and then we restrict the cxponcntial to only one term of thc Taylor series expansion,

IN, a)= Alv(s t + E
tt

(9)

where AN is the normalization constant. Evaluating the corresponding Eq.(5) one arrives to the

formulae for the energy surface of the modcl [8], i.e.,

/32 N (N - 1) _4
E(fl, 7)=Ne(l+fl2) + (1+_2)2 (al +a2/_ acos37+a3_ 2+u2) , (10)

where it was used that the laboratory variables a_ can be expressed in terms of two intrinsic

paramctcrs _ and "rplus threc Euler angles. Besides as the energy surface is a rotational invariant
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all tile dependence in the Euler angles disappear. The parameters al, a2, a3, and _ of the Eq.(10)

are combinations of those that appear in the IBM-1 hamiltonian (7)

Co c2 9c4 (11)
a,-

a2 = -i_v0 , (1 2 )

2 (13)
a3 -- vf_v2 -4" u0 ,

e' = e,_- e, . (14)

4 Shapes and Stability of Energy Surfaces

The energy surfaces define functions of state variables and a set of parameters, and the Catastrophe

theory is used to analize their equilibrium configurations. This formalism let us organize all the

possible shapes of the ES into well defined separated regions of the parameters space.

To illustrate how this is done, wc consider the potential energy surfaces (PES) of the simplest

version of the Generalized Collective Model [5], i.e.,

V(fl, 3'; C2, C3) = _4 _ C3 _3cos33" + C2 _2 . (15)

The equilibrium or critical points arc determined by solving the equation vV(_,'r) = 0. The

results are given by (0, 0) and (rio, 70), with

3c3 + - 32c2
/3o= 8 , 3'o=0, r/3. (16)

The set of degenerated critical points defines a locus in the parameters spacc which is called the

Separatrix. This can bc obtained through the determinant of the Hessian matrix or by other

procedures, in this case it is immediate that the critical points are double degenerated if the

parameters satisfy the expressions

9C32-32(72 = O, (17)

C2=0, C3 # O. (18)

For the expression (17) the critical points are localized in/3o = 3Ca/8 while for (18) in _0 = 0.

Besides, it is straight to prove that if C2 = 0 and 5'3 = 0 the critical point is triple degenerated

and localized at/30 = 0. The Separatriz of the system is shown in Fig.1. It divides the space in

regions each characterizing a typical shape yield by the model. By means of the transformation

= y + C3/4 the Separatriz is taken to the canonical form of the Cusp catastrophe.
Now we study the equilibrium configurations of the energy surface associated to the IBM-l,

which is given in Eq.(10). Then we calculate the critical points by taking the derivatives with

respect to/3 and 7 variables. It is straightforward to see that the critical points correspond only

to "7 = 0 (prolate case) or 3' = r/3 (oblate case). Therefore we can restrict to the prolate case,
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without losing generality. The energy surface (10), with 7 = 0, can be re-written ill terms of the

following l)arametcrs

2u2(N- i) - (N- 1)aa - c

"I = 2at(N- I) - (N - l)a3 + c ' (19)

2a2(N - i)
- (20)

r,_ -- 2al(N - 1) - (N - 1)a3 + _ '

and it takes the form

1

s(_) - (1+ _2)2{_' + ,. _2(_2+ 2)- ,._3}, (21)

where E(fl) -- E(fl,3' - O)/N - e, - u2(N - 1). One has to notice that the oblate case can be

regained by interchanging r2 by -7"2 or equivalently a2 by -a2.

::/0.2 ........

0.1

O4
¢.) 0

-0.1

-0.2 ................................................................................................................................................................................

-1 -0.5 0 0.5 1

C3

FIG. 1. Separatrix for the Bohr Mottclson Hamiltonian

To find the extrcma in fl of the Eq.(21) one needs to solve the equation

,6 (7"2/_3 + 4/? 2- 3r2fl + 4ri) = 0. (22)

From this expression, one determines the locus in the parameters space (r2, rl) of degenerated

critical points. Then the Scparatri:r. of the model is defined by the curves

+ (16 -I- 9r,_) 3/2 32
"' = 54,'_ 27r_ 1 , (23)

rl = 0. (24)

This Scparatriz is sho_n in Fig.2 and it corresponds to the Cusp cat_strol)h(_ _dthough it does not
has the canonical form.
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FIG. 2. Separatrix for tile IBM-1 Hamiltonian

Now we applied tile results to find the shapes and stability of the Ru and Sm isotopes. For

the Ru case, one has the number of valence protons pairs, N_ = 3. As we consider isotopes with a

mass number varying fl-om A - 98 - 110, the corresponding number of neutron bosons runs from

Nv = 2 to Nv = 8. Thus the size of the space in the IBM-1 is determined by the total number

of bosons, which is the sum of the numbers of proton and neutron bosons. In the Sm case, one

has the number of proton bosons, N_ = 6, and as we take into account A = 148- 160, the

number of neutron bosons runs from N_ = 2 to N, = 8. An analysis of their energy spectra and

electromagnetic transitions using the hamiltonian (7) is made in [11] and [12]. For both isotope

chains, the parameters used are presented in the first eight colunuls of Table I. Substituting these

parameters into the equations (11) to (13) we get the values of ai , a2 and a3. These are given in

the last three columns of Table I, by means of which one can easily construct the corresponding

energy surface of each nucleus.

To find the region of the Separatrix, Fig. 2, where the different isotopes are localized one

calculates the parameters rt and r2 through the equations (19) and (20), as functions of the total

number of bosons. For the Ru, one gets the expressions

990.2 4. 146.2(N - 1)

rl = 990.2 4- 40.2(N- I) '
r2 = 0, (25)

while for the Sm isotopes the parameters arc

2171.24. 258.3 (N - 1) 86(N- 1)

rl = 2171.24, 151.2 (N- 1) ' r2 = 2175- 151(N- 1) "

The localization of the l_oints (25) and (26) are shown in Fig. 3 and Fig 4, respectively.

(26)

TABLE I. Parameters, in KeV units, used to describe the Ru and Sm isoto >e chains

Co c2 c4 Uo u2 Vo v2 az a2 a3

Ru 990.2 -185.4 -77.4 -.0.4 -53.0 23.3 0 -52.1 -29.7 0 -52.1

Sm 2170.6 -613.7 -318.8 -377.6 227.4 0.4 89.9 -33.0 -204.1 -43.0 -256.9
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FIG. 3. Plot of the points (25) associatcd to thc Ru isotol)cs chain.

1
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FIG. 4. Plot of the points (26) associated to tile Sm isotopes chain.

5 Conclusions

For tile Bohr-Mottclson model tile yicldcd shapes and equilibrium configurations arc classified by

thc Scparatrix of Fig.1. Onc call idcntify four regions: (i) Abovc thc parabola, thc PES have onc

minimum at fl = 0. ii) Bctwccn thc l)arabola and thc C2 axis, in the PES appcar additionally

a sccond minumum at fl _ 0. iii) Below thc Ca axis the PES havc two mimima at fl _ 0 and
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tile maxinm,n occurs at fl = 0. The PES around these critical points can be approximated by

an harmonic oscillator, iv) On the locus of points that define the Separatrix, we have shape

transitions and in the vccinity of the critical points (16) the PES cannot be approximated by

quadratic functions. It is important to remark that tile PES have a mirror synunetry along the

Ca axis, which physically represents transitions from prolate to oblate shapes.

For the IBM-1 hamiltonian one gets (see Fig. 2): (i) For positive values of 7"1 one has two

regions, above the curve the ES present one minimum at fl = 0 and below the curve they have

a second minunmm at fl :)t 0. ii) For negative values of rl one has again two regions, above the

curve the ES are built with two minima at fl _t 0 and a maxinmm at fl = 0 and below of it,

the ES have one mi,nimum point at fl # 0 and a maxinmm at fl = 0. For the critical points

mentioned above the energy surfaces can be approximated by an harmonic oscillator, iii) Finally

on the Separatrix, thcrc are shape transitions, and in the vecinity of their critical points the ES

cannot be approxinmtcd by quadratic fimctions. It is important to remark that thesc ES have

also a mirror symmetry along the r2 axis, representing transitious fl'o,n prolate to oblatc shapes.
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Abstract

A Ramanujan-type representation for the Askey-Wilson q-beta integral, admitting the

transformation q _ q-l, is obtained. Orthogonality of the Askey-Wilson polynomials with

respect to a measure, entering into this representation, is proved. A simple way of evaluating

the Askey-Wilson q-beta integral is also given.

1 Introduction.

The Askey-Wilson polynomials p_ (x; a, b, c, dlq) [1], which have already become classical, represent

a five-parameter system of polynomials. They satisfy the orthogonality relation

1

/pm(x;a,lb, c, dlq)p,_(x;a,b,c, dlq)w(x;a,b,c,d]q)dx=_,_,_I,_(a,b,c, dlq ) (1.1)
-1

with respect to the absolutely continuous measure doL(x) = w(x)dx, with the weight function

1 h(cos 20, 1; q)

w(x;a'b'c'dlq) - sinOI-Iv=,,b,c,dh(cosO, v;q)' x=cos0,

(1.2)
O0

h(a,b;q) = 1"I(1 - 2abq j + b2q2J).
j=O

As special and limiting cases, the Askey-Wilson polynomials contain many known systems of

polynomials (see, for example, [2]). In particular, the choice of the parameters a = -b = v/-fl,

c = -d = v/q-fl, leads to the continuous q-ultraspherical polynomials C,,(z; _lq) [31, i.e.,

pn(x; V/-_,-V/-fl, _q-_,-V/_Iq) = (_2; q)2n(q; q),_
(fl, _/2; q), C'_(x;_lq), (1.3)

1Permanent Address: Institute of Physics, Academy of Sciences of Azerbaijan, Baku.370143, Azerbaijan. Visi-

ting Scientist at IIMAS-UNAM/Cuernavaca with Chtedra Patrimonial CONACYT, Mdxico.
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where we have used the standard notation of the theory of q-special functions

n-1 k

(a;q),_ = l'I(1--aqJ), (al,...,ak; q), -- l'I(a/;q),_. (1.4)
j=0 j=l

In turn, from C,_(x; _[q) one can obtain the continuous q-Hermite polynomials H,(xlq) =

(q; q),,C,(x;O[q), the Gegenbauer (ultraspherical) polynomials C_(x) = limq--.a C,_(x;q_[q), and

also the Chebyshev polynomials of the first and second kinds, T,(x) and U,_(x), by taking the

limit _ --* 1 or by putting _ = q in C,(x; _lq), respectively.

The key ingredient of the original proof of the orthogonality (1.1), which led to the discovery

of the Askey-Wilson system of polynomials (see the discussion of this point in [4] ), was the

evaluation of the Askey-Wilson q-beta integral:

27r( abcd; q)_I°(a'b'c'dlq) = w(x;a'b'c'dlq)dz = (q, ab, ac, ad, bc, bd, cd;q)¢¢'
-1

(1.5)

max_==,b,c,dlvl< 1, Iql < 1.

The integral (1.5) has acquired its name because in a special case, when the parameters a =

q_+1/2, b = _q_+1/2, and c = -d = ql/2, the q --* 1- limit of Io(a, b, c, d[q) is the beta function

( or Euler's integral of the first kind )

1

/(l_z)_(l'_+z)Zdx=2_+Z+lB(a+l,_+l)=2 _+z+lr(a+l)r(_+l) (1.6)r(_ + _,+2)
-1

A nonstandard form of the orthogonality on the full real line for the continuous q-Hermite

polynomials//,(sin xx[q), q = exp(-2g2), was considered in [5]. It turned out that if one uses the

modular transformation and the periodicity property of the 0-function appearing in the weight

function for these polynomials, the finite interval of orthogonality can be transformed into an

infinite one. This technique is of interest both from a mathematical point of view and from the

point of view of possible applications in theoretical physics, beginning with a number of problems,

related with q-oscillators (see the review [6] ).

The purpose of this article is to discuss the applicability of this idea to the more general case,

i.e. to the Askey-Wilson q-beta integral (1.5) [7, 8]. To simplify consideration it will be assumed

in Sections 2-4 that Iv] < 1 , v = a, b, c, d, and that the parameter q = exp(-2x 2) satisfies the

requirement 0 < q < 1. The possibility of extending these results to other values of the parameters

is discussed in Section 5.

2 A Ramanujan-type representation for the q-beta inte-

gral.

From the point of view of symmetry the parametrization x = sin _ is most convenient; it corres-

'_ '_ < < _ in formula (1.2). Consequently, the leftponds to the change of variable 6 = _ - _, -_ _ _ _
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o,ae of (1.5) is equal to

Io(a,b,c, dlq ) = h(- cos 2ip, 1; q)
-,,12 I-Iv=_,d,c,d h(sin ip, v; q)

dip. (2.1)

Comparison of the numerator

oo

h(- cos2ip, 1; q) = 1_(1 + 2q j cos 2ip + q2j)
j=O

of the integral (2.1) with Jacobi's expression for the theta-function 92(z, q) = 02(z]r), q = exp(_rir)
as an infinite product [9]

oo

02(z, q) = 2ql/4(q2;q_)_cosz 1-'[(1 + 2q 2j cos2z + q4j),
j=l

(2.2)

shows that

2 cos ip

h(- cos 2% 1; q) = qa/S(q; q)_ 92(ip, qa/2) (2.3)

and therefore

2 [r/2 02(ip, ql/2) cos ip

I°(a'b'c'dlq)- ql/S(q;q)__/,_ I-[,,=_,,b,c,dh(Sin ip, v; q)

With the aid of the modular transformation [9]

I

dip. (2.4)

exp(- i2 ) ix 2
7FT /

O2(ZIT) - (_iT)l 04(ZT--1]--T-1), T = --,71.
(2.5)

and the change of variable ip = xx, the integral (2.4) can be written as

r/2,¢

Io(a,b,c, dlq ) - ql/S(q;q)= ° f
-r12_

O4(-ixt¢ _ C -x2 COS _X

I-Iv=_,b,c,d h(sin xx, v; q)
dx. (2.6)

Using the expansion
oo

04(z,q)= _ (--1)k qk2e2ik_ (2.7)
k_--(x)

and taking into account the uniform convergence of the series (2.7) in any bounded domain of

values of z [9], we substitute (2.7) into (2.6) and integrate this series termwise, i.e.,

,,12,, e_(:_+,,i,,k)_

2v/-r _ / cos xzdzIo(a,b,c,d]q)- ql/S(q;q)_ Y_ (-1) k
k=-o_ -_/2_ 1-L=_,b,_,a h(sin xx, v; q)"

(2.8)
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_-k x'_'"- _(k ½) <xk< _(k+½)=x_ :x and an accountThe change of variable xk = x + . , - - _ -
ma, _ x_i- allows to sum the right-hand side of (2.8) with respect to k andfor the relation Xk_ 1 --

represent (2.8) in the form

io(a,b,c, dlq)_ .2v__ io(a,b,c, dlq)- 2v_ f e-X2cos'cxdx (2.9)
ql/S(q; q)oo ql/S(q; q)oo_o _ I-I,,=,,,s,c,d h(sin _x, v; q)"

Thus, combining formulas (1.5) and (2.9) yields the following representation for the Askey-Wilson

q-beta integral [7]

f gC_q}(abcd;q)°° (2.10)]o(a,b,c, dlq) =- P(xx;a'b'c'dlq)e-_:2c°sxxdx = (ab, ac, ad, bc, bd, cd;q)oo'
--00

where, in accordance with the definition (1.2),

p(x;a,b,c,d[q)= II h-a(sinx,v;q) =
v=a,b,c_d

II eq(ive-i_)eq( -ive'_)'
v=a,b,c,d

(2.11)

and eqCz) = (z; q)_l is the q-exponential function [21.
We note that each factor h-X(sin xx, v; q), v = a, b, c, d, in the integrand (2.10) is represented

as

h-l(sint:x,v;q) = __,(iv)" (--1)kexp[--i(n-- 2k)tcx] (2.12)
,=0 k=0 (q; q)k(q; q),_-k '

if one uses the generating function for the continuous q-Hermite polynomials H,_(xlq)

oo n.(cosOlq) t.
(tei°,te-i°;q)_ol = y] (q;q).

rt-----O

Itl < 1, (2.13)

and their explicit representation [2]

H.(cosOiq)= _'_ [nk] ei('_-2k' O, (2.14)
k=O q

where the symbol [_]_ denotes the q-binomial coefficient [2]. Therefore the integration over x in

(2.10) is reduced to the Fourier transformation formula for the ground state of the linear harmonic

oscillator oo

1 (2.15)
v/_ f exp(-x2/2 + ixy)dx = exp(-y2/2).

--OO

An explicit evaluation of the nonstandard form of the Askey-Wilson q-beta integral (2.10) will

be discussed in greater detail in Section 4.
As mentioned above, the weight function (1.2) with the parameters a = -b =/31/2, c = -d =

aqa/2, corresponds to the continuous q-ultraspherical polynomials C,,(x; fllq). The relations [2]

(a;q)oo = (a, aq;q2)oo, (a,-a;q)oo = (a2;q2)oo,
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enable the representation (2.10) for this particular case to be simplified to

oo

exp (-x 2 + iax)dx

f (-flexp(2ixx),-/3exp(-2ixx);q)oo
--oo

x/'-_q'/S(_3, qfl; q)_

If one compares (2.16) with the Ramanujan integral ( q = exp (-2k2), ]ql < 1) [10, 11]

(2.16)

oo

/ e-x2+2rnxeq(aql/2e2ikx)eq(bql/2e-2ikZ)dx--' V/-_em_ E 2irnk -2irnk
-_ (qab;q)_ q(aqe )Eq(bqe ), (2.17)

it is easy to verify that (2.16) agrees with (2.17) if one sets 2rn = ik = _a and a = b = __ql/2.

3 Orthogonality of the Askey-Wilson polynomials with

respect to the measure p(tcx; a, b, c, d q).

A direct proof of tile orthogonality for the Askey-Wilson polynomials

co

f pro(sin gx;
--OO

a,b,c, dlq)P,_(sin_x;a,b,c,d]q)p(tzx;a,b,c, dlq) exp(-x2)cos_xdx =

=SmnL(a,b,c, dlq) (3.1)

with respect to the weight function appearing in the nonstandard integral representation (2.10), is

analogous to the proof of eigenfunctions orthogonality for the Sturm-Liouville differential equation

[12] . Indeed, the difference differentiation formula for the Askey-Wilson polynomials [1]

sin a0_ p,_(sin tcx; a,b,c, dlq ) = (3.2)

= q-,#2 ( 1 - q n)( 1 - abcdq'_-I ) cos tcx P,_-I (sin tcx; aq 1/2, bq'/2, cq 1/2, dql/2lq)

provides a lowering operator for these polynomials. To find a raising operator one can use the
relation

202(_'ql/2) p(_;a,b,c, dlq) (3.3)
w(sin _; a, b, c, dlq ) - qa/S(q; q)o¢

which follows from (1.2), (2.3) and (2.11), and write the difference equation for the Askey-Wilson
polynomials [1] in the form

sin x0_ t_2(xx, ql/2) 't_x ]
COS tcX fl( ;aql/2' bq'/2' cql/2' dql/21q) sin x0_p,_(sin xx; a, b, c, dJq)] =

(3.4)

= (1- q-")(1 -abcdqn-a)cosxxO_(xx,q'/2)p(xx;a,b,c,d[q)p,_(sin_x;a,b,c,d]q).
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Now, using the difference differentiation formula (3.2) in the left-hand side of (3.4) and the perio-

dicity property of the 0_-function [9],

t92(z -t- 7rT, q) = q-1 exp(_2iz)O2(z,q), q = exp (Triv), (3.5)

we arrive at the raising operator

(sin 2ax cos a0_ - cos 2xx sin xa_)p(tcx; aq 1/2, bq 1/2, cq _/2, dql/2[q)

|--rt

pn__(sintcx;aqi/2, bql/2, cql/2, dql/21q ) = q 2 cosxxp(ax;a,b,c,d]q)p,(sintcx;a,b,c, dlq). (3.6)

We are now in a position to give a direct proof of the orthogonality relation (3.1). We multiply

both sides of the equality (3.6) by pro(sin ax; a, b, c, dlq ) exp (-x 2) and integrate in x over the full

real line. As a result we obtain in the right-hand side,

OO

q_-_ f Pro( sinxx;a,b,c'dlq)p'_(sintcx;a'b'c'd'lq)p(xx;a'b'c'd]q)e-*2c°stcxdx --

I--n"

q-_-Im,,(a,b,c, dlq). (3.7)

The left-hand side

oo

f dxp_(sin xx; a, b, c, dlq)e -:_2(sin 2gx cos aO:_ - cos 2xx sin _¢0_)
--00

p( tcx; aq _/2, bqx/2 , cq 1/2 , dql/2lq) pn-, (sin xx; aq _/2 , bq _/2 , cq _/2 , dql/2lq),

can be integrated by parts with the aid of (3.2) and the evident relations

(3.8)

--OO --OO

(3.9)

J dxf(x)sinxOxcp(x)=- ] dxcp(x)sinaO_f(x),
--00 --CO

which apply to (3.8) because the function p(tcz; aq 1/_, bq1/2, cq i/2, dq_/21q) has no singularities inside

of the strip -g<y_<a, -cx_<x<oo in the complex planez=x+iy. This leads to

q _-_ (1 - qm)(1 - abcdq '_-_ )Im-1_-1 (aq 1/2, bq 1/2, cq 1/2, dql/21q)" (3.10)

Equating the right-hand (3.7) and left-hand (3.10) sides thus yields

q "_" Iron(a, b, c, d[q) = (1 - q'_)(1 - abcdq m-1 )Ira-l=-1 (aq 1/2, bq 1/2, cq 1/2, dql/2]q) • (3.11)
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We now interchange m and n in (3.11) and take into account that the integral Iron(a, b, c, dlq )

is symmetric in rn and n due to the definition (3.7), i.e.,

q'_"I,_,_(a,b,c, dlq) = (1-q'_)(1-abcdqn-1)Im-1,-l(aql/2, bqa/2, cql/2, dql/21q ). (3.11')

Finally, multiplying both sides of (3.11) by (1 - q")(1 - abcdq '_-a) and of (3.11') by (1 - am)(1 -

abcdq ''-1) and subtracting the second expression from the first, we get

(q'_-" - q_-_)(1 - abcdq m+n-_)Im,,(a, b, c, dlq ) = 0. (3.12)

From (3.12) it follows that Im,_(a,b,c,d[q)= 6m,_I,(a,b,c,d]q), confirming the orthogonality (3.1)

of the Askey-Wilson polynomials for m _ n [8].

We note that as special and limiting cases, (3.1) contains the orthogonality relations for other

known sets of polynomials, such as the continuous q-ultraspherical polynomials C,_(x; fl]q), the

continuous q-Hermite polynomials Hn(x; q)= (q; q)n C,_(x; O]q) (the corresponding special case of

(3.1), when the all parameters a, b, c, d are equal to zero, is considered in [5] ), the Chebyshev

polynomials of the first and second kinds, Tn(x) and U,_(x), and so on.

4 Evaluation of the integrals .In(a, b, c, dlq ).

Iterating the recurrence relation

In(a,b,c, dlq ) = (1 - q")(1 - abcdqn-1)L__l(aqa/2, bqa/2, cql/2, dql/21q), (4.1)

which follows from (3.11) or (3.11') when m = n, allows to express the normalization inte-

grals L,(a,b,c, dlq), n = 1,2,..., through a known value of the Askey-Wilson q-beta integral
Io(a, b, c, dlq), i.e.

(q, ab, ac, ad, bc, bd, cd; q),_ ]o( a, b, c, d]q ). (4.2)
in(a, b, c, dlq ) = (1 - abcdq2n-a)(abcd; q)n-1

It only remains to evaluate the integral ]o(a,b,c, dlq ) itself. To this end, having defined the

symmetrical p+(x) and antisymmetrical p_(x) combinations with respect to the inversion x

--X,

p+(x;a,b,c, dlq)= ½[P(X; a,b,c, dlq)-4- p(-x;a,b,c, dJq)] , (4.3)

it is convenient to rewrite (2.10) as

oo

]o(a,b,c, dJq) = f dxexp(-x 2 + ixx)p+(xx;a,b,c, dlq). (4.4)
-- 00

Let us carry out the replacements v ---* Vv/_, v = a, b, c, d, and the subsequent shift of the variable

of integration x ---+ x + in in (4.4). (We remind that the function p(xz; aq 1/2, bqa/2, cqa/2, dql/2lq )

does not have singularities in the strip -x < y < x, -cx_ < x < c¢ of the complex plane z =

x + iy ). Then, taking into account that in accordance with the definitions (1.2) and (2.11)

p(x(x + ix);aql/_,bql/2, cql/_,dql/:lq ) = p(xx;a,b,c, dlq ) YI (1 +ivexp(ixx)), (4.5)
v=a,b,c,d

159



we obtain

Io(aq 1/2, bq 1/2, cql/2, dql/21q ) = (1 - s2)]0(a, b, c, dlq)+

(4.6)

+s4 / dxexp( -12 + 3ixx)P+(xx;a,b,c, dlq)-is3 f dxexp( -x2 + 2ixx)P-(xx;a,b,c, dlq),
--00 _ 00

where

82 = ab + ac + ad + bc + bd + cd,

(4.7/

s3 = abc + abd + acd + bcd, s4 = abcd.

It remains only to express the second and third integrals in the right-hand side of (4.6) in terms

of io(a,b,c, dlq). To that end one can use the n = 1 case of (3.6)

(sin 2xx cos x0_ - cos 2tcx sin a0_)p(ax; aq 1/2, bq,/2, cql/2, dql/21q ) =

(4.8)

= [(1 - 84) sin 2tcx + (83 -- s, ) cos tcx]P( tcx; a, b, c, dlq),

taking into account that po(z;a,b,c, dlq) = 1, p, (x; a, b, c, dlq) = 2(1 - s4)x + sz - s, and s, =

a + b + c + d. The symmetrization of (4.8) leads to the relations

(sin 2s;x cos a0_ - cos 2ax sin x0_)p+(xx; aq '/2, bq '/2, c q,/2, d ql/2lq ) =

(4.9)

= (1 - 84) sin 2_z p+(_x;a,b,c,d]q)+ (sz - s,) cos _z p_:(tcx;a,b,c, dlq).

Multiplying both sides of the equality (4.9) for the antisymmetrical combination p_(xx) by

exp(-x 2) and integrating over the variable x yields

oo

(1 - 84) f dxexp( -x2 + 2itcx)P-(xx;a,b,c, dlq)=i(s, - s3)Io(a,b,c, dlq).
--(X)

(4.1o)

Now we multiply both sides of (4.9) for p+(tcx; aq '/2, bq _/2, cq 1/2, dq_/21q) by exp (-x _ + ixx)

and integrate over x . Using (4.10), the result can be written as

oo

f dxexp( -x2 + 3itcx)p+(_x;a,b,c, dlq)=
--00

(4.11)

(s3 - s,) 2] ]o(a,b,c, dlq )
(1 s-_J

1 - q Io(aq'/2, bq,/2, cql/2, dql/2[q).
1 - s4
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Substituting (4.10) and (4.11) into (4.6), we find

(1 - abcd)(1 - qabcd) ]o(aq 1/_, bq 1/2, cq 1/2, dql/2[q) =

(4.12)

= (1 - ab)(1 - ac)(1 - ad)(1 - bc)(1 - bd)(1 - cd) io(a, b, c, d[q).

Since 0 < q < 1, by iterating equation (4.12) one can express the Askey-Wilson q-beta integral

(2.10) with arbitrary parameters in terms of its value for vanishing parameters a, b, c, d, i.e.,

(abcd;q)oo I0(0, 0, 0, 0[q).
Io(a, b, c, d[q) = (ab, ac, ad, bc, bd, cd; q)oo (4.13)

The value of/0(0,0,0,0lq) is easily found from (2.10) and (3.1) with the aid of the Fourier

transformation formula (2.15) for the quadratically decreasing exponential function, i.e.,

i0(0, 0, 0,0lq) dxexp(-x 2 -4-ixx) = v_q 1/s. (4.14)

Combining formulas (4.13) and (4.14) leads to

[o(a,b,c,d[q) = v/_q'/S(abcd;q)_
(ab, ac, ad, bc, bd, cd; q)_ '

(4.15)

which is the known value of the Askey-Wilson q-beta integral [1]

2v'_ - 2r(abcd;q)o_

Io(a,b,c,d[q)- qa/S_,q)ooIo(a,b,c,d[q)= (q, ab, ac, ad, bc, bd, cd;q)o_"
(4.15')

Substituting (4.15) into (4.2), we finally obtain the explicit form for the normalization integral

V/-_ql /S( q; q )n( abcdqn-' ; q )_

],_(a, d, c, d[q ) = (1 - abcdq 2n-')(abq '_, acq '_, adq n, bcq '_, bdq '_, cdq,_; q )oo" (4.16)

The complications arising in the evaluation of the standard form of the Askey-Wilson q-beta

integral (1.5) can be illustrated by the following short quotation from reference [4]: "This was

surprisingly hard, and it has taken over five years before relatively simple ways of evaluating this

integral were found".

5 The transformation q --. q-1 .

It is necessary to emphasize that the nonstandard orthogonality relation (3.1) admits the trans-

formation q ---. q-a [7, 8]. The standard form of the Askey-Willson integral (1.5) does not in

general have this property. Even in the simplest case of vanishing parameters a, b, c and d, which

corresponds to the continuous q-Hermite polynomials Hn(x[q), the definition of a weight function

for the system of polynomials h,_(x; q) = i-'_H,,(izlq -1) requires a special analysis [13, 14].

161



Since

(z; q-1)c¢ _-- (qz;q)_ 1, (5.1)

the change q -_ q-1 (i.e. x --* it¢) in the function p( ax; a, b, c, dlq) appearing in (2.10) and (3.1),

transforms it into

P(itcx;a,b,c, dlq-a) = l'I ( ivqe'_:'-ivqe-'_;q)°°= YI Eq(ivqe-'_:)Eq(-ivqe'_:_), (5.2)
v=a,b,c,d v=a,b,c,d

where Eq(z) = e-_l(-z) = (-z;q)oo [2]. Therefore, under the transformation q _ q-X, the

orthogonality relation (3.1) for the Askey-Wilson polynomials with the parameter q < 1 converts

into the following orthogonMity relation for the Askey-Wilson polynomials with q > 1:

/5ooPm(i sinh _x; a, b, c, dlq -_) p,_(i sinh _x; a, b, c, dlq-1) p(ixx; a, b, c, dlq -_ ) e -_ cosh _xdx =

_,nnL(a,b,c, dlq-1) (5.3)

The explicit form of L_(a, b,c, dlq -_) is readily obtained from (4.16), upon making use of the

formulas (5.1) and (a;q-1)n = (a-t;q)n(--a)nq -n(n-1)/2 [2].

On the other hand, with the aid of the explicit representation for the Askey-Wilson polynomials

[1, 2]

Pn(sincp;a'b'c'dlq)= (ab'ac'ad;q)na-'_4¢3 [ q-n'abcdq'_-l'iaei_'-iae-iv ]ab,ac, ad ; q' q (5.4)

and the inversion formula (with respect to the transformation q ---* q-l) for the basic hypergeo-

metric series 4¢3 ( see [2], p.21, exercise 1.4(i) ), it is easy to show that

p,_(x;a,b,c, dlq_l) = (_l)n(abcd),_ q-_n(n-i) pn(x;a-l,b-l,c-l,d-llq). (5.5)

Consequently, from (5.3) and (5.5) it follows the orthogonality relation

(x)

f p,,_(i sinh
gX; a -1 , b-1 , c -1 , d-' Iq)p.(i sinh ix; a -1 , b-x , c -1 , d -1 Iq)p(ixx; a, b, c, dlq -1 )*

e
coshxxdx = (q, 1/ab, 1/ac, 1/ad, 1/bc, 1/bd, 1/cd;q)n ]o(a,b,c, dlq__)&,,,

(1 - q2_-x/abcd)(1/abcd;'q),_-i

(5.6)

for the Askey-Wilson polynomials with the parameters Iv I > 1, v = a, b, c, d and 0 < q < 1. The

value of the integral Io(a, b, c, dlq -1) is simple to obtain from (4.15) by means of the formula (5.1).
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6 Concluding remarks.

The orthogonality relations (3.1) and (5.6) are bound to be related by the Fourier transforma-

tion for the Askey-Wilson functions, analogous to the well-known transformation for the har-

monic oscillator wave functions Hn(x)exp(-x2/2) ( or Hermite functions in the terminology

of mathematicians [15, 16] ) connecting the coordinate and momentum realizations in quan-

tum mechanics. It should be interesting to compare this Fourier transformation with the q-

transformations, that reproduce the Askey-Wilson polynomials [17, 18]. For the q-Hermite func-

tions H,_(sin t_xlq ) exp (-x2/2), q = exp (-2x2) , which are the simplest case of the Askey-Wilson

functions with vanishing parameters a, b, e, and d, such Fourier transformation has the form [5]

OO

1 ,

/ exp (ixy- x2/2)Hn(sin
--OO

tcxIq)dx = i'_qn2/4 h,(sinh xylq ) exp (-y2/2).

The general case needs to be analyzed in greater detail.
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Abstract

It is shown that the even and odd coherent light and other nonclassical states of light

like superposition of coherent states with different phases may replace the squeezed light in

interferometric gravitational wave detector to increase its sensitivity.

1 Introduction

The problem of detecting gravitational wave has been a subject of interest for many years [1]. Spe-

cially the quantum sensitivity of Michelson interferometric gravitational wave detection (GWD)

has been discussed by Caves [2]. In Michelson interferometer, the light from an input laser beam

splits through a 50-50 beam splitter (BS), bounces back and forth between two end mirrors of

interferometer and recombines again at the BS. The intensity at one or both output ports of the

interferometer provides informations about the difference between the two displacements of the

end mirrors. The quantum mechanical treatment of the syitem shows that the vacuum fluctua-

tions enter in to the interferometer from the unused port and result in a limit on the optimum

power of the input laser, which comes out to be quite large and of no experimental interest.

Caves [2] suggested that by squeezing the vacuum, the optimum power of the laser can be reduced

considerably. Squeezed states [3] of an electromagnetic field are non-classical states in which the
quantum fluctuations ill one quadrature can be reduced below the standard qhantum limit at the

expanse of the increased fluctuations in the other quadrature such that the Heisenberg uncertainty

principle remains valid.

It is also interesting to try to use the other non-classical light in the place of squeezed light and

study its effect on the better sensitivity of the interferometer in GWD. The different superpositions
of coherent states because of their non-classical nature are of our particular interest. Yurke and

Stoler [4], have predicted that a coherent state propagating in a dispersive medium evolves into a

superposition of two coherent states 180 o out of phase. Another type of superposition of coherent

states, namely, even and odd coherent states was introduced by Dodonov, Malkin, and Man'ko
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[5]. Even coherent states are closely related to the squeezed vacuum states because they too are

the superposition of even n'hmber of photons but with different coefficients. The non-classical

properties of Yurke-Stoler coherent states and even and odd coherent states have been discussed

in [6]. In Refs.[7] -[10], different theoretical possibilities regarding the generations of even and

odd coherent states have been discussed. The properties of even and odd coherent states as a

representatives of a set of nonclassical light states have been considered recently by Nieto and

Truax [11].

In the following sections we will study the effects of the non-classical light on the optimal power

of the input laser for interferometric GWD. The most general analysis of non-classical states in

interferometry was done by Yurke, McCall and Klauder [12]. We will following the approach

adopted by Ansari et al.[13], in which the noise error can be expressed as a product of two factors

with tensorial-like structure, each of the factors being related to the geometry of an interferometer

and light states correspondingly.

2 Nonclassical Light

In this section we will briefly discuss the properties of three types of superposition of coherent

states, Yurke-Stoler coherent states (YS), even (ECS) and odd (OCS) coherent states.

2.1 Even and Odd Coherent States

The even and odd coherent states may be defined in the form [5]

I/3_>= N_(I/3 > ± I-/3 >), (i)

where + sign is for ECS and - sign is for OCS. [ /3 > is a coherent state and the normalizing
constants N+ are

elZ12/2
N_ --

2\/co hI/31
el_12/2

N_ = 2"sinh ' __]l /l 12" (2)

Also from Eq.(1), we can define the relations

a I/3+ > = /3_/tanh [/3 [2 [/3_ >,

a [/3_ > = /3\/coth I/3 [2 [/3+ >. (3)

With the help of above equations we can easily evaluate the expectation values of first and higher

order moments of annihilation and creation operators of even and odd coherent states. For exam-

ple,

< a >+=</3+ l a I/3+ >=/3_/tanh [/3 12 </3+ I/3- >= O, (4)

166



as even and odd coherent states are orthogonal states. Similarly,

< a_a >+ = [ _12 tanh ] fl l2,

< _f_ >- = I_ I__oth I_ I_,
< a 2 )-t- _ [_2,

<af_>+ = Z "_" (5)

2.2 Yurke-Stoler Coherent States

Yurke-Stoler (YS) coherent states are defined as [4],[6]

1

I Z >r_= _(I/_ > +_'"z_I -Z >). (6)

In terms of number states these states can be defined as

e-1_12/2 ooI/3 >Ys= _ _o (1 + i(-1)") I n >. (7)

The first order moments of YS coherent states are not equal to zero as in the case of ECS or OCS

< a >ys= -i_e -21_12, (8)

and second order moments are

< eta >Ys -= I fll 2,

< a 2 >vs = t32" (9)

We will use different first and second order moments as given in Eqs.(4-9) in the following section,

when we will discuss the important role played by nonclassical light for GWD.

3 Michelson Interferometer for GWD

Michelson interferometer is a two arms device at the end of which two mirrors are attached to

strings, thus behaving as two pendula. The positions of the mirrors are controlled by the joint

action of the restoring force and the radiation pressure [14]. We will suppose that in all process

the dissipative and active effects are negligible and the conservation of energy is ensured.

There are two input field modes described by the operators (hi, a!) at the two ports of the

interferometer. At the end mirrors Mi, the fields are defined by (hi, b!). The output fields at the

two ports P/ are described by (ci,c!). The input fields are related with the fields at the mirrors
through the relations

(_0)
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where

a

b

at =

bt =

al )_a2

°!),
(11)

Also
V =OK, (12)

with

e i*t 0 )= 0 e i¢2 '

In Eq.(13) _ and ( are the complex transitivity and reflectivity parameters of the BS arbitrarily
oriented for the i-th field mode respectively and 4_Ci is the phase distance between BS and Mi.

The relations between the input field and the output fields at the two interferometric ports are

of the form

C -._ Ua_

ci = aiU i (14)

with
U = -KTO2K = --vTv, (15)

where - sign in Eq.(15) corresponds to the phase change on reflection at the mirrors. Thus

from the above equations we can define the relations between different fields by including all the

informations about influence of the BS and the end mirrors Mi.

3.1 Sources of Noise

The accuracy with which the difference in displacement z can be measured is limited by the

Heisenberg uncertainty principle. Following [2], we have two sources of errors namely radiation

pressure error and photon counting noise. The standard quantum limit for a Michelson interfer-
ometer can be obtained by balancing these two sources of error. Radiation pressure error (PR) is

due to the pressure exerted by the field on the mirrors and the photon counting noise (PC) is due

to the fluctuations in the number of photons in the input field. So,

= + (16)
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where

Also

(Azne) 2 = _t,\ me / '

(Az.cI2 = 4c

-2

(17)

2 (bta3b)2 < bfaab_TRP = < > __ > 2,

@c = < (ct_3c)2 > - < ct_3c >2. (18)

In Eq.(17), r is the observation time and m is the mass of the end mirrors. Here we consider that

BS is attached to a large mass M (M >> m), which remained fixed during the observation time.

By using Eqs.(10-15), we can write

a_p = (vt_3v)+k(vtG3v).,.T+k.,.,

@c = (ut_3u)+k(utG3u),..T+k.,., (19)

with the summation over the repeated indices taken from 1 to 2 and

T/k,_n :< a!aka_ma,_ > - < a_ak >< a_ma. >. (20)

Eq.(20) allows us to study the use of different field modes from the input port. By using Eqs.(16-

20), We can write

Az = X, km,Tikm. (ikmn = 1,2), (21)

where Xikm, contains the geometrical and physical properties of the interferometer.

If we consider a 50-50 ideally thin BS which introduces a phase difference of rr/2 between the

reflected and the transmitted waves, then from Eq.(10) and (13), we can write

(oi) (22)Vtgr3V= -i o

and

(UtaaU= -sine cos4 '

where ¢ = ¢2 - ¢1. Also if the interferometer is operated in the dark fringe, then two arms of the

interferometer can be adjusted such that 4 = (2n + 1)_'/2. For dark fringe operation we get

X1212 = X2121 = -A 2 + B 2,

X1221=X21x2 = A 2+B 2. (24)

Also

(hwr ]
a = \---m--_c]'

-X

(+¢+) (25)

169



and

[ _ < CtO'3 c >,

Z = ¢__c (26)
2w"

The variable Z corresponds to the difference between the displacement of two end mirrors with

respect to their mean position due to radiation pressure exerted by the input laser.

(i) The corresponding field contributions can be found from Eq.(20). If we consider that

the input field at port /:'1 is a coherent light and from the second port is in even or odd coherent

states, then the two fields are anticorrelated and the states of these fields can be written as

l¢ >=J a,/3+ >. (27)

For the case of even coherent light we can write the coefficients Tikm,, as

TIlll

T1122

T1212

T1221

T2112

T2121

T2211

T2222

_2

0

-_. _2

_2

_2

.__ O_2

0

=lfl

I _ I__o,
I fl 12tanh I/3 I_+_
I _ I_ tanh I_ I_+ I _ I_ tanh Ifl 12

I_ I__-_'_'

14- ]/3 ]4 tanh 2 ] _12 + i/31_ tanh t /312 , (28)

where 01 is the phase of/3 and we have consider a to be real. Also for OCS we will get the same

expressions as in the above equation except tanh 1t3 12 should be replace by coth I/3 12.

(ii) For the case of Yurke-Stoler coherent states from the second port and the coherent state

from the first port we can define the states as

I¢ >=1 _,/3rs >,

and the new expressions for Tikmn are

Tllll _ O_2

Tl122 = 0

T,2a2 = a 2 I/3 12 e2'°'( 1 + e-41_12)

r_,_, = _ I/31_ _-_°_(1+ _-_l_e)
T2211 = 0

(29)

(30)

where 02 is the phase of fl in the case of YS coherent states. A comparison of Eqs.(29) and (31)

shows the difference between different order correlations between the two types of the input fields

from port P2.

170



3.2 Optimum Input Laser Power

The general expression for (Az) 2 by using Eqs.(21) and (25) becomes

(Az) 2 = A2(T1221 + T2t12 - T1212 - T2121) + B2(T1221 + 712112 + T1212 + T2121). (31)

Minimizing the total error with respect to _2 gives optimal value of _2 (coherent field intensity

from port P1). In the presence of ordinary vacuum fluctuations from the second port, the optimum

intensity of the input laser becomes [2]

v_c 2

2 o (32)(%p,) - 21iw2r .

Caves [2] showed that the optimal laser intensity can be reduced considerably if we squeezed the

vacuum from the second port. We will analyze the situation when the squeezed vacuum is replaced
by the nonclassical light as discussed I_efore.

In the first case, we will study the effect of even and odd coherent states on the optimum value

of a 2. Under the condition of a 2 >>l/3 12 tanh I/3 12, we get

f

[ 2 13 12 tanh 3 j2 +2 [/3 12 cos201 + 1 2 o

= _ (_°p') ,21312 tanh 312-21312cos201+1

and for OCS
/

,od \]21312c°th 312 +21312 cos20, + 1 2 o(2
c%,) = _ 213 12coth 3 [2 -2[3 12cos20, + 1 (C_°Pt) "

Thus for 01 = rr/2 and under the limit 1 <<1 3 ]2<< _2 we get

2 o
, 2 ,ev (OZopt)

t%,) - 2131"

(33)

(34)

(35)

Eq. (35) allows us an alternative way to reduce the optimum input laser power or to increase

the sensitivity of interferqmeter by using even or odd coherent states from the second port of the

interferoeter. As [/3 I>>' 1, from Eq.(35), we predict that the optimum value qf the input laser

intensity can be reduced considerably if we apply even or odd coherent state from the second port.

When we apply Yurke-Stoler coherent states and for the choices of o_2 >>l/3 12 and 02 = r/2,
we get the relation

2 ,vs d -21/3 12e-41_1_+ 1 2 ooopt) = 4 I/3 12 +1 (%vt) . (36)
1

Also in the limit of 1 <<l /3 ]2<< o_2 we will get the same expression as we get in the case of
ECS or OCS, i.e.,

2 o
, 2 _,YS (Otopt)
taopt) - 21/3 I • (37)

Eqs.(35) and (37) show that we get the same expressions for the optimum power of input laser for

large ] /3 I. Thus we predict an important property of the superposition of coherent states that

differet superpositions of coherent states may play an important role in reducing the optimum

power of input laser. In other words by applying these coherent states, better quantum sensitivity

of interferometer can be achieved as compare to no field contribution from the second port.
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Abstract

Infinitely many new conservation laws both for free fields as well as for test fields evolving

oil a given gravitational background are presented. Tim conserved currents are constructed

using the field theoretical counterpart of a recently discovered non-Noetherian symmetry

which gives rise to a new way of solving the classical small oscillations problem. Several

examples are discussed.

1 Introduction

Noether's theorem plays a fundamental role in field theory [1]. Besides Noetherian symme-

tries there are, however, other kinds of symmetry transformations for the field equations which,

loosely speaking, do not preserve the variational principle, i.e., they do not satisfy Noether's

theorem [2,3,4]. They are non-Noetherian symmetries. Noether theorem gives rise to a conser-

vation law associated to each Noetheria.n symmetry transformati()n of a system. On the other

hand, non-Noetherian symmetries provide several (and sometimes infinitely many) conservation

laws associated to one transformation [3,4,5,6]. In some instances one non-Noetherian syrmnetry

trmlsformation provides enough information to solve completely an n degrees of freedom prob-

lem [4]. In order to be more precise let us turn our attention to the small oscillations problem

in classical mechanics. The Lagrangian is

1 ij 11/:. ij
L = _r_jq _ - _ _q q

with

and

i,j = 1,2, .... ,n (z)

Consider the transformation

T,.s= T_, , Y_j = Yj, (2)

02L

det 0(t,00 i - det Tq ¢ 0 (3)

q,i = qi + _qi, t' = t (4)
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with

6qi= e(T-'V)ijq j (5)

It is straightforward to prove that (4)-(5) is a non-Noetherian symmetry transformation for

Lagrangian (1) as it maps the space of solutions of its equations of motion into itself (for details,

see [4]). As it is well known, energy is conserved for Lagrangian (1) and therefore

1 ij 1 .
Ho = -_Tij(l (t + _ Vijq ' q3 (6)

is a constant of motion. It may be easily proved [2,3,4] that the deformation 6H0 of H0 along a

symmetry transformation 6q i,

6Ho OHo OHo d i
- Oq i 6q i +--_-_(6q0qi ) (7)

Thus, we get for the symmetry transformation given by Eqs.is also a constant of motion.

(4)-(5) that
1 ij ' "

Hi = -_Vij_t (_ + _(VT-1V)ijq'q J

is a constant of motion. Deforming H1, so on and so forth we get that, in general,

Hs = I ((VT-')_-'V)odliglJ + 2((VT-')'V)ijqiq j

(8)

(9)

is a constant of motion for s > 1. At most n of these constants of motion are functionally

independent due to the Cayley-Hamilton theorem. Note that this restriction dissappears in

field theory. Furthermore, it may be proved that all these constants are in involution. In the

next sections we will obtain the counterpart of these results for different examples in field theory.

2 Free Scalar Field

Consider the scalar field Lagrangian [7]

1 2 2L: = -0,t00"_- _m

where _ = _(x") is a real scalar field. The equation of motion is

which written in detail reads

Consider the transformation

0_,0"_ + m2c2 = 0

02__._____ = (V 2 -- m2)_
at 2

61_ = e( V2 -- m2)_ -- eDna

(10)

(11)

(12)

(13)

174



It is straightforward to prove that 61_p satisfies Eq. (12) , i.e.,

0'5

Ot2t_q0 = Da_cp (14)

Therefore, if _0 is a solution of Eq. (1.2), then, _0' given by

_0' = _0 + _i,_0 (15)

also solves it. The enel'gy-nmnmntum tensor T(o )

WltlJ

(0} = W"_'" - 7/"_£ (16)

is conserved for the scalar field. It, is easy to prove that its first deformation given by

T"" - ! [_,'"(D_)'" + W"(D_o)"'- ,/""(y)'_(Dq0),o - m2_oD_o)] (17)(li)- 2

1 has been introduced for convenience). The transformationsis also conserved (the fact()r

5,,_, = eD"_0 n = 1,2,... (18)

are also symmetry transformati(ms fi)r Eq' (11). Therefore, in general,

T"" - I [V,,,(D.cp),,, + ¢p,,,(D.v),,,- ,/.,(qo,O(D.w),o_ ,n2_oD._,) ] (19)(")- 2

is conserved for any n, a.s it can be readily checked. To tmderstand the physical meaning of

T pv(,) it. is interesting to consider its exl)ression in terms of the Fourier transform of ho(x). The

solution _(a:) of Eq. (11) may be written in terms of _(k) as

1 /d4k6(k2_m2)O(kO)(eik. o(k)+e_i ,x .(k))) - ( (20)

where kx = k.x" and the star denotes conlplex conjngatiot}, then one gets that the energy is

fd._x moo = ]dak koP_o) -(o) V'(I_)v(l_) (21)

where V(f¢) = (2k°)-'/:v(k), with k ° = +¢/_ + ,n _ and

f  ,00 ).fP_,) = dax .(,) = (-1 d3k _0°(k)_(k) (22)

which is a result very similar to the one obtained for the small oscillations problem [4]. We

have, therefore obtained infinitely lnany conservation laws for the fl'ee scalar field. Of course,

getting infinitely many conserved quantities for the free scalar field is no surprise since the

general solution to the problem has been known for a long time. The purpose of discussing the

fl'ee scalar field is to get a better understanding of the meaning of the non-Noetherian charges,

in the next section we will obtain sinfilar conservation laws for a test scalar field evolving on a

given static gravitational background which constitutes a more powerful result.
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3 Test Scalar Field on a Static Gravitational Background

Consider the Lagrangian

_= lx/-Z-_(g'V Ot,990.99 -- m299 2) (23)

where the gravitational field is described by the static metric g._, with determinant g, which

satisfies Og.. _ 0 (24)
Ox o

and

go_ = 0

and g is the determinant of the metric. The equation of motion for the scalar field is

O_,(x/"_ghVO.99) + x/'-S-gm299 = 0

(25)

(26)

or, in full detail

-- _gO_( V/-_g'J Oj_) - m2goo_

where _ = 099/0x °. The Lagrangian is time independent

0£
--=0
Ox o

and therefore energy is conserved

with

(27)

tt
T(0)o -

Again we may prove that

(28)

(29)0.T(0)0 = 0

2

6199 -- e _)99

is a symmetry transformation for Eq. (27) with

79 -- ___gOi( v/-_gq Oj) - m2g0o

(3o)

(31)

(32)

Therefore, we find that

(g_':_¢Ox29'kp + g_'_Ox99:D"(o - ¢5_(g_'_0,_990_79"99 - m299:D"99)) (33)T_")° - 2

is conserved for any n as it can be readily checked. We have thus found infinitely many inde-

pendent new conservation laws for a scalar field evolving on a static gravitational background.

Note that, the general solution for Eq. (27) on a Schwarzschild background metric is not known

at present.

Consider the Schwarzschild metric [8]

g_=diag(1 2M -1
r '1 _2-_,-r2,-r2sin20) (34)

r
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in units such that G=c=l. In this case,

D- r2sinO 0r r2sin0e'\ ) -_ jg(sin0_-_) + sin00¢ 2 m2r2sin0 (35)

with e _ = 1 - 2M/r. We get that

1 2 1
o r2sin 0(e-"(_b)2 + e;_(9_,r) 2 + r.7(_p,0) + r_sin2 0(_o,¢,)_ + rn29_ 2) (36)T(°)° -- 2

and

1 no "2siu°   o,o(DT(")° - 2

l )+ + ,n  0v%o (37)

are conserved for all u. Thus we have infinitely many new conservation laws for the scalar

field evolving on a gra.vita.ti,mal background. In regard to the convergence of the integrals

which define the conserved charges associated to T_,)0 , it is straightforward to realize that D"_0

behaves no worse than _0 iu the limit r _ oc, for the massive case, while it vanishes faster than _0

for the massless case. In other words, the new conserved charges behave (at worst) in the same

fashion as the usual conserved energy does (and nm¢?h better in the massless case). This fact

may be explicitly verified for the particulax ca.sc of a massless scalar field of augular momentum

and frequency equal to 0. The explicit solution to Eq. (27) is [9]

q0(,') = ln(1 - 2---M-M) (38)
Y

as it can be readily verified. From Eq. (37) we have that TOo and TO)o° behave as r -_ and r -s.

For n > 1, T(n)0° converges fi_tcr than r -s when r _ oc.

As another example, consider the following metric [10]

g,,. = diag(r 2_', -/3, -r _, -r2sin 2 0) (39)

which has been considered as a model for galactic dark matter dynamics. In Eq. (38) ot and fl

are constants with c_ = 2(7- 1)/3' and/3 = (3'2 +43'-4)/3', where 2 > 3' > 1. The Klein-Gordon

equation for a massless scalar field evolving on this metric is separable and its solutions are

known [111. The radial part of _(x")is

2 -32.

n(r) = r 2, (AJ,,(wz) + BN,,(wz)) (40)

where J.(x) and N.(x) are the Bessel and Neunmnn functions, w is the frequency and

p2 (3_-2)_/4+I(I+1)(72+43" -4) _,/(3'2+43'-4)
= = r , (41)

(2 _ 3') _ , z 2-3'
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Since the metric (38)satisfies E,ls. (24) and (25) we have that (36) and (37) are conserved. The

interesting fact in this (:as(-, is that if one studies tile asymptotic behaviour of solution (39), one

0 when 7' -o c¢ behave asfinds that T ° and T(,00

1 o 1 (42)
3-,0) _ r _ T(,0 ° _ r2"(J-_) +_'

Since 1 > _ > 0 this implies that 2n(1 - o') + c_ > 1 for n > 1. It is straightforward to realize
0

that the conserved charge associated t() 3_̀o diverges, while the ones linked to T(n)0 do exist, for

n > 1. Of course the metric is not asymptotically flat, so there is no Poincar$ invariance (at

infinity). Neverthelc'ss the new ('(mserw_ti(m laws provide relevant information for the problem

at hand.

4 Non-Linear Systems: Burgers Equation

The results we have t)rescnte(l above hol(1, in general, for linear (lifferential systems. Never-

theless, there are some 1)hysi('ally relevant non-linear equations to which our findings may be

al)plied. Burgers equation is one such examt)le. It has l)een known for some time [12,13] that

(the non--linear) Burgers e(luati()n may be, in fact, related to a linear equation, which is, of

course, tractable using our nlcthod. Therefore, even though in all in(tirect way, we will use

our methods to deal with l)hysically relevant non linear evolution equations. These results may

prove, in the future, to be ai)plicable to other non linear systems.

Consider the linear equation

ut + u_,. = 0, (43)

for the field u(x, t). Here, u.t means partial differentiation of the field u with respect to t, and

similarly for tile other sllifixcs. Define the new field r(x,t) l_y the transformation

v - u_ (44)
It

It is a straightforward matter t() prove that _, satisfies Burgers equation

vt + v_ + (v2)_ = 0. (45)

We have aheady seen a general algorithm to generate symmetry transformations for linear

differential equations. We find that 5u defined by

6u = u_x, (46)

is a symmetry transformation for Eq. (43). A symmetry transformation 5v based on (46) can

now be found for Burgers equati(m (45),

lit, = (v' + 6v2vx + 4v.v_ + 3v_ 2 + v:_:=)_:. (47)

Of course, simt)ler transformations can also be constructed, but they will usually produce van-

ishing deformations of the conserved quantities already obtained.

We are not aware of the existence of a Lagrangian for Eq. (43) by itself, i.e., without con-

sidering it together with it,s time reversed counterl>art, in which case the construction of the

Lagrangian is trivial. Under these considerations, all the symmetry transformations presented

in this Section are non--Noetherian.
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,5 Summary and Conclusions

We have presented non-Noetherian symmetry transformations for oscillators in classical me-

chanics as well as in field theory which give rise to many conservation laws by deformation of

a given conserved quantity. For the classical mechanical case, the symmetry transformation

produced enough constants of the motion to completely solve the small oscillations problem.

In the case of field theory, we have found infinitely many conserved quantities even for fields

interacting with a given background gravitational field. In some cases, this procedure can be

extended to physically relevant non-linear equations such as Burgers equation. These results

may also be helpful to deal with Eckhaus equation [13]. The method presented here could be

used as an alternative way to diagonalize matrices using the procedure described in the classical

mechanical case [4], and it also affords a different procedure to deal with differential equations

such as the kind which give rise to special functions, for instance. Finally, we should mention

that the results presented in this note may be generalized to include electromagnetic like forces

linear in the velocities for the classical mechanical oscillators and the corresponding changes can

be introduced in the partial differential equations for the field oscillators.
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Abstract

The general form and associativity conditions of deformed oscillator algebras are reviewed.
It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation

when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami

condition. As an example, an SUq(n) × SUq(m)-covariant q-bosonic algebra is discussed in
some details.

1 Introduction

Since the advent of quantum groups and q-algebras (see e.g. [1] and references quoted therein),

much attention has been paid to deformations of the algebras of bosonic and fermionic creation

and annihilation operators [2]-[6]. Different deformations of the latter arise depending on which

property of the undeformed operators is preserved.

In the simple case of the su(2) Lie algebra, two pairs of bosonic creation and annihilation

operators a_, ai, i = 1, 2, give rise to the Jordan-Schwinger realization

J+ = a_a2, J_ = a_a,, Jo = ½(N1 -N2), (i)

where Ni = aia,,t i = 1, 2, are number operators. In addition, the creation operators a_, a_ (as well

as the modified annihilation operators 51 = a2, h 2 = -al) are the components 4-1/2 and -1/2 of

an su(2) spinor, respectively. When extending these two properties to the corresponding q-algebra

suq(2) (where q is real and positive), one gets two different sets of q-bosonic operators.

On the one hand, those first considered by Biedenharn [2], Macfarlane [3], Sun and Fu [4], give
t

rise to a Jordan-Schwinger realization_of suq(2) of the same type as (1), where a_, a_, i = 1, 2,

now satisfy the relations

a,a_ -- q+la_a, = q+N., (2)

while operators with different indices do still commute, and a_a_ = [N_]q - (qN, _ q-N,)/(q_ q-X).

However, the operators a_, a_ do not transform any more under a definite representation of the

algebra.

1Directeur de recherches FNRS
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On the other hand, the operators A_, Ai, i = 1, 2, introduced by Pusz and Woronowicz [5],

satisfy different relations

t t -l_t_t
AiAj - q _j_i = AiA j - qAjA i = O,

AiA_-qA_A, : O, icy,

i--1

AiA_ 2 t-q AiA , = I+(q2-1)y_a_aj,
j=l

i<j,

(3)

where the two modes are not independent any more. As a result of this coupling, the operators

A_, A_ (as well as P'I = ql/2A2, it2 = -q-l/2A1) are the components +1/2 and -1/2 of an suq(2)

spinor respectively, but yield an suq(2) realization that is substantially more complicated than (1).

The algebra (3) has also important covariance properties under the quantum group SUq(2), dual

to suq(2).
The present communication is concerned with the construction of covariant deformed oscillator

algebras that generalize the Pusz-Woronowicz algebra for other quantum groups than SUq(2) (or

more generally SUq(n)). The method used will be based on an R-matrix approach similar to that

applied in noncommutative differential geometry [7,8]. In Sec. 2, after reviewing the general form

and associativity conditions of deformed oscillator algebras, we will show how to fulfil the latter

in terms of a solution of the Yang-Baxter equation with three distinct eigenvalues. The example

of an SUq(n) x SUq(rn)-covariant q-bosonic algebra .4q(n,m) will be treated in some details in

Sec. 3. Finally, in Sec. 4, an alternative derivation of the same algebra, based upon the q-algebra

uq(n) + uq(m) will be presented.

2 Deformed Oscillator Algebras

Let us consider the complex algebras generated by I, A_ A_ = (A[) t, i = 1, ..., N, subject to the

relations [9,10]

t t t t
AiA j = Xij,ktAkAt,

AiA j = X_i,tkAkAt,
t

AiA _ = 6ij + Zjt,ikAkAt,

(4)

where X and Z are some complex N 2 × N 2 matrices, and there are summations over dummy

indices. As a consequence of the Hermiticity properties of the generators, X* is the complex

conjugate of X, and Z is a Hermitian matrix.

For these algebras to be associative, it is sufficient to require the braid transposition schemes

for triples of generators. The braid scheme for atatM yields the condition

(5)

i.e., in compact tensor notation, the Yang-Baxter equation for X (in the "braid" version)

X12X23X12 = X23X12X23. (6)
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t t
Similarly, for A,AjAk, one gets the two conditions

'_j,'_kx - Xjk,i_ + Z:_,ix - X_k,_bZ_b,i_: = O, (7)

and

Zkz,acZja,ibXbc,xy

which may be written in compact form as

= Xjk,_bZb_,c_Zac,i_, (8)

(112 -- X12)(112 + Z12) = O, (9)

and

Z23Z12X23 = XI2Z23Z12. (10)

From the Hermiticity properties of the generators, it follows that the remaining two triple products

AiAjA k and A, AjA_ will be associative if atatat and t t"_"j"k AiAjA k are so. Hence, eqs. (6), (9), and

(10) are the only associativity conditions of algebra (4).

Let now R be any N 2 x N 2 solution of the Yang-Baxter equation

R12R13R23 = R23R13R12. (11)

Then the corresponding braid matrix /_ = rR, where r is the twist operator (i.e., TO,kt = 5,6ik),

satisfies an equation similar to (6).

If /_ has three distinct eigenvalues A_, a = 1, 2, 3, and satisfies a Birman-Wenzl-Murakami

(BWM) condition 2

(/_- AfI)(/_- A2I)(/_- Aft) = O, (12)

then with each eigenspace of/_, one can associate two solutions of the set of associativity condi-

tions (6), (9), and (10). In terms of the projector

(fi - A.I)
(13)

onto the eigenspace corresponding to the eigenvalue A_, these two solutions can be written as

I-X__'P_, and Z=-A21/_ or Z=-A_,/_ -_. (14)

Considering for instance Z = -A/, 1/) leads to the following deformed oscillator algebra (written

in compact tensor form)

t t t t q" A,A_ I12 -1 t,A_A1 ' 15)A2A1 .... SAlAd, A1A_ _ A2AI, A_ R (

where S = rX is found fr_om (13) and (14), and t_ means transposition with respect to the first

space in the tensor product. /
Several examples of such deformed oscillator algebras have been worked out _o far [9]-[11]. In

all cases, the solution of the Yang-Baxter equation that has been considered is the fundamental R-

matrix of some classical quantum group. In such circumstances, the deformed oscillator algebras

2The SUq(n)-covariant algebra constructed by Pusz and Woronowicz [5] corresponds to the simpler case where

/_ has only two distinct eigenvalues, and satisfies a Hecke condition (see See. 3).
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are left invariant under the transformations induced by the quantum group. The construction

presented here is not restricted however to such a choice, and any solution of (11) and (12) might

actually be used. In a similar way, deformed oscillator algebras differing from that of Pusz-

Woronowicz have been built by considering non-standard solutions of the Yang-Baxter equation

and the Hecke condition [12].

The algebras constructed in refs. [9]-[11] include both standard and non-standard ones. The

former [9,10] are either of q-bosonic or q-fermionic type, meaning that whenever q --* 1, they go

over smoothly into ordinary bosonic or fermionic algebras, respectively. The latter [11], on the

contrary, do not have such a smooth behaviour, but share instead some features with the quon

algebra [13]. In the next section, we shall consider in more details a covariant q-bosonic algebra

generalizing that of Pusz-Woronowicz.

a An SUq(n)× SUq(m)-Covariant q-Bosonic Algebra

The SUq(n) quantum group [1] is a complex associative algebra generated by I and the noncom-

mutative elements Tit, i, j = 1, ..., n of an n × n matrix T, subject to the relations

RT1T2 ='T2T1R, detq T = 1, (16)

and the *-involution condition

T*=(T-1) t, (17)

with q real. In (16), detq denotes the quantum determinant, and R is the fundamental R-matrix

associated with the An-1 series of Lie algebras,

n n

= q _ ei, ® eii + E eli + ejj + (q - q-l) --_ _i3 + eft,R
i=1 i,j=l i,j=l

i#j i<j

(18)

where (eij)kl = 6ik_jl. The coproduct, counit and antipode are defined by

A(T) = T,_T2, 6(T) = l, S(T) = T -1, (19)

where A(Ti.i) = Tik ® Tkj.

The braid matrix /_, cqrresponding to (18), is a real symmetric matrix with two distinct

eigenvalues, q and _q-1. Their respective multiplicities are _n(n + l) and ½n(n I- 1), i.e., the
dimensions of the symmetric and antisymmetric irreps [2{)],, and [126],, of SUq(n). The R-matrix

satisfies the Hecke condition

( [_ - qI)( [:l + q-l I) = 0. (20)

Similar relations are valid for SUq(m). Its generators and fundamental R-matrix will he

denoted by Ta, s, t = 1, ..., m, and T_, respectively, to distinguish them from the corresponding

quantities for SUq(n). Note that T 0 and T_t are assumed to commute with one another.

For the product SUq(n) x SUq(m), one can introduce a "large" R-matrix, R = q-IRT¢., of

dimension (nm) 2 x (nm) 2 [10]. Its matrix elements are defined by

l_(is)(jt),(ku)(tv ) = q-1Rii,klT"_st,uv. (21)
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From the properties of the two "small" braid matrices /_ and 7_, it follows that /_ = q-_/_7_

has three distinct eigenvalues q, _q-t, and q-3, with respective multiplicities corresponding to

the dimensions of the representations [26].[26]m, [20].[120]m + [12_)].[26]m, and [126]n [126]= of

SUq(n) × SUq(rn), and satisfies the BWM condition (12).

By applying the results of the previous section to the antisymmetric (reducible) eigenspace of

/_ associated with the eigenvalue _q-l, one gets a deformed oscillator algebra of type (15), which

will be denoted by .Aq(n, m), and whose defining relations are [10]

t t t t A2A _ I2,+qRt'A_A2, (22)A2A z = SAlAd, A2A1 = AIA2S , =

where

S=r(I--(q+q-')'PA), "Pa= (R-ql)(R-q-3l) (23)
(q -k q-1)(q-t + q-3)'

and the creation and annihilation openators At , Ai_ now have two indices, i = 1, 2, ..., n, and

s = 1, 2, ...,m. Whenever q-+ 1, Rand S go over into I, so that (22) becomes an ordinary

bosonic algebra.

The defining relations (22) of the q-bosonic algebra _4q(n, m) may be rewritten in terms of the

RATA, = A1A_n , A2AI = I2VZ2, + Rt'_tlAIA2, (24)

t t
= AavAiuRuv.st,

= AiuAjvRuv.st,

= 6ijCSst + Rki,jlT_,,,tvA_uAlv.

two "small" R-matrices as

RAIA = A AIg,

or, in a more explicit form, as

t t
Rij,klAksAtt

Rij,kt Art Ak_

Ai, A_t

Let us consider the map _: ,Aq(Tt,///) _ ,Aq(_,m) ((5') (SUq(n) x SUq(FD)), defined by

A',t_ _( A_) t= = A itTjiTt_,

IAI, = _o(Ai, ) = AjtT;]_" , = T/TiT,71Ajt,

(25)

(26)

where the elements Tij and _t of SUq(n) × SUq(m) are assumed to commute with A!_ and Ais. As

a consequence of (16) and its counterpart for SUq(m), this map leaves the defining relations (25)

of ,Aq(n,m) invariant. Hence, the latter is an SUq(n) × SUq(m)-covariant algebra.

In the next section, an important part will be played by the modified annihilation operators

Ais = AjtCjiCts, Cji = (--1)n-Jq-(n-2_+i)/2_j,i,, Cts = (--1)m-tq-(m-2t+l)/26t,s ', (27)

where i' = n + 1 - i, s' = m + 1 - s. Eq. (24) can be rewritten in terms of A_o, fi*i, as

RAIA _ t t = ,= a2al"]'_ , RA,A 2 A_A,R., AaA [ = C,2C,2 + q2A_A2k-xT_-_, (28)

where k is defined by

n n n

k= _f'_eii®ei,i,+q Y]. eii®ejj +(q-q -1) __, (-q)i-J+xeij®ei,j,, (29)
i= 1 i,j= l i,.j =.1

iCj I t<3

185



and a similar definition holds for 7_. Under map _ of eq. (26), .zi.,s is transformed into

A'is = _(A,,) = ftjtTji_s, f = C-'(T-X)tC, T = C-'(T-')tC.. (30)

Finally, combining eqs. (18) and (25) yields the detailed form of the ..4q(n, m) defining relations

t t _-lat at
AisAit - q 14.itt-Lis

t t q-1 t tA_,Aj, - Aj,A_s
t t t t

Ai_Ajt - AjtAi_

t t t t
Ai_Ajt -- AjtAi_

= O, s<t,

= O, i<j,

= O, i > j, s < t,

_(q q-_ t t= - )A.isAit , i < j, s < t,

(31)

and

Ai, A_t - A}tAi, = O, i T_j, s T_ t,
s--1

Ai_A_s - qA_.Ai, = (q - q-') y_ A}tAit,
t=l

i-1

Ai.A!t-qA!tAi.

AisA_s 2 t- q Ai_Ai_

iCj,

(q q-') _ t-- AjtAjs , s 7_ t,
j----1

i-1 s-1

I + (q2 - I ) Q_-I A_sAJs + _-_ A_tAi'_,:1

, i--1 s--1 ,_

- (q-2 - 1) _ y_ A}tAjtj,
j=l t=l

(32)

together with the Hermitian'conjugates of (31). Whenever m = 1, substituting A_, [Ai for A_I , Ai,

in (31) and (32) yields the Pusz-Woronowicz relations (3) for arbitrary n values. Hence, the

covariant q-bosonic algebra Aq(n, m) is a generalization of that of Pusz-Woronowicz for values of

m greater than 1.

4 Alternative Derivation in Terms of Uq(rt)n t- ttq(rrt)

An alternative approach to the construction of covariant defoqned oscillator algebras, based upon

q-algebras, has been developed elsewhere [14,15]. In the case of the algebra .Aq(n, m) introduced in

the previous section, one considers the q-algebra uq(n)+ Uq(m). The Cartan-Chevalley generators

of %(n) are denoted by Eii= (Eli) t, i = 1, 2, ..., n, Ei,i+l, Ei+l,i = (Ei,i+l) t, i = 1, 2, ..., n - 1,

and satisfy the commutation relations

[Eli,Ejj] = O, [Eii,Ej,j+I]= (_ij- _ij+I)Ej,j+I,

[Eii,Ej+x,j] = (t_i,j+l-_ij)Ej+l,j, [Ei,i+l,Ej+l,j]--t_ij[Ui]q, (33)

together with the quadratic and cubic q-Serre relations. In (33), Hi = Eli -- Ei+l,i+l. The algebra

is endowed with a Hopf algebra structure with coproduct A, counit e, and antipode S, defined by

A(E.) = E. ® I + I ® E., A(E_,_+_) = Ei,i+l ® qH,/2 + q-H,�2 @ Ei,i+,,
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A( Ei+l,i) = Ei+l,i @ qH,/2 + q-Hi�2 @ Ei+l,i, (34)

_(E.) = _(E,,,+,)= _(E;+I,;)= 0, (35)
S(Eii) = ',--Eii, S(Ei,i+l) = -qEi,i+l, S(Ei+l,i) = -q-lEi+l,i. (36)

I

The Cartan-Chevalley generators of uq(m) are denoted by gss, s = 1, 2, ..., m, Es,_+l, Es+l,,,

s = 1, 2,..., m- 1, and satisfy relations similar to (33)-(36), while commuting with the generators
of uq(n).

In the approach based upon uq(n)+uq(m), the q-bosonic creation operators A_,, i = 1, 2,..., n,

s = 1, 2, ..., m, belonging to .Aq(n, m), are defined as the components of a double irreducible

tensor T[lb]-[lb] m with respect to this q-algebra. This means that they fulfil the relations

Ejj(A!s) _jiA[,, Ej,j+I(A_s ) t Ej+l,.i(A_s) t (37)= = 6j,i_lAi_l,s, = _jiAi+l,s,

_tt(atis) = _tsa_s ' Et,t+a(a_s ) = _t,s_la_,s_l ' _t+l,t(a_s ) = _tsAi,s+l,t (38)

where, for any uq(n)+ uq(m) generator X, X(A_) denotes the quantum adjoint action X(A_) =
t 2

_XIAi_S(Xr), with A(X)= _]rX) ® X_. The modified annihilation operators _i;_, i= 1, 2,

..., n, s = 1, 2, ..., m, of eq. (27), are similarly defined as the components of a double irreducible

tensor T[b-1]-[ 6-1]-" with respect to uq(n) + uq(m), and satisfy the relations

Ej_(A.) : -,_,,_i., Ej,j+I(A.) : ,_jA,_I,s, Ej+I,j(A,.) : ,_j,,f_IA,+1,_,_(39)
_tt(Ais) = --_ts'Ais, _t,t+l(Ais) = _,,,Ai,,_l, _,+l,t(Ais) = _t,s,_lAi,s+l • (40)

The operators At and fi'i_ can be explicitly written down in terms of m independent copies

of the Pusz-Woronowicz operators [14]. By using such expressions and exploiting the tensorial

character of the operators, it is straightforward to prove that their q-commutation relations are

given in coupled form by

[Af, A*] [_0]"[_26]" = [at, At] [125]"[26]'' = [A,A] [0-2]"[6(-1)2]" = [A,A] [+(-1)_]n[6-2]m = 0,

[A, At] [16-1]'[16 -1Ira [A, ? [16-1],[6],,, At]_+],[16 - 1],._= A ]qm = [A, = 0, (41)

[A,At_I61"I61_ _/[.]_[m],,
Jqn+,rn

where, for simplicity's sake, the row labels of the coupled Uq(n) -t- Uq(rn) irreps have been dropped.
In (41), the coupled q-commutator of two double irreducible tensors T lAd'jail" and U[a_]"[_ ]" is

defined by [14]

[T[a_ I, [a2l,,, U[a', l-[a;]-, ][^' 1, [^21,,
(M1)n(M2)mq_

= [T[al ]" ['M" x U['_ll"[a:]'] [^l]"[^21"(Ml)n(M2)m-- (- 1)¢q_ [U ['_i]"[)''_]" x T['\1]"[_2]'_] [^d"[^:lm.(Ma),(M2)m(42)

Here

= ¢([A1].)+ ¢([zl].) - ¢([51].)+ ¢([A_]..)+ ¢([A;]_)- ¢([h:]_),
n m

¢([ 1) 1

_. A,.,_.-- gly_(n + 1 - 2i)A,i, ¢([A21_) = g y_(m + 1 - 2s)A_, (43)
i=1 s=l
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and

[Tt_al.t),21.,, r r[_,[l,,[_;l,,,] [^.1.,[^_1,..X ,,.., J (M1)r,(MT_)m

A' ' M_- ([.x,].(#,).,[ ,I,,O,,),,I[A,].(

,-vtxd,,[.M,.,, r rtXil,.,t;q],,, (44)
× "(m )_(,2),, _(,; )-(_,_)-,'

where (, I)q denotes a uq(n) or uq(m) Wigner coefficient.

By using the values of the latter, eq. (41) can be written in an explicit form [14]. The resulting

relations coincide with eqs. (31) and (32), thereby proving the equivalence of the two constructions

of .Aq(n,m) based upon SUq(n) × SUq(m) and uq(n) + Uq(rn), respectively.
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Abstract

In this talk it is shown that in one version of q-algebras there exists states -a subset of the

coherent states- that have negligible dispersion in energy, position and momentum.

1 General remarks

This talk is devoted to the construction of localized states in deformed quantum mechanics. These

states will be exhibited explicitly. A localized state is defined as one whose dispersion vanishes

or that is at least near zero. To start with I will say that the version of q-algebras [1, 2, 3, 4, 5]

that will be used in the sequel is AAt - qAtA = I where q • 0 --+ 1. The operators A and At are

realized as operators on a space of analytic functions of a complex variable z as follows

f(z)-f(qz)

Af(z) = (1-q)z =_ Df(z) (1)

Atf(z)=zf(z) (2)

The space of functions -denoted Hq- has an inner product (f,g) defined by [10, 1, 4] see also

[6,9,7,s]

(f,g) = D2zf*(z)rn(] z 12)g(z)-- _-'/[_] D(J z j2) dCf*(z)m(J z 12)g(z)
"30

(3)

where the kernel m(I z [2) is fixed by the requirement that A has to be the hermitian conjugate

of At. The explicit form of the kernel m(J z ]2) is

1

m(J z 12) -- eXpq(q[z 12) (4)

where the deformed exponential expq(Z) is defined as the solution to the equation Df(z) = f(z)

and has the explicit expression
oo Z n

expq(z)= (5)
n----0
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The box symbol [n I is defined as [n I = 11-___; the special value with n = oo is given by [oo1 = ll---i

and the deformed factorial is defined as [n]! = [1]... [n] and [1]! = 1. At this point it is convenient

to remark that the form of the box symbol is intimately related to the particular version of the

q-algebra that is being usedlwhile the realization 1 and 2 is not. See [11].
I z n i

Under the inner product 3 the set of functions un(z) = [M--_-.''n = 0,..., oc are orthonormal.

It is clear that un(z) is an eigenfunction of the operator z_ with eigenvalue n; in fact z_d is the

number operator. To each function _t,(z) there corresponds a ket I n > which is an eigenket of the

number operator. As a further remark, it is clear from the deflnition of the deformed exponential

function that its series expansion converges in a finite region of the complex z-plane; this region

is defined by lz I< [o¢].

2 Coherent states

Coherent states are defined as eigenfunctions of the anihilation operator. Each function will be

labelled with a complex number/3 so that the function f#(z) represents the coherent state I/3 >

in the ket notation. The explicit expression for the coherent state f#(z) is

#-u.(z)
f#(z) = C( )expq( z) = C(/3).=0 [n]!½

(6)

where the normalization constant C(/3) is given by

1

C(_)2 - expq(I /312) (7)

The set of all coherent states is overcomplete as seen by the fact that the functions f#(z) are

not orthogonal to one another and that a resolution of the identity can be constructed with them.

This construction requires that the identity be resolved both in terms of the orthonormal set of

functions u.(z) defined above and in terms of coherent states. This leads to the equation

I = __, u_(z)u.(z) = ] D2_M([ _ 12)f'(z)f(z) (8)
o

where the kernel M(I # 12) is obtained by requiring that the above equation be satisfied. Its

explicit expression is [5]

expq(I # 12)

M(I # Iz) = expq(ql# 12) (9)

At this point it is convenient to reconsider the convergence question. The coherent states are

constructed so as to be normalized. This implies that the region in the fl -complex plane allowed

for the label of the coherent states is I fl 12< [oc]. The same upper bound is found for I z ]2 to

have a convergent power series.As a result it is found that the functions that belong to the Hilbert

space Hq are analytic in a finite region of the complex z-plane. This region extends to the whole

complex z-plane when q goes to 1 and reduces to the unit circle when q goes to zero.
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3 Localization

To study localization two hermitian operators Q and P will be introduced in such a way that their

relation to the creation and anihilation operators A and A_ resembles closely the relation valid

for q=l. Then Q and P are written in the form [12]

Q = sA + s'At, P = rA + r*A_ (lO)

From the commutation relations for A and At it is found that Q and P satisfy

[Q,P] = (r._" - r's)[1 + (q - 1)AtA] (11)

which reduces to the usual commutation relation for the position and momentum operators when

q=l after a particular selection of the constants r and s that appear in equation (10). This

justifies calling Q the deformed position operator and P the deformed momentum operator.

From the commutation relation equation(11) for Q and P it follows the uncertainty relation

(AQ)_(AP)_ _> l< [Q,P] >ll 2
4 (12)

In equation (12) (AQ)} =< Q2 >I _ < Q >3 and < Q >1= (f, Qf); f is any function in Hq.

Now the expectation values and dispersions will be computed using the coherent state basis (that

means that f(z) is taken as f#(z)). The results are

(AQ)_ =1 I=[1 + (q- 1) 1D I=] (13)

(AP)_ =1T I= [1 + (q- 1) ID 12] (14)

< PQ >_ - < QP >#= (rs* - r's)[1 + (q - 1) I/31 =] (15)

From these results it follows that, unlike the non-deformed (q= 1) case, the uncertainties depend

on the label/3 of the particular coherent state used to compute them. Notice that if q=l then

all uncertainties are constant. The fact that the uncertainties depend on/3 is the crucial result to

exhibit localization; in fact, if I/3 [_ has a value near _ which is an annulus near the boundary

of the convergence region then all uncertainties in equations(13), ('14) and (15) are negligible.

So those coherent states whose labels are near the boundary show localization according to the

definition stated above. Moreover, near the boundary the operators Q and P are commuting, at

least in the weak sense that < PQ ># - < Qp >_ tends to 0. Those coherent states that are

localized behave as classical states in a much closer way than the usual (q:l) coherent states

which exhibit minimum non-vanishing uncertainty. The deformed coherent states are in this sense

a better answer to the original Schroedinger question of finding those states that resemble classical

states than the ordinary coherent states.

Now I will show that the deformed coherent states are minimum uncertainty states and that

they can be generated by the action of a shifting operator acting on the vacuum. To start with,

the right-hand side of 12 (T denotes the right-hand side of 11) is found to be

I<T>_12=lrl_lsl2[2-cxp2i(¢r-¢8)-exp2i(¢.-¢r)][l+(q-1)l/312] (16)
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which tends to zero when I/3 12tends to i__xq;in the above equation $r and Ca denote the phases of

the complex numbers r and s, respectively. If exp2i($r - ¢_) = -1 then the equality sign is valid

in equation (12) so that for any fixed value of/3 the corresponding coherent state has minimum

uncertainty; on the other hand, if the boundary of the convergence region is approached both

sides of 12 tend to zero.

4 Shifting operator

Next, turn to the shifting operator. Notice that the function ffj(z) representing the coherent state

labelled by/3 can be written

f_(z) = C(/3)expq(/3At)fo(z) (17)

where fo(Z) = 1 represents the vacuum state. Then

f_ = C(/3)Dq(A, At;/3)fo (18)

where

Dq(A, At /3) expq(/3At 1 (19); = )expq-(/3"A)

Dq(A, At;/3) is the shifting operator. It follows that D_ 1 ¢ D! so that Dq is non-unitary. The

action of Dq(A,A'[;/3) on fo(z) generates unnormalized coherent states; that is why the factor

C(/3) appears in an explicit way. Finally, it is easy to verify that Dq(A, At;/3) satisfies

expq(/3A t)

Dq(A'At;/3)ADq'(A'At;/3) = expq(q/3At) [A- /31] (20)

which gives the usual result when q = 1. For labels a , [3 and 7

Dq(A,A_;a)Dq(A,A'[;/3) # Dq(A,A'[;7) (21)

5 Hamiltonian

The last point concerns the hamiltonian of the system. This is constructed from the commutation

relation for Q and P and has the form

hq= AA t + A t A- Q2 p22Is 12+ sir I------z (22)

whose uncertainty is

(Ahq)_ =1/3 12 [1 + (q- 1) 1/3 [2] (23)

which tends to zero when I /3 ]2 approaches _-_. This is another indication that the system

described by the coherent states near the boundary of the convergence region resembles a classical

system.

To summarize: when [/3 12is near _ then (AQ)_, (AP)_), (Ahq)_ and < PQ >f_ - < QP >_

all tend to zero. This corresponds closely to the behavior of a classical system.
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Abstract

Coherent mixed states (or thermal coherent states) associated with the

displaced harmonic oscillator at finite temperature, are introduced as a

"random" (or "thermal" or "noisy") basis in Hilbert space. A resolution of

the identity for these states is proved and used to generalise the usual

coherent state formalism for the finite temperature case. The Bargmann

representation of an operator is introduced and its relation to the P and Q

representations, is studied. Generalised P and Q representations for the

finite temperature case are also considered and several interesting

relations among them are derived.

i. Introduction

Coherent states have played an important role in various areas of

physics. They provide a non-orthonormal, over-complete basis in the Hilbert

space, which however is very useful in many problems. In spite of the
non-orthonormal nature of this basis, the resolution of the identity makes

it practically usable in the sense that it can be used for the expansion of

an arbitrary state in the coherent state basis.

In a previous publication [i] we have considered a generalisation of

the ordinary coherent states into the so-called "coherent mixed states" or

"thermal coherent states" T_ey describe displaced harmonic oscillators at

finite temperature T; or alternatively, mixtures of coherent states in

thermal noise [2]. In contrast to the various types of coherent states

considered in the literature which are pure states, our coherent mixed

states are, as the name indicates, mixed states in general; and they are

pure states only in the special case of zero temperature. They can be

considered as a "noisy" or "random" basis in the Hilbert space. We prove

that there exists a resolution of the identity for these states, and this

makes possible an expansion of an arbitrary state in the coherent mixed

state basis. The Q and P representations which are usually defined in terms

of ordinary coherent states are generalised within our formalism.

The purpose of this paper is to expand our previous work and express it

within the Bargmann representation [3]. This representation makes possible
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the exploitation of the powerful theory of analytic functions in the complex

plane, within a quantum mechanical context. In section 2, we define the

coherent mixed states in the Bargmann representation. For example, we

derive a transformation which connects the Bargmann representation with the

usual x- an p- representations. We also explain how an operator can be

expressed in a differential form or in an integral form (i.e. as the kernel

of an integral) in the Bargmann formalism. In section 3 we explain how our

mixed coherent states can be considered as a "random" or "noisy" basis in

the Hilbert space. In section 4 we explain the relation between the

Bargmann representation of on operator and its P, Q, w (Wigner)

representations. In section 5 we introduce generalised (finite temperature)

P and Q representations and examine various relations among them. Known

results [4, 5, 6] on P and Q representations are in this section generalised

for the finite temperature P and Q representations. We conclude in section
6 with a discussion of our results.

2. Displaced oscillator at finite temperature in the Bargmann

representation

We consider the Glauber coherent states

_ Iz> = D (z) I0> =
] _ N -h

exp - h Izl2 I z (N!) IN>
N-0

D (z) - exp [za + z a]; [a,a +] = I
(i)

<ZlZ'> - exp [- Izl=

We introduce the Bargmann analytic representation by considering
arbitrary state

an

-½ (a+)Nl0 >

XIfN 12
N-O

-1
(2)

<f*l - If* + - Z fN<NI
N-O

and representing it with the analytical function

If>----> fB (z) - FB (If>;z - exp hlzl2 <z*If> -N_0fN.zN(N!) -h
(3)

Using the resolution of the identity

Id_z 'z> <z' - I; d2z -d(Rez),

i

d (Imz) - -- dzdz

2i
(4)
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we easily prove

expressed as

that the scalar product of two states If>, Ig>

d2z

. 2)
(z) gB (z) exp (-Izl

can be

(5)

The creation and annihilation operators are represented as

d

a_> _ (6)
dz

+
a--> z

As an example we consider the coherent states IA> and the number

eigenstates IN> which in the Bargmann representation are represented by the

analytical functions:

IA>------> FB (IA>;z) = exp [- ½ IAI2 + Az]

N -_

IN>------> FB (IN>;z) - z (N!)

We next introduce transformations that connect the

representation with the usual position and momentum representations

here with the indices x,p correspondingly

fx (ZR) - _'3/4 exp [- ½ ZR2] _dZl exp (-z12) fB (2_z)

(7)

Bargmann
denoted

(s)

f ) _ -3/4 [ z12] _ .ZR2 )P (z I exp - h dz R exp ( fB (2_z*) (9)

where zR - Rez and zT - Imz. The proof is based, on equ (3) and the integral
representations of t_e Hermite Polynomials:

2N_ "h F(x + it) N exp (-t 2) dt (i0)
HN (x)

Jo

An operator e

e - Y.eNMIN>_I

can be represented by the analytic function of two variables:

(Ii)

8---->8 B (Zl,Z2#) - * {B (e;Zl,Z 2 ) -exp hlZ112 + hlz212/ * .J
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[- _ 8NMZl N (z2*) M (N!) (M!)

N,M

(12)

We refer to this as the B-representation. It provides an "integral"

representation of an operator in the Bargmann formalism. The operator is

here represented by a kernel of an integral. The action of this operator on

the (arbitrary) state If> of equ (2) can be described by the integral

I 2)d2z,81f>------> B (e;Zl,Z') fB (z') exp (-Iz'l (13)

The B representation of the product of two operators is given by

B (8182;z l,z 2 ) - B (81
* * 2) d2z3

;Zl,Z 3 ) B (e2;z3,z 2 ) exp ( -Iz31 (14)

The creation and annihilation operators (already given in equ (6))

here represented by the functions:

B (a;zl,z2*) - z2 exp (ZlZ 2 )

B (a+;zl,z2 *) - z I exp (ZlZ 2 )

The

Indeed

are

(15)

representations of equ (15) are consistent with these of equ (6).

I * * 2) d2z2 dz 2 exp (ZlZ 2 ) exp (-Iz21 f (z2) .... fB(Zl)

dz I

I * 2) d2z2zI exp (ZlZ 2 ) exp (-Iz21 f (z2) ZlfB(z I)

(16)

Both equations can be proved using the fact that f(z) is a holomorphlc

function therefore

I I f(z2) dz 2 - fB(Zl)

2_i z2-z I

(17)

Where the integral _s taken around some suitable contour enclosing the point

zI in an anticlockw_se direction. Note that the trace of an operltor can be
expressed as

2z .
Tr(e) - exp (-Izl 2) B (e;z,z) (18)

and that the trace of the product of two operators can be expressed as:
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I .Tr (ele 2) - B (el;Zl,Z2)
* 2 2)

B (O2;z2,zl) exp (-Izll -Iz21

d2z I d2z2

(19)

For later use we mention that the unit operator I is represented by the

function

B (l;Zl,Z2*) - exp (ZlZ 2 ) (20)

and that the displacement operator is represented by the function

* -_IAI2- A z2 + ZlA + ZlZ 2 (21)B (D(A);Zl,Z 2 ) - exp

A density matrix p with eigenvalues p., elgenstates le(N)> and

elements with respect to the number eigens_ates PNM

P - E PN le(N)> <e(N) l - EPNMIN> <'HI

0_ pN_._l (22)

PN - i

can be represented by the analytical function of two variables (equ (12)):

matrix

. (2 2]<zl.z2.pB(Zl,Z2 ) - exp _lzll + _lz21 P >

1" r- _ PN e(N)B (Zl) (N) (z2) _" PNM (zl)N(z2*)M[(N!)(M!)J'h
e B j -

(23)

The

density matrix (kB - h - _ - I):

p(A;B) -D(A) txP [-Ba+a]D + (A) (1-e "B)

displaced oscillator of finite temperature is represented by the

-exp [-B(a+-A*)(a- A)] (i - e -B )

where B is the inverse temperature.

(T-->o)

We can easily prove that in limit B--> _

tim p (^;B)- Ix _1

The Bargmann representation of this density matrix can be found

equ (23). We prove:

PB(A;B;Zl,Z2*) - (I - e "B)

(25)

from
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X exp [(i e "B) (A'z2* + ZlA - IAI 2) + ZlZ2*e'_ ]

(26)

3. Mixed states as "noisy bases" in Hilbert space;

The simplest type of basis in a Hllbert space is the orthonormal (fUN >}
for which

" 157 (27)

_N_M - 6NM_N (28)

_N - I (29)

The _N are orthonormal projection operators. Equ (29) is important for two
reasons. First, it is a proof of the completeness of the basis. And

second, it can be used to expand an arbitrary state Is> as:

Is> - lSNlUN> (30)

sN - <UNlS> (31)

This second point is very important from a practical point of view, because

for some bases we might have an abstract proof of completeness, but not a

resolution of the identity llke (29); and then we do not know how to use

this basis, in practice.

Another type of basis is provided by the coherent states, which is

overcomplete and non-orthonormal:

- IA><All (32)

2
(A) - x(A) (33)

(34)

The z(A) are still projection operators (describing pure states); but in

this case they are non-orthonormal. And yet, the resolution of the identity

(34) allows us to express an arbitrary state Is> as

[s> ;d;A s(A) ,A> (35)

s(A) - <Als> (36)

Our proposal in this and in our previous work [I] is to use a set of

mixed states as a basis in a Hilbert space. A mixed state described by a
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density matrix p with eigenstates [eN> and eigenvalues PN

P -N__0PN[eN > <eN[,
(37)

oo

PN - I; 0-<PNSI,
N-O

(38)

represents a set of states {[eN>) with a probability distribution (pN }.

Therefore the idea of using mi_ed states as a basis replaces the "fixed"

veetors which are usually used, in a basis with "noisy vectors" (i.e. "random

vectors").

The basis used in this paper is the set of all density matrices p(A; 8)

of equ (24) for all complex values A and fixed (but arbitrary) value of 8.

In this case equ (37) becomes

p (A;8) - Z PN (8) IN;A> <N;A[ (39)

[N;A> - D(A)[N> (4O)

PN (8) - [i exp (-8)] exp (-SN)
(41)

We have proved in [I] that the p(A;8 ) obey the resolution of the identity

dlA p (A;8) - I
(42)

This is a significant relation for our purposes because it can be

expand an arbitrary state Is> as

Is> -

used to

p (A,8)[s> (43)

The density matrices p(A;8) have been expressed in the

representation in equ (26). The resolution of the identity (42)

written in the Bargmann representation as:

I . d2A .PB (A;8;Zl'Z2)-- - exp (ZlZ 2 )
ff

Bargmann

can be

(44)

where as explained in equ (18) the right hand side is the unit operator in

this formalism.

4. B- representation and its relationship to P, Q, W representations;

There has been a lot of discussion in the literature (reviewed in [4,

5, 6]) on the Q, P and Weyl representations and the relationships among

them. The purpose of this section is to examine the relationship of the
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B-representation with the others; and also to present some basic material

which will be used in the next section, where all these quantities will be

generalised into their finite temperature equivalents.

The Q and P representations of an operator e are defined as

Q (S;A>- <AIoI (45)

I d2A
O - P(O;A)x(A) (46)

where the x(A) have been defined in (32).

The Q and P-representatlons are related

representation of equ (12) as follows:

with the Bargmann

[ *]Q(e;z) - exp (-[zl2)B(e;z ,z) (47)

2)j'd__ * . . ]
P(e;A) - exp (IAI B(e; - z ,z) exp (Az A z) (48)

Equ (47) can be easily proved with the use of.the definition (12_; equ (48)

is similar to the result given by Mehta [7].

We introduce the notation f(w) for the two-dlmensional Fourier transform of

the function f(z) defined as:

f(w) - Id2z exp [i(WRZR + WlZl)]f(z)
(49)

where the indices R,I indicate the real and imaginary parts correspondingly.

We can prove the following relations that express the Bargmann

representation in terms of the P and Q representations:

* [ * * 2 d2z

B(e;Zl,Z 2 ) - jP(e;z) exp (zz I + z z 2 Izl) (50)

. ZlZ2*[d2w _ [ . .

B(e_;Zl,Z 2 ) - e J(__y_)2q (e;w) exp [- ih(wz I + w z2 )
(51)

We next use the relation

f (A ,A) k exp (-klA - BI2) -exp AB f (B*,B)
I

02

AB - 4 --. ,k>O
8BSB

(52)
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which can be proved with a Fourier transform of both sides. _B is the
Laplaclan in a two-dlmenslonal space.

Wenext consider the Wigner function corresponding to an operator 0.

eW (A) - Tr [SD(A)]

It is known [4] that

9 Tr D+(A)e D(A) - -- OW (-A) D (A)

For a density matrix p the definition (53) leads

expression

(53)

(54)

to the more familiar

It is convenient for later purposes to make a trivial change of variables

from A to hiw and denote the resulting function by W(e;w)

(e;w) - _Tr [OD(½iw)] - _eW(hlw )
(56)

We shall also use its Fourier transform W(z;8) defined as the inverse of the

transform given in equ (36). Using equs (54), (21) we prove:

[ ** ]B(O;Zl,Z2* ) - W (O;2iA) exp -hlAl 2 + Az I A z 2 + ZlZ 2 (57)

Using equs (19), (21), (56) we prove the inverse of this transform:

i I d2z2 *
(O;2iA) - - d2Zl B (8;Zl,Z 2 )

[ IAI 2 : ,I 2 12 * *
:- Iz 1 - Iz 2 - A z iexp

t + z2A + Z2Zl* ]
(58)

5. Generalized P and Q representations for finite temperature

The formalism of P and Q representations is based on coherent states.

Although they form an overcomplete basis, it is the fact that a resolution

of the identity (equ(4)) is available, that makes them practically usable.

The density matrices p(A;_) provide a generalization of the coherent states

and they also obey the resolution of the identity (42). It seems therefore

natural to define generalized P and Q representations based on p(A;B). More
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specifically we introduce:

[I
Q (e;A;fl) - Tr Ip(A;fl)e_

e- ¢ (A;fl) e (e;A;_)

(59)

(60)

It is clear from equ (25) that in the limit T_>0 (_>_) they reduce to

the ordinary Q and P representations.

From equs (59)i, (60) we easily get

Q (O;A;fl) - P(O,B;fl') Tr p(B,fl') p (A,fl) (61)

We next show

Tr p(B,fl') p (A,fl) -2 g(fl,fl') exp -2 IA-BI 2

g(_,_')

(62)

where

g(fl,fl').-
slnh [h (fl + fl')]

sinh (_ fl) sinh (h fl')

(63)

Combining equs (61), (62), (63) and taking into account equ (52) we get:

[i l
Q (O;z;fl) - exp 18 g (fl'fl') Az/ P (O;z;fl')

Fourier transform of this equation gives

_ (e;w;_) -exp - _ g (_,_') Iwl 2 _ (e;w;_')

(64)

(65)

In the special case fl - fl' equs (63), (64), (65) give

g (fl,fl) - 2 coth (_fl) (66)

Q (O.z;fl) - exp [k coth (hfl) A ] P (O;z'fl),z '
(67)

Q (O;w;fl)-exp I-t( coth (hfl)lw12] P (O;w;fl)
(68)

In the zero temperature limit

llm g (fl,fl) - 2 (69)
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and equs (67), (68) reduce to

O (e;z) - ex_ (k Az ) P (e;z)
(70)

(8;w) - exp (-k JwJ 2) _ (e;w) (71)

Equs (70), (71) are known in the literature [4, 5, 6]. Our contribution is

to generalize them into equs (64), (65).

We next

introduced in the previous section.

prove

d2B
- -- 2 _ (e;B)

Q (e;A;fl) J(2_)
exp

relate the P and Q representations to

Using equs (54),

1 12 ]- - JB coth (h_)

8

the Wigner function

(55), (59), (60) we

-- 2w • IBl2
P -J(2=) (O,B) exp coth (h_) x

(72)

x exp
- i(ARB R + AIB I)

= exp - -- coth (hfl)A W (O;A)

8
(73)

Note that from equs (72), (73) we can derive equ (67). The

expressions (72), (73) are identical, apart from a minus sign. In this

sense the Q-representation can be considered as the analytic continuation of

the P-representatlon at "negative temperatures" In the zero temperature

limit (_-->_) the above equations reduce to

Q (O;A) - exp [_ AA] W (O;A)
(74)

P (O;A) - exp - --A W (O;A)

8
(75)

6. Conclusions

Generalizations of the original coherent states are usually based on

replacing the Weyl group with another one (e.g. SU(2), SU(I,I) etc.). All

these coherent states are pure states. In this paper and in ref [i] we have

studied coherent mixed states associated with the displaced oscillator at

finite temperature. We have shown that these states can be viewed as

consisting a "random" (or "noisy" or "thermal") basis in the Hilbert Space.

The fact that we were able to prove a resolution of the identity for these

states, makes them practically usable.

All the calculations in this paper have been presented in the Bargmann
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representation. Relations between the Bargmann and the P, Q representations

of an operator have been studied. A generalization of the P and Q

representations for the finite temperature case, has been proposed and

various relations among them have been studied.

From a practical point of view our coherent mixed states can be used

for the description of coherent signals in thermal noise. There is a lot of

activity in this area [8] and our work provides theoretical support to such

studies.
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Abstract

The geometric phases for dynamical processes where the evolution operator becomes the

identity (evolution loops) are studied. The case of time-independent Hamiltonians with

equally spaced energy levels is considered; special emphasis is made oll the potentials having

the same spectrunl as the harmonic oscillator potential (the generalized oscillator potentials)
and their recently found coherent states.

1 Introduction

Departing from Berry's work [1], a geometric phase fl has been associated to tile cyclic evolution

of a vector state IV(t)}, i.e., IV(T)) = ei_l_(0)), where _ is the period, {_,(t)l_/.,(t)) = 1, and ¢ E R.

For a non relativistic system with Hamiltonian H(t), fl takes the form [2]:

/0 /0= T(W(t)IH (t)l_9(t)}dt./3 ¢ + i (W(t)[dJ_/J(t))dt = ¢ + h z (1)

The geometric phase describes some curvature effects arising on tile projective space T _ associated

to the system's Hilbert space 7-/: /? turns out to be the holonomy of the horizontal lifting of the

closed trajectory [?(t))(_/_(t)[ E T' to 7-/.

Eq.(1) is valid for any cyclic evolution, regardless of whether or not it is induced by a time-

dependent Hamiltonian. There is a widespread believing, however, that/_ becomes non-null just

when the Hamiltonian inducing tile cyclic evolution is time-dependent. This could be understood

if one realizes the great influence of Berry's article; so one could think of Eq.(1) as applied to the

cyclic evolutions of the eigenstates of a cyclic H(t) changing adiabatically in time [1]. Making

use of this idea, /3 = 0 for the eigenstates of a time-independent Hamiltonian H. In this paper

we are going to show that for any H having at least two bounded states there are a lot of cyclic
evolutions for which fl # 0.

On the other hand, some developments ill the analysis of the dynamics of a quantum system

led to the concept of evolution loop (EL) [3, 4]. An evolution loop is a specific dynamical process,

induced by time-dependent [3, 41 or time-independent Hamiltonians [5], whose evolution operator

becomes the identity 1 (modulo phase) for a certain time r > 0 (the loop period):

u(T) -- c'¢l, (2)
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where U (0) = 1. The EL is interesting because, if perturbed by some additional external fields, it

can induce any unitary transformation of 7_ as the result of the small precessions of the distorted

loop [6]. There is, moreover, an obvious interelation between the evolution loops and the geometric

phases.

2 Geometric phases and evolution loops

In this work, we restrict the discussion to systems with a time-independent Hamiltonian whose

evolution operator performs an evolution loop. The main property of these systems is that any

state evolves cyclically from t = 0 until t = r:

I0(_)) = _1¢(o)). (3)

According to (1), I_(t)) will have associated, in general, a non-null geometric phase. Indeed,

because U (t) = e -igt/n commutes with H we have:

/3 = ¢ + h-1 (¢(O)lU_(t)nu(t)l_(O))dt = ¢ ÷ h-it(H), (4)

where (n) -- (¢ (0)1Ht¢ (0)). In terms of the basis {IEm) } of eigenstates of H, [_(0)) = _m cm]Em)

with cm = {Eml_0(0)}, and Eq.(4) becomes:

711

There are some interesting systems whose time-independent Hamiltonian induces evolution

loops (see, e.g., [7, 5, 8, 9]). We will illustrate this assertion with the simplest generic case.

Suppose that H has an equally spaced spectrum of the form:

E, = Eo + nAE, (6)

where AE is the level's spacing, E0 is the ground state energy and n = 0, 1,..-, N, being N either

finite or infinite. The evolution operator reads:

N

U(t) = __, e-'E"'/t'IE.)(E.I.
n=0

(7)

As can be seen, an evolution loop is present at r = 27rh/AE:

N

U (r) = __, e-i2"(E°+"AE)/AEIE.) (E..I = e-i2_rE°/aE1.
n=0

(8)

By comparing with (2), ¢ = -2nEo/AE, and according with (4-5) the geometric phase for the

cyclic state I¢(t)} is:
N

= 2((H)- Eo) _ 2__,,1_,12 > 0. (9/
AE -

n=l
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By restricting fl (modulo 27r) to the interval [0, 2_) one can interpret (9) in the following way: fl

measures the energy excess in dimensionless units of (H) with respect to its nearest energy level

Ek (see Fig. 1).

Ek+l 27t
<H>
Ek 0

Ek.l

El

AE{Eo

FIG. 1. Schematic representation of the N + 1 energy levels and the geometric

phase for a system with equally spaced spectrum.

Suppose now that, due to some physical reasons, we are faced with a situation involving

just two energy levels of H. Restricting considerations to the subspace g2 generated by the two

eigenstates IE0) and tEl) it can be shown that the evolution operator performs an evolution loop.

Formulae (6-9) are valid in this situation with N = 1 and v = 2nh/AE. In particular, (9)

becomes fl -- 2rtClJ 2, where Cl is the component along JE1). As there are an infinite number

of linear combinations colEo) 4- clJE1) such that Ic012 4- JclJ2 -- 1, co # 0 and Cl # 1, we have

shown the following: for any H having at least two bounded states there are all infinity of cyclic

evolutions for which fl # 0 (see also [10]).

Other examples for which formulae (6-9) can be applied are the following: a spin-j system

interacting with a constant homogeneous magnetic field B; the harmonic oscillator potential and

all the Hamiltonians having the same spectrum as the harmonic oscillator (generalized oscillators).

Next, we will derive the geometric phases for a family of generalized oscillator Hamiltonians.

3 The generalized oscillator potentials

The simplest method to derive a family of generalized oscillator potentials was introduced by

Mielnik by means of a modification of the well known factorization method [11]. Consider the
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classical factorization of the harmonic oscillator Hamiltonian in dimensionless coordinates m =

0J=h = 1: d2 1 1

H =-_ -dx---Z+x 2 aa t =H+-_, ata= H 2

where a = (d/dx + x)/v_, and a t = (-d/dx + :c)/V_ are the ordinary ladder operators with

[a, at I = 1. The eigenfunctions and eigenvalues of the harmonic oscillator can be constructed
I

using the relations

Hat=a¢(H+ 1), Ha=a(H- 1). (ll)

The ground state ¢0(x) has eigenvalue E0 1/2 and satisfies a_ho(x) = 0 _ _ho(x) _ c -2:2/2,

while the _/Jn(X)'S associated to En = n + 1/2 are:

_n(x)- (a*)n¢0(x). (12)

The generalized factorization method [11] consists ill looking for more general operators

)b = _ +/3(x) , ,(, )b_= _ -_ + _(x) , (13)

satisfying just one of relations (10):
1

bbt- - . + :. (14)
2

Hence, the unknown function fl(x) obeys the Riccati equation

f_'+/32= l+x 2, (15)

whose general solution is
--2:2

c

/3(x) = x + A +- ff c-_2dy ' A•R. (16)

Now, the point is that btb is not related with the harmonic oscillator Hamiltonian, but it leads to

a new operator H_:
1

, bib = U_- -_, (17)

where

with

1 d 2

H;_- 2 dx 2 + V_(x), (18)

( )( )2x2x 2 d e -x2 e -x2

v_(_)- 2 d_ _+f_-_dy = x + _ +f:c-_=dy 2' I_l > v_/2. (19)

The relationships analogous to (11) provide now the way to obtaining the eigenfunctions and

eigenvalues of H_:

H_,bt=bt(H + l), Ub=b(H_- 1). (20)
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Hence, the states On(X) = bt¢n_l(x)/v/-n, n = l, 2,... form an orthonormal set of eigenfunctions of

Ha with eigenvahles En = n + 1/2. However, {On(x), n = 1,2,-..} is not a basis of L2(R). There

is a missing vector Oo(x), orthogonal to On(x), n = 1, 2,-... It turns out to be an eigenfunction of

Ha with eigenvalue E0 = 1/2 satisfying bOo(x) = 0, and taking the form:

Oo(x) (x exp (- fx/_(y)dy) . (21)

The set {0n(x), n = 0,1,2,.-.} forms an orthonormal basis in L2(R); then {Ha: ]AI > v/_-/2}

is a family of Hamiltonians distinct of the harmonic oscillator one but having exactly the same

spectrum as the oscillator. Ill the limit ]A] --+ oc, tile harmonic oscillator potential is recovered,

Va(x) x2/2.

We return now to our original subject. Due to the kind of spectrum of Ha, relations (6-9)

involving the evolution loops and the geometric phases can be applied here with E0 1/2, AE =

l, 7 = 2_, ¢ = -_ and N = oc. In particular, Z = 2_((HA) - 1/2), and when applied to tile

cyclic states {On(x),n = 0, 1,2..-} we recover again /_ - 2nn. Is there any other set of generic

states for which we can evaluate explicitly the geometric phase?

The answer turns out positive if we consider tile recently found coherent states of Ha (the

generalized coherent states (;CS) [12]. Let's denote them as Iz} with z E C. The annihilation and

creation operators of the system call be identified as:

A = blab, A t = btatb. (22)

Define now I_) by Alz) = zlz). A direct calculation leads to:

1 _ Z n

(2a)

where I0n) represents to On(x) and 0F2(1,2; y)is a generalized hypergeometric function 113l. Each

z _ 0 is a non-degenerate eigenvalue. However, z = 0 is a double degenerate eigenvalue of A with

eigenvectors 1O0) and = 0) - 1o,). it is possible to lind a measure in the coml,lex plane such

that {100), Iz)} is complete ill 7-/.

To evaluate the geometric phase/3Gcs, (zlHalz) is needed. A direct calculation leads to:

(Ha) = <zlHalz) = 1/2 +
0F2(1, 1; Izl2)
oF2(1,2;Iz12)"

(24)

Finally:

13cos = 27r °F2(I' 1; Izl 2)
0F2(1,2; 1;12) . (25)

The behaviour of _ccs, is shown ill Fig.2. Notice that rices is independent of )_. Moreover, its

behaviour is quite different compared with tile standard coherent state (SCS) of tile harmonic

oscillator for which ¢_scs = 2alzl 2 (see Fig.2). The difference rests on the fact tllat the GCS do

not tend to the SCS when A ---+oc and Aoo -- lim-y__,oo A = ata 2/: a even though Va(x) ---+x2/2 ill
this limit.
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FIG. 2. The geometric phases versus z for the standard coherent states of the

harmonic oscillator (flscs) and the coherent states of the generalized oscillator (/_acs).

Acknowledgments

The author acknowledges CONACYT (M_xico) for financial support.

References

[1] M.V. Berry, Proc. R. Soc. LonG. A 392, 45 (1984).

[21 Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).

[3] B. Mielnik, Rep. Math f Phys. 12,331 (1977).

[4] B. Mielnik, J. Math. Phys. 27, 2290 (1986).

[5] D.J. Fern£ndez C., I1 Nuovo Cimento 107 B, 885 (1992).

[61 D.J. Fernhndez C. and B. Mielnik, Controlling Quantum Motion, to be published J. Math.

Phys. (1994).

212



[7] M.M. Nieto and V.P. Gutschick, Phys. Rev. D 23, 922 (1981).

[8] A.N. Seleznyova, J. Phys. A 26, 981 (1993).

[9] M.G. Benedict and W. Schleich, Found. Phys. 23, 389 (1993).

[10] D.J. Moore, Phys. Rep. 210, 1 (1991).

[11] B. Mielnik, J. Math. Phys. 25, 3387 (1984).

[12] D.J. Fern£ndez C., V. Hussin and L.M. Nieto, Coherent States for Isospectral Oscillator

Hamiltonians, to be published J. Phys. A (1994).

[13] H. Bateman, Higher Transcendental Functions, vol.1, A. Erd_lyi ed. (McGraw Hill, New York,

19 3).

213





N95- 22982

COHERENT STATES FOR A GENERALIZATION

OF THE HARMONIC OSCILLATOR

David J. Fern£ndez C.

Departamento de F(sica, CINVESTA V-IPN,

A.P. I_,-7_0_ 07000, Mdxico D.F., Mexico

V_ronique Hussin and Luis M. Nieto

CRM, Universitd de Montrdal, C.P. 6128, succ. Centre Ville

Montrdal (Qudbec), H3C 3J7, Canada

Abstract

Coherent states for a family of isospectral oscillator Hamiltonians are derived from a

suitable choice of annihilation and creation operators. The Fock-Bargmann representation
is also obtained.

1 Generalized Oscillator

Let us consider the harmonic oscillator Hamiltonian and its annihilation and creation operators

H- _e-2_+_x-, _=_ _+x, _-yz+x, [_,_._l=l. (1)

We obviously have a¢a = H - ½, aa _ = H + ½, Ha ¢ = a¢(H + l) and Ha = a(H - 1). The

eigenstates verify

; a*l,/,,_)= v_+ 1[vg.+_), al_/'n>= vqgl¢.-,). (2)

1
In his paper of 1984, Mielnik [1] (see also [2]) looked for operators b and b_ such that bb _ = H +

and taking the following form:

,(,) l(,)b= _ _ + 9(x) b*- -_ + 9(x) (3)' v_

Hence, B(x) must verify the Riccati equation

fl'+32 = 1 -Fx 2, whose general solution is
_--X 2



The inverted product of the new operators is not related to the oscillator Hamiltonian, but gives

a one-parametric family of operators:

1 1 d 2 1 d 2 x 2 d [ e -z2 ]

HA =btb + 2 - 2 dx 2 + VA(x) - 2 dx 2 + 2 dx [,x + f0_ 2 j. (5), e-_ dy

20

_" I0

k=l

_=0.88625
-10

I

%, X.=_ + 10-_4
-20

I 3 6
k=lO

X

FIG. 1. The potentials V;_(x) associated to HA.

The operator bt connects H and HA: H_,b t = bt(H 4- 1). Therefore, the normalized eigenstates

and eigenvalues of HA are

10") - btlCn-1)x/_' E, = n + 2' n = 1,2, .... (6)

They do not generate all L2(R). There is a missing vector [00) verifying bl00) = 0 and given by

C°e-x212 (7)
O0(x) = A 4- f_ e-V2dy"

It is an eigenvector of HA with eigenvalue 1/2; then HA is a Hamiltonian with spectrum equal to

that of the harmonic oscillator. The annihilation and creation operators for HA can be chosen

A = btab, A t = btatb. (8)
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2 New Coherent States

It is well-known that there are several non-equivalent definitions of coherent states [3, 4]. One of

the possibilities is to look for eigenstates of an annihilation operator. We have seen that A is such

an operator. Hence, the states Iz} we are looking for must verify

oo

AIz ) = zlz), Iz) = _ a,.,lO. ). (9)
n=O

After normalizing, we get

1 oo Z n

Iz>= ( I I)-oF  l, r-o + Io.+,), (10)

where the generalized hypergeometric function is defined as [5]

r(_)r(#) _
0¢2(_, #; x) = r(_ + _)r(_ + n) _

n=0

(11)

We see that z = 0 is a doubly degenerated eigenvalue for A, with eigenvectors 10> --- 101) and ]00).

We analyze now the overcompleteness. The resolution of the identity must take the form

/_ = 10o><00l+ f Iz><zld_(z), (12)

where the measure d#(z) can be determined as in [61 (see t71 for details). This measure is positive

and non-singular. Some other interesting results are the form of the reproducing kernel (zlz')

(zlz,) = oF2(1,2;2z') (13)
_/oF2(1, 2; Izl2) oF_(1,2; Iz'12)'

the dynamical evolution of the coherent states

1 _ z" e-"'_lO,+l) = e-'3t/:l_'%), (14)u(t)lz) = v/0F:(1,2,1zl_ ) = n!_/(n + 1)!

and the expected value of the Hamiltonian Hx in a coherent state

0F2(1,1;Izl 2) + 1
(zln_,lz) = oF2(1,2;iz12) _.

(15)

3 The harmonic oscillator limit

Notice that Hx tends to the harmonic oscillator Hamiltonian when I)_1 ---, c_. Let us consider

this limit to see if there is a relationship between the coherent states we have computed and the
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harmonic oscillator ones. In the limit, fl(x) _ x; therefore, b ---* a and b¢ ---* a t. Then, we get

10-) ---* I¢,,}. Nevertheless, A ----,Ao = ata2; as a consequence, the coherent states (10) become

] oo Zn

]Z}o =--- lim Iz) = _ I_n+l}, (16)
1_1--._o ¢0F2(1, 2; ]zl 2) .=0 n!v/(n + 1)!

which are not the usual coherent states. For Iz} it is difficult to compute the expectation values

of the position and momentum operators, but for IZ}o the problem can be easily solved using

1 i

= _(,_+a), ¢= _(a¢--a). (17)

For the position operator _e get
I

+ s 0F_(2,2;'Iz12).
o(Zl_,lz)o- v_ 0F2(1,2;Iz12) '

, (o(Zl:lZ)o = 20F2(1,2;iz12) 30F2(1

(18)

(z + _)2 oF2(2, 3; Iz12)) (19),2; Izl2) + 2

For the momentum operator we obtain similar results. Tile uncertainty product is then

i(_) 2 3 'zl20(lzl) + [Re(z)Im(z)P(lzl)] 2,(A_)(_) = +

where

(20)

p(Izl) = 0F2(1,2; Izl=)0F2(2,3; Izl2) - 210F2(2,2; Izl_)]_ (21)
[0F2(1,2;1_ts)]5

A plot of (A_)(Aifi) is shown in Figure 2. It can be rigorously proved that 1/2 _< (A_)(A_) _< 3/2.

3/2

1/2

- 20 -I0

-10 0

0 IO Re(z)
Ira(z) lO

20
2O

FIG. 2. The uncertainty product (Aj:)(A_) as a function of z.
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4 The Fock-Bargmann representation

For the harmonic oscillator it is possible to find a realization of the Hilbert space in terms of

entire functions [4, 8]. The same is true for the coherent states of the Lie algebra su(1, l) [6, 9].

We will show next that we can construct a similar realization for the problem under study. The

Hilbert space T/ is generated by the basis vectors {180), I81), 182),...}; the state 180) is isolated

from the others, in the s_nse that it is an atypical coherent state. Let us call 7"/0 the one-

dimensional subspace generated by 180) and 7-/1 the Hilbert space generated by {1_1), 182), .. .}, so
that 7-/= 7-/0 _ 7"tl. From now on, we are going to concentrate oil H1. A vector [b) E _'_1, is

Ig) z _ CmlSm) • _'_1; Cm = (Smlg); (gl_) = _ ICml 2 < C_. (22)

rn=l rrt=l

Using (10)

(zig)-- _/0F_(1,2;tzl_)_ n!(_--_! (0..,lg) (23)

A realization of 7-/1 as a space 9r of entire analytic functions is obtained by associating to every

]g) • "H1 the entire function

o_ (8.+11_)
g(_)--.:0Z:_!v/(_+ 1), "" (zig)= _/o ( )--F21,2;lzl 2-

z , . (24)

From the relation 19(z)l _ Ilgllv/oF2(1,2; Izl2), Vg(z) • _- (issued from the Schwarz inequality),

we can show that g(z) is an entire function of order 2/3 and type 3/2 (see [7]). This characterizes

completely the space 9r (the usual coherent states are related to the Segal-Bargmann space of

entire functions of growth (1/2, 2)). In particular, the entire function corresponding to a coherent

state ]a) is

_(_): 0F_(1,2;_) (25)
V/oF2(1,2; 1_12) '

The functions

8,+1(z) = , n 0,1,2,...,
n!v/(n + 1)]

form an orthonormal basis of _" so that g(z) may be written

(26)

oo

g(_) -- _ _,+,8,,+1(_). (27)
n=O

Notice that the function 6(z, z') = 0F2(1, 2; z2') plays the role of the delta function in 9v.

Finally, we want to know what is the abstract realization of the operators acting on 9v as a

multiplication by z and as a derivation c_/c%. Let us consider the function

oo zn+ l oo

- _ mv/-_ + 1CmSm+l(Z). (28)
zg(z) = ,=0_ c"+ln!v/(n + 1)'. m=l
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On the other hand, the action of the operator A t oll Ig) is

OG OO

A_ig)l= b_a*b_ Cm+ll0m÷l) : _ c.nV_ + 1 10.+_). (29)
m=O n=l

Then, A ? is the operator whose realization in _" is a multiplication by z. Let us consider now the

function

= _ z,,,_l oo c,,+_ O,,,(z). (30)

Oz m=, (m - 1)[_(m + 1) I. m=,

As [A, A ?] _ I, the abstract operator corresponding to the derivative is not A. Therefore, we have

to find an operator B such that

oo oo

Big) = _ cm+,BlOm+,)= _, c,,,+,,,,=o ,,,=, Io,,). (3])

We suppose it has the form
B = btaf(N)b, N = a'a,

and the function f becomes

(32)

It is easy to see that

1 (33)
f(N)=N(I+N)"

and therefore, up to normalization,

IB, A*] = I, IA, B*] = I, (34)

Iz)= exp(zB_)lO,) • (35)

However, it is not possible to obtain Iz) as the action of a unitary representation of the algebras

in (34).
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Abstract

The finite-element approach to lattice field theory is both highly accurate (relative errors

,-, 1/N 2, where N is the number of lattice points) and exactly unitary (in the sense that

canonical commutation relations are exactly preserved at the lattice sites). In this talk

I construct matrix elements for dynamical variables and for the time evolution operator

for the anharmonic oscillator, for which the continuum Hamiltonian is H = p2/2 + ,_q4/4.

Construction of such matrix elements does not require solving the implicit equations of

motion. Low order approximations turn out to be extremely accurate. For example, the

matrix element of the time evolution operator in the harmonic oscillator ground state gives

a result for the anharmonic oscillator ground state energy accurate to better than 1%, while

a two-state approximation reduces the error to less than 0.1°/0.

1 Introduction

For over a decade now, the finite-element method has been developed for application to quantum

systems. (For a review of the program see [1].) The essence of the approach is to put the

Heisenberg equations of motion for the quantum system on a Minkowski space-time lattice in

such a way as to preserve exactly the canonical commutation relations at each lattice site. Doing

so corresponds precisely to the classical finite-element prescription of requiring continuity at the

lattice sites while imposing the equations of motion at the Gaussian knots, a prescription chosen

to minimize numerical error. We have applied this technique to examples in quantum mechanics

and to quantum field thhories in two and four space-time dimensions. In particular, recent work

has concentrated on Abelian and non-Abelian gauge theories [2, 3, 4].

Because it is the equations of motion that are discretized, a lattice Lagrangian does not exist

in Minkowski space. This is because the equations of motion are in general nonlocal, involving

fields at all previous (but not later) times. Similarly, a lattice Hamiltonian does not exist, in the

sense of an operator from which the equations of motion can be derived.

However, because the formulation is unitary, a unitary time-evolution operator must exist

which carries fields from one lattice time to the next. For linear finite elements this operator in

quantum mechanics has been explicitly constructed [5]. Construction of this operator requires

solving the equations of motion, which are implicit. Therefore, it is most useful, and perhaps

surprising, that when matrix elements of the time evolution operator are constructed in a harmonic

oscillator basis, they do not require the: solution of the equations of motion [6]. Although these
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general formulas were derived some years ago, it seems they have not been exploited. My purpose

here is to study, in a simple context, the matrix elements of the evolution .operator, and see

how accurately spectral information may be extracted. My goal, of course, is to apply similar

techniques in gauge theories, for example, to study chiral symmetry breaking in QCD.

2 Review of the Finite-Element Method

Let us consider a quantum mechanical system with one degree of freedom governed by the con-

tinuum Hamiltonian
p2

H= --ff + V(q), (1)

from which follow the Heisenberg equations

= -V'(q), il = p. (2)

These equations are to be solved subject to the initial condition

[q(O),p(O)] = i. (3)

It immediately follows from (2) that th*_ same relation holds at any later time

[q(t),p(t)] = i. (4)

Now suppose we introduce a time lattice by subdividing the interval (0, T) into N subintervals

each of length h. On each subinterval ("finite element") we express the dynamical variables as

rth degree polynomials

p(t) = _ ak(t/h) k, q(t) = _ bk(t/h) k, (5)
k=0 k=O

where t is a, local variable ranging from 0 to h. We determine the 2(r + l) operator coefficients

ak, bk, as follows:

1. On the first finite element let

ao=Po =P(O), bo=qo=q(O). (6)

2. Impose the equations of motion (2) at r points within the finite element, at aih, i =

1,2, .... r, where 0 < al < a2 < "- < cr_ < 1. This then gives

p(h) ._ pl = _ ak, q(k) _ q, = bk. (7)
k=0 k=O

3. Proceed to the next finite element:by requiring continuity (but not continuity of derivatives)

at the lattice sites, that is, on the second finite element, set

ao=pl, bo=ql, (8)

and again impose the equations of motion at aih, and so on.
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How are the ai's determined? By requiring preservation of the canonical commutation relations

at each lattice site,

one finds

[q,, Pl] = [qo, po] = i,

1

r = 1 (linear finite elements) a 2

1

r = 2 (quadratic finite elements) a+ =

1

r = 3 (cubic finite, elements) 0'1, 3 =

These points are exactly the Gaussian knots, that is, the roots

(9)

(10)

1

± 2---_ (11)

T 2vf_, a2 : _ (12)

of the rth Legendre polynomial,

P_(2a- 1) = O. (13)

Amazingly, these are precisely the points at which the numerical error is minimized. It, is known

for classical equations that if one uses N rth degree finite elements the relative error goes like

N ->, while imposing the equations at any other points would give errors like N -T.

Let us consider a simple example. The quartic anharmonic oscillator has continuu_n Hamilto-

nian

for which the equations of motion are

1A4
H=_p2+-4 q, (14)

4 = p b = _ q3. (15)

If we use the linear (r = 1) finite-element prescription given above, tile corresponding discrete

lattice equations are
ql - q0 pi + p0 Pl - p0 J\

h - 2 ' h - _;(q' + q°)a" (16)

(Notice the easily remembered rnnemonic for linear finite elements: Derivatives are replace_ ,,y

forward differences, while undifferentiated operators are replaced by forward _werages.) By com-

muting the first of these equations witt_ Pl + p0 and the second with ql + q0 the unitarity condition

(9) follows immediately. These equations are implicit, in the sense that we must solve a nonlinear

equation to find qx and Pl in terms of q0 and p0. Although such a solution can be given, let use

make a simple approximation, by expanding the dynamical operators at time 1 in powers of h,

with operator coefficients at time 0. Those coefficients are determined by (16), and a very simple

calculation yields

Ah= 3
ql = qo + hpo--_ qo +'",

Pl = po - Ahqg - ;Ah2qopoqo + .... (17)

We can define Fock space creation and annihilation operators in terms of the initial-time operators

qo=7 v_ ' Po-- ix/_"f ' (18)
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which satisfy

[a,a t] = 1. (19)

Here we have introduced an arbitrary variational parameter 7. The Fock-space states (harmonic

oscillator states) are created and destroyed by these operators:

I_)- (at)"
Io), (20)

which states are not energy eigenstates of the anharmonic oscillator. We can now take matrix

elements in these states of the dynamical operators at lattice site 1, using (17):

(llP, lO)_ (11po10)(1+ i3hA'_' - 3h2A_2+...)
I

,,_ (liP0[0)(1 + iwh- l_uh2 + ...), (21)
2

and

+i h
(llq, lO) _ (llqolO)(1 _ -4h2A_ 2 + ...)

(11q010)(1+ i_h- -_ h +...), (22)

where we have assumed approximately exponential dependence on the energy difference w. Equat-

ing the coefficients of the terms through order h 2 constitutes four equations in two unknowns.

These equations are consistent and yield

3 4 1 (23)
= _ = .l-5,

so the energy difference between the ground state and the first excited state is approximately

w = /_ _ 1.145)_ a/3

I

which is only 5% higher than the exact result Em = 1.08845/k 1/3.

quadratic finite elements (r = 2) reduces the error to 0.5%.

(24)

A similar calculation using

3 The Time-Evolution Operator

Because the canonical commutation relations are preserved at each lattice site, we know that there

is a unitary time evolution operator that carries dynamical variable forward in time:

q,_+l = UqnU t, Pn+l = UPn Ut, (25)

For the system described by the continuum Hamiltonian (1) in the linear finite-element scheme,

we have found [5] the following formula for U:

U = e ihp_/4 e ihA(q'_ )e ihp_/4, (26)
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where
9

A(x) = -_2[x- g-l(4x/h2)]2 + V(g-l(4x/h2)), (27)

4

g(x) = Ux + V'(x). (28)

The implicit nature of l;he finite-element prescription is evident in the appearance of the inverse

of the function g.

Given the time evolution operator, a lattice Hamiltonian may be defined by U = exp(ih_).

For linear finite elements 7-t differs from the continuum Hamiltonian by terms of order h 2. For

example,

2 : _-Xtan-' _p + 5m q j, (29)
\I

13 ]=_q3 _ = _+ _q + _q_+_ + (30)

V = _q4: _t = _p2 + _Aq + ___q6_ -sqP q + .... (31)

If one uses quadratic finite elements 7-/differs from the continuum Hamiltonian by terms of order

h 4, etc.

4 Matrix Elements of Dynamical Variables

Remarkably, it is not necessary to solve the equations of motion to compute matrix elements of

the dynamical variable. Introduce creation and annihilation operators as in (18). Then, in terms

of harmonic oscillator states (20) the following formula is easily derived [6] for a general matrix
element of ql:

-+Rv/Tr2n+mn!m! /__'_dz ze-g2(z)/4R2g'(z)H,_(g(z)/2l_)Hm(g(z)/2R), (32)

where g is given by (28), H,_(x) is the nth Hermite polynomial, and we have introduced the
abbreviations

R2 _ 472 1 e_iO 27 i (33)
- h----_ + h27----5' - Rh 2 + Rh'y--"

For the example of the harmonic oscillator, this formula gives for the ground state-first excited

state energy difference w = (2/h) tan-'(h/2), consistent with (29), while for .the anharmonic

oscillator if we expand in h we obtain precisely the expansion (22).
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5 Matrix Elements of the Time Evolution Operator

A similar formula can be derived for the harmonic oscillator matrix elements of the time evolution

operator. (There is an error in the formula printed in [6].)

1 1 -i(n+m+l)O

<_Iul_>= 2R J_2-+_n!m!_

f_ g z 2R)e [ihV(z)+ih:'y'(z)_/s-h2g(z)%-_°/s'd_],× _ dzg'(z)H,_(g(z)/2R)H,_(. ( )/ ' (34)
OG

which again is expressed in terms of g not g-1.

For the harmonic oscillator, where V = q_/2, (34) gives for the ground-state energy

• 1 h (35)
<ol/lO>-- _._o,., _oo= K ta,,-' 7'

which follows from (29). For the anharmonic oscillator, V = .\q4/4, again, for a first look, we

expand in powers of h, with the result, for the harmonic oscillator ground state,

( i 3i, 4_ h2 ( 3 9 ,_ 105A27s ) +...<oiuIO>= 1+ h _ + _A_ ) + -32._---S+ _'\_ 512

1 + iwoh- lwgh2 +..., (36)

which is also derivable from (31). Equating powers of h gives _.i:_two equations, which are to })e

solved first for the dimensionless number A76 = c_. Once the number (x is determined, the value

of wo is expressed as

_oo= >,'/:*.f(,_), f(_) - 4_,/.__ •

For a first estimate, we use the "principle of minimum sensitivity", _hat is, use the statiohary

value of a, 2

f'(o) = 0 _ a, = 5 => f(c_) = 0.4293, (3_z)

which is about 2% higher than the exact value of 0.42081 [7]. Itt fact, when we solve (36) for _

we find a complex value

1 i

c_ = 7 + 2----_ _ f(cY)= 0.4178 q: 0.0077i. (39)

The imaginary part is small, and the real part is only 0.7% low. The failure of (39) to be re_d does

not indicate any breakdown of unitarity, but only that the one state approximation is not exact.

We do much better by making a two-state approximation, where we must diagonalize the 2 x 2

matrix { U00 U02 (40)
V_oU:_] "

We then find the following relation between Wo,2 and c_ = A@:

Woa = A'/aa-'/3[12 + 213 :F 2x/3(8 + 163 + 33_2)1/21, (41)
16

which, for the - sign, is plotted in Fig. 1'
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FIG. 1. Ground-state energy for the anharmonic oscillator as a function of a = ,_,),6,

in the second approxi_nation. Here 0_0 = ,_/3f(a), f(a) given by (41).

This graph shows that the ground-state energy is very insensitive to the value of a. The

principle of minimum sensitivity give spectacular agreement with the exact result,

w0 = 0.421235)0/3, (42)

being only 0.1% high, while it gives a good value for the third state, w2 = 2.992A 1/3. Solving for
a from the eigenvalues of (40) gives even better results:

_)0 = A1/3(0.42054 + 2 x 10-6i), w2 = A1/3(2.94328 -- .022029i), (43)

where the ground state energy is now low by 0.06%, the imaginary part being negligible.
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6 Conclusions

The simple calculations given here for the quantum-mechanical anharmonic oscillator are the be-

ginning of a program to develop use of lattice Hamiltonian techniques to explore gauge theories

in the finite-element context. The astute reader will note that the numerical results presented in

Sec. 5 also hold in the continuum, by virtue of (31). It is in two or more space-time dimensions

that the essential nature of the lattice in such calculations comes into play [3, 4, 8]. The high

accuracy contrasted with the simplicity of the approach leads us to expect that we can extract spec-

tral information, anomalies, and symmetry breaking from an examination of the time-evolution

operator.
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Abstract

The q-analogue coherent states [z >q are used to identify physical signatures for the

presence of a q-analogue quantized radiation field in the [z >q classical limit where [z[ is large.

In this quantum-optics-like limit, the fractional uncertainties of most physical quantities

(momentum, position, amplitude, phase) which characterize the quantum field are 0(1).

They only vanish as o(1/lzl) when q = 1. However,for the number operator, N, and the

N-Hamiltonian for a free q-boson gas, HN = hw(N + 1/2) , the fractional uncertainties do

still approach zero. A signature for q-boson counting statistics is that (AN)2/ < N >4 0

as Izl Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian

phase operator of Pegg and Barnett, _q, still exhibits normal classical behavior. The standard

number-phase uncertai_ty-relation, AN A_q = 1/2 , and the approximate commutation

relation, [N, Cq] = i , still hold for the single-mode q-analogue quantized field. $o, N and

_q are almost canonically conjugate operators in the [z >q classical limit. The [z >q CS's

minimize this uncertainty relation for moderate [z[2 .

1 Motivation and Introduction

In considering the potential importance of quantum algebras to quantum field theory and to

physics[l], I am reminded of the twenty year development of Yang-Mills theory and the strong

interactions (now called QCD or quantum chromodynamics):

• 1954: YM theory was proposed to generalize U(1) QED to an SU(2)l,o,v_n theory for the

strong interactions with the p meson as the analogue of the photon.

• 1966: Nambu suggested that YM theory may be relevant to the color degree of freedom of

constituent quarks.

1CNELSON@BINGVM B.BITNET cnelson@bingvmb.cc.binghamton.edu
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• 1968: Experiments at SLAC discovered scaling of the strong interactions at short-distances.

• 1972-3: Asymptotic freedom was discovered for SU(3)Coto,. YM theory (i.e. the weak cou-

pling of the strong interactions at short distances).

In 1954, both the ultra-violet and infra-red(if the p were taken massless) properties of YM

theory were regarded as complicated. But inspite of the theory's mathematical beauty, it took 20

years for theorists to discover its important physical property of asymptotic freedom; and, in fact,

this occurred only after the hint provided by a Nobel prize winning experiment!

For comparison, the recent history of quantum algebras is

• 1979-87: q-algebra symmetries investigated in quantum and statistical mechanical models

[1].

• 1989: q-oscillators introduced to realize the new symmetries of q-algebras [2].

• ????: ???

If this historical parallel is of significance, we need to know the physical implications of these

novel symmetry structures. If there are q-oscillators in nature which realize these' new algebras, it

seems reasonable to expect that there will also exist a q-analogue quantum field which has such q-

oscillators as its normal mofles[4]. We need to know its canonical physical properties--what are its
number and phase signatures? Since the usual quasi-classical coherent states (CS_ approximately

characterize many types of cooperative behavior in the q=l case, it is natural to use the q-CS's to

investigate and identify empirical signatures[4,6] of a generic q-field for cooperative phenomena,

whether in quantum optics, many body physics, particle physics ....

The q-analogue coherent states Iz >q satisfy alz >q= zlz >q where the q-oscillator algebra is

( q _ 1, usual bosons)

aa_ - q+ll2at a = q_N/2 (1)

with [N, at] = at, [N, a] = -a, and the physically important bosonic [a, a] = 0. We take q real,
and 0 <q< 1.

In the In >q basis, < rain >= &.. and _

JI- >= + l]ln + 1 > aln >= V/_]ln- 1 > al0 >= 0 (2)

where [xlq = [x] = (q_12 q-_12)/(q,/2 q-1/2)is the "q-deformation" of x. More simply

ix] = sinh(sx/2)/sinh(s/2) where q = exps. Note that

Jaln >= [Nlln >= [nll_ > Nln >= nln > al0 >= 0 (3)

It follows that with ¢: zlz >= 1 the q-CS's are

oo Z n

I=>q= N(z) _ >, N(z)=eq(Izl2) -1/_ (4)

ZFrom now on the sub-q's are usually implicit!
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in terms of the "q-exponential function"

%(z) = z.., [nl;' Inl! -= [n][n - 1]..-[1], [0]! = 1 (5)
n=0 t J"

which is an order zero entire function [5], and Icq(z)l _ cq(Izl)_ _xp(Izl). For x > 0, it's positive,

but for x < 0 and q < (ql* "_ 0.14) there are an infinite number of increasing amplitude oscillations

of decreasing frequency as x _ (-_). The infinite number of real zeros are approximately at

[t,_ = -qO-")/2/(1 - q) ; n = 1, 2, .... As q increases, these zeros collide in pairs and move off the

real axis as a complex conjugate pair. In this manner, %(z) _ ezp(z) as q _ 1.

In analyzing the q-boson field in the Iz >q classical limit, we use the Heisenberg representation,

consider a specific mode, and suppress the k mode and _ polarization indices for the generic

electric and magnetic fields, etc. Notice that the q-analogue coherent states Iz >q are good

candidates for studying the classical limit of the q-analogue quantized radiation field because they

are minimum uncertainty states. They minimize the fundamental commutation relation

UQ,. = 2AQAP -I < [Q,P] > I > 0 (6)
l< [Q, P] >l -

(aN+[_+ll) Also, the n th order correlation function factorizes, i.e.with U[I_ > = 0, but UIl,,>¢10 > = ([n+_l-[,q) •

Tr(pE-(x)E+(y)) = £-(x)£+(y),... (7)

In addition, there exists a resolution of unity[3-5] for the q-CS's

f lz >< zt + ] >< dfi= I (8)

with, respectively, a continuous (q-integration) measure

d_(z) = _%(Izl_)cd-lzl_)dqlzl 2dO (9)

and a discrete measure

d_k--- leq(q'/21_kl2)%(--I_kl2)dO.

Note that I_kl_ = qk/_¢_with k = 0, 1,... and _i = minus the ita zero of eq(Z).

auxiliary states,J4], I_k>, satisfy

akl_k >_= (q'/4_k)l_k>q

(10)

The q-discrete

(11)

The ak obey the q-commutation relations, (1).

Consequently the q-CS's are non-orthogogonal and overcomplete. There are q-analogue gen-

eralizations[4,6] of the P-, Q-, and W-phase space representations of quantum optics. However,

as we next discuss, there also are important differences in the Iz >q basis for other coherence and

uncertainty properties of the q-analogue quantized field 3 .

SFor more details see [6].
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2 Fractional Uncertainties in the Iz >q Classical Limit

With the usual definitions /5 = _i(hw/2)a/2(a _ at) , Q = (h/2w)'/2(a + at), the fractional
A

uncertainties _ and _l<e>l are of O(1) for Izl-_ o¢ and

< zl[Q, Pllz >= ih < zl[a, atllz >= ih < zlA[z >= ihA(z) > ih (12)

This defines the resolution operator h -- [a, al]. The q-boson "resolution function" ( q = exp s,

and N(z) is the CS norm.)

oO

! A(z) = N(z) 2 _ [zl2nc°sh(s(2n + 1)/4)
,=0 [n]! cosh(s/4)

t (13)

goes as (q-,/2 _ 1)[zl2 + 1 as Izl_ o_. This follows because

A(z) _< zl[N + l]lz > - < zl[Nllz >--- ((q-,/2 _ 1)lzl 2 -4-(eq(q'/21zl2)/eq(Izl2)) (14)

Note that A(z) is bounded from above and below.

For the generic q-electromagnetic field, the fractional uncertainties in amp E , in amp/_ , and

in the "Hermitian" Pegg-Barnett phase operator, q_q, are also of O(1) [7,4,6].

Note 4 that the quadratic _',(_ single-mode hamiltonian, which has an O(1) fractional uncer-

tainty,

lip, 0 = (1/2)hw(ata + aat) = (1/2)(/52 + w2Q2). (15)

is proportional to the anti-commutator. Hence for q # 1, Hp, 0 is not mathematically independent

of the basic commutator/_ = [a, at] because of the fundamental operator identity

J

(-(i/h)[Q,P]cosh(s/4)) 2 - ((2/hw)Hp,osinh(s/4))2 = 1. (16)

In striking contrast to these O(1) fractional uncertainties, both the usual N operator and the

elementary N-Hamiltonian operator

HN = hw(N + 1/2) (17)

possess zero fractional uncertainties as [z[ _ ¢x). Also, HN does indeed possess the conventional

field-theoretic properties of the classic q = 1 Hamiltonian operator.

4For Hp,0, the energy is not additive for two widely separated systems, violating the usual cluster decomposition
"axiom" in quantum field theory. For q-quanta this is not so surprising since the fractional uncertainty in the

energy based on Hp,d_ is O(1) in the Iz > basis and the quanta by (1) are compelled to be always interacting,i.e.

by exclusion-principle-like q-forces! So it is doubtful that Hp,o permits the usual physical interpretation based on

a smooth limit to a conventional, free quantized field.
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3 q-Boson Counting Statistics

The physically important [a, a] = 0 implies that the usual Bose-Einstein energy distribution still

follows for a free q-boson gas . Note that (9) above does imply a non-degenerate equally-spaced

spectrum. On the other hand, the q-CS's do not give a Poisson number distribution for q _ 1

since [2,8]

Pnq(z)-=-]< n[z > ]2 _ ]zl 2''
[.]!_Jlzl_). (18)

Note that for q _ l, Izl 2 is the eigenvalue of the deformed number operator, [N], in the Iz >q basis.

The mean value of usual number operator N goes as < N >= 2c%log[z I+& for 1 < Izl 2 < fewlO0,

where c%and& are q-dependent constants. For fixed Izl 2, as q decreases the peak of Pnq(z) narrows

and shifts to smaller n. Therefore, the behavior of the fractional uncertainty (AN)/< N > is not

very q-dependent.

However, since AN --, r/q as Iz[ --* c¢, where r/q is a q-dependent constant for q _ 1, there is

the very important signature for q-boson counting statistics that

(AN)2t < N >_ 0 (19)

as Izl _ c¢ . This iS in contrast to a thermal source where the "rhs" of (19) equals < N + 1 >

for all Izl, and for laser light (and q=l CS's) where the "rhs" equals "one" as Izl --, _. So in

principle it is possible b_, q-boson count!ng experiments to very simply identify a q-boson gas in
this limit in spite of the_ordinary Bose-Einstein frequency distribution.

^

4 The q-Analogue of the Pegg-Barnett Phase Operator,¢q

Recall z = Izlexp(i0) . While mathematically a hermitian phase operator conjugate to N, or

to IN] _-__aia does not exist [9], q-generalizations of the phase operators of Susskind-Glogower

[9,10] and of Pegg-Barnett [7] have been constructed [4,6]. The q-generalization of the Pegg and

Barnett operator 5 is obtained by introducing a complete, orthonormal basis of (s + l) phase states

18m >q= (s+ 1)-l/2_=oexp(inOm)ln >q, Om =0o+ 2m_r/(s+ 1), with m = 0,1,...,s,. These

are eigenstates of the respectively hermitian and unitary

8

3_ - _ o_ Iota>< oral (20)

exp(i¢o) -=-IO><ll+...+ls-l><sl+exp(i(s+l)Oo)ls><Ol (21)

which is manifestly q-independent and unitary. In the analysis of SU(2)q Chaichian and Ellinas[11]

introduce a polar decomposition operator that is the same as exp(i¢)q when the reference phase

is chosen to be O_ = (s + 1)0o.

For arbitrary q, it still follows that

[co_,_i.;_] = 0 _o___ + _i. __ = 1 (22)

5The number-phase properties of the q-generalized SG operators are treated in [6]. For research prior to PB on
phase operators in spaces of finite dimension see T.S. Santhanam (this conference) and see the two recent general
reviews of phase operators [12].
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and that < nlcos_Sqln >=< .18i_ Sql_>= 1/2 for. = 1,2,....
vacuum state ]0 >q has a r_ndom phase.

The mean-value of Cq ih the }z >q basis is

1 L2_OmPq(O,_)dOm = 0 = Arg(z)(23)<_>= 2_

in terms of the q-boson phase distribution(the conjugate distribution to P.q(z) )

In particular, the q-boson

(24)

with the normalization _ f_'_ Pq(O,,,)dOm = 1. The variance of the phase operator

(A_q) 2 .-+ 1/(21#q) 1 (25)

as Izl -_ _, where z/q islthe same q-dependent constant found for AN as Izl-_ _.

5 Approximate [N, _q]---i in Iz >q Classical Limit

Thus, from the reciprocal-dependencies on r/q of AN and A_q, it follows that there are the ususal

(though approximate) number-phase and energy-phase uncertainty relations

ANACq _> 1/2 AShyA$_ > h_/2 (26)

In the Iz >q basis, the q-boson phase distribution Pq(0m) function also appears in Dirac's

approximate number-phase commutation relation

< zl[N, ¢.]1_ > = i - i P.(00) (27)

where 00 is the Pegg-Barnett indicial angle used above in (20). So for large Izl, for q # 1,

lim < zl[N, 7>qllz> = i - i 2,_,SJO- 0o)
8 -"i OO

(28)

for ¢_ eigenvalues from the indicial 00 to (00 + 27r). This extra _q term is a "bell-shaped" function.

This term serves a physical role analogous to that of a smeared "magnetic monopole" string in

that it appears in the classical limit to uniquely specify the classical phyase angle. For q = 1, the

smearing is absent and 8q is replace by a Dirac-delta-function distribution. This smearing is in

agreement with the greater fractional uncertainty of Cq for q # 1.

So, neglecting the indicial-referencing term, we conclude that the Iz >q coherent states both

give and minimize Dirac's commutation relation, i.e. in Iz >q basis for Izl large

[N,¢q] = i (29)

Hence, for the q-boson quantum field the operators N and _q are almost canonically conjugate

in the [z >q classical limit. This is in contrast to the extra ,_(z) "resolution factor" in the

commutation relation for the position and momentum operators. Given the physical importance
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of Dirac's commutation relation to cooperative phenomena in many different fields of physics, it

is very encouraging that for arbitrary q values Eq.(29) still holds for the q-boson quantum field

[13].

This is based on work with M. Fields'. We thank (;. Zachos for discussions; R. Lynch and

D.T. Pegg for correspondence; the Argonne z, Cornell, and Fermilab theory groups ]'or intellectual

stimulation; and U.S. Dept. of Energy Contract No. DE-F(; 02-86ER40_91 for ,support.
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Abstract

The Finite Fourier Transformation matrix (F.F.T.) plays a central

role in the formulation of quantum mechanics in a finite dimensional

space studied by the author over the past couple of decades. An out-

standing problem which still remains open is to find a complete basis

for F.F.T. In this paper we suggest a simple algorithm to find the
eigenvectors of F.F.T.
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I. INTRODUCTION

The finite Fourier transform matrix (F.F.T.) plays a fundamental

role in many contexts and has been studied extensively [1-3]. It is

central in the discussions on finite dimensional quantum mechanics based

on Weyl's commutation relations [41 studied by the author in a series of

publications [5]. The eigenvalues of this matrix were determined by

Schur [I] and a simple argument to recover this result has been given

earlier [6]. The calculation of the eigenvectors is not straight-

forward and many methods have been given in particular, by Mehta [7].

In Section IV, we present a new algorithm to find the eigenvectors.

II. EIGENVALUES OF S

The F.F.T. matrix S, which is unitary, is defined by

- [2_iI exp _ _ 8] ,
s_ _ n

_, _ = 0,1,2,...n-I

(2.1)

i = /-I

and has many interesting properties

(S2)a8 = ' = 6I) - I a8 + 8, o

(mod n)

S2 = f for a vector f
Since fa -u mod n,

(2.2)

with n components, S2 is

called the parity operator

(2.3)

2) (S4)aB : 6a8

llke the usual Fourier transform.

3) The matrix S, which is by definition a symmetric matrix will

diagonalize any circulant matrix.
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From Equation (?-3), it is clear that the eigenvalues of S are simply

• I and ±i. There is then a degeneracy of the eigenvalues. The first

problem will be to determine this. Luckily, Equations (2.1)-(2.3) can be

repeatedly used to fix this [6]. If k I, k 2, k3and k 4 denote the multi-

plicity of the eigenvalues taken in the order (I, -i, i, -i), Equation

(2.1) implies that

I n-I 2_i 12
Tr S =-- Z [ exp-- ]

l= 0 n

and hence

= _ -i_ni (I + i) [ I + exp ( -- ) ] (2.4)
2 2 '

Tr S = (k I - k 2) + i(k 3 - k 4)

= i for n = 4k + i,

= 0 for n = 4k + 2,

= i for n = 4k + 3,

= (i + i) for n = 4k,

k = 0,1,2,...
(2.5)

From Equation (2) we infer that

(k 3 + k 4)Tr S 2 = (k I + k 2)

= I for n odd,

= 2 for n even.

We also have

Tr S4 = n = k I + k 2 + k 3 + k 4.

Equations (2.5), (2.6) and (2.7) can be used to solve for kl, k 2, k 3 and

k 4 and one finds that
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n = 4k + 1 n = 4k + 2 n -- 4k + 3 n = 4k

k I k+ i k+ I k+ I k+ I

k 2 k k+ I k+ I k

k 3 k k k+ 1 k

k 4 k k k k - I

III.

where

EIGENVECTORS OF S

Let us decompose S into its primitive idempotents as

4 ij
S = Z B(j),

j=l

I
B(1) = _s + _ (I - I')

i i
B(2) = -_c + _ (I + I'),

i I
B(3) = -ys + _ (I - I'),

i
B(4) = _c + _ (I_ + I'), (3.2)

= i___ 2n eS)
C S /_ COS ( -_-

= I___ 2_____e8 ),
s_8 _n sin ( n

e,8 = 0,1,2,...n-i (3.3)

It is easily verified that

S B(j) = ij B(j), (3.4)

thus the nonzero columnus of B(j) yield the eigenvectors of S with eigen-

value i j. Also, i_ analogy with the standard case, Mehta [7] ha_ been

able to express these eigenvectors in terms of Hermite functions with
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discrete arguments.

IV. EIGENVECTORS OF S; AN ALTERNATE METHOD

Since the F.F.T. matrix S satisfies Equation (2.1) we construct

the matrix [i0]

2 3
T = S 3 + S 2 S d + S S d + S d

2

= I' (S + S d) + (S + Sd) Sd

where

Sd = diagonal S.

We find that

2 3)S T = S (S 3 + S 2 S d + S S d + S d

= (I + S3 Sd + S2 2 3S d + S S d)

3 S 3 S2 S_) S d= (S d + + Sd + S

(4.1)

(4.2)

= T S d .

If T is nonsingular,

T + S T = Sd

(4.3)

(4.4)

Therefore, the columns of T automatically provide the eigenvectors of

S. The degenerate eigenvectors of S corresponding to the repeated eigen-

values can be made orthonormal by using Gram-Schmidt process. This will

render T unitary. While the process is quite general, we shalllillustrate

this for some special cases

case ofln = 2

s ¢_ _ , (4.5)
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and

Since S2
2

ffi Sd = I,

(4.6)

(4.7)

We get from Equation (4.1)

T = 2 (s + Sd),

i -1 - 1 (4.8)

We unitarized matrix of the eigenvectors of S is therefore

U2 =
/2/f (Jr + 1)

- (,/-2 + I)

(4.9)

case of n = 3

S
1

_3
I E 2

2
I c c ,

2_i (4.10)
e = exp 3

From Equation (2._) we see that

J
1 0 0

Sd =_0 -I
0 0 (4.11)

one finds from Equation (4.1) that the unitarized matrix of the eigen-

vectors of S is
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//3+1 /i

U3

case of n = 4

I

42 /_ (_ + i)

\

l+/i _¢3+ /i

-i/3 + /3

(4.12)

In this case we have

1
1

S ---- _
2

1

1

and

,

i

-I

-i

i i

ii
-i (4.13)

Sd

1 0

=_0 i
0 0

0 0

o0 0

-I 0

0 i (4.14)

It is easily calculated that

/3 1

T

i I

1 -i

1 1

I 0

-i 2i

-I 0

-I -2i (4.15)

The first two column vectors correspond to the eigenvalue = +i, the third

one to -i and the last to -i.
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By a simple use of Gram-Schmidt orthogonalization procedure one

can find the unitarized matrix corresponding to the eigenvectors of S

as

/3 0 _ o\

U 4 =

/2¢_ (/4 + I) 1 -2/2 -/3 o

1 /_ -¢5 -i_ (4.16)
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ABSTRACT

It is demonstrated that an angular Fourier transformation is obtained

by making a rotation around the non-compact axis of So(2,1), the Lorentz

group in three dimensions.
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I. INTRODUCTION

The conventional fourier transformation has been at the root of quantum

^

mechanics. If q, p represent the position and momentum self adjo_nt opera-

tors of quantum mechancis, they satisfy the commutation relation *[i]

^ ^ I .... I
[q, p] = q p - p q = i (I)

It is also well known that this relation implies that

I (2)
(Ap) 2 (Aq) 2 _ 4 '

where

(Ax) 2 = <x2> - <x> 2 (3)

Equation (I) is known to imply that

oo

ip > = I
2_ f exp(ipq)lq>dq

--OO

i.e. the basis lq> in which the operator q is diagonal is related to the

basis in which the operator p is diagonal through the Fourier Transform

^

operator S

h
*We use the unit where units --

2_
= i, where he is the plank constant
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It is also known [2] that the classical fourier transform operator S can be

represented as,

^ ^2 i
S = exp{i_{(p 2 + q )/4 4 }} ' (5)

^

where S is defined as

CO

<qls >: I
f exp(iqq')<q'l_>dq' , (6)

--OO

where _ is the wave function which satisfies the Schroedinger wave euqation

[1} .

In this paper we show that the conventional fourier transform operator

^

S when rotated by an angle O through the non compact generator F4 of the

Lorentz group SO(2,1) yields the Angular Fourier Transformation (AFT). We

also analyze the properties of the AFT from this perspective and relate it to

the recent work of L. B. Almeida [23] who has derived the AFT from a differ-

ent point of view.

In Section 2 we summarize the properties of the group SO(2,1). In

section 3, we study some properties of the AFT from this perspective and

relate this to the work of Almeida. In the last section we offer some conclu-

sions on the discretization of the transform.

II. THE LORENTZ GROUP SO(2,1)

We define the three operators by F4, F0, T as

F 0 = (1/4) x {p2 + q2} ,

^2 ^2
r4 -- (-1/4) x {p - q } ,

^ ^ ^ ^

T = (-1/4) x {q p + p q}
^
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It is easily verified that r4, r0, T satisfy the following commutation rela-

tions.

[r0, r4] = iT ,
(8)

[T , r0] = iF4 ,
(9)

[T , r4] = ir0 ,
(i0)

and the Lie algebra so obtained is that of the Lorentz group SO(2,1) in (2+1)

dimensions [4]. It is recognized that the classical Fourier Transform oper-

ator in Equation (5) can be rewritten as

^ 1 (Ii)
s = exp{iH(r 0 - _)}

The generator r4 is called the non compact generator of the Lorentz group

SO(2,1), reflecting the fact that it is not bounded in support. From the

commutation relations we can verify using Equations (8, 9, I0) that

"
O ' q)

^

= exp(i0r4).(S).exp(ier4 ) , (12)

^  }sinhO})
= exp(-i 4). exp(_sinh 0) .exp(i_{i 4 coshO-{ p

(13)

It may also be verified that

q2 ,2
<q]Ko¥> = NO_ exp(i{{ + q }sinhO-{qq'}coshO})<q'lV>dq''(14)® 2

Where N O is a normalization constant that is dependent on B.

If we now set sinhe = cota and coshe = coseca then we obtain the kernel

of L. B. Almelda where the variables are (t,u) instead of (q,q'). Thus the

kernel of the AFT gets a meaning as a rotation in the (t,w) plane. The

variables (q,q') are the canonical variables and can be substituted with any

pair of variables that satisfy equation (1).
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III. PROPERTIES OF THE ANGULAR FOURIER TRANSFORM

It becomes clear after substituting sinh@

that

= cots and cosh0 = coseca

O = £n(cot(_)) , (15)

which implies that as e ÷_, a+2nH and 8÷-_, e÷(2n + I)E. With the above

identifications our kernel in Equation (13) is identical to that of Almeida

who has shown that the kernel exhibits the following properties

(I) Ka(t,u) = Ka(u,t) , (16)

(2) fK_(t,u)K*a(t,u')dt = 6(u-u') , (17)

(3) Ko(t,_) = __i exp{-it_} (18)
72_

For further properties use reference [3]. As envisaged in reference [3] the

AFT can be applied to the study of frequency swept filters.

IV. CONCLUSIONS

In this paper we have used the properties of the group SO(2,1) to define

^

the AFT as a rotation of the fourier transform operator S by an angle O

through the non compact generator F4 of the group, which will reduce to the

conventional Fourier Transform as O +_.

The study of a discrete version of this transform and fast aigorithms

for it's computation is of great interest and has been carried out [5].
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Abstract

Oscillation of electrical activity has been found in many nervous systems, from inver-

tebrates to vertebrates including man. There exists experimental evidence of very simple

circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found

and also neural circuits where oscillation is a property of the network. These two types of os-

cillations coexist in many instances. It is nowadays hypothesized that behind synchronization

and oscillation there is a system of coupled oscillators responsible for activities that range

from locomotion and feature binding in vision to control of sleep and circadian rhythms.

The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh

has made the simulation of neural oscillators a very active endeavor. This has been enhanced

with more recent physiological findings about small neural circuits by means of intracellular

and extracellular recordings as well as imaging methods. The future of this interdisciplinary

field looks very promising; some researchers are going into quantum mechanics with the idea

of trying to provide a quantum description of the brain.

In this work we describe some simulations using neuron models by means of which we form

simple neural networks that have the capability of oscillation. We analyze the oscillatory

activity with root locus method, cross- correlation histograms, and phase planes. In the more

complicated neural network models there is the possibility of chaotic oscillatory activity and

we study that by means of Lyapunov exponents. The companion paper shows an example
of that kind.

1 Introduction

Recent advances in nonlinear dynamics _,chaos and fractals have been of great benefit not only in

Physics and Mathematics but as well as in the study of the dynamic activity of the brain. These

tools allow to characterize neural phenomena that are usually described by means of graphical

methods as it is the case of electroencephalography (EEG) and some other similar recordings.

A topic that has pervaded neurophysiology along decades of this century has been the ob-

servation of oscillations in external (scalp) EEG. Likewise, oscillations of neuronal activity have
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been found in extracellular and intracellular electrical recordings in cortical and subcortical areas

of the brain of man and animals. These observations of oscillating electrical activity have been

described since the works of Mayer, Carlson, and Sherrington in 1906, as well as in the studies of

Gray and Lissman in 1950 and in the work of Wilson in 1961 [1]. From then to the eighties there

exist many other descriptions in the literature about oscillatory behavior. The common feature of

these observations is the lack of a theoretical framework where to place them and the ignorance

about the mechanisms and function of oscillatory activity.

In recent years the study of neural oscillation has been renewed applying analytical and com-

putational tools. Among them the more notorious are nonlinear dynamics, spectral analysis,

signal processing methods, chaos, and artificial neural networks. On the one hand, these tools

allow to characterize neural oscillation in a manner not possible before and, on the other hand,

they also allow to model and simulate oscillating phenomena in such a way that it is possible to
make inferences about the mechanisms that at the level of neuronal circuits could be responsible

of producing, modulating and using the' oscillatory capabilities of neurons, neural networks, and

neural systems.
It has been said that we do not know what could be the use of oscillations and chaos in the

brain [2], but we have the tools to detect and quantify them in such a way that could lead us

towards new knowledge and new tools.

2 Biological Oscillation

It is well known that oscillatory activity can be detected in the EEG. According to the brain

state diffe,,'nt oscillatory bands ca_ be defined, namely: delta(I-4 Hz), theta(5-8 Hz), alpha(10

Hz), beta(20-30 ttz) and gamn_a(30 50 Itz). Beta and gamma bands are related to very active

states. If at the saanc tihle the activi{,y uf neurons is recorded, it is possible to find rhythmic firing

that is coherellt with the' beta or gamma oscillations. The most prominent example of this fact

is the discovery by Singer, Gray and others [3] of oscillations of 10 ttz in the cat visual cortex.

They recorded the EEG in two different pla.ces and found strong coherence between them. At the

same time. _he firing of neurons recorded in the same locations is rhythmically synchronized with

the EEG. Since there is evidence that the features of an object are processed in parallel channels

along the visual pathway they think thai; response synchronization of cortical neurons is a possible

mechanism for feature binding in the visual system. This is probably the most important role

that has been given to neural oscillation. However, it has to be realized that feature binding is

not equivalent to perception.

The bippocampus is another example of oscillation where three different components can be

discriminated in the hippocampal EEG: A rhythmic slow activity (RSA) or theta rhythm (with

harmonics), an irregular slow activity (ISA) that may be high-amplitude (large irregular activity,

LIA) or small-amplitude (small irregular activity, SIA), and fast waves or beta rhythms. It is not

known what role, if any, these components play in the hippocampal functioning.

One important question is what neuronal circuits underlie both the generation of rhythmic fir-

ing and the oscillations in the EEG. There are single neurons that have the machinery for rhythmic

firing and others fire rhythmically due to the properties of the network which they belong to. Ac-

cording to Getting [4] some simple biological circuits employ one of the following arrangements:

mutual excitation, recurrent inhibition, reciprocal inhibition, and feedback inhibition. It has been
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shown that in biological neural systems both ways of producing rhythmic firing are used, even in
combination,

3 Models of Oscillation

Modeling is an important tool for understanding biological phenomena. Tiler(. art' several ap-

proaches to simulate oscillatory ac.tivity. Here we show several examples. In one of tbe'm ,-,_cillation

is produce,t b', +iJ(, ]_itrinsic prop¢'rties of a dynamic linear syst('m and in t.lw other two ex,Lmples

the firing pattern d(.l)ends on th(_ conimctivity propertie_ of a simple m'_iral netw(,rk where single

neurons ha-'_' incr,,,'_sing complexity in their mathematical modeling.

*V
8

I ,
s 4

Roo¢ Locus Complex Plane

O )l t

£:,, -,. -, -, -, -,'-' '4 '-''-; _-I . ,'_
open loop l_lF_t|se HSlPOnse

0 3 closed loop iMmlse r_esponse
II : i :

-,I,' I:`_ '"_:'

: ": -

•_ ; I , 1' , A [ i:'

5 6 7 8

FIG. 1. Model of linear oscillator with complex dynamics. The behavior is depen-
dent on the gain.

For the model in FIG. 1, the upper plot shows the root locus for a fifth order linear model of a

dynamic system which in open loop practically behaves as a linear harmonic oscillator due to the

dominance of the imaginary poles. Due to its intrinsic characteristics, the open loop response of

the model produces a periodic oscillation as shown in the middle plot in HG. 1. When negative

feedback is added to the model, new properties appear_ for ,m_, the possibility of _wo ,_ifferent
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types of oscillation. One transient oscillation (continuous curve in lower plot of FIG. 1) when

a given gain produces complex poles in the left-hand side of the complex plane, and periodic

oscillation (dotted curve in lower plot of FIG. 1) when another gain produces imaginary poles.

Notice that the frequency of periodic oscillation is different between the open loop and the closed

loop responses. The complexity of responses of a simple model like this can be enriched by adding
a nonlinear element in the forward path and a delay in the feedback path. A system like this has

been proposed to model the fast rhythm generation in the hippocampus [5].
For the first case of the second example, Net 1, Net 2, and Net 3 shown in FIG. 2 are simple

neural networks in which we study the conditions to achieve periodic firing patterns. The neuron

models (circles) are not endogenous units: to initiate their activity it is necessary one activating

element (fiber).

Net1 Net2 Net3

FIG. 2. Neural networks with periodic firing patterns.

The firing patterns shown in FIG. 3: were obtained by varying the synaptic intensity (weight)

in each connection of the network and keeping unaltered other biological parameters. The cross-

correlation histograms are useful for inferring functional connectivity and for assessing temporal

relations between the firing patterns. In the histograms shown we see an increasing degree of

synchronous activity in the firing patterns from Net 1 to Net 3. Actually, in Net 3 we observe a

rhythmic oscillation.
For the second case of the second example, the electrical properties of individual neurons are

described with Hodgkin- Huxley type voltage and time-dependent ionic currents. Neurotransmit-

ter fluxes are additional state variables in such networks and the action of chemical synapses is

modeled by additional kinetic equations. In FIG. 4 and FIG. 5 we show in the left column the

firing activity of the neurons and in the right column the phase planes. A single neuron model

can fire rhythmically, as exhibited by type 1 neuron in the upper part of FIG. 4, or it can display

the apparently chaotic activity seen at the bottom of the figure. The difference between the two

models is simply the value of a time-dependent sodium current variable.

We formed a network with recurrent inhibition like the one in Net 3 (see FIG. 2). In FIG. 5 we

show the activity of the net_rons in the ring-network. When type 1 neurons are used, the individual
activities remain rhythmicl By contrast, when type 2 neurons are used in the net_vork the activity

becomes rhythmic in all three neurons, which is mad6 more evident in the corresponding phase

plane plots. The overall behavior of the second network is different from the behavior of the single

components.
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FIG 4. Examples of a clivity in single neurons. Type I neuron shows a periodic

attractor while type 2 n,-,_lrCm exhibits an apparently chaotic attractor.

!iL

i,_

FIG. 5. Neuron activity in a ring-net similar to Net 3 of FIG. 2. Type 1 neurons

were used for the first net and type 2 for the second one. Type of neuron notwith-

standing all neurons display a rhythmic activity in the net.
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4 Concluding Remarks

As it happens in High-Energy Physics where powerful colliders allow to look for new elementary

particles, in Neuroscience, instruments like Magnetic Resonance hnaging (MRI) and Positron-

Emitted Tomography (PET), allow to look for unknown mechanisms involved in normal brain

functioning. However, unlike Physics, Neuroscience does not possess theoretical frameworks with

the power of Quantum Theory and Classical Mechanics, that is, there is not a brain theory which

could embrace t t:, ('vidence provided by experiments at th,, molecular level as well as at the system
level.

Many, neuroscientists think that understanding of the mechanisms underlying perception, mem-

ory, learning and consciousness will require a quantum theory framework which would include

t,)nlinear dynamics and chaos [6].

For example, brain waves and neurornuscular systems haw, attra(ted the use of harmonic

analysis and feedback control theory since the times of Wiem'r [7] an,I ,\shby [8]. In the same

line but in a different field was Hebb with his reberveratory cir, _lils [9]. They were using these

tools as a math(q_l__,li(al characterization of macro-events in physi d, ,_ical systems. More recently,

in trying to _nd(,rstand special mechanisms in the organization (,f t::-'logical neural networks, the

lhcorv of feedl)ack has been brought to i, ght again, namely by _l)l):aphrey [10] and by Edelman

[11] with his idea of reentrant loops. In including negative o) posi*ive fe('dback in a system the

conditions for oscillation are highly likely.

On the other hand, Penrose [12] has argulnented that c(mv,iolts::,..-;s a_il] not be understood on

a computational basis, but it will require a fllller understanding ,f q_iai_tliil) .mechanics, specifically

the application of micro quantum mechanics to ma('ro ('\,'tJi,> i i,'.l I. ll,.,w(.'v(:r, Crick remarks that

Penrose considers physics incomplete because there is as vet no theory _:f quantum gravity and

hopes that an adequate theory of it might explain consciousness but 1_,' is ,,'ry vague as to how it

might do so [14]. On the side of perception, Pribram describes works which propose a quantum

neurodynamics based on the Schrgedinger equation and also a n,'ural wave equation akin to

:Ychrgedinger's. fte also mehtions that Heisenberg matrices ]i_t',e bee_! identitied as instruments for

the evolution of group strllctures, a process shown capable of a_<ounting for the _leural processes

entailed in tile perception of objects [6]. It is agreed at this tinie that all the hypotheses on

consciousness are very vague as to exactly what is crucial for it and the same can be said about

perception.

It is important to notice that a single neuron has a great m_,lvcui,_r complexity [15]. Itowever,

it is in neural nets and systems of nets where higher brain functions are supposed to take place [1-I].

Moreover, advances in molecular neurobiology point to the place where two neurons communicate

-called the synapse- as very important for higher brain functions, mainly the events that occur at

the dendritic tree and the dendritic spines which are the sites that have the molecular machinery

(receptors and channels) for receiving tile molecules of neurotransmit, ter coming from the sending

neuron. These phenomena could be studied by means of coupled harmonic oscillators as it has

been done for finding soluble models in molecular physics [16]. After all, it was the great quantum

theorist Schr6edinger whose lectures in Dublin, when published in 1944 with the title "What

Is Life?", had a major influence on the development of molecular biology [13]. In that book

SchrSedinger had one question and one answer: "How can the events in space and time which

take place within the spatial boundary of a living organism be accaunted for by physics and
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chemistry? The obvious inability of present-day physics and chemistry to account for such events

is no reason at all for doubting that they can be accounted for by those sciences." [17].
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Abstract

In this paper we present the general problem of identifying if a nonlinear dynamic sys-

tem has a chaotic be_a.vior. If the answer is positive the system will be sensitive to small

perturbations in the ihitial conditions which will imply that there is a chaotic [attractor in
its state space. A particular problem would be that of identifying a chaotic os_:illator. We

present an example of three well known different chaotic oscillators where we have knowledge
of the equations that govern the dynamical systems and from there we can obtain the corre-

sponding time series. In a similar example we assume that we only know the time series and,

finally, in another example we have to take measurements in the Chua's circuit to obtain

sample points of the time series. With the knowledge about the time series the phase plane

portraits are plotted and from them, by visual inspection, it is concluded whether or not

the system is chaotic. This method has the problem of uncertainty and subjectivity and for

that reason a different approach is needed. A quantitative approach is the computation of

the Lyapunov exponents. We describe several methods for obtaining them and apply a little

known method of artificial neural networks to the different examples mentioned above. We

end the paper discussing the importance of the Lyapunov exponents in the interpretation of

the dynamic behavior of biological neurons and biological neural networks.

1 Introduction

In the companion paper [1] we described some findings about biological oscillators that have been

presented in the recent literature. We also showed some examples of oscillator models. Here we

want to review some models of chaotic oscillators with the goal of extending the analysis to time

series (trains of action potentials) coming from biological oscillators where there are some hints

that they are chaotic.

There are many experimental situations where there is no idea of what the mathematical

model of a system could be or where the form of the equations is known but the parameters are

unknown. There is an extensive literature about methods for systems identification but they are
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usually limited to linear models. Since the conditions for chaotic behavior arise from the presence

of nonlinear elements, the use of linear methods is limited.

In recent years there have been many advances in the understanding of nonlinear dynamic

systems and that has produced many methods for identifying whether or not a given system

is chaotic. For testing these methods various simple chaotic systems have been discovered or

invented. In some of them the equations that govern the system are well known but in others

only some sort of approximation is known. In the former case, it is possible to generate the

corresponding time series with very high approximation, in the latter case, the measurements

yield a sampled version of the corresponding time series. Having at hand the equations and

the time series, or at least the time series, it is possible, in very different ways, to compute the

asymptotic properties of the system. Two measures are used for this: the Lyapunov exponents

in which a positive one indicates chaotic dynamics, and the attractor's topological dimension

which indicates topological characteristics and is directly related to the number of non-negative

Lyapunov exponents [2].
It is usual to ascertain[ the existence of chaotic dynamic by means of visual inspection of the

phase plane portrait. However, such method presents a considerable amount of _uncertainty a,nd

subjectiveness. Taking that into account, it is important to have a quantitative method like the

one provided by the computation of the Lyapunov exponents.

2 Lyapunov Exponents

To determine if a system possess chaotic dynamics it is necessary to know if it is sensitive to

small perturbations on the initial conditions. When this occurs it is then impossible to predict the

final state of the system after a finite time. To bc able of characterizing a chaotic attractor it is

necessary to establish quantitative measures concerning the sensitivity i,o initial conditkms. The

spectrum of Lyapuiaov exponents gives a method of quantifying the dynamics. The Lyapunov

exponents describe the average rate of growing or shrinking of small perturbations ira different

directions in the state space. When the attractor has at least one positive exponent t!wn it has

the property of being sensitive to the initial conditions and it is called a chaotic attractor.
There are several methods for computing the Lyapunov exponents. Wolf'et al. [3] were the

first in suggesting a method to compute them directly from the time series, without knowing the

equations that govern the system's dynamics. Kurths and Herzel [4] proposed another algorithm.

However, in these algorithms the estimations are sensitive to the number of observations, to the

sampling frequency and to the noise in the observations [3]. Trying to avoid these problems,

Gencay and Dechert [5] designed an algorithm that computes the m Lyapunov exponents from

an unknown m-dimensional dynamic system directly from a few observations on the attractor,

in such a way that the estimation is robust even for certain amount of noise. This algorithm is

based on a result by Hornik et al. [6] in which they show that the m Lyapunov exponents of a

diffeomorphism that is' topologically conjugate to the process that generates the data, are also

the m Lyapunov exponents of that process. To obtain a robust estimation considering both few

observations on the attractor and the presence of noise, Gencay and Dechert [5] applied artificial

neural networks with a cascade architecture. Such procedure is a non-parametric estimation that

Hornik et al. [6] [7] have shown to be universal approximators, that is, they can asymptotically

approximate a function and its derivatives.
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3 Computation of the Lyapunov Exponents

The Lyapunov exponents are constants, except for a zero-measure set, and describe the direction

of nearby paths that converge or diverge in the state space of a dynamic system. The Lyapunov

exponents )_i are defined as the logarithm of the eigenvalues #i V i = 1,2,..., m of the symmetric

positive matrix

A_ = t--.o_lim[Y(x;t)trY(x;t)] 1/2t , (1)

where the matrix Y is dependent on the differential equation that characterizes the dynamical

system. A direct applicat_ion of the above definition is not practical since the Y matrix grows

exponentially due to the hst convergence of the columns in the direction of g_ater expansion.
Using topological properties and an appropriate QR decomposition, the Lyapunov exponents are

found by computing

1

Ai - At t--._ n j=o

where Rii are the diagonal elements of the triangular matrix R.

An alternative to the aforementioned algorithm is the use of neural networks which are capable

of recovering a nonlinear map from a time series of iterates [8]. ttere an unknown function is

estimated and then it is possible to compute the Lyapunov exponents using the properties of the

dynamic system [5].

FIG. 1. Phase Plane Portraits for the Logistic Map, the H6non Map, and the

Lorenz System.
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4 Examples of chaotic oscillators

To be able of testing the effectiveness of the Lyapunov exponents one has to have at hand dy-

namical systems with proved chaotic behavior. Many mathematical model systems are known,

for instance: HSnon, Rossler-chaos, Lorenz, Rossler- hyperchaos, Mackey-Glass, and others [3].

Physical model systems arp more difficult to produce, however we have the Belousov-Zhabotinsky

chemical reaction [9] and Chua's nonlinear circuit family [10]. Obviously, there lare real physical

chaotic systems but they are extremely complex as it is the case of atmospheric turbulence.

TABLE I. True Lyapunov Exponents, equations representing the chaotic systems,

initial conditions and parameters.

True Lyapunov Exponents

H6non mapLogistic map

0.673

xt+l'= _xt(1 - xt)

0.440

-1.620

xt = 1-- ax2t + yt

Yt = bxt

Lorenz system

1.51

0.00

-22.5

_=.a(x--y)

_I = x(b- z) - y

= xy - cz

Xo=0.3,#=4.0 x0=0.1,yo=0.0 Xo=0.0, yo= 1.1,Zo=0.0

a = 1.4, b = 0.3 a = 16.0, b = 45.92, c 4.0

TABLE II. Estimated Lyapunov Exponents. Logistic Map (q = 5, T = 100).

n6non Map (q = 10, T = 200). Lorenz System (q = 15, T = 1000). The error is less

than lxl0 -z. The non-spurious Lyapunov exponents are shown in boldface.

Estimated Lyapunov Exponents

p Logistic map H6non map Lorenz system

1 0.6794

2 0.6401 0.3670

-6.7823 -1.5673

3 0.6350 0.4502 1.7285

-2.4378 -1.7331 0.0411

-2.4930 -2.8164 -23.72

4 0.6434

-1.61106

-1.7342

-5.0200

0.6790

-0.9073
I

-1.3544

-1.8468

-3.2313

0.4119

-1.4803

-3.3658

-5.2263

0.4385

-1.5473

- 1.4859

-1.7651

-2.5605

1.5910

-0.0710

-20.973

-80.325

1.4799

0.0067

-20.977

-60.702

-92.584
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We divided this sectior_ of examples in three parts. In the first part the ordinary differential

equations for the Lorenz rflodel were integrated using the SDRIV2 subroutines form Kahaner et

al. [12]. For the QR decomposition use used the subroutines in [13]. In the secon(l and third parts

we computed the Lyapunov exponents by means of the neural networks approach [5].

For the first part of the section we show the results of computing the Lyapunov exponents

for mathematical model systems with well known chaotic dynamics [3] [5] [8]. We computed the

Lyapunov exponents for the Logistic Map, for the Hdnon map and for the Lorenz system [3] [5].

The corresponding phase plane portraits are shown in FIG. l, and the equations, parameters and

computed true values of the Lyapunov exponents are shown in TABLE I above.

For the second part of the section we show the results when we assume that for the same

chaotic systems than above, the equations are not known, only the time series. In TABLE II we

show the computed Lyapunov exponents where the presence of one positive exponent indicates
that the system is chaotic.

According to the established notation for neural network architectures Ill], p represents the

number of nodes in the input layer and q represents the number of nodes in the hidden layer.

The output layer has one node. The error is the quadratic average summation of the differences

between the real and the estimated values for the time series, being T the total number of sample
points in the sequence.

For the third part of the section we show the results obtained when we used a nonlinear circuit

of the Chua's family with the parameters, components and initial conditions shown in FIG. 2. The

temporal series was acquired by means of a digital storage scope, the x-coordinate is the voltage

in the linear capacitor C1 and the y-coordinate is the voltage in the linear capacitor C2. A part

of the phase plane portrait is also shown in FIG. 2, from it the temporal series was obtained using
a sampling frequency of 500 Hz.

EblUA_ ORt:IJIT
o.a,e

a.aH

a .sla

a.ase

e.a_
D .' .i ., , , ,-el,= e_ e_ am ew e,m

x,._l

FIG. 2. Nonlinear Circuit of the Chua's Family and a part of its phase plane

portrait that was plotted using as state variables the voltages in the capacitors C1 and

C2. The phase plane portrait changes when the parameters in the circuit are varied

between the limits denoted in the diagram.

The estimated Lyapunov exponents for the Chua's circuit are shown in TABLE III, when using

the estimation for q = 15 and T = 2500. The error was less than 5xl0 -2. Notice that A1 is a

positive exponent which means that the dynamic behavior of the circuit is chaotic, as expected.
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TABLE III. Estimated Lyapunov Exponents for the Chua's Circuit.

Estimated Lyapunov Exponents

p Chua's Circuit

3 Al=-b4.07216

A2=-0.32160

A3:-3.58462

5 Concluding Remarks

We have shown well known examples of mathematical models of chaotic attractors: Logistic,

H_non, and Lorenz. We also showed an electronic model of a chaotic attractor: a circuit of

the Chua's family. [n all these examples we computed the Lyapunov exponents as a measure of

the system's sensitivity _to small perturbations in the initial conditions. For the example where

we know the equations we used the standard method; for the other two examples, we used the

method of Gencay and Dechert [5] that applies a neuronal network algorithm. We went from the

easier examples to the difficult one, that is, the Chua's circuit where the time series is obtained

from direct measurements in the circuit. In the former examples the true values of the Lyapunov

exponents are known wherea_ in the Chua's circuit the Lyapunov exponents are estimated and

to this has to be added the differences or variations, for any reason, in the parameters for the

circuit's components. The justification for such trouble is that in a real chaotic System there is a

complexity even worse that in the electronic model. Therefore, the circuit provides a very valuable

experience that afterwards can benefit the understanding of the real chaotic attractor.

Recent experimental evidence points to biological neurons and biological neural networks as

very likely sources of chaotic attractors. As ill the case of chaotic chemical reactions the biological

significance given to such behavior is speculative [9] [14]. Nevertheless, the application of the tech-

niques described in this paper might be very useful for interpreting data from neurophysiological

experiments where the electrical activity from many neurons is recorded simultaneously.

Similar to Chua's circuit situation, due to the usual difficult conditions of neurophysiological

experimentation, in a biological neural n(_twork we can only obtain a short duration record of the

compound time series (train of action potentials). The individual time series have to be separated

and that procedure produces and additional source of uncertainty and every tool available for

interpreting the results is welcomed [15].

As a very simple example (for details see companion paper [1]) let us consider the rhythmic

firing single neuron (1) shown in the upper plot in FIG. 3. This time series was obtained from the

simulation of a mathematical model for a single neuron and two of its phase plane portraits for

two different physiological parameters (V - f, V - h) chosen as state variables show very clearly

the possibility of chaotic behavior. In the lower plot in FIG. 3 we show another simulation of

the rhythmic firing of a neuron (2) that belongs to a recurrent-ring network composed of single

neurons like the ones given in (1). From the two phase plane portraits we cannot conclude that

the neuron (2) in the network is chaotic and the conclusion about neuron (I) required of an

expert. This ambiguity can be surmounted if the Lyapunov exponents are computed for these
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time series and from there the importance of making such calculations and having experimental
testing circuits for improving the confidence in the results.

o._---'_s.., o,'_ °.% ,.--
h

o-;, 0_ -'---a _

!

FIG. 3. (1) Rhytmically firing single neuron. (2) Rhytmically firing neuron be-

longing to a network formed with type (1) neurons.

On the other hand, in biological experiments there are problems similar to the ones present

when making measurements in the Chua's circuit. When doing an extracellular recording, the

duration of it is limited to a few minutes and afterwards a considerable amount of preprocessing is

required to get to the individual contribution of each neuron recorded [16] [17]. The calculation of

the Lyapunov exponents for these individual contributions could be added to help understanding

the functional role of oscillatory neurons and oscillatory networks. That is the work that. we are
about to pursue.
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Abstract

A usual step ill solving totally Schr/Sdinger equation is to try first the case when di-

mensionless position independent variable w is large. Ill this case tile Harmonic Oscillator

equation takes the form (d2/dtc, 2 - w 2)F = 0, and following W.h'.B. method, it gives the in-

terlnediate corresponding solution F = exp(-w2/2), which actually satislies exactly another
equation, (d2/dw 2 + 1 - w2)F = O.

We apply a. different method, useful in _mharmonic oscillator equations, similar to that of

Rampal and Datta [1], and although it is slightly more complicated however it is also more

general and systematic.

After some arrangements SchrS(linger (,quation for" a simple harmonic oscillator is set a,s in (1):

h2CO = 2'_tE h2C2 = (Tr_O) 2 (2)

where Co and c2 are the parameters of tire differential equation, u = x - a is the distance from

the particle to the point where potential energy is a minimum, _o0 is the classical angular frequency

of the movement, E is the total energy and N is the probability amplitude for the particle to be

found at u . In a very common proce(!ure, (1) is first transformed to equation (3), in which w is

a dimensionless independent variable, obtained by the mathematical manipulation (4):

(d2/dw 2 + b- w2)f(w) = o (3)

w2b = m_Oo'U2 h_oob = 2E (4)

Some authors [2] get the solution of (3) for large w as a decaying exponential function of w/2,

by means of the W.K.B. method, which is a factor in the total wave function.

But others [3] simply propose the change of dependent variable (5) without mentioning the
I/V.K.B. method:
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f = exp(_w2/2)P(w) (5)

And a few ones [,1] consider that the dominant term, when w is large, is w 2 and they write (6)

with b = 0 as an approximation of (3); and assert that (7) are its solutions:

(d2/dw 2 - w2)F = 0 (6)

F = exp(:t:w2/2) (7)

But after choosing the negative sign in (7), for the good behaviour of F, it is easy to demon-

strate that (7) does not. satisfy (6), and rather satisfies (3) when b = 1. We will use a method

whose intermediate steps at all stages are correct.

Starting with (1), the Ansatz (8) is composed of two factors: P that gives information of the

zeros of N, a.nd G:

N = exp(-G)P

Non linear equation (9) is obtained from (8) and (1), with unknowns P and G:

(s)

[P" - 2P'G'] + [(G') 2 - G"]P = [--Co + c,2u2]P (9)

[(G') - G"] = + (10)

( ' means derivative with respect to u ).
If P is an n degree polynomial P,,, then for n = 0, P0 is a constant, and (10) is a non-linear

equation with only one unknown. By watching (10) it is noticed that (11) is the solution of (10)

if constraints (12) hold:

G= flu 2 (11)

i

4/3 2 = c2 2/3 = Co(0) (12)

The first eigenvalue E(0) can be obtained fi'om (2) and (12). Consequently, (13) is the solution

of the SchrSdinger equation for n = 0; /3u 2 as the argument of the exponential function must be

dimensionless:

N=fo=Poexp(-_u 2) (13)

Therefore w becomes a dimensionless variable and (1)is transformed into (7), and taking into

account (12):

w 2 = od_tu 2 (14)

[d2/dw '_ + co(n)/,:rD - 4w_/cJ].l'_(w) = 0 (15)
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(15) is precisely (3), with b(n) = c0(n)/afl, and b(0) = c0(o)/(_3 = 2/o_.(16) is the correct

solution of (15) and (17) is the differential equation of the polynomial t_:

A_, = P,_ exp(-w2/2) (16)

[d21dw 2 - (.lwlo_)dldw + 2(b- 1)/_]P,_ = 0 (17)

For a = 2 and b(n) = 2n + 1, (17) is tile equation of Hermite, and P,_ = H,_ are Herrnite's

polynomials. The energy eigenvalues can easily be obtained.

The Simple Harmonic Oscillator Schr6dinger equation is perhaps the known differential equa-

tion with the most accurate solution. It would not be worthy to obtain that solution again, if

methodological aspects are not taken into account. If a physicist plans to work in problems related

to differential equations, it is useful to give her ( him ) general and powerful methods. As the

Simple Harmonic Oscillator is the first approximation to many physical models, and one of the

first problems with which the students are put into contact, it is good to take advantage of meth-

ods that can be used in better approximations to more complex physical models, and more exact

formulations, as relativistic ones for instance. Tile author has made a review of the relativistic and

non- relativistic isotropic harmonic oscillators, and uniform magnetic fields [5], using this method.

With polar coordinates and centrifuga.l potentials, other polynomials depending on two quantum

numbers, and one extra factor are the solutions of the radial equations. First the author had

used tile method in solving anharmonic rectilinear oscillators, and anharmonic isotropic oscillator

equations [6], and continues working further these topics.ln all those cases mentioned, and here,

we consider that writing equations (9) and (10), is the most important step that permits to find

the solution for large w, and the independent dimensionless variable.
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Abstract

The harmonic oscillator with dissipation is studied within the framework of the Lindblad

theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck

equation, obtained from the master equation for the density operator, is solved for the Wigner

distribution function, subject to either the Gaussian type or the 3-function type of initial
conditions. The obtained Wigner functions are two-dimensional Gaussians with different

widths. Then a closed expression for the density operator is extracted. The entropy of

the system is subsequently calculated and its temporal behaviour shows that this quantity
relaxes to its equilibrium value.

1 Introduction

In the last two decades, the problem of dissipation in quantum mechanics, i.e. the consistent

description of open quantum systems, was investigated by various authors [1, 2, 3, I, 5]. Because

dissipative processes imply irreversibility and, therefore, a preferred direction in time, :*, i¢ gen-

erally thought that quantum dynamical semigroups are the basic tools to introduce dissipation

in quantum mechanics. In the Markov approximation the most general fornl of the generators
of such semigroups was given by Lindblad [6]. This formalism has been studied for the case of

damped harmonic oscillators [7, 8, 9] and applied to various physical phenomena, for instance, the

damping of collective mc_des in deep inelastic collisions in nuclear physics [10] _nd the interaction

of a two-level atom with the electromagnetic field [11].

In the present work, also dealing with the damping of the harmonic oscillator within the Lind-

blad theory for open quantum systems, we will explore the physical aspects of the Fokker-Planck

equation which is the c-number equivalent equation to the master equation for the density opera-

tor. Generally the master equation gains considerably in clarity if it is represented in terms of the

Wigner distribution function which satisfies the Fokker-Planck equation. It is worth mentioning

that these master and Fokker-Planck equations agree in form with the corresponding equations

formulated in quantum optics [12, 13, 14, 15, 16].
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The content of the paper is arranged as follows. In Sec. 2 we review the derivation of the

master equation of the harmonic oscillator. In Sec. 3 we transform the master equation into the

Fokker-Planck equation by means of the well-known methods [17, 18, 19]. Then the Fokker-Planck

equation for the Wigner distribution, subject to either the Gaussian type or the 6-function type

of initial conditions, is solved by the Wang-Uhlenbeck method. Sec. 4 derives an explicit form of

the density operator involved in the Lindblad master equation, formulates the entropy using the

explicit form of the density operator and discusses its temporal behaviour. Finally, concluding

remarks are given in Sec. 5.

2 Master equation for the damped harmonic oscillator

The rigorous formulation for introducing the dissipation into a quantum mechanical system is that

of quantum dynamical semigroups [2, 3, 6]. According to the axiomatic theory of Lindblad [6],

the usual von Neumann-Liouville equation ruling the time evolution of closed quantum systems

is replaced in the case of open systems by the following equation for the density operator p:

d'_t(p) _ L(_t(p)). (1)
dt

Here, Ct denotes the dynamical semigroup describing the irreversible time evolution of the open

system in the SchrSdinger representation and L the infinitesimal generator of the dynamical semi-

group Ct. Using the structural theorem of Lindblad [6] which gives the most general form of the

bounded, completely dissipative Liouville operator L, we obtain the explicit form of the most

general time-homogeneous quantum mechanical Markovian master equation:

dp(t) _ L(p(t)) = -_[H,p(t)] + _-'_([Vjp(t), Vj+1 + [Vj, p(t)Vj+]). (2)
dt j

Here H is the Hamiltonian of the system and the operators Vj and Vj+ are bounded operators on

the Hilbert space of the Hamiltonian.

We should like to men_ion that the Markovian master equations found in the literature are
of this form after some rearrangement of terms, even for unbounded Liouville ol_rators. In this

connection we assume that the general form of the master equation given by (2) is also valid for

unbounded Liouville operators.

In this paper we impose a simple condition to the operators H, Vj, Vj+ that they are functions

of the basic observables _ and 15of the one-dimensional quantum mechanical system (with [_, i_] =

ih) of such kind that the obtained model is exactly solvable. A precise version for this last

condition is that linear spaces spanned by first degree (respectively second degree) noncommutative

polynomials in _ and i5 are invariant to the action of the completely dissipative mapping L. This

condition implies [7] that Vj are at most first degree polynomials in _ and i5 and H is at most a

second degree polynomial in _ and _5. Then the harmonic oscillator Hamiltonian H is chosen of

the form

1 .2 mw2 ^2
H = H0 + ;(t_i5 + 15_), H0 = _m p + ---_-q • (3)
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With these choices the Markovian master equation can be written [8]:

dp
dt

i[Ho, p] - i i A

Dpp Dqq . Dpq
h_ [_,[_,p]]- -_-[h, [_,p]]+ 7([_, [_,p]]+ [_,[_,p]]), (4)

where Dpp, Dqq and Dpq are the diffusion coefficients and A the friction constant. They satisfy the

following fundamental constraints [8]:

i) Dpv > 0, ii) Dq? > 0, iii) DvpDqq - D_q > --

In the particular case when the asymptotic state is a Gibbs state

A2h 2

4 (5)

these coefficients reduce to

H H

pc(oo) = _-_/Tr_-_, (6)

Dm'- A + _ hmw coth hw A- # h coth hw
2 2k---T' Dqq- 2 rnco 2k----T' Dpq=0, (7)

where T is the temperature of the thermal bath.

3 Wigner distribution function

One useful way to study the consequences of the master equation (4) for the density operator

of the one-dimensional damped harmonic oscillator is to transform it into more familiar forms,

such as the equations fort the c-number quasiprobability distributions Glaube_" P, antinormal

ordering Q and Wigner W associated with the density operator [20]. In this case the resulting

differential equations of the Fokker-Planck type for the distribution functions can be solved by

standard methods [17, 19, 21] employed in quantum optics and observables directly calculated as
correlations of these distribution functions.

The Fokker-Planck equation, obtained from the master equation and satisfied by the Wigner

distribution function W(xl, x_, t) of real variables xl, x2 corresponding to the operators (_,15

has the form [20]:

m_ 1xl = q, x2- 2hv/-_--_wp, (8)

_xi 02'
OW 1 w

Ot - E ao (xjW)+-_ E Qij OxiOx------_jW, (9)
i,j=l,2 i,j=l,2

where

A= (A-tt -w ), Qw 1 (rnwDqq Dpq )w A + i1 = -h Dpq' Dpp/mw " (10)

277



Since the drift coefficients are linear in the variables 271 and x2 and the diffusion coefficients are

constant with respect to xl and x2, Eq. (9) describes an Ornstein-Uhlenbeck process [22, 23].

Following the method developed by Wang and Uhlenbeck [23], we shall solve this Fokker-Planck

equation, subject to either the wave-packet type or the _-function type of initial conditions.

1) When the Fokker-Planck equation is subject to a Gaussian (wave-packet) type of the initial

condition (xl0 and x20 are the initial v_lues of xl and x2 at t = 0, respectively)

1

Ww(xl,x2,0) = _--_ exp{-2[(xl- xl0) 2 + (x2 - x20)21}, (11)

the solution is found to be

Ww(xl,x2, t)- fl exp{-B----_-[¢_(xl- :_l) 2 -'l- Cw(X2- _'2) 2 "-_ Xw(Xl -- :_l)(X2 -- i:2)1},(12)
_rhw x/I-B- _

where

12 /tae2At -'}- --_(e2At -- 1), g3: 2[e-2_t q- _(1--e-2At)], (13)B_=glg2-_g3, gl =g_= w

Cw = gl a*2 + g2 a2 - g3, _b_, = gl + g2 -- g3, Xw ---- 2(gla* + g2a) - ga(a + a*). (14)

We have put a = (# - igt)/w,A = -1 - if_ and dl = (a2mwDqq + 2aDpq + Dpp/mw)/h, d2 =

(mwDqq + 2ttDpq/w + Dpp/mw)/h and f_ = w _ - #2. The functions ih and a?2, which are also

oscillating functions, are given by
I

1 _M[Xl0(COS _,_t .j9 _ sin fit)+ x:0_ sinflt], (15)

# sinat) - xl0_ sin at] (16)= - 6

2) If the Fokker-Planck equation (9)is subject to the _-function type of initial condition, the

Wigner distribution function is given by

a exp{_B[¢a(=

where

X 1 -- ,i:l) 2 -_-_Z'd(X 2 -- X2) 2 -_- Xd(Zl -- :_l)(X2- :_2)1}, (17)

__ d2 e_sAt) (18)U -- A f2- f32, ./'1 = f; = (e 2A'- 1), ]'3 = -_--(1 -- ,

Ca = f_ a'2 + f2 a2 - 2f3, _ba = f_ + A - 2f3, Xd = 2[fla* + f2a - fa(a + a*)]. (19)

So, the Wigner functions are 2-dimensional Gaussian distributions with the average values 5:1 and

5:2 and different widths.

When time t ---* oo, 5h and 5:2 vanish and we obtain the ;teady state solution:

W(xl,x2) = 2a.x/d e aW(oo) exp[-_ E (aw)TJ '(°°)xixjl" (20)
i,j=l,2

The stationary covariance matrix aW(oc) can be determined from the algebraic equation

AaW(oo) + aW(oo)A T = Qw. (21)
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4 Entropy and effective temperature

Entropy is a quantity which may be visualized physically as a measure of the lack of knowledge

of the system. When we denote by p(t) the density operator in the SchrSdinger picture for the

harmonic oscillator, the entropy S(t) is given by

S( t ) = -kTr(p ln p). (22)

For calculating the entropy we shall compute straightway the expectation value of the logarithmic

operator < In p >= Tr(pln p). Accordingly, the problem amounts to derive the explicit form of
the density operator for the damped harmonic oscillator.

To get the explicit expression for the density operator, we use the relation p = 27rhN { Ws(q, p)},
where l_Vs is the Wigner distribution function in the form of standard rule of association and N

is the normal ordering operator [17, 24] which acting on the function W,(q,p) moves all p to

the right of the q. By the standard rule of association is meant the correspondence p'Cq_ ---,

0'*/_'' between functions of two classical variables (q, p) and functions of two quantum mechanical

canonical operators (_, i5). '_I'he calculation of the density operator is then reduced to a problem of

transformation of the Wigx_er distribution function by the N operator, provided tl_at Ws is known.

A special care is necessary for the N operation when the Wigner function is in the exponential form

of a second order polynomial of q and p. Fhe Wigner distribution fimction previously obtained

corresponds however to the form of the Weyl rule of association [25]. The solution (12) of the

Fokker-Planck equation (9), subject to the wave-packet type of initial condition (11) can be written
in terms of the coordinate and momentum as:

W(q,p,t) -

where

1 1

2zx/_ exp{-_[¢(q- < 0 >)2 + _(p_ </_ >)2 - 2_(q- < 0 >)(P- < _5 >)]},

<4>= r,, < b>=

(23)

(24)

p- app =< 42 > - <_>2-
h_2 ' [

4_ 2 7n_' .... (25)

_' =_ O'qq =< _2 > _ < _ >2 hw2
- -_-_mw¢,_, (26)

1 hw 2

\'=apq(t)= _<0/_+i@>- <q><i5>= 8--_, 6=¢_-X 2 (27)

and < A >= Tr(p¢]) denotes the expectation value of an operator A. The Wigner distribution

function (23) can be transformed into the form of standard rule of association [26] by

1. 02

W_( q,p) = exp( :_,h o--_ )W ( q, p). (28)
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Upon performing the operation on the right-hand side, we get the Wigner distribution function

Ws, which has the same form as the original W multiplied by h but with X - ih/2 in place of X.

The normal ordering operation of the Wigner function W_ in Gaussian form can be carried out by

applying McCoy theorem [24, 27, 28]. The explicit form of the density operator is the following:

h 2

____.[h 1 In (ihx' 1 c°sh-l(1 + 2(_ - ihx') )P
w exp- e - ihx'+ W

x{¢(_- < _ >)2 + ¢(_5- < i5 >)2 - (X' + i2)[2(q - < q >)(15- < >) ihl}], (29)

where

.h (30)_ = ¢¢_ _,2, x,=x_,__.
!

The density operator (29) is in a Gaussian form, as was expected from the initial form of the

Wigner distribution function. While the density operator is expressed in terms of operators _ and

_b, the Wigner distribution is a function of real variables q and p. When time t goes to infinity, the

density operator approaches to

h

p(oo) - _ exp[

_/a '"-7
2hC-a

2,/g + h[_pp(oo)q2+ oqq(oo)b2_ _pjoo)(@ + b_)l,
In 2v/-g - h

where a = app(cc)aqq(_) - o-_q(cx_) and [8]:

(31)

1
l \ ((,nw)2w2Dqq + (2A(A - p) +w2)Dp,, - 2mw2(A- #)Dpq), (32)

1 ((mw)2(2A(X+ g)+ w2)Dqq+w2D,,,,+ 2mw2(A+ g)Dpq), (33)
_qa(_) = 2(.,_)2_(_2 +_2_ _)

1

o'pq(oo) = 2m)t()_2 _{_w2 _/t2) (-()_ -1-#)(mw)2Dqq + ()_ - g)Dpp + 2m($ 2 - 1_2)Dpq).

In the particular case (7)

(34)

aqq(c¢) h coth hw app((x 0 hmw hw- 2mw 2--k-T' - 2 coth _, Opq((X:)) ----- 0 (35)

and the asymptotic state is a Gibbs state (6):

hw 1 1 2pG(oo) = 2sinh 2-_-_ exp[-_-_(_-_mifi + _2)].
(36)
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Because of the presence of the exponential form in the density operator, the construction of the

logarithmic density is straightforward. In view of the relations (25-27), the expectation value of
the logarithmic density becomes

h 2 v/6 2v_+h
1 In(6- ) - In

< lnp >= lnh - _ -4- T 2v/_ - h" (37)

By putting hu = _- hi2, we finally get the entropy in a closed form:

S(t) = k[(u + 1)ln(v + 1)- uln v]. (38)

It is worth noting that the entropy depends only upon the variance of the Wigner distribution.

When time t _ _, the function v goes to, = w(d_/A 2 -Ida[2/(A _ + f_))l/2/2f_ _ 1/2 and the

entropy relaxes to its equilibrium value S(cx_) = k[(s + 1)ln(s + 1) - s In s]. It should also be noted

that the expression (38) has the same form as the entropy of a system of harmonic oscillators

in thermal equilibrium. In the later case v represents, of course, the average of the number

operator [29]. While the formal expression (38) for the entropy has a well-known appearance, the

form of the function u displays clearly a specific feature of the present entropy. We see that the

time dependence of the entropy is represented by the damping factor exp(-2)_t) and also by the

oscillating function sin2(ftt). The entropy relaxes to its equilibrium value S(cx_).

5 Concluding remarks

Recently we assist to a revival of interest in quantum Brownian motion as a paradigm of quantum

open systems. There are many motivations. The possibility of preparing systems in macroscopic

quantum states led to the problems of dissipation in tunneling and of loss of quantum coher-

ence (decoherence). These problems are intimately related to the issue of quantum-to-classical

transition. All of them point the necessity of a better understanding of open quantum systems
and all requires the extension of the model of quantum Brownian motion. The Lindblad the-

ory provides a selfconsistent treatment of damping as a possible extension of quantum mechanics

to open systems. In the present paper we have studied the one-dimensional harmonic oscillator

with dissipation within the framework of this theory. From the master equation of the damped

quantum oscillator we have derived the corresponding Fokker-Planck equation in the Wigner W

representation. The obtained equation describes an Ornstein-Uhlenbeck process. By using the

Wang-Uhlenbeck method we have solved this equation for the Wigner function, subject to either

the Gaussian type or the &function type of initial conditions and showed that the Wigner func-

tions are two-dimensional Gaussians with different widths. Then we have obtained the density

operator. The density operator in a Gaussian form is a function of _,i0 in addition to several

time dependent factors. The explicit form of the density operator has been subsequently used to
calculate the entropy. It relaxes to its equilibrium value.
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Abstract

We start with the total energy E for a system of three scalar relativistic

particles that, because of Einstein's relation, will have square roots of functions

of the momenta. By taking powers of this relation, we finally get a fourth degree

polynomial in E 2, where the square roots have disappeared, and which we can

convert into a type of Schroedinger equation. To be in the center of mass frame

we pass to Jacobi momenta and then replace them by creation and annihilation

operators. We thus get an equation in terms of the generators of a U(2) group,

which, in principle, we can solve in an elementary way. Finally we rewrite our

equation in a Poincar6 invariant form.

1 Introduction

In the II Harmonic Oscillator Conference I presented a paper dealing with systems

of relativistic particles interacting through Dirac oscillators. The results were later

applied to the mass spectra of baryons and mesons [1,2,3].

As all the results presented had already been published I prefer to deal in this paper

with a new approach, restricted here to scalar particles, that seems to me a systematic

way to attack many body problems with oscillator interactions.

*Member of El Colegio Nacional
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I will start by considering a non relativistic problem of n free particles and indicate

the steps by which later it can be reduced to a system with oscillator interactions,

which will serve as a model for the relativistic problem we wish to analyze.

2 The non-relativistic problem

Let us first start with a system of n free non-relativistic particles of the same mass m,

and take units

h = m = c = 1, (2.1),

where the velocity of light will appear only in the next section, but we want to start

from the beginning with units in which everything is dimensionless.

The classical total energy is then

n

E = (1/2) .ps (2.2)

where p_ are the three dimensional classical momentum vectors of particle s.

From the beginning we would like to work in the center of mass frame, because

our interest will be the internal energy of the system and not the contribution from its

center of mass motion. The best way to achieve this is to pass to Jacobi coordinates [4]

defined by the orthogonal transformation

p'o= Is(s+ 1)]-5 pt - sp,+x

1 s

p"
t----1

,s=l,2,...n-1, (2.3a)

(2.3b)

Clearly p" is proportional to the total momentum and in the center of mass system

it will vanish, so Eq. (2.2) reduces to

n-1

E = _ E P:" P'o (2.4)

The Schroedinger equations corresponding to (2.4) is obtained when we replace p',

by the operator
1 0

P'_ - i o'_'_' (2.5)
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' being the corresponding Jacobi coordinate vector. As the P'8 are hermitianwith x 8

operators we can also write Schroedinger equation as

n--1

2 p]t.p =
s:-I

We can easily transform this into an hermitian oscillator operator equation if we

make the replacement

P" -_ P'8 - iwx:, (2.7a)

• ' (2.Zb)P_ _ P'8 + *wxs,

where the second equation follows from the first as both ' 'Ps, x8 are hermitian operators.

Thus we now get a Schroedinger equation of the form

n-1 P 1

1 Ip7+_x; _-(3/2)_(n- 1)/W= EW, (2.S)2
i. ,,i

whose eigenvalue for the energy E will be

E =_vN, (2.9)

with N being the total number of quanta i.e.

n--I

U = _ us. (2.10)
8----1

The previous analysis is standard except for the fact that we start from a system

of n free particles. Furthermore our notation in terms of three vectors and Jacobi

coordinates, avoids the worry about the Galilean invariance of the whole procedure.

We will now consider a similar set of steps for a relativistic problem.

3 The system of three relativistic particles

Rather than discuss the system of n relativistic particles, we shall restrict ourselves to
i

n = 3, as we will see that the case is general enough, with only the algebraic steps

becoming more complicated as n increases.

In our units the total energy for a system of three free relativistic particles can be

written as

E = -t-H1 4- II2 4- 1-I3, (3.1)
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s

where I]s, s = 1, 2, 3 is defined as

1

II, = (p] + 1)7. (3.2)

It is very important to note that, in our units, Einstein relation is E 2 = p2 + 1, and

when reduced to the E itself gives both the square root in (3.2) and the 4- signs in

(3.1).

Obviously we can not get a Schroedinger equation from the relation (3.1), but we

can take +Ha to the right hand side and square both sides. Then we can square again

and again appropriately, and we easily arrive at the fact that (3.1) becomes an eight

degree equation in E (actually of fourth degree in E 2) of the form

E s - 4AE 6 + (4A 2 + 2B)E 4 - (4C 2 + 4AB)E 2 + B 2 = 0

where A, B, C are functions of H 2, s = 1, 2, 3 given by

(3.3)

A - H_+ H_+ H32,

B = II1+ H_+ nz4- 2n_n_- 2n_n__ 2HiII3,2 2

c_ - 16n,_n_n_.

(3.4a)

(3.4b)

(3.4c)

Now we can write an equation that does not have E as an eigenvalue, but in which

it appears as a parameter, if we replace p8 by -iO/Ox, as in (2.5), so that 1-I_ become

the operators

H_ = (-V_ + 1), (3.5)

and we get

(I)(E2,1]_)¢ = 0 (3.6)

Thus far we have obtained nothing useful because Pa, P2, P3 considered as operators

of the form (2.5), commute with the operator ¢ and so are integrals of motion, so that

_b can be written as

¢ = exp[i(pi • xl + p2 "x2 + p3" x3)], (3.7)

where now pl, P2, p3 are ordinary numbers and we are returned to equation (3.3) whose

eight roots for the energy E are obviously given by (3.1) with all the possible combi-

nation of the signs +.
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Before proceeding further, along the lines of the previous section, we again remark

that we would like to work in the center of mass frame, as our interest is restricted to

the internal energy of the system. Thus we go, as in section 2, to the Jacobi momenta

P's, s = 1,2, 3 which from (2.3) are given now by the matrix relation

' 1"3- _33 / P3P3 v_ ,,/5

As the matrix is orthogonal, transposing it we get p_ in terms of p'_, and as we want

to be in the center of mass frame p_ = 0, so we get finally

1 , 1 , 1 , 1 , _/_,Pl = _p, + _P2, P_ = _Pl- _P2, P3 =- P2, (3.9)

As Eq.

the hermitian property of p'_, now considered as operators of the type (2.6), as

1 ,t ,
P]) + 1,

1 , 1 , 1

_P_I'Pl + gP_'P2 2v/ (P'lt" P; + P'I) + 1,

= 2p 7 • p; + 1
o

(3.6) contains only powers of ^2[Is,s = 1,2,3, we can write the latter using

(3.10a)

(3. 0b)

(3.10c)

The interesting point is to introduce the oscillator interaction, exactly as in the

replacement we made in (2.7) in the non-relativistic problem. For notational purposes

we introduce the creation and annihilation operators

1 1 1

t/_ = _(w2x',- iw-_p's),s = 1,2, (3.11a)

1 1 1
_ - -(w_x' + iw-_p'_),s = 1 2, (3.11b)

so that the relations (2.7) can be written as

1

(3.12a)

(3.12b)

Under this replacement the 1_I_operators become then

1 1

ltI_ = W[Cll -3t- 5C22 71- ._(C12 -_- C21) ] + 1
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^ 1 C 1
II 2 = 0,)[C11 + ] 22 -- _(C12 "J[- C21)] + 1

4

= + 1,

where the operator Cst, s, t = 1, 2 are defined by

(3.13b)

(3.13c)

Cst = Y,'_t (3.14)

From the fact that

[_it,'?j_] = ,Sij,Sst ; i,j = 1,2,3 ; s = 1,2, (3.15)

we have the commutation relations

[C_t, Cs,t,] = Cst,,5o,t - C,,t,5,t,, (3.16)

"2 ^2 fi2
and thus they are generators [5] of a U(2) group. Therefore the operators II_,YI2, 3,

appearing in the equation (3.6), are linear functions of the generators of this group.

To obtain from Eq.(3.6) the eigenvalues of the energy for this relativistic oscillator

problem we can proceed as follows: First we note that the first order Casimir operator

of U(2) group is

/V = Cll + C22, (3.17)

and that it has an SU(2) subgroup whose generators are

F+ - C,2, (3.18a)

Fo - (½)(C_, - C22), (3.18b)

/_'_ - C2,, (3.18c)

with a corresponding Casimir operator of the form

/_2 =/__/_+ +/_o(/_o + 1). (3.19)

The N, f2 by definition commute with all Cst and among themselves, so from (3.13),

they will be integrals of motion of the operator (I)(E 2, H,2). Thus the eigenstates of the

Eq. (3.6) can be characterized by the eigenvalues of 2V,/_2 which we denote respectively

by

N, f(f + 1) (3.20)
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with f taking the values (N/2,(N/2)- 1, down to 1/2 or 0 depending on whether N

is odd or even.

Another operator that commutes with fig,/_2 is obviously Fo and we shall designate

its eigenvalue by

v = f,f- 1,...,-f, (3.21)

so the eigenstates associated with N,/_2,/7o could be represented by the ket

INfv >, (3.22)

and the solution ¢ of Eq. (3.6) is necessarily a linear combination of these kets i.e.

f

= _ a_lNfu >, (3.23)
V_---f

as /V,/_2 are integrals of motion.

To obtain the eigenvalues of the internal energy E as function of N, f we need first

to consider the matrix elements of the operator • of (3.6) in the basis (3.22) i.e.

< Nfu't_(E2, II_)lNfu >, (3.24)

which from (3.13), (3.17), (3.18) is a straightforward, but laborious, calculation of the

type familiar in angular momentum theory, as the group there is also SU(2).

To get the internal energy

E(N,f,a), (3.25)

with (_ indicating the rest of the indices, we need to evaluate the determinant of the

(2f + 1) × (2f + 1) matrix whose elements are (3.24) and equate it to zero. This gives

us a numerical equation of degree 4(2f + 1) in the variable E 2 and its solution provides

us with values indicated symbolically in (3.25).

As our purpose is to provide the method of solution for the internal energy of rel-

ativistic three body oscillator problem, we will only car;ry the calculation of (3.24) for

the single case when

g = f = v = 0 (3.26)

which implies that

< 000113 1000>= 1, s = 1,2,3

and so A, B, C 2 in (3.4) become respectively

(3.27)

A = 3, B = -3, C 2 = t6, (3.28)
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and the equation for the energy is given by

E s - 12E 6 + 30E 4 - 28E 2 + 9 = 0, (3.29)

whose four roots for E 2 are E 2 = l, repeated three times, and E 2 = 9, with E = :t=3

and -t-1 as we expect from (3.1).

So far we have discussed, and given a method for solving, the equation related with

a three body relativistic problem with an oscillator interaction. In the next section we

proceed to show that we can formulate it in a Poincar_ invariant form.

4 Poincar invariance of the three body relativis-

tic equation with oscillator interactions

To express Eq. (3.6) in a Poincar_ invariant form we start with definition of the total

four momentum for the three particle problem i.e.

Pu =pul +pu2 +pu3, (4.1)

= p.(_g r pop.

We shall require also a unit time like four vector u u which we shall define as

1

(4.2)

where repeated indices a, r are summed over 0,1,2,3 and our metric tensor is taken as

go,=0 if aCT, gll =g22=g3a=--goo= 1 (4.3)

Clearly in the center of mass flame where P/= 0, i = 1,2, 3, u. takes the value

(u.) = (1,0,0,0) (4.4)

The operators tL,l[s,s = 1,2, defined in (3.11) are space like three component

vectors which could be denoted by rh,, (i., i = 1,2, 3. A time like component could be

' and thusadded through the definition (3.11) just by putting Po_; zoo' instead of P_s, x_s

we would get r/o_, (o_ which, together with r/i_, (i,, form the four vectors

r/._,(._; /_ = 0, 1,2,3; s = 1,2. (4.5)
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1, 2, 3, are the space like components of the vector p. of the previous section.



Wedo not want.to usetheseoperatorsdirectly in the definition of the Cst of (3.14),

but rather utilize their transversal parts defined by

(4.6a)

(4.6b)

These transverse operators have the property that in the center of mass frame where

(u_,) = (1000) we have, because of the matrix (4.3), that

rlo_ = 0, _o_ = 0, r/i_ = _hs, _i_ = _,s. (4.7)

Thus now the generator Cst,s,'t = 1,2, appearing in the definitions (3.13) of

1'I12,1'I5, l'I_ can be expressed in a Lorentz invariant way by

Cs t ar .£ _.J_= g r/_,A,,, (4.8)

as in the center of mass frame it takes the form (3.14) i.e. Cst = 17_• _,t"

As for the energy E 2 appearing in Eq. (3.6) it can be substituted by the operator

E 2 ___,(_fT p_ PT ), (4.9)

because in the center of mass frame Pi = 0, i = 1,2, 3, and from the metric tensor (4.3),

we see that the parenthesis in (4.9) reduces to Po2, which is the time like component

of the four momentum vector squared and thus corresponds to the square of the total

energy of the system.

With the definitions (4.8) of C_t and (4.9) of E: substituted in Eq.(3.6) we get a

Poinca% invariant equation for our problem, as Cst, given in terms of Jacobi cc_ordinates

and momenta, is also invariant under translation in space time, and thus commutes with

P..

We have then arrived at a procedure for deriving a Poincar_ invariant equation for a

three particle system with oscillator interactions which, in the center of mass reference

frame, can be solved by a simple group theoretical procedure, which leads eventually

to algebraic equations of degree 4(2f + 1) for E 2, that can be solved numerically to

give the spectrum of the problem.
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Abstract

It is shown that the system of two coupled harmonic oscillators shares the basic sym-

metry properties with the covaxiant harmonic oscillator formalism which provides a concise

description of the basic features of relativistic hadronic features observed in high-energy lab-

oratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in

classical mechanics, w_ile the present formulation of quantum mechanics can accommodate
only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r] symmetry

in quantum mechanics is discussed.

1 Introduction

The covariant harmonic oscillator formalism developed by the present authors has been shown

to be effective in explaining the basic phenomenological features of relativistic extended hadrons

observed in high-energy laboratories. In particular, the formalism shows that the quark model and

Feynman's parton picture are two different manifestations of one relativistic entity. In addition,

the formalism constitutes a representation of Wigner's little group for a massive particle with

internal space-time Structure [1].

Since the classical mechanics of two coupled harmonic oscillators is discussed in Goldstein's

text book [2], there is a tendency to believe that this oscillator problem is completely understood

and that nothing new can be learned from it. We disagree. In this paper, we show that this

coupled oscillator system can serve as an analog computer for the above-mentioned covariant
oscillator formalism.

From the mathematical point of view, the standard approach is to construct a suitable repre-

sentation of the symmetry group after writing down its generators. The first symmetry group in

the present case is Sp(4, r) with ten generators [3, 4, 5]. The second symmetry group is SL(4, r)

which contains a number of Sp(4)-like subgroups. In constructing these groups, we shall note that

each oscillator has its own Sp(2) symmetry, and that the coupling of the two oscillator also has a
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Sp(2)-like symmetry. It was pointed out that these three Sp(2) groups can be combined into one

Sp(4) group.

Since Sp(4) is locally isomorphic to the deSitter group 0(3,2), it can explain the Lorentz

transformation properties, particularly that of the covariant harmonic oscillator formalism. In

this paper, we concentrate on the issue of a lack of information on one oscillator affecting the

uncertainty and the entropy of the other oscillator.

2 Covariant Harmonic Oscillators

The covariant harmonic oscillator formalism has been discussed exhaustively in the literature, and

it is not necessary to give another full-fledged treatment in the present paper. Instead, we shall

concentrate on the issue of entropy in this paper. The entropy is a measure of our ignorance and

is computed from the density matrix [6, 7]. The density matrix is needed when the experimental

procedure does not analyze all relevant variables to the maximum extent consistent with quantum

mechanics. The purpose of the present note is to discuss a concrete example of the entropy arising

from our ignorance in relativistic quantum mechanics.

Let us consider a bound state of two particles. For convenience, we shall call the bound state

the hadron, and call its constituents quarks. Then there is a Bohr-like radius measuring the space-

like separation between th_ quarks. There is also a time-like separation between _he quarks, and

this variable becomes mixed with the longitudinal spatial separation as the hadron moves with a

relativistic speed.

However, there are at present no quantum measurement theories to deal with the above-

mentioned time-like separation. We shall study in the present paper how this ignorance is trans-

lated into the entropy. Within the framework of the covariant harmonic oscillator formalism [1],

it will be shown that the entropy increases as the hadron gains its speed. The entropy defined in

this way is a more fundamental quantity than the hadronic temperature [4]. It is independent of

the question of whether the temperature can be defined [8].

Let us consider a hadron consisting of two quarks. If the space-time positions of two quarks

are specified by xa and xb respectively, the system can be described by the variables [9]

X = (xa + xb)12, x = (za - xb)12V_. (1)

The four-vector X specifies where the hadron is located in space and time, while the variable x

measures the space-time separation between the quarks. In the convention of Feynman et al [9],

the internal motion of the quarks bound by a harmonic oscillator potential of unit strength can

be described by the Lorentz-invariant equation

1 ¢(x) = (2)

We use here the space-favored metric: x u = (x, y, z, t).

It is possible to construct a representation of the Poincar_ group from the solutions of the

above differential equation [1]. If the hadron is at rest, the solution should take the form

(,_)','= ¢(x,y,z) exp (-712), (3)
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where ¢(x, y, z) is the wave function for the three-dimensional oscillator with appropriate angular

momentum quantum numbers. There are no excitations along the t direction. Indeed, the above

wave function constitutes a representation of Wigner's O(3)-like little group for a massive particle

[1].

Since the three-dimensional oscillator differential equation is separable in both spherical and

Cartesian coordinate systems, ¢(x,y, z) consists of Hermite polynomials of x,y, and z. If the

Lorentz boost is made along the z direction, the x and y coordinates are not affected, and can be

dropped from the wave function. The wave function of interest can be written as

Cn(z,t ) : ( 1 )l/4exp(__t2/2)¢n(Z) ' (4)

with

( 1 _ 1/2
¢=(z) = \--_.2_] H,(z)exp(-z2/2),

where Cn(z) is for the n-th I excited oscillator state. The full wave function ¢"(z, t) is

" 1 .1/2

(5)

(6)

The subscript 0 means that the wave function is for the hadron at rest. The above expression is

not Lorentz-invariant, and its localization undergoes a Lorentz squeeze as the hadron moves along

the z direction [1].

It is convenient to use the light-cone variables to describe Lorentz boosts. The light-cone
coordinate variables are

u = (z + _)lv_, v = (z - t)lv_. (7)

In terms of these variables, the Lorentz boost along the z direction,

(_:) __ /'cosh r] sinhr/) (_) (8)
\ sinh r/ cosh r/

takes the simple form

u'= e'u, v' = e-%, (9)

where r/ is the boost parameter and is tanh-l(v/c). The wave function of Eq.(6) can be written

as

Cg(z,t) = H_ ((u + v)/v/2)exp -_(u + ) . (10)

If the system is boosted, the wave function becomes

(11)

As was discussed in the literature for several different purposes, this wave function can be expanded

as [1]

_b'_(z,t) = (1/cosh_) "+1 _ _, nq-.k_ ,/ (tanhT/)kg_+k(z)¢n(t). (12)
k
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In both Eqs. (10) and (11), the localization property of the wave function in the uv plane

is determined by the Gaussian factor, and it is sufficient to study the ground state only for the

essential feature of the boundary condition. Eq.(10) and Eq.(11) then respectively become

[ 1 ,_1/2
¢'_(z,t)=_-_) exp/-_(u2 ÷ v2) t • (13)

If the system is boosted, the wave function becomes

= . (14)

We note here that the transition from Eq.(13) to Eq.(14) is a squeeze trasnformation. The wave

function of Eq.(13) is distributed within a circular region in the uv plane, and thus in the zt plane.

On the other hand, the wave function of Eq.(14) is distributed in an elliptic region. This ellipse

is a "squeezed" circle with the same area as the circle. This Lorentz-squeezed wave function can

be expaned as

1 _--_(tanh _)k_bk (z)¢k (t). (15)
¢,(z, t) -- cosh _ k

From this wave function, we can construct the pure-state density matrix

p,(z, t; z', t') = _,( z, t)¢,( z', t'), (16)

which satisfies the condition p2 = p:

pn(z,t; z',t') = ] pn(z, t; z",t")pn(z",t"; z',t')dz'dt". (17)

However, there are at present no measurement theories which accommodate the time-separation

Variable t. Thus, we can take the trace of the p matrix with respect to the t variable. Then the

resulting density matrix is

pn(z,z') = f _2n(z,t){¢n(z',t)}* at (18)

= _ _--_(tanh r/)2kCk(z)_b_ (z')"
k

The trace of this density matrix is one, but the trace of p2 is less than one, as

T. (,2) : / (10)

= (cos-_) 4E(tanh _)'k
k

which is less than one. This is due to the fact that we do not know how to deal with the time-like

separation in the present formulation of quantum mechanics. Our knowledge is less than complete.

The standard way to measure this ignorance is to calculate the entropy defined as [6, 7]

s = -T_ (pin(p)).
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If we pretend to know the distribution along the time-like direction and use the pure-state density

matrix given in Eq.(16), then the entropy is zero. However, if we do not know how to deal with

the distribution along t, then we should use the density matrix of Eq.(18) to calculate the entropy,
and the result is

S :_ 2 {(cosh r/)2 ln(cosh r/)- (sinh r/)2 ln(sinh r/)}.

In terms of the velocity v of the hadron,

S = -ln[1 -(v/c) 2] - (vlc)21n(vlc)2
1- (v/c)2

(20)

(21)

We can also calculate the density matrix using the Gaussian form of the wave function given

in Eq.(17), and the result is

p(z,z')= _'cosh2ri exp -[(z+z')2/cosh2rl+(z-z')2cosh2rl] , (22)

This expression also leads to the entropy given in Eq.(20)

The diagonal elements of the above density matrix is

(1) 1/2r cosh 2r/p(z,z)= exp (-z2/cosh 2T/). (23)

The width of the distribution becomes (cosh r/) 1/2, and becomes wide-spread as the hadronic speed

increases. Likewise, the momentum distribution becomes wide-spread. This simultaneous increase

in the momentum and position distribution widths is called the parton phenomenon in high-energy

physics. The position-momentum uncertainty becomes cosh 7/. This increase in uncertainty is due

to our ignorance about the physical but unmeasurable time-separation variable.

The use of an unme_urable variable as a "shadow" coordinate is not new in physics and is of

current interest [10, 11, 12, 13]. Feynman's book on statistical mechanics contains the following

paragraph [14].

When we solve a quantum-mechanical problem, what we really do is divide the universe into

two parts - the system in which we are interested and the rest of the universe. We then usually

act as if the system in which we are interested comprised the entire universe. To motivate the use

of density matrices, let us see what happens when we include the part of the universe outside the

system.

In the present paper, we have identified Feynman's rest of the universe as the time-separation

coordinate in a relativistic two-body problem. Our ignorance about this coordinate leads to a

density matrix for a non-pure state, and consequently to an increase of entropy. It is interesting

to note that the density matrix of Eq.(22) becomes that of the harmonic oscillator in a thermal

equilibrium state if (tanh r/) 2 is identified as the Boltzmann factor [15].

We have thus far studied the properties of covariant harmonic oscillators where the longitudinal

and time-like coordinates undergo squeeze transformations. The word "squeeze" is relatively new

in physics. However, squeeze transformations are almost everywhere in physics. In the rest of this

paper, we shall discuss the role of squeeze transformations in the system of two coupled harmonic

oscillators. We shall see that the problem of covariant harmonic oscillators with two variables is

the same as that of two coupled harmonic oscillators.
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3 Linear CanoLnical and Non-Canonical Transformations

in Classical Mechanics

For a dynamical system consisting of two pairs of canonical variables xa,pl and x2,p2, we can

introduce the four-dimensional coordinate system:

(T]I, /']2,1_3, 7}4) = (Xl, X2, Pl, P2). (24)

Then the transformation of the variables from r/i to _i is canonical if

M J1(4 = J, (25)

where

and

0

(001 )0 0 0

J= -1 0 0 "

0 -1 0

For linear canonical transformations, we can work with the group of four-by-four real matrices

satisfying the condition of Eq.(25). This group is called the four-dimensional symplectic group

or Sp(4). While there are many physical applications of this group, we are interested here in

constructing the representations relevant to the study of two coupled harmonic oscillators.

It is more convenient to discuss this group in terms of its generators G, defined as

M = exp (-iaG), (26)

where G represents a set of purely imaginary four-by-four matrice_ The symplectic condition of

Eq.(25) dictates that G be symmetric and anticommute with J or be antisymmetric and commute

with J.

In terms of the Pauli spin matrices and the two-by-two identity matrix, we can construct the

following four antisymmetric matrices which commute with J of Eq.(25).

,(0o,) 1(o 0)Ja= _ -al 0 ' J2= _ 0 a2 '

,(0 ,(0J3--_-a3 0 ' J°=2 I "

The following six symmetric generators anticommute with J.

i (0 a3) K___ ' (_ O ) 1_3-i (KI=_ a3 0 ' 2 I ' -2 0" 1 0

(27)

and

( ) ,(0 ,(i -a3 0 Q2 = _ I ' Q3 =Q1 = _ 0 _z ' (28)
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These generators satisfy the commutation relations:

[Ji, Jj] = ieijkJk, [Ji, Kj] = ie#kKk, [Ki, Kj] = [Qi, Qj] = -ieij_:Jk,

[J;, J0] = 0, [K,,Qj] =i6oJo,

[Ji, Qj] = i%kQk, [K,,Jo] = iQ,, [Qi, Jo] = -iKi. (29)

The group of homogeneous linear transformations with this closed set of generators is called the

symplectic group Sp(4). The J matrices are known to generate rotations while the K and Q

matrices generate squeezes [4].

It is often more convenient to study the physics of four-dimensional phase space using the
coordinate system

(_1,_2,_3,_4) -- (xa,p,,x2,p2). (30)

The transformation fron_ (Yl, 02, 03, 74) is

and the J matrix becomes

/(2 = 0 1 0 _72

_'3, 1 0 0 7/3 '

\ (4 0 0 1 q4

(oij= -1 0 0
0 0 0 "

0 0 -1

In this new coordinate system, the rotation generators take the form

(31)

(32)

-1(0 as) i (0 -I)J1=-2 - or2 0 ' J2=2 I 0 '

-1(o'2 0 ) J0 -1( °.2 0) (33)J3 = _ 0 --0"2 ' = _ 0 0"2 "

The squeeze generators become

i(o, 0) ,(o30) , i(0 o,)K1=2 0 --0"1' 2 0 0"3' ----7 o'1 0 '

i (--0.3 0 ) Q2 _....: i (0.1 0 )Q3 i ( 0 ;3) (34)Q'=2 0 (73 ' 2 0 0., ' 2 0.3 "

In addition to the ten generators given in Eq.(33) and also in Eq.(34), we can consider the scale

transformation in" which both the position and momentum of the first coordinate are expanded

and those of the second coordinate contracted. The Hamiltonian given in Eq.(46) suggests such a

transformation, and the transformation can be generated by

,(, 0)So= _ 0 -I " (35)
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This matrix generates scale transformations in phase space. The transformation leads to a radial

expansion of the phase space of the first coordinate [16] and contracts the phase space of the
second coordinate. What is the physical significance of this operation? As we discussed in Sec.

7, the expansion of phase space leads to an increase in uncertainty and entropy. Mathematically

speaking, the contraction of the second coordinate should cause a decrease in uncertainty and

entropy. Can this happen? The answer is clearly No, because it will violate the uncertainty

principle. This question, will be addressed in future publications.
In the meantime, let us study what happens when the matrix So is introduced into the set of

matrices given in Eq.(33) and Eq.(34). It commutes with J0, ,/3, IQ,Ks, Q1, and' Q2. However, its

commutators with the rest of the matrices produce four more generators:

i (0 -as) [So, js]= 1(0 I)[S°'J1]=2 as 0 ' 2 I 0 '

_(0 Ol)[_0,_1=1( 0 -o_)[So, K3]=_ -a, 0 ' 2 a3 0 "
(36)

If we take into account the above five generators in addition to the ten generators of Sp(4),

there are fifteen generators. They form the closed set of commutation relations for the the group

SL(4, v). This SL(4, r) symmetry of the coupled oscillator system may have interesting physical

implications.

4 SL(4,r) Formulation of Two Coupled Oscillators

Let us consider a system of two coupled harmonic oscillators. The Hamiltonian for this system is

{1 1 ,s } (37)H = -_I xP_ + --msp_ + A'x_ + B x s + C'x,xs •

where
A' > O, B' > O, 4A'B' - C a > 0. (38)

By making scale changes of x, and x_ to (ma/rns)_/4xl and (ms/m,)_/4xs respectively, it is possible
to make a canonical transformation of the above Hamiltonian to the form [17, 18]

H : 2--_1{pa2 + p_} +1__ {Ax_ + Bx_ + Cxxxs} , (39)

with m = (mires) 1Is. We can decouple this Hamiltonian by making the coordinate transformation:

(yy;)=(cos(ol/2) - sin(a/2) ). (40)k, sin(c_/2) cos(a/2))(xl X2

Under this rotation, the kinetic energy portion of the Hamiltonian in Eq.(39) remains invariant.

Thus we can achieve the decoupling by diagonalizing the potential energy. Indeed, the system

becomes diagonal if the angle a becomes

tan a - C (41)
B-A"
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This diagonalization procedureis well known
We now introduce the new parametersK and 7/defined eLs

K = k/AB- C2/4,

in addition to, the rotation angle ,,,'.
form

A _

B

A+B *-?(A-B) 2+(72

exp (--2q) = ( '_v"4.4 B -
(42)

In terp_s of this ne_a set of variabb::-., .t. '_' ;_a_,:t '' take the

( °K e2_ cod _ + e -'>_ sir_ _ ,

K e2"sin= 2 + e-='Tc°s2 21 '

A : K (e-2"-e _") sina. (,13)

the Hamiltonian can be written as

H= __1 r '2 _ K , .. -_: 21
2rtz {ql + q'a _.+ -_ {e"!t_ + e y= ], (44)

where Yt and 7/2 are defined in Eq (40), and

(q,)=(cos(o/2) - sin(_/2)q2 sin(a/2) cos((,/2) )(pP;) " (45)

This form will be our starting point. The above rotation together with that of Fq.(40) is g;enerated

by Jo.

If we measure the coordinate variable in units of (m K) l/a, aTM use (m/_' }-i/1 for t}.m momentum

variables, the Hamiltonian takes the form

O3 0 O3 -n

H = -_e (e-'?q_ + e'_y_)+ -_e (e'?q_ + e-'_y_), (46)

where O3= v/-K-/m. If r/= 0, the system becomes decoupled, and the Hamiltonian becomes

O2 02

H = _ (p_ + x_) + _- (p_ + x_). (47)

In Sec. 8, we will be dealing with the problem of what happens when no observations are made

on the second coordinate. If the system is decoupled, as the above Hamiltonian indicates, the

physics in the first coordinate is solely dictated by the Hamiltonian

H1 = O3_-(pl2 + x_) . (48)

It is important to note that the Hamiltonian of Eq.(47) cannot be obtained from Eq.(46) by

canonical transformation. For this reason, the Hamiltonian of the form

t.o O3

H'= _ (e-'?q_ + eny_) + _ (e'Tq_ + e-'Ty_) (49)

may play a useful role in our discussion. This Hamiltonian can be transformed into the decoupled

form of Eq.(47) through a canonical transformation.
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5 Quantum Mechanics of Coupled Oscillators

It is remarkable that both the Hamiltonian H of Eq.(46) and H' of Eq.(49) lead to the same

SchrSdinger wave function. If yi and y2 are measured in units of (inK) 1/4, the ground-state wave

function for this oscillator system is

1 1. 2 e-,y_) 1¢0(x,, x2) = x/_ exp {- +5(e Yl "

(50)

The wave function is separable in the yl and y2 variables. However, for the variables xl and x2,

the story is quite different. If we write this wave function in terms of Xl and x2, then

_(x,,x2) = _exp - _'_(XlCOS_--- x2sin )2

+e-n(xasin _ + x2cos )2 .
(51)

If 7/ = 0, this wave function becomes

1 x_)}. (52)¢o(X,,X2) : -x_exp{-_(x21+

For other values of rl, the wave function of Eq.(51) can be obtained from the above expression by

a unitary transformation.

(53)
mlm2

where _b,,,(x) is the mth excited state wave function. The coefficients Am_m2(_/) satisfy the unitarity

condition

[Am,m_(c_,,j)l_ = 1. (54)
_1 _n2

It is possible to carry out a similar expansion in the case of excited states [1].

As for unitary transformations applicable to wave functions, let us go back the generators of

canonical transformations in classical mechanics. As was stated before, they are also applicable

to the Wigner phase-space distribution function. The canonical transformation of the Wigner

function is translated into a unitary transformation of the SchrSdinger wave function. There are

therefore ten generators of unitary transformations applicable to SchrSdinger wave functions [4, 3].

The Wigner phase-space picture is often more convenient for studying the problems of coupled

harmonic oscillators. Unitary transformations in the SchrSdinger picture can be achieved through

canonical transformations in phase space. It has been known that canonical transformations are

uncertainty-preserving transformations. They are also entropy-preserving transformations [5]. Are

there then non-canonical transformations in quantum mechanics?

In the present case of coupled harmonic oscillators, we assume that we are not able to measure

the x2 coordinate. It is often more convenient to use the Wigner phase-space distribution function

to study the density matrix, especially when we want to study the uncertainty products in detail

[18,14].
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For two coordinate variables, the Wigner function is defined as [18]

W(x,,x2;pl,p2) = exp{-2i(pay, + p2y2)}

× ¢*(x, + ya,x2 + y2)¢(xa - yl,x2 - y_)dy, dy2.

The Wigner function corresponding to the oscillator wave function of Eq.(51) is

(55)

W(xl,x2;pl,p2) : exp --cr/(xa COS_ - x2sin 2

-c-'(x, sin_ -+x_cos )2-e-n(p, COS -- --a a)22 p2 sin _-

o 0)2}-e'(pl sin )- + P2 cos _ .

If we do not make observations in the x2p2 coordinates, the Wigner function becomes

(56)

_/(Xl, Pl) =

The evaluation of the integral leads to

J W(xa, x2; Pl, p2)dx2dp2- (57)

1 }1/2W(Xl,pl)= 7r2(l+sinh 2qsin 2o)

xexp - coshq-sanqcoso coshq+sinT?coso

This Wigner function gives an elliptic distribution in the phase space of Xl and Pa. This distribution

gives the uncertainty product of

1

(Ax)2(Ap)2 = _-(1 + sinh2 qsin 2 0). (59)

This expression becomes 1/4 if the oscillator system becomes uncoupled with o = 0. Because xa

is coupled with x2, our ignorance about the x2 coordinate, which in this case acts as Feynman's

rest of the universe, increases the uncertainty in the xl world which, in Feynman's words, is the
system in which we are interested.

In the Wigner phase-space picture, the uncertainty is measured in terms of the area in phase

space where the Wigner function is sufficiently different from zero. According to the Wigner

function for a thermally excited oscillator state, the temperature and entropy are also determined

by the degree of the spread of the Wigner function phase space.
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Abst tact

Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-

Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized BargmaJln

transform relating Fock wave functions < ztn > and a set of relativistic Hermite polynomials

HN(x), (g = mc2/hw). Nevertheless, the relativistic creation and annihilation operators

satisfy typical relativistic commut'ation relations [$,_t] _ Energy (an SL(2, R) algebra).

Here we find higher-order polarization operators on the SL(2, R) group, providing canonical

creation and annihilation operators satisfying [h, h_] = 1, the eigenstates of which are "true"

coherent states.

1 Group Quantization and the Relativistic Harmonic Os-

cillator (RHO) in the Bargmann-Fock-like realization.

The quantization of relativistic systems in a manifestly covariant way requires the use of com-

mutation relation of the form [_,15] _ Energy, which means a deviation from the canonical rules.

If the Hamiltonian, _ and /_ close a Lie algebra, it is possible to resort to some kind of group

quantization method, i.e. some technique of obtaining unitary irreducible representations of a

group the Lie algebra of which coincides with the Poisson algebra of the physical system. In the

present case there is a Lie algebra, a central extension of SL(2, R) (SO(3, 2) in 3+1 dimensions):

[/),_] = -i--p, [/),P] = irnw2h_, [_,P] = ih(i + (1)
m

which reproduces the Poincar_ algebra under the w -_ 0 limit and the Newton (non-relativistic

harmonic oscillator) algebra when c -* cc and that, therefore, earns to be considered as the

algebra of a relativistic harmonic oscillator.
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Then, our starting point will be a central pseudo-extension of the group SL(2, R), denoted by

SL(2, R)_U(1) [1], whose coboundary is generated by a function which is an integer power of the

parameter of the Cartan subgroup. The precise techniques of the group-quantization procedure
[2] will be explained on the way.

The G _ SL(2, R)_U(1) group law is:

z (z.z, _2 + z,.z_2)
z" = z'r1-2 + zx' + N(l + x)

Z*
*It t* 2 Z*ICIz = z r/+ +

N(1 + x)(zz'*q2 + z'z*_-2)

q,, :` __/_,_,[ /-i+_' 1_, V/ V/ 2 [z'z" z'*z ,. '_1+ "V l + x" _ (-_-_-q q + -_--q qJJ (2)

C:

where

_, 2ZZ*- 1 + ---_-

1 (z.z,Tl_2+ z,.zq2 )x " = tc't¢ + -_

and z E C, 7/ E U(1) C SL(2, R), ( E U(1) and N = m_n,_. It must be noted that N is quantized

(N = 1, 3/2, 2, 5/2, ...) on SL(2, R) but a positive number on the Universal covering group.
The coboundary

which is generated by

A = (r/"q'-'rt-')-2N : SL(2, R) × SL(2, R)--+ V(1), (3)

q-2N . SL(2,R) _ U(1), (,i)

realizes a pseudo-extension. We say that A is a pseudo-cocycle and realizes a pseudo-extension

rather than a trivial cocycle (coboundary) realizing a trivial extension because in tlhe c --. oo limit,

(r/"r/'-_q-_) -_N goes to a true cocycle on the non-relativistic harmonic oscillator (Newton) group

(see [3] for a general study!of the contraction process under which a true cocycle is generated by
a coboundary).

i
Group quantization uses the (exponential of the) right-invariant vector fields, which act on

U(1)-equivariant complex functions on G as ordinary derivatives, to define a group representa-

tion (Bohr-Sommerfeld quantization). This representation is reducible, as can be stated by the

existence of non-trivial operators (all the left-invariant vector fields) commuting with the repre-
sentation.

The full quantization is achieved by reducing this representation in a way compatible with the

action of right vector fields. The reduced Hilbert space is made of complex functions k0 on G such
that

_((*g) = ¢'_(g), ¢EU(1),gEG

f(Lo_ = 0 , V_ L E p

306



where a Polarizarion P is a maximal left subalgebra containing the generators in the kernel of A

and excluding the central generator -- - )(_ of U(1).

The left- and right-invariant vector fields are:

f(L = tOO iz* (O)

(0)0 iz zq-_f(_ = X Oz. 2N(i+x)

0f(L,7 = iq -- 2iz + 2iZ*oz *

- _ 0 "z
x = i¢oc-_,

iZ*

l+x

iz
+

l+x

(5)

-2

+
(1 + x) 2 0

2 Oz

0
JV ----

Oz*

(1 -I- x)

q2

(l+x)

O

_r/oq

0

iCN --z.

2

+ ]z "2 0 *rl-- iz*--
N Oz*

]N Oz + z_ z7I - izE

The operators are

where 7/= e i° and 0 = _t, with the commutation relations

~L
A polarization is given by P =< X,7 , X_ >, with solutions

= e--2inOC (_N( Z,_ ¢_ .., ,z')
n

1 I (2N + n-1)! ,/2N--_N(z'z') : a-_n.1 (2U-1)!(2U)nV 2N 1 (1_-_) -N-n z*'_

which constitute the Fock-Bargmann-like space with the group invariant measure dzdz"l
¢g

The relativistic Fock space is given by:

< OlO>= 1, I,_>= (st)_l° > ,
_/n! n- 1 sII,=, (1 + y-_)

lln reality the measure on the whole group is dzaz'a__._...Abut the time variable (or 0) can be factorized out.

(6)

(7)

(8)

(9)

(10)
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_/? Tl, "-- ] ,, i_i,_> = -41+-_---_l,_ - t >

_fl,z > = + 1)(1 + _--_-)ln + 1 >

/:/t,,,> = ,_ln>

(1])

2 Relativistic coherent states (RCS).

In the group-quantization scheme, the coherent states (generalizing the standard non-relativistic

coherent states [4]), as well as tile waw_ functions given above, are defined by mean of infinitesimal

relations (differential polarization equations), rather than a finite group action on the vacuum

associated with a previously given representation of the group [5,6] (see [7,8,9] for a more general

study of overcomplete families of satates non-necessarily associated with groups). They are defined

simply as:

Iz >- Y_ cN'(z,z')ln > _ CN(z,z')=< zln > (12)
n

The associated (time-independent) wave functions < z'lz >- _z(z') correspond to the choice

c,, =_c,,(z) = ¢,_(z,z')in _(z').
The RCS are identified with the generalized coherent states on the unit complex disk [5] once

2 z C), has been made, where D is the unit complexthe change of variables ZD = V/TN_i-4-; C D (z E

disk.

The expectation values of 2 and k_ in the coherent states are < ,_ >- _<zl_> -- z and

< k_ >= z*, making the Ivariables z, z* G C specially suitable to describe the _Bargmann-Fock-

like representation. Defining the operators :_ and/_ in the usual way, i.e.

_= _

we get < _ >= x , < /_ >= p, where x and p are defined in the same way, constituting the

phase-space coordinates for Anti-deSitter space-time.

Repeating the group quantization in the new variables we obtain the x-representation in terms

of the relativistic Hermite Polynomials [10]. Both representations are related through the Rela-

tivistic Bargmann transform [11], the kernel of which is nothing other than the configuration-space

wave function of the coherent states Iz > defined above:

where

< xl z >= _/v (1______) aN 1,+ , (14)

mv_

V_zc_ ] _)2x2

_0 -=- _ i¥7' _= VI+

_,2v _ 1 (_u_)_2N-1 1 F(N)- _ _ 2N v_r(N- ½)
(15)
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In the non-relativistic limit we regain the usual coherent, states in configuration space:

1

< xlz >N.R. _ (ITtCd _ 7_ c--Z2/2+_xz e-- ½(-'_i_- x2+Izl 2 ) (16)- ¢; j
The uncertainty relations for the operators & and _ are:

h/ 1 1 1

AkA/_= 2V to2 + 4-N-_[41z[4 -(z2 + z*2)] >-- _ht¢ = 71 < [k,_5] >] (17)

The equality holds for z = Izle i"_, i.e. z G R, defining the so-called "intelligent states", but only

for z = 0 (the vacuum) we reach the absolute minimum (see [12] for the calculations in the unit

Disk).

3 Canonical (higher-order) creation and annihilation op-

erators: canonical, relativistic coherent states.

The definition of polarization in group quantization can be generalized so as to admit operators

in the left enveloping algeb_ra. This generalization has been already exploited in finding a position

operator for the free relativistic particle [13] (as well as in solving anomalous problems [2]). In the

present case it also makes sense to look for basic operators satisfying canonical (versus manifestly

covariant) commutation relations. Let us then seek a power series in _'2 and - LXZ N ,

_ _cL_cLSCL
= f_L.+N__:__z__:.+...

f(LHO ~ L ~ L ~ L 12 ~ L ~ L ~ L ~ L
,7 = X_ - #X z X z. _X_ Xz X_.X_. + ..., (18)

# _,,o22."° ~ -such that pYO =< --, , > contains X_ and excludes X_. The coefficients of the power

series are determined by the requirement that 79H° is a polarization and the corresponding right

operators define a unitary action on the wave functions • which fortunately are the same as before.

More concretely,

[x .o,sc.o] : (19)

The resulting higher-order (canonical) creation and annihilation operator are:

1_ H O = _t = ?s - 4-N

£,tH°=_ at= _t¢1+2--_

3 _ _t_._ 7__7___t_t_
32-N 2 / + 32N 2

+ • • 6 = ¢1--_ _ (20)

and the energy operator is:

[-I _° = N (k - 1) = ata (21)
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_/ 2 (._f_) and thewhere k = 1 +

operator (_t_).

The commutation relations,

operator _ must be considered as functions of the single

a, af] = i

(22)

have the non-relativistic (canonical) form. Their action on the Fock space is:

al_ > = v_l_- 1 >

atln > = V_ + 1)In+ 1>

E/H°l_ > = nln >,

(23)

which reproduces the non-relativistic harmonic oscillator representation, although it must be

stressed that the estates ]n > are the same relativistic energy eigenstates as before.

3.1 Canonical coherent states.

It seems quite natural to define canonical coherent states la > as the eigenstates of the canonical

annihilation operator, _[a >= a]a >, with solutions:

a n

(24)

and define a non-relativistic Bargmann-Fock space in the usual way:

< aln >=< nla >*= e-lai2/2a'" = q_.n.(a)
v_.

(25)

The connection to the relativistic Bargmann-Fock space is given by

q_(z) =_< z[a > = ,_ (z_qtu.n.ta_ *E < zl- ><,4,,>=E -, , . , ,
n n

1 /2N - I e_,,,.,/2 (__)-u l_(2N),,C2az*]" (26)

-e 1 [1 _1 12 az*)(31z] 2- az*)]1 -"'_/2e-1*l_/2e""'{1-_--_ _([z - +...}
71"

The expectation value < a[_:la > defines a classical function z = z(a) relating the variables

a, a* and z, z* as follows:

< alSla>--ay_c, < al afa la > (27)
n
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where cn are the coefficients of the power series of f(u) = _ + _-_N"Then we define:

z(a) = a + a (28)

Note that although < a[ (htS)'_[a >#< a[htnfi'*[a >= lal_n any operator of the form /_ =

0a '_ (or 0 = atv0), where [/tu°,0] = 0, defines a classical function F(a) (or G(a)) by the

G(a) = a *p y_ onla[ 2'_ , I (29)

formula:

I_(a) = am E onlal 2'_ ,
n

where < a[O[a >= _o,, < a[(I2IH°)'_la > .
The functions

= z, a*(z) = q- tc (30)

turn out to be tile Darboux coordinates taking the symplectic form _ = !dz Adz* to canonical
form _ = da A da'. '_

Finally, we define

satisfying

=- V-5- - (31)

[0, _r] =ihi , (32)

and their corresponding classical functions. For these operators we obviously obtain

h

AqA_ = _ (33)

on the [a > states.

4 Final Remarks

The construction of the canonical (higher-order) creation and annihilation operators ht and h in

the I+I-D relativistic harmonic oscillator is a matter of convenience rather than a necessity since

a first-order polarization, the manifestly covariant one, P =< )_L, _L > exists. However, the

situation become quite different for the relativistic harmonic oscillator with spin, at least from

a geometrical point of view. The reason is that the doubly pseudo-extended SO(3,2) (anti-de
Sitter) Lie algebra, containing the commutators

^

[Yci,_j] = ih6,j( ]. + --_c2 E) (34)
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accounting for the mass, and the commutator

[j+, J_] = 2 (Ja + ji) (35)

accounting for the spin, dbes not. admit a consistent, way (i.e. compatible with the rest of the

symmetry) of defining tw(_ sets of first-order conjugated creation-annihilation (taor co-ordinate-

momentum) operators. In other words, the system does not admit a (first-order) polarization

and therefore the Hilbert space of U(1)-equivariant complex functions on the group can be only

partially reduced [14]. The full reduction then requires the introduction of higher-order operators

in the polarization, generalizing those introduced here and accounting for proper intrinsic spin

operators.
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Abstract

Specific oscillators - hereafter called pseudosupersymmetric oscillators - appear as interesting

nonrelativistic concepts in connection with the study of relativistic vector mesons interacting with an external

constant magnetic field when the real character of the energy eigenvalues is required as expected. A new

pseudosupersymmetric quantum mechanics can then be developed and the corresponding pseudosuper-

symmetries can be pointed out.

1. Introduction

There are two old problems which appear when we study the interaction of

relativistic vector mesons (spin one particles with nonzero rest mass) with external

constant magnetic fields chosen, in particular, as directed along the z-axis, i.e.

= (0,0,B). The first one which will be of special interest here is mainly connected to the

energy eigenvalue problem subtended by the inclusion of an anomalous moment

coupling inside the relativistic equation of motion ensuring that the spin 1-boson has a

gyromagnetic ratio value of g = 2. A survey of such a question has recently been

presented in the Daicic-Frankel study [1] where further references can also be found. We

will refer to that paper in order to save place here. The _}econd problem is concerned with

the fulfilment of the causality principle through the corresponding wave equation

E-mail • Beckers at BLIULG11.

2 Chercheur, Institut Interuniversitaire des Sciences Nucl6aires, Bruxelles.
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describing such an interaction. Its discussion can be referred to another contribution [2]

where the so-called method of characteristics [3] plays the prominent role. Let us only

comment on the fact that our final equation will satisfy all the requirements needed by the

causality principle but it will not be discussed here, so that we can polarize our attention

mainly on the first problem.

After a short remark pointing out the first difficulty (§2), we want to insist on our

understanding of the so-called parasupersymmetric quantum mechanics (PSSQM)[ 4,5]

for motivating our way of eliminating the above problem (§3) and for studying the new

(nonrelativistic) formulation and Hamiltonian that we get in that way (§4). Besides the

usual bosons, we are led to the introduction of a new kind of fermions that we call

"pseudofermions" (§5) and to new symmetries that we call "pseudosupersymmetries" as

it will be clear in the following by comparison with well known supersymmetries [8] and

parasupersymmetries [4,5].

2. On the reality of (relativistic) energy eigenvalues

By exploiting the remarkable Johnson-Lippmann contribution [7] developed for spin

-particles, decompose spin a z-part associated with theit is easy[ 1] to the 1 -formalism in

so-called H// and, in a (x,y)-part, associated with the so-called H±, the latter being

readily studied through 1-dimensional harmonic oscillator characteristics. Then, the

energy eigenvalue problem for vector mesons leads to information such that

1
E2 = 1 +eB(n+2)-2eBs (2.1)

where e is the charge of the vector meson, n the Landau-level quantum number

(n -- 0,1,2,...) and s the eigenvalues of the third component of the spin operator

(s = 0,+1), when we have chosen h = 1, m = 1, c =1 and defined the angular

frequency o_ = e B of the resulting harmonic oscillator. In eq.(2.1), the first term in the

righthand side corresponds to the relativistic rest mass term, the second one to the

original discussion of H± and the third one to the presence of an anomalous magnetic

moment coupling [1]. Such an equation evidently permits

E 2 < 0 (2.2)

314



when eB > 1, n = 0, s = 1, so that we are dealing with the problem of possible

complex energy eigenvalues for intense magnetic fields of critical magnitudes.

3. Some observations from PSSQM

PSSQM has been proposed by Rubakov and Spiridonov [4] and slightly modified by

us [5]. Both approaches consider the superposition of bosons and parafermions [8] of order

2 and lead to 3-fold degeneracies in the energy spectrum. But, if, in the Rubakov-

Spiridonov context [4], the groundstate is characterized by a negative energy eigenvalue,

our groundstate has a null energy eigenvalue [9]. We have thus pointed out that the

relativistic result (2.2) could have a direct connection with the nonrelativistic Rubakov-

Spiridonov approach and that, consequently, we could handle the problem by exploiting

our approach and its relativistic counterpart excluding results such as those given by

eqs.(2.1) and (2.2).

In fact, such a method has recently been developed by one of us [1°] by following

strictly our PSSQM-context [5]. Here, we want, in a certain complementary way, to center

our attention on new harmonic oscillatorlike characteristics ensuring the reality ot the

energy eigenvalues.

4. To a new nonrelativistic Hamiltonian

We have modified the relativistic formulation of vector mesons interacting with our

E3-magnetic field in such a way that we get a six-component Klein-Gordon type equation

of the form

Po2Z(x) = (1+ 2+ 2+p3 2+eB.2eBZ:3)Z(x) (4.1)

where _ i = P i - e A i, i = 1,2, (4.2)

1 By A2 1 Bx, (4.3)
AI= 2 2
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1 0 0 )(o o o o .
T_3 -- $3 ' 0 0 - 1

(4.4)

This 6 by 6 formulation leads to a bounded energy spectrum (Eo > 0) with 3-fold

degeneracies and admits a nonrelativistic (NR) limit characterized by the Hamiltonian

1 2 2 eBHNR = 2(_1+_2)+--- (1-2S3). (4.5)

Such developments solve our (relativistic) problem connected with eqs.(2.1) and (2.2).

They also point out a new Hamiltonien (4.5) which, now, has to be visited.

1
From this new relativistic Hamiltonian : the appearance of

"pseudofermions"

From supersymmetric Is] as well as parasupersymmetric [4'5] considerations, we

immediately observe that the Hamiltonian (4.5) is made of two contributions : the first term

is a purely bosonic p,_rt constructed in terms of even bosonic operators _1 and _2 while

the second term looks like a purely "fermionic" part constructed in terms of odd

"fermionic" operators called hereafter A and B. In fact, we propose to construct new

Q1 = A_I + B/t:2, Q2 = -B_:I +A/¢2, (5.1)

where

A S ,(00
2"v_- 1 -i

The matrices A and B

manifestly odd character. It is straightforward to show that, with i, j =

o ,(oo,i)0 -1 +i , B - 0 0 1+i • (5.2)
-1-i 0 2_- 1+i 1-i 0

are Hermitean (so that the charges also are) and have a

1, 2, we have

Q3 = Qi HNR, [Qi, HNR] = O, (5.3a)

316



Q2Qi = QjQ 2 = -QiQjQi = QjHNR, i _j. (5.3b)

Such a structure is neither a Lie superalgebra [11] , nor a Lie parasuperalgebra [12] . It is

more clearly characterized when we refer to the two charges

Q = c(Ql-iQ2), Qt = c(Ql+iQ2), c E JR. (5.4)

Indeed they lead to the structure relations

Q2 = 0, Qt2 = 0, [HNR,Q] = [HNR,Q t ] = 0,

Q Qt Q = 4 c2 Q HNR, Qt Q Qt = 4 c2 Qt HNR,

(5.5)

already obtained by Semenov and Chumakov [13] as possible ones associated with the

discussion of 3-level systems. By searching for the charges (5.4) in terms of annihilation

and creation (oscillatorlike) operators, we define

__

Q = 2 (A+iB)(_l_i_2) = v/o} ba t Qt _/_bt a (5.6)

with 1
a = -::_- (_1+i=2) (5.7)

_/2 o)

as usual. We then get information on our "fermionic" operators b and b t such that

b 2 = b t2 = 0,' b btb = b, btb b t = b t • (5.8)
1

These relations mean that the corresponding particles are bosons (see eq.(5.7)) and "a

new kind of fermions" (see eq.(5.8)) that we call "pseudofermions". The first equalities in

eqs.(5.8) corresponding to nilpotencies show that they are not far to satisfy the Pauli

principle but the last equalities say that they are not at all usual fermions. Moreover, we

can prove that they are neither parafermions[8], nor quons[14], nor orthofermions[15].

1
For c = 1 or _-, eqs.(5.4) and (5.5) appear to be compatible with those of PSSQM

developed by Rubakov-Spiridonov [4] or by us [5], respectively. Moreover, the

corresponding structure relations of supersymmetric developments [8] imply the eqs.(5.5).

317



These properties suggest that our symmetries (evidently called "pseudosuper-

symmetries') are, in a certain sense, "between" super- and parasupersymmetries. We

have thus the basic ingredients of a new tool that we call "pseudosupersymmetric

quantum mechanics" which could be developed in terms of two"pseudopotentials" Wl

and W2.

References

[1]

[2]

[3]

[4]
[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Daicic and N.J=. Frankel, J.Phys. A26,1397 (1993).

B. Vijayalakshmi, M. Seetharaman and P.M. Mathews, J.Phys. A12,665 (1979).

R. Courant and D. Hilbert, Methods of Mathematical Physics (J.Wiley & Sons,N.Y.,

1962).

V.A. Rubakov and V.P. Spiridonov, Mod.Phys.Lett. A3,1337 (1988).

J. Beckers and N. Debergh, Nucl.Phys. B340,767 (1990).

E. Witten, NucI.Phys. B188,513 (1981).

M.H.Johnson and B.A. Lippmann, Phys.Rev. 76,828 (1949).

Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics (University

of Tokyo Press,Tokyo, 1982).

J. Beckers and N. Debergh, Parasupersymmetries and Lie superalgebras, in

Proceedings of the 18th International Colloquium on Group Theoretical methods in

Physics, MOSKOW 1990, Eds. V.V. Dodonov and V.I. Manko, Lecture Notes in

Physics 382, Springer Verlag, Berlin,414 (1991).

N. Debergh, to be published in J.Phys. A (Letter) (1994).

V.G. Kac, Adv.Math. 26,8 (1977) ;

V. Rittenberg, Lecture Notes in Physics, vo1.79,3 (1978).

J. Beckers and N. Debergh, J.Phys. A23,L751S,L1073 (1990).

V.V. Semenov and S.M. Chumakov, Phys.Lett. B262,451 (1991).

O.W. Greenberg, Quons, an Interpolation between Bose and Fermi Oscillators, in

Proceedings of Workshop on Harmonic Oscillators, NASA Conference

Publications 3197 (1993).

A. Khare, A.K. Mishra and G. Rajasekaran, Int.J.Mod.Phys. A8, 1245 (1993).

318



N95- 22995 ;' .....

ON

AND

IN

I_ARASUPERSYMMETRIC OSCILLATORS

RELATIVISTIC VECTOR MESONS

CONSTANT MAGNETIC FIELDS

N. DEBERGH and J. BECKERS

Theoretical and Mathematical Physics,

Institute of Physics, B.5, University of Lidge, B-4OOO-L/EGE 1 (Belgium)

Abstract

Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling

schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in

interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric

oscillatorlike system, is characterized by real energies as opposed to previously pointed out relativistic

equations corresponding to this interacting context.

1. Relativistic descriptions of free vector mesons

Free vector mesons can be described through many (well known) equations, f.i.

- the KEMMER equation [1]

(J3Pp,- 1)¥ = 0

where the (10 x 10) _natrices _p generate the Kemmer algebra

1 Chercheur, Institut Interuniversitaire des Sciences Nucleaires, Bruxelles.
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the SAKATA-TAKETANI equation[2]

a p__2
i_-(i) = (! @ (_2)+ 2 ] @ (a2+iol)-iSjSiPlPl @ Ol (I)

- HST q)

where the (6 x 6) matrices are direct products of D (1) and Pauli matrices. Notice that,

in the two above equations, we take as units the rest mass, the velocity of light and the

Dirac constant. Our choice is also to use the metric tensor

G = {g'Vlg°° =-gii = 1}.

The Kemmer equation reduces to the Sakata-Taketani one when one considers the

(six) physical components, only. Namely, the Hamiltonian form of the equation (1.1)

together with the initial condition write

a
i_ = (LI_o,I_J]PJ+I_o)_ - H_¥,

=o.

One can then shows that, through the action of the transformation

above system becomes

(1.3a)

(1.3b)

S = 1'+ I_jl}o2 Pi, the

(I _2- 1 )_' = 0, (1.4a)

a _, = HST _' (1.4b)

(_o) (1.5)if _' = S¥= 0 "
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1 Relativistic descriptions for vector mesons interacting with

constant magnetic fields

The corresponding equations hold for vector mesons interacting with constant

maanetic fields directed alona the x_, i.e.

- in the KEMMER case [31

(_"_.-1+(1-_2)eBS3)¥ = 0 (2.1)

where ,to. = p.- e A., (2.2)

B B

Ao = 0. A1 = 2x2, A2 = 2Xl, A3 = 0, (2.3)

_I 5 = 4EpvpO , EO123 = 1, (2.4)

(2.5)

in the SAKATA-TAKETANI case [4]

i_-q)"c3 = [](] ® a2)+_T_I2 ® (G2+iG1)-iSjSI_j_I ® cl+eBS3 ® G2 ,,!_, (2.6)

I
The eigenvalues E corresponding to the physical components write [3,4] in _ooth cases

1
E2 = l+eB(n+_)+2eBS, S = 0,_+1, n = 0,1,2, ..., (2.7)

if we limit ourselves to the so-called perpendicular part (i.e. in the plane ( Xl, x2 )). So,

for the particular values n = 0 and S = - 1, we obtain

E 2 = 1 - e B (2.8)

which could, for sufficiently large magnetic fields, lead to complex energies. This is an old

problem [5] and we propose to solve it by investigating a very recent tool • the so-called

"parasupersymmetric oscillators"
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1 Parasupersymmetry and the corresponding new Sakata-

Taketani equation

The nonrelativistic limit corresponding to the interacting Sakata-Taketani or

Kemmer Hamiltonians (2.1) and (2.6) is

HNR = 1-(_12+_22) +eBS3-
(3.1)

Taking

¢o = e B, (3.2a)

1
a = _(_1 +i_2) (3.2b)

a t = 1 --(_1-i_2), (3.2c)
I/2eg

we get

and

r

HNR = _-i{a,at }*o_S3 = _{a,a'}.o_ 1 0 0 )
0 0 0

0 0 -1

1 0 0 )ENR = o)(n+)+o)l 0 0 0 •
0 0 -1

(3.3)

(3.4)

These are the RUBAKOV-SPIRIDONOV parasupersymmetric Hamiltonian and spectrum

for an oscillatorlike interaction [6]. A specific feature of this parasupersymmetric model is

the existence of negative eigenvalues. This evidently leads to complex relativistic

energies for sufficiently large magnetic fields and confirms the Tsai results [5].

We propose here to eliminate this defect by using another parasupersymmetric

model • the BECKERS-DEBERGH parasupersymmetric oscillator [7] characterized by

positive energies, only. More precisely, the BECKERS-DEBERGH spectrum corresponds

tO
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-I 0 0 )
ENR= 0 I 0 •

re(n+.)+,= 0 0 -I
(3.5)

Thus, the remaining point is to construct a Sakata-Taketani Hamiltonian whose
I

nonrelativistic limit would lead to such a spectrum. We take [8]

HST = (I ® 02)+

_i (/i;1[i2_/1;2111){Sl 82} ® (_1 +eBTI
2 ' '

where k, q are undetermined and

l-la = Pa+eAa, a = 1 ,2,

In order to solve our problem, we have to impose different conditions like I

{x,(s,_-s_) ® o1} = {x,{s,,s2} ® o,} = 0,

i
-i-l(S12-S 2) ® o, ,q }+2({S, S2} ® Ol)k-2{S, S2} ® 03=0

_ 9

-_-'.{(s,s_} ® o, _)-2((s,_-s_)® o,)x+_(s,_.s_)® o3--0
y _

in order to the eliminate terms like ( _2 + _2 )2, ...

We then obtain

(3.6)

(3.7)

(3 .Sa)

(3.8b)

(3.8c)
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al 0 0

0 a_ 0

0 0 0

i a3 0
4

- a3 i_ 0
4

0 0 0

_ i a3
4

i
- a3 --

4

0 0

- al 0

0 -al

0 0

0

a2

0

0

0

(Xl - 2 i al 0 0_4 or,3

2 i al (7-1 0 - Of,3 Of,4

0 0 o_5 0 0
i

4 i a3 - 0_4 0_3 0 - (xl 2 i al

- 0¢3 4 i a3- e¢4 0 - 2 i al - _1

0 0 _x8 0 0

0

0

(X2

0 1

0

- O_5

together with constraints like

- 16 , a3 or,3 = al _1 , " •a2- a23 = 1

Taking now

al =
o}

=_i a3- 1
al = 0, a2 2' - 4-'

O_2 = i (7.3 = 0 o_4 = - i + i
' ' _ 2

Or.5 = .i ,

we finally have

1 0 0 )E.. = o 1 o
0 0 1

B.D.

ENR (3.9a)

with n' - nl + n2. (3.9b)
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Of course, in these developments, we have exploited Johnson-Lippmann

considerations [9] relating the motion in a constant magnetic field with oscillatorlike

interactions and implying in particular that the eigenvalues of the operators _-

1 1
and _-1( 1_i2 + _ ) are o} ( nl + 2-) and o_ ( n2 + 2-) , respectively. As a result, a Sakata-

Taketani type Hamiltonian avoiding the complexity of the energies is

HST = (] ® 02)+i(I ® 03)+i(V-3-1)S 2 ® o3

i_I ® (Gl-i(_2)1 i S_ ® (o1+i_2)
+2 ,2

® +is ® ®
+4

!(1[12+i_2)(iS3 ® o1+iS3 2 ® 01+] ® (_2"i_1))
+4

i i
-_(/t;lr[1-/l;2]]2)(S12-822) _) o1-2(_1]-[2+/i;2rJl){S1,S2} ® 01

(3.10)
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Abstract

In this paper we discuss the Dirac Oscillator wave equation in terms of a pseudoclas-

sical language, using Grassmann variables to describe the internal degrees of freedom of

the oscillator. Regarding the original wave equation as a classical constraint, we use the

theory of constrained systems, to develop a reparametrization invariant lagrangian, which

is the pseudoclassical equivalent of the quantum case. The consistency of the Hamiltonian

formalism and the quantization procedure are also analized.

1. Introduction

As is well known, in the second decade of this century Dirac developed the square

root method, to analyze the internal spin degrees of freedom in quantum mechanics. Dirac

accomplished his task by means of a Clifford algebra for these degrees. Altought at that

time the Grassmmm algebras were already known, there existed no classical counterpart

available for his approach. In present day point of view, however, we know that this

old problem can be formulated using anticommuting, fermionic variables, to reproduce

the behavior of the spin degrees of freedom at the classical level. Since the Grassmaml

variables have no direct physical meaning, the theories formulated with them are usually

• :,-- r,, _,._z r ,_
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called pseudoclassical.

One important point of the approach formulated above is that, associated with the

anticommuting variables and involving also the rest of the non-Grassmann dynamical vari-

ables of the theory, (called bosonic variables), there exist a supersymmetric gauge invari-

ance in the formulation. One of the reasons for this supersymmetry is the fact that any

quantum wave equation present in the theory is translated at the classical level as a first

class constraint. According to Dirac conjecture, all first class constraints generate gauge

transformations, but since in this case the Grassmann and the bosonic variables are mixed

up by the gauge transformation they become, in fact, supersymmetric.

This way of reasoning has been analyzed by several authors [1,2,3,4] as a pevious step

to quantization. The idea is in some sense based in Dirac's point of view that we should

first try to fully understand a problem at a classical level, and only then try to quantize it

[5]. One consequence of this procedure is that we can apply it to systems which we don't

fully understand, for instance in the case of two body, or more, relativistic wave equations

[1]. The interesting point here is that the time evolution of the dynamical variables are just

the Euler Lagrange equations, which in principle are known, thus solving the dynamics of

the problem, at least at the classical level.

2. The Dirac Oscillator

Let us begin with a simple introduction to the Dirac Oscillator. Some years ago,

Moshinsky and Szczepaniak introduced a relativistic wave equation linear in momentum

and in position which has an harmonic oscillator spectrum plus a strong spin-orbit coupling

term [6]. This equation is obtained by the replacement of the momentum of the particle

in the Dirae equatiom by

p -+ p - imwrfl, 1)

where p is the momentum, m the mass of the particle and r is its position, to is the

frequency of the oscillator, and _ the Dirac ,y0 matrix. Taking advantage of the frame

dependence vector u _, it is easy to show that the Dirac oscillator equation can be put in
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the manifestly covariant form

(6. P + mOs)¢ = 0, 2)

where

P_' -- p" - 2imwx_(fi. b)Os, 3.a)

and

xt = z" + . 3.6)

The operators #_' and 85, axe expressed in terms of the Dirac matrices in the following way

i

Ot` =_9757 t',

i

# = 0,1,2,3

3.c)

where 75 = /70717273. We use natural units in which h = c = 1 and our metric is

given by (r/t`,) = diag.(-1, 1, 1, 1). We recover the original Dirac Oscillator in the frame in

which fit, = (1,0,0,0). The solution, spectrum degeneracy, hidden supersymetry and other

important properties are discussed in [8,91, (and references therein).

3. Pseudoclassical description
Now, the idea is to reformulate the problem in a pseudoclassical language.

done in a natural way by translating Eq. 2) into a first class constraint

This is

,] = O. P + m05 ,._ O, 4)

where ._ means weak equality and the dynamical variables become pseudoclassical ones

Of course we know that

5.a)

{zt,,p _} = _t,_. 5.b)

The Poisson braket of the first class constraint 3" with itself, is the classical equivalent

of the square of the Dirac Oscillator. In this way, thus, we generate another constraint
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which could be hailed the pseudoclassical analogue of the Klein Gordon equation. This

new constraint is constructed in such a way to be again a first class, altought secondary,

constraint. Of course, if there is any second class constraint we should replace the Poisson

braket for the Dirac one, in order to get rid of them.

In our case the superalgebra obeyed by the constraints is given by

{,,7,3"} =i7-t = i(P 2 + m 2 - 4i,nwA) _ 0,

{j,_} =0, 6)

{_t,_t} =0.

In this equation, A is given by

- (0. x±)_,. (toO- O_P). 7)

Notice that the first of this constraints is precisely the pseudoclassical Klein Gordon equa-

tion. Is in this sense that we say that we translate the square root method into a classical

language. We also note from Eq. 7) that ,7" and 7-I are first class.

Following the procedure described in Ref. [7], we can construct the Lagrangian of

the problem. Since the whole dynamics of the theory is contained in the constraints, the

Hamiltonian of the system is a linear combination of them

H = NT-I + iMfl =_-O, 8)

where N and M are gauge fixing parameters. This in turn means that the Hamiltonian is

weakly zero, implying a reparametrization invariant Lagrangian as a consequence. Accor-

ding to Ref. [7] the whole action is given by

s = f' d_{-m -VS-_z_[1- 2i_(o. x_)(,_.0)1+ i/2[o,'0,,+ o_o_1
dr 2

- 2imw(O. x±)05(fi, z) + 2imw(z. x±)(fi0)05 9)

- 2m_M(e. x.)(,_, e)0_- imMe_.
Where z _ =_ k u - iMOJ'.

It is not hard to prove that this action is the correct answer to our problem. From

the Hamiltonian formalism, we know that the time evolution of any dynamical variable F

is given by

_#= {F,H}. 10)
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Hence, for the dynamical variables in our case we obtain that

k # = iMO j' + 2NP _' + 4imwN(O. x±) 05u _'

0" = 4m2wU[x_(fi • O) - (0. x_t_) flu] + MP _ 11)

05 = raM- 2imMw(O . x±)(fi . 0) - 4rnwN(x± . P)(5 . 0) + 4mwN(O . x±)(fi . P),

which are precisely the Euler-Lagrange equations of the action 9) provided

N(v)- 2m [l+2iw(0.x±)(fi.0)]. 12)

This result proves the complete agreement between the Hamiltonian and Lagrangian for-

malislns, and as a result we are confident that action 9) is the corect answer. What Eq. 12)

tells us is that we can specify the gauge by giving a value to -x/-L-_, usually _ = -1. In

the same way we can construct the supergauge transformations for each dynamical variable

F by means of the equations

5F= {F,e_(T)¢.}, a= 1,2 13)

where Ca represent our two constraints, and ca(r) are two time dependent infinitesimal

parameters. The result is too long to be given here, (see reference [7]), the only point we

want to remark here is that, as we already mentioned, they express the full dynamics of

the theory, as is suggested by the comparisson of Eqs. 10) and 13).

4. Conclusions

XVe note form Eq. 3.a) that the Dirac Oscillator interaction term is 0-dependent. In

cases like this, the quantization procedure shmtld be done carefully, since some properties

of the Grassmann variables changes radically when quantized. For example, the 8_ variable

has the property that 052 = 0 at the classical level, but at the quantum level (Eq. 3.c)

052 = -1/2. Thus if we consider for instance, the Taylor expansion of a 05 dependent

function, we obtain different results depending wether the quantization is done before or

after the series expansion.

In the case of the system studied here, if we put in Eq. 6) the square of P_' given by

3.a) and proceed to quantize by means of definitions (3.c), we obtain a wrong result. The
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central point here, is that we should regard P" as a basic quantity to quantize. If instead

of developing the square of P", we first quantize Eq. 6) and regard 3.a) as a quantum

operator identity, we obtain a complete compatibilty with the Klein Gordon wave equation

associated with the Dirac Oscillator. Finally, we would like to remark that our approach

could be useful to problems that are not fully understood at the quantum level, but that

have 0-dependent interaction terms, such as the afforementioned two body relativistic wave

equations and some supergravity theories [7].
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Abstract

The equations for various spin particles with oscillator-like interactions are discussed in

this talk. Contents: 1. Comment on "The Klein-Gordon Oscillator"; 2. The Dirac oscillator

in quaternion form; 3. The Dirac-Dowker oscillator; 4. The Weinberg oscillator; 5. Note on

the two-body Dirac oscillator.

1 Comment on "The Klein-Gordon Oscillator"

In connection with the publications of Moshinsky et al., e. g. [1], the interest in the model with

the j = 1/2 Hamiltonian that is linear in both momenta and coordinates has grown recently [2].

Analogous type of interaction has been'considered for the case ofj = 0 and j = 1 Duffin-Kemmer

field [3] and for the case of j = 0 Klein-Gordon field [4].

In the paper [4] the operators _), coordinate, and /_, momentum, have been represented in

n ® n matrix form

_) = _)0", /_ = _)fi, (1.1)

with 7)2 - 1. The interaction in the Klein-Gordon equation has been introduced in the following

way:
_ fi - irna/_. (_, (1.2)

where for the sake of completeness l_ is chosen by 3 ® 3 matrix with coefficients _ij = aaiaij. The

"} matrix obeys the following anticommutation relations {'}, _} = 0, ._2 = 1.

The Klein-Gordon equation for @(0", t), the wave function which could be expanded in two-

component form, is then

0 2 ..,- fi2
--_wiq, t)=(fi2+m2(. .(+m_trfl+m2)_(_,t), (1.3)

*The extended version of this talk could be found in the LANL database, HEP-TH/9403165.
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what gives the energy spectrum [4]

E_a)Ni--m 2 = 2m(WlNl+w2N2+w3N3), N1,N2, N3=O, 1,2...

E(2)Ni -- m 2 -- 2rn(wl(N1 + 1) 4- w2(N2 4- 1) 4- w3(N3 4- 1)). (1.4)

However, the physical sense of implementing the matrices 7) and _ in [4] is obscure. In this

Section we try to attach some physical foundations to this procedure. It is well-known some

ways to recast the Klein-Gordon equation in the Hamiltonian form e. g. [5, 6]. First of all, the

Klein-Gordon equation could be re-written to the system of two coupled equations [6,p.98]

O_ 0S _
-- = _-- - g@, (1.5)
(gx ,_ '_ ' Ox ¢,

where t¢ = mc/ti (in the following we use the system where c = h = 1). By means of redefining

the components they are easy to present in the matrix Hamiltonian form (cf. with [7])

/ /° Pl)(10o1• 0 X1 = Pl + rn

z_-_ );2 P2 0 0 0 0 - 01 X2
X3 P3 0 0 0 0 0 -- X3

(1.6)

providcd that 4) = iOtqt+ mq_, Xi = -ivi q2 --/_- Using matrices c7 and t3, corresponding to this

case, and introducing interaction analogously [la] we come to the equation for upper component

(1.7)

what coincides with Eq. (10a) of ref. [4] in the case Wl = w2 = w3.

The similar formulation also originated from the Duffin-Kemmer approach. In this case the

wave function (I) = column(C1, ¢2, Xi) is five-dimensional and its components are ¢1 = (iOtq_ 4-

me_)/vf2, ¢2 = (i0t¢¢- rnC2)/v_, Xi = -i Vi ¢_ = fi_¢2. It satisfies the equation

.0_

'-x = B_, = [fl0,/_,]- (1.8)

(our choice of 5 ® 5 dimension fl-matrices corresponds to ref. [3]). As shown there, the substitution

f _ f-imwrloFleads to the equation (1.7) for both ¢1 and 6. Let us remark, in both the approach

based on Eq. (1.6) and the Duffin-Kemmer approach, Eq. (1.8), we have the equation

(E 2 - m2)xi = (Pi - imwxi)(P.i + imwxJ)xj (1.9)
t

I

for down component, which seems to not be reduced to oscillator-like equation.

Then, Sakata-Taketani approach, e. g. [5], is characterized by the equation which we write in

the form:

( 2m + mr3 _, (1.10)

with ri being the Pauli matrices, q) = column(C, _) is the two-component wave function with

i _)/vr2, (gl iOtet)/vr2.components which could be written as following: ¢ = (q2 4- -_c3t X = -
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From the previous experience we learned that in order to get the oscillator-like equation we need

to do substitution with matrix which anticommutes with matrix structure of the momentum part

of the equation. In our case the matrix which has this property is rl matrix. Therefore, we do

the substitution fi-, iff- irnwT1 _"and come to

where _ = ¢ + X, and to the analogous equation for 7/ = ¢ - X = _(¢ + X)-
calculations we convinced ourselves that the interaction Hamiltonian

_=_mml (iff2 + m2w2:_ 2 - 3row) ('r 3 + iT2) A- rata (1.12)

is the same as in [3, formula (3.9)] since TI(T3 + ir2)vl = --(T3 + iT2) and (T3 + i72)71 = T3 + i72.

(1.11)

In the process of

2 The Dirac oscillator in quaternion form

The quaternion (and conjugated to it) with real coefficient is defined as q = qo + iql + jq2 + kqj,

q = qo-iql -jq2-kqj. The basis vectors satisfy the equations i 2 = j2 = k 2 = -1 and ij = -ji = k

with cyclic permutations. Considering a two-component quaternionic spinor (or SL(2, H) spinor)

one could write the free, Dirac equation as following, ref. [Sc,d],

[" . 0'_ - rnvj_k = 0. (2.1)

Anticommutation relations for [' are given in [8d,p.222]. In Pauli representation (i ---, -V/L-TT_,

j ---* --V/-Z-]-T2 and k _ -Vf2-]-r3) it goes through to usual Dirac equation and its complex

conjugate. As mentioned in [8] it is convenient to diagonalize the matrices entering in Eq. (2.1)

using matrix

1

T--_ (11 _). (2.2)

In such a way we come to biquaternionic formulation (qi E C):

{ OVL+ = o (2.3)
C_tR "4- i/T/_) L ---- O,

where 1/) L _ _p+, eR _ _Jp_. This decomposition of _I' into left ideals is carried odt by means of the

projection operators p+ = (bo+bj)/2. New basis is b0 = 1,b, = x/-L--fi, b2 = v/-Z--fj, b3 = V/-L--fk and

b0 = b0, bo = -bo. Introducing interaction in the form 0i _ Oi+rjVi(£), V is the compensating field

for this type of Sp(1, Q) transformations, and taking into account that the vectors of biquaternionic

basis anticommute b,,ba + bab,_ = -2r/oa, rioa = diag(-1, 1, 1, 1), we come to the equations for the

left and right spinor-quaternions in the following form:

(E 2 _ 1./22)_/)L = [(_[_2 -4- k23_ 2) - 3k - 2,ijkbkXiPj] _)L (2.4)

(E - = + + 3k + (2.5)

if we choose V_(Z)= kx_. Eqs. (2.4) and (2.5) are the Dirac oscillator equations in the eauli

rep, bk --* Tk. Analogous equations for _R and _tL could be obtained from (2.3) if one choose the

opposite signs at the mass terms.
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3 The Dirac-Dowker oscillator

In this Section we start from the equation for any spin given by Dirac [9] in the form written down

by Corson, ref. [6,p.154], (here we use Corson's notation)

{ + ½)e(k+ ½,t- ½)-m va(0¢(k,0 =0r 2, _,/2 ,_ ½)¢(k+ ½,t0As._(0¢(k,0 + m _,2-r_) .._ + - ½)= 0,

(3.1)

where VA and v A are the rectangular spinor-matrices of 2k rows and 2k + 1 columns (see, e. g.,

section 17b of ref. [6] for the details). The wave function ¢(k, l) belongs to the (k, l) representation

of the homogeneous Lorentz group. The choice I - 1/2 and k = j - 1/2, j is the spin of a particle,
a

permits one to reduce a number of subsidiary conditions. Moreover, the equations (3.1) are shown

by Dowker [10] to recast to the matrix form which is similar to the well-known Dirac equation for

j - 1/2 particle

(3.2)

The 4j- component function (I) could be identified with the wave function in (j, 0) _ (j - 1, 0)

representation. Then, T, which also has 4j components, is written down

T=(_I)2J(2j)_](vA(j-!)®vA(½)) 1 12 . ¢(J - 2' 7 ).
uA(j)®vA(1)

(3.3)

and it belongs to (j - 1[2, 1/2) representation. The matrices cd' and 5 _' = (_, obeys all the

algebraic relations of the Pauli matrices (_(_'a ") = gj, V, except for completeness.

Defining p_, = -iOn, and the analogs of 7- matrices as following:

the set of equations (3.2) is written down to the form of the Dirac equation

However, let us not forget that (I) and T are 2-spinors only in the case of j = 1/2.

In the case of spin j -- 1/2 it is well-known the set of 7- matrices is defined up to the unitary

transformation and Eq. (3.5) could be recast to the Hamiltonian form given by Dirac (with crk

and fl matrices) by means of the unitary matrix. It is easy to carry out the same procedure

(O_k ---- S'_0_ks -1 and fl = 87°S -1) for 7- matrices, Eq. (3.4), and functions of arbitrary spin

(_ = S-l¢). For our aims it is convenient to chose the unitary matrix as following:

S -- -_ \i]14j®4j 114i®4 j / •
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After standard substitution/7---,/7- imwT°_ " we obtain

E¢ = -i [a0(_p") + imw(_r-3] v + m_0¢, (3.7)

Zv = i[a0(c_p") -imw(Sr-')]¢- maov. (3.8)

Since it follows from the anticommutation relations that aia0 - o0c_i we have the equations which

coincide with Eq. (8) bf ref. [la] or Eqs. (3.6) and (3.12) of ref. [ld] except for r, ---, a_,, i. e.

their explicit forms,

(E 2 _ m2)¢ = [/72 + mwF2 _ 3aomw - mwaoalih'i]rivj] ¢ (3.9)

(E2+ m2). = [/72+ + + .. (3.10)
Thus, we convinced ourselves that we got the same oscillator-like interaction and the similar

spectrum as for the case of j = 1/2 particles in [la].

4 The Weinberg oscillator

The principal equation of 2(2j + 1)- component approach [11] in the case of spin j = 1 is

("/,_,p,p_, + M2)_(J=I)(x) = O, (4.1)

with 3',_ being 6 ® 6 covariantly defined matrices. The j = 1 Hamiltonian has been given in refs.

[llb,c]"

2E 2 [ 2EM2(aP-*)2 ]7"[ - 2E 2 _ M2(hp-') +/3 E 2E 2 _ , (4.2)

where

0 , 113®3 ,3 .

(Si are the spin matrices for a vector particle).

In general, the upper and down components of 6- component wave function do not uncouple

neither under the interaction/7 ---. /7- imwflF nor under "/5,,vu, r,. However, if we introduce

the Dirac oscillator interaction so that the conditions of the longitudity of _ = column(¢i, Xi)

respective to f', i. e. fx¢ = O, fx)_ = 0 are fulfilled, we come to the equations more simple

(2E 2- M2)_ = E(ff_Tl+ [(ffp--')- k(ff_] (gp")_, (4.3)

E(ff_ = [(Sp-*) + k(Sr-*)] (gp-")_? (4.4)

(_ = ¢ - X, rl = ¢ + X), which could be uncoupled to the following form (k = imw)

(ffp-.)(E 2 _ M2)(,_,gp_ = (ffp-,) [/72 + mw2_.2 + 3mw + 4mwff[7 x p_] (,.,gp-')( (4.5)

(ffp--.)(E 2 - M2)(ffp-,)r/ = (if/7) [/72 + mw2_,2_ 3mw-4mwfftFx p_] (ff_r 1 -

-imw(2S 2 - i2)( #r-')( ffp")r 1 (4.6)

These equations can be considered as the extension of the equations with Dirac oscillator

interaction to the j - 1 case, for the components (ffp-')_ and (S/7)r/. However, remark that one has

the additional spin-orbit term acting as earlier at 7/.
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5 Note on the two-body Dirac oscillator

The two-body Dirac Hamiltonian with oscillator-like interaction is given by (see, e. g., ref. [lc])

1 _. 1 _. _. i ._. ]
(5.1)

In the c.m.s, it is possible to equate/_ = 0. The matrices are given by the direct products

0) 0) (0]12e2 ' 0 ]12_2 g2 0 '

--ll_e2

(0 0rs = 7_ ® 7_ = 112®2 0 ]12e_

o ) (5.3)
--I12® 2 '

]12e20) " (5.4)

Now we apply the same: procedure like that was used for transformation the Bargmann-Wigner

equation to the Proca equations. The 16- component wave function of the two-body Dirac equation

could be expanded on the complete set of matrices: (q,'C), (a_'_'C) and C, (@C), and ('),57_C).

We consider the system multiplied by C, the matrix of charge conjugation, in order to trace for

the symmetric properties under oscillator-like potentials. The wave function is decomposed in

symmetric and antisymmetric parts using the above-mentioned complete system of matrices:

.v (5.5)
5 _

¢[_,] = C,_,¢ -t- "/_,,1C,7_0 4- "7_/7_,7C,7_A_,. (5.6)

In such a way we obtain the set of equations:

EAo = O, EAo = -2m¢, E¢ = 2iv_(/_ - iYi)F i°

E() = -2mfto + v/2eijk(_i + i_'i)F jk

Eli i = -iV_eijk(fij ::F iTJ)m k

EA i = 4imf °_ + ivf2eijk(_j 4- i71)fI _

EF °_ = -2imA' + iv/2(fi_ + ii")O

1

EFjk = -_eiik(fii - ir'i)[P

(5.7)
(5.s)

(5.9)

(5.10)
(5.11)

(5.12)

Let us mention that for another type of Dirac oscillator-like interaction ,,_ ((:_l - _2)BFs the only

changes are the sign changes at the term igin Eqs. (5.9) and (5.10) of the above system. The two-

body Dirac oscillator equations in the form (5.7)-(5.12) could be uncoupled on the set containing

only functions _b, _ and .4_ and the another one containing only A, and F,,:

1)
1

(E 2 - 4m2)¢ = 2(/_ + _*i) (/7i - i_*i)_

(5.13)

(5.14)

338



Efio = -2m¢ (5.15)

(E 2- 8m2)fi,; = 2(/_ _ iTJ)(p"i -4-iTi)jtJ- 2(fij T iTJ)(P'_ + iTi)f_ i +

2) EAo = 0 (5.17)

(E 2- 8m2)F °i = 4(i_ + i7')(_. - iTJ)F °j -

. m .., . Irt -_

-4z_-(pj 4- iTJ)(p-', :F iU)A j + 4_(pj 4- iTJ)(p -] :F iTJ)A i (5.18)

EZA ' = 2(/_ 4- zrJ)(pi T iTi)A j - 2(iffj 4- _rJ)(p i _: i_*J)A ' + 4imEF °i

(E 2 - 4m2)F jk = eqket,,,(fii - iTi)(_ + iTt)F m". (5.19)
I

This fact proves the Dirac oscillator interaction, like the case of introduction of electrodynamic

interaction in the Proca or the Bargmann-Wigner equations, does not mix S = 1 and S = 0 states.

Next, the interaction term of the following form:

12i, ' 1 dV(r)/dr _2)BFb_"
= r 1 -IV(r)] 2(_71 - (5.20)

has been deduced [12] from the equation of Relativistic Quantum Constraint Dynamics (RQCR)

or N- particle Barut equation. In [12] it proved to lead to the Dirac oscillator-like interactions

provided that the definite choice of the fimction V(r). In connection with that let us remark the

curious behavior of the another potential V(r) which has been proposed in ref. [13b,c]:

V(r)=-g 2c°th(rm_r)- g 2c°th(gr) (5.21)
47rr 47rr

It could be deduced from the one-boson exchange quasipotential V(fi, fc; E) = _g2(p _ k)-2 by

means of the transformation into the relativistic configurational representation (RCR) u._ing the

complete set of Shapiro plane-wave functions: ((_,_ = (A 0 -- _xff/m) -l-i'm, A0 = V_2 + m 2,

= e/lfl.
In the case of the quasipotential (5.21) the interaction term P, Eq. (5.20), has the different

asymptotic behavior in three regions (g2/(4_r) = 1). Namely,

Vi.t _ 1 ((71 - c_2)BF57_
r(r 2- 1)

(1/r3)(c71 -- _2)BF57, if r >> 1_ and r > 1
--(1/r)((_l -- _2)BF_7, if 1_ << r < 1,

(5.22)

in the infrared region (r >> ¼, large distances); and

1
V i"t _- -2g((71 - c72)BF_7, if r << -,

K
(5.23)

in the ultraviolet region (small distances). In one of the regions one has the Dirac oscillator-like
behavior.
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Abstract

In view of current interest in relativistic spin-one systems and the recent work on the

Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using

an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation
leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the

equation the DKP oscillator. This oscillator is a relativistic generalisation of the quantum
harmonic oscillator for scalar and vector bosons. We show that it conserves total angular

momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of

the DKP oscillator in the spin 1 representation.

1 The DKP Oscillator

The focus of attention in this paper is to generalise the concept of the quantum harmonic

oscillator to relativistic vector bosons.

For a free scalar or vector boson of mass m, the relativistic DKP equation [1] is

(cf_- p + mc2)¢ = ihfl °0¢ (1.1)
ot

where the internal variables/_" (_ = 0,1,2, 3) satisfy the commutation relation

_"_ + _/_" = g"_ + g_t_". (1.2)

In the spin 1 representation, the /3" are 10 x 10 matrices while the dynamical state ¢ is a

ten-component spinor.

For the external potential which we introduce with the non-minimal substitution

p ___ p _ imw_l°r, (1.3)

where w is the oscillator frequency and _7° = 2/3 °2 - 1, the DKP equation for the system is

[c_. (p - i,_w_°r) + mc_]¢ = ih_ ° _. (1.4)

This external potential, which is of Lorentz tensor type, does not conserve the orbital and spin

angular momenta, since

[_rl °. r,L] = -i(¢t9 ° h r) and [/39 °. r,S] = i(/3_ ° A r), (1.5)
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but it does conserve the total angular momentum J = L + S.

In the spin 1 representation of eq.(4), the dynamical state ¢ is chosen as the 10-component

spinor

A(r) A1 B, C1

¢(r)= |B(r) j with A=- A2 , B- B2 , and C= C2 (1.6)
\ C(r) ] A3 B3 C3

so that, for stationary states, the equation of motion eq.(4) decomposes into

{ mc2T = icp- • B

mc2A = EB - cp + A C

mc2B = EA + icp+_

mc2C -_ -cp- A A

(1.7)

where p± = p =t: imwr. Since A is the 3-component spinor analogous to the Dirac upper

component, we seek the wave equation for A. It is straightforward to eliminate 9, B and C in

favor of A so that one gets

= [c2(p 2 +m2w2r2)-3hwmc2- 2hwmc2L.s]A--_p + {p--[p+ A(p- AA)]} (1.8)(E2-m2c4)A

where L is the orbital angular momentum and s the 3 x 3 spin one operator. In the non-

relativistic limit c << mc 2, the fourth term in eq.(1.8) becomes negligible, since it is of order

1/m 3, so that the wave equation for A can be written

___ 1 22cA __ [ + -_mw r - _hw- hwL-s]A (1.9)

which characterises the usual harmonic oscillator in addition to a spin-orbit coupling, absent

for scalar DKP bosons, of strength -t_,w. Note that the strength of this coupling is half the one

obtained from the Dirac oscillator [2].

Since the spin 1 representation of eq.(1.4) leads to the usual three-dimensionM (3D) oscillator,

in the non-relativistic limit, we refer to the system it describes as the Dui=fin-Kemmer-Petiau

oscillator.

2 Solution to the vector DKP oscillator problem

For the S = 1 central field problem, the general eigenfunction we use takes the form [3]

I i¢"j(r)YjM(_)

CJM(r) = 1 | _]n F, jL(r)yMI(ft) I
r /EL G.jL(r)YMI(a) |" (2.1)

\EL H.JL(r)YM (a) ]

Putting _/'JM into eq.(1.4) results in ten coupled radial differential equations which can be

decoupled into two sets associated with (-1) J and (-1) J+l parities. We call the (-1) J solutions
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natural-parity (or magnetic-like) states while we refer to the (-1) a+l solutions as unnatural-

parity (or electric-like) states. With the notation

R.ss(r) = Ro , R.ss+_(r) = R±,,

the set associated with (-1) y parity is

R -- F, G, H (2.2)

EFo = mc2Go (2.3)

hc
d J + 1 mwr) 1+ Fo - mc2Hl (2.4)

h_ _ + -_ + ----i- Fo - _,_m__u_l (2.5)

--(J dr ÷-- H1 - °_J dr r hcr , h H-1 = mc2Fo - EGo • (2.6)

For unnatural parity states, the radial differential equations are coupled in the following

way :

_c

( s + 1 Ho - 1 ( c2F1_ E<) (2.7)dr r h (s

hc -_Tr+ Ho - -
r ]}, 0*1

d J+l-¢, _+-- T + -_ ] F1 - as dr r + , F_, = mc2Ho (2.9)

hc _+

J+l mwr)h -4_ - _*sl (mc2G1- EF1)

Jr 7 r), ¢ _ (J1 (mc2G_ 1 _ EF__)

(2.10)

(2.11)

- + G-I = mc2¢. (2.12)-as _r +-+r GI +(j dr r

To obtain the exact solution for the magnetic-like states, we eliminate Go, H+ in favor of Fo

in eq.(2.6). This yields the eigenvalues [4]

1
2 _ m2c 4) = (N + 1)hw (2.13)2mc_ ( EN,S
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with the principallquantum number N = 2n + J (n is the radial, quantum number). Note that

the oscillator levels are equidistant and degenerate; the zero-point energy differs here from the

one we found for the scalar DKP bosons.

The exact eigenvalues of the radial equations associated with unnatural-parity states can be

shown [4] to be

(E 2, m2c 4) (N + o2)hw+ J(J + 1)(hw)2
1 - : (2.14)

2mc 2 mc 2

where 1

A=hw J+ l+----+--a 0 mc 2 a 0

with a0 =(2J + 1) 2, al = 4J(J + 1)(2N + 3)and a2 = 4J2(J + 1) _ where N, a positive integer,

is the principal quantum number.

As shown in eq.(23), the energy of the DKP oscillator in unnatural parity states involves the

usual 3-dimensional harmonic oscillator energy, a second term proportional to J(J + 1) which

appears as some kind of rotational energy and a third energy contribution A which is a compli-
cated function of the oscillator frequency, J and N with no obvious physical interpretation.

In the limit where the oscillator frequencies are such that hw <( mc 2, keeping only the

first-order term in w in eqs.(2.14-15) leads to

1
+ __ (N - J+ 1)hw(E__ -m_c 4) =- enr.

2mc 2
(2.16)

1 (E2_ _ m2c4 ) _-- 6n.r. _ (N --_ J --_ 2)h6d (2.17)
2mc 2

This is best illustrated in fig.1 which shows, for fixed values of N and J, the variations of the

relativistic and non-relativistic eigen-energies with hw/rnc 2.

6.O

4.0

8°O

E÷¢ol.

IE÷ .,. N = 2

.......... E-r , J = 1 ....- "" '"""

E_-n.r.

..."
...-"

°'_o.o_ 0.2 0.4 0.6 0.8

he._/mc 2

Figure 1: Variation of the DKP and non-relativistic oscillator energies with w.

[
.o

This shows that our solutions have the correct non-relativistic limits since the levels in

eqs.(2.16-17) are those of a usual 3D non-relativistic oscillator with a spin-orbit coupling of

strength -hw. In this limit, they could have also been obtained directly from eq.(1.9). Fur-

thermore, taking this limit suggests the interpretation of the E+ and E_ energies as "spin-orbit

partners", E+ being associated with J = L + 1 and E_ with J = L - 1.
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The unnatural parity E+ levels for N _< 9 are presented in fig.2 alongside the e+.r. and the

(N + 3)_ levels for reference. For a given value of g - J, all the non-relativistic energy levels

(N, J'_) (with N - J odd and J < N) are infinitely degenerate. This accidental degeneracy is

not present in the exact DKP oscillator E+ eigenspectrum whose levels are found to cluster in

several groups of states belonging to the same N - J oscillator shell.

I..I--I

_% , o M.vGoV

N _
I 3/2 _

N m 4

N _ 3
g/2

l

N -- i!
7/2 ,'t

N i 1

Non--Rel. DKP

J_ -I-

N --J -- g ( N.J* )
(_.o)

N -- J -- 5 (80)
a/lJ_.;lll/tj ] _"

(I;),4)

(3.o)

N -- J I 3 ..... I_111])1//////))_ ° (-- e )

N -- J -- 1 (1.0)

-,ioalnj (_8)

Figure 2: DKP and non-relativistic spectra associated with J = L q- 1 for N <_ 9. The dotted lines between the DKP

and non-relativistic oscillator levels link states with the same quantum numbers (N, jr).

The E_ eigenspectrum is now presented in fig.3 together with the non-relativistic e_.r. energy

levels for N _< 9.

(_.8)
_Z OL_-- 10 MeV .... "-"

m c _ _ 1 (3eV
N + j __ 17 ....-'"''""

(_.4)
N j m *3 ........ .._x-: :'-?'--:

IIlII N + I ....1_IiIi_1_1_1_. (g.O)

_ (4.3")
I 7/2 rr ,,.

r_ _- (_i:(_"}

7/2 _ _._ N i 2

N J I 1 (1,o-)

Figure 3: DKP and non-relativistic spectra associated with J = L - 1 lot N < 9.

While all the non-relativisitic (N, J'_) levels associated with the same N + J oscillator shell

are degenerate, with a finite degeneracy in this case, their relativistic analogues are not. The
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exact DKP oscillator states are found to cluster into bands of states belonging to specific values

of N+ J.

For a more quantitative analysis of the E_ bands of the DKP oscillator spectrum, we plotted

in riga the E_ energy levels, belonging to the N + J = 49 band for instance, against J(J + 1)

for different oscillator frequencies.

150.0

1oo.o

I:D
¢--

UJ

0

¢o 50.0

O

/

N+J=49

0.0 I I ,

0.0 200.0 400.0 600.0

J(J+l)

Figure 4: Energy levels of the N + J = 49 _.md as a function of J( J + 1) for different oscillator frequencies.

It is indeed remarkable that the DKP oscillator energies constitute nearly perfect rotational

])ands. There are deviations from the rotational patterns at low angular momenta. These single

particle rotational bands are of the finite type since for N + ,1 fixed they terminate at some

J,,ax. Tile effective rotational moments of inertia are sensitive to the oscillator frequencies since

the slopes of the bands are found to vary substantially with increasing w.

60.0 , ,
i

o .... o N + J = 49
== ...... ==N+J=41 7

50.0 _ '_ N + J = 35

=, - AN+J=29
N+J=23

"_ 40.0 ' ._ .....

-Ill j !l J/

o 30.0 I"'i "J'

O jr"_ _ __ co = 0.2 GeV
20.0

JIW¢, " -- _ t,oo
0.0 200.0 400.0 600.0

J(J+l )

Figure 5: Energy levels o/the N + J = 23,29,35,41,49 band as a function of J( J + 1)/or hw = 0.2GeV
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Fig.5 alternately represents the energies of five different N + J bands for a specific oscillator

frequency as a function of J(J + 1). The DKP oscillator energies now lie oil rotational bands

whose slopes hardly change with N + J which implies that the effective rotational moments of
inertia are rigid and insensitive to such variations.

Of course, it should be pointed out that these rotational bands are unlike the usual ones

where the levels are associated with the same intrinsic motion but different angular momenta.

Here the single particle states involve different radial as well as rotational motions. Note that

this behaviour is not particularly tied to this DKP oscillator. Buck [5] also found that, when

solving the SchrSdinger equation for deep, bell-shaped potentials, the levels with a fixed value

of N = 2n + g ( these states are degenerate for a harmonic oscillator ) lie on a straight line when

plotted against g(g+ 1). Geometric arguments in terms of the shapes of the potentials which can

give rise to these rotational-like bands have been put forward to explain this behaviour [5] [6].

3 Conclusion

We have introduced a new potential in the DKP equation. Since, in the non-relativistic limit,

the DKP equation of motion leads to the usual harmonic oscillator with a spin-orbit coupling
of the Thomas form, we call the system a DKP oscillator. This oscillator is a relativistic

generalisation of the quantum harmonic oscillator f()r vector bosons. We have shown that it

conserves the total angular momentum, that it is exactly soluble and we have computed and
discussed its eigcn-sohitions.

The renewed interest in the Dirac oscillator has generated studies of its group theoretical

properties [7] and hidden supersymlnetry [8][9] among others. Such investigations of the DKP

oscillator would be most useful to gain further insight into the physical meaning of this oscillator.

This study is on the other hand relevant to the work on relativistic equations for two fernfions

and particularly to those of Krolikowski's type [10]. Since they tend to the DKP equation in

the point-like limit of tightly bound-states, exact solutions of the latter may provide usefifl

information about this class of relativistic two-body equations.
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Abstract

The presence of an unstable periodic classical orbit allows one to introduce the decay

time as a purely classical magnitude: inverse of the Lyapunov index which characterizes

the orbit instability. The Uncertainty Relation gives the corresponding resonance width

which is proportional to the Planck constant. The more elaborate analysis is based on the

parabolic equation method where the problem is effectively reduced to the multidimensional
harmonic oscillator with the time'-dependent frequency. The resonances form series in the

complex energy plane which is equidistant in the direction perpendicular to the real axis.

The applications of the general approach to various problems in atomic physics are briefly

exposed.

1 Introduction

The quantum quasistationary states may be subdivided into three types (although these types

are not absolutely independent): (i) the shape resonances which decay by penetration through

some potential barrier; (ii) the Feshbach resonances, i.e. the quasibound states of the particle

in the field of the excited core, for instance, the doubly excited states of the helium atom; (iii)

the resonances related with the unstable periodic classical orbits. The latter type of resonances

is probably the less known one. The peculiarities of the density of states, corresponding to the

periodic orbit (or cycle), were analyzed by Gutzwiller [1] and by Balian and Bloch [2]. The role

of such orbits is a subject of intensive discussion in the current literature.

The connection between the stable periodic classical orbit and the quantum mechanical eigen-

values is obvious from t_ae physical point of view: such trajectories are similar to the effective

channels in space along which the wavefunction is concentrated. The pioneer study of the prob-

lem by Gutzwiller [1] suffers a number of deficiencies. For instance, the Gutzwiller theory does

not give true value for the total amount of quantum numbers labeling the state (in this case it

should be equal to the dimensionality of the configurational space). This deficiencies were dis-

cussed by Miller [3]. However it seems that the most appropriate method to treat the problem is

the parabolic equation approach developed initially in the theory of radio wave propagation (see

e.g. the monograph by Babich and Buldyrev [4] and the discussion below in See.2). This method

provides adequate basis for the description of the eigenfunctions which are localized at the vicinity

of the periodic stable orbit.
The case of the unstable periodic classical orbit was not the subject of such a detailed study.

In particular Voros [5] showed that the expansion of the density o.f states over the closed orbits due
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to Gutzwiller [1] is not convergentand thus hasnot rigorousmathematical meaning. We do not
discussthe problem on sucha rigorous level and do not analyzethe density of statesexpansion.
Instead of it we consideronly the relatively narrow resonanceswhich can be well manifestedin
the physical observables. The resonancesof this type are shown below to be related with the
short-period long-living unstableorbits.

The natural characteristicsof the classicalorbit lifetime is the inverseof the Lyapunov index
which is commonlyusedto describethe orbit instability. Thus in this casethe conceptof lifetime
is introduced exclusively within the framework of classicalmechanicswithout an appeal to the
quantum tunneling and the channelsinteraction as in the caseof the resonancetypes (i) and (ii).
Namely this circumstanceallowsus to singleout the third type of resonancesin the classification
introduced above.

The unstableorbits werediscussedby tteller [6] who demonstratedthat in the vicinity of the
orbits the wavefunctionsare enhancedand the 'scars' are formed on them. The explanation is
obvious: the classicalsystemstayslong in this region. We showthat the individual unstableorbit
is naturally related with the whole seriesof resonancesand give the simplified description of the
wavefunctions. The complexeigenenergiesrepresentingthe seriesform an equidistant pattern in
the direction of the imaginary energyaxis. The basicideasof the presentapproachwereoutlined
by the authors sometimes ago [7]. Herethey are developedfurther and elucidated. Somerecent
applications to the problemsof atomic physicsare discussed.

2 Parabolic Equation Method

We start our analysis with the trivial comment. In the classical mechanics the particle with the

energy close to the top of the potential barrier stays near the top for a long time. In quantum

mechanics one can associate with the barrier top the series of 'eigenstates' with the imaginary

energies (see also [8]). Indeed, consider the one- or two-dimensional parabolic barrier. In the first

case the particle coordinate is x, in the second case the cylindrical radial coordinate is denoted as

p. The stationary Schrottinger equation (for the particle with unit mass) is written respectively
as

and

hd 2 1 )2 dx 2 _(_2x2 _b = E(')_ (1)

-_A2"Jr#L_- c_2P2 V=E(:)V, (2)

where A 2 is the two-dimensional Laplace operator, L3 is the corresponding angular momentum

operator, c_ and # are the potential parameters. The substitution of new variables (x', p') = (x', p')

exp(-iTr/4) transforms the equations (1), (2) into these for the harmonic oscillators. Respectively,

the wave functions containing only the outgoing waves in the asymptotes are transformed into

the oscillator eigenstates. Thus if the equations (1), (2) are considered with the outgoing wave
boundary condition, then the imaginary 'eigenvalues' are obtained:

E(1) = -ic_h (n + _) , E(2) = #hm- iho_(2n+ ] m ' +l) :. (3)
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It should be stressedthat the corresponding'eigenstates'form the natural basisset for the de-
scription of the time-evolution of the wavepacketwhich is localizedinitially near the barrier top
(e.g., for ¢(x) It=0= exp(-flx_)/(1 + 7x2 ) with somepositive parameters/3 and "7). The imag-

inary part of the energy generally describes the short-time evolution of the wave packet and is

not necessarily related with the true ionization process, i.e. escape to infinitely large distances

(this situation is described by the notion Diabatic Quasistaionary State (DQS) introduced by the
authors, see Ref.[7]).

The method of parabolic equation allows one to apply these simple formulae to the more
general problem. Its essence is summarized below.

Consider the vicinity of the unstable orbit. One can introduce the natural local reference

system at this region related with the trajectory. Let the system origin move with the particle

along the unstable periodic orbit. The transversal coordinate axes qi (i = l, 2, 3, ... N - l; N is

the dimensionality of the system configurational space) are directed normally to the orbit. The

longitudinal coordinate s is the distance along the orbit. Let qi be chosen so that qi = 0 on the

orbit. Since our subsequent consideration is confined to the orbit vicinity this definition is quite

sufficient to our purposes. In these variables the system Hamiltonian can be written as

h 2 0 2

H - 2M Os 2 + Htr(pi, qi, s), (4)

where M is the effective mass (we treat here the transition to the new curvilinear coordinates in

somewhat simplified manner what is unimportant for the subsequent discussion). The transversal

motion Hamiltonian Htr contains momenta pi conjugate to the transversal coordinates qi. It

includes also the periodic parametric dependence on the coordinate s.

In the framework of the parabolic equation method the motion along the longitudinal coordi-

nate s is treated semiclassically. This implies the following representation of the wave function:

¢(ql,q2,'" "q,_-l,s) = v_:_/2exp(iSEo(t)/h)cp(ql,q2,.. "qn-l,t). (5)

Here SEo and vE0 are respectively the action (fpdq) and the velocity for the classical motion

along the trajectory for the energy E0 (vE0 = M-ldSEo/ds). The new 'time' variable t is directly

related with the longitudinal coordinate s: vEodt = ds. Substituting the wave function (5) into

the Schrodinger equation (H - E)¢ = 0 one obtains (in the lowest order in the Planck constant

h) the following equation for the function 4:

ih_t t = (Htr(pi,qi,t)- Htr(O,O,t) - E + Eo)_. (6)

The latter equation has the mathematical form of the non-stationary (parabolic) Schrodinger

equation with the mock 'time' variable t directly related to the coordinate s. Note that our

treatment starts with the stationary Schrodinger equation. Therefore the' true time does not
appear here.

The rigorous formulation of the method based on the asymptotic (semiclassical type) techniques

implies that the Hamiltonian of the non-stationary problem should be replaced by its approxi-

mation quadratic in the coordinates qi. These statements present the essence of the parabolic

equation method introduced originally by Leontovich and Fock [9] (see also Ref.[10]).
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3 Quantization Conditions

The important point for the further development is that the Hamiltonian Ht_ is periodic in 'time' t

since the orbit is periodic. The natural way to treat such a problem is to consider the quasienergetic

or Floquet states (see e.g. the review Ref. [11]). The latter is introduced so that after the period

T the corresponding wave function acquires the phase factor which contains the quasi energy e:

_(t + T)= exp(ieT)¢(t). (7)

Let now choose the function _ to be the quasi energy state. After the passage over the periodic

orbit the total wave function ¢ (5) should remain unchanged. This gives the following quantization

condition:

E - Eo - _ + SEo(T)/T = 2_nh/T, (8)

where T is the period of the orbit, n is an integer. Note that the parabolic equation method

assumes naturally the semiclassical condition for the motion over s-coordinate: SEo/h >_ 1.

Since we assume here the quadratic approximation for the Hamiltonian Ht_, then the non-

stationary Schrodinger equation (6) describes the (N - 1)-dimensional oscillator with the param-

eters depending on the _'time' t.

The quasi energy spectrum for the time-periodic quadratic (in the coordinates and the conju-

gated momenta) system was discussed in the monograph by Malkin and Man'ko [12]. Their study

is based on the mathematically rigorous analysis by Sugiura [13] and Williamson [14]. Here we

give only the list of the statements which seems to be quite appealing.

(i) In the case of quadratic time-dependent Hamiltonian the classical Hamilton equations are
linear and coincide with the quantum tteizenberg equations for the momentum and coordinate

operators ib and q.

(ii) Let the general solution of the classical equations to be known:

(p(t), q(t))= A(t)(p(0), q(0)), (9)

where A(t) is the evolution matrix acting on the array of the system coordinates q and canonically

conjugated momenta p. Then the solution of the Heizenberg equations takes the form

O(t))= 4(0)) (10)

with the same evolution matrix.

(iii) For an arbitrary fixed to one can find the time-independent quadratic (in the coordinates

and momenta) Hamiltonian u(t°) which generates the same result for the system evolution at"_eff

the time t as the initial time-dependent Hamiltonian. This implies that the exact time-evolution
• (t0)

operator can be presented as exp(zH_ffto).

(iv) The matrix A(t) which describes the system evolution over its period is called the mon-
u(T) coincides with the quasi energyodromy matrix. The spectrum of the corresponding operator ,, _/I

spectrum. We should emphasize here that this operator must be considered as a continuous'limit

(t --* T) of the operator "'_/f'u(t) For instance, in the one-dimensional case the phase point in prin-

ciple can perform several 27r-rotations around the origin which do not influence the monodromy
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matrix. However this rotations should be taken into account in the construction of the operator
H}T)

]]"
Thus the problem of finding the quasi energies is reduced to the analysis of the spectrum of

the monodromy matrix (we assume further that its eigenvalues are non-degenerate). Moreover,

the eigenvalues of the monodromy matrix are essentially the exponents of the eigenvalues of some

quadratic Hamiltonian. The latter does not necessarily correspond to the real oscillator since the

case of the quadratic potential barrier also can be realized. The spectrum of such a barrier was

discussed above at the beginning of the Section 2. Taking all these possibilities into account one

finds that the following basic types of the eigenvalues sets are feasible (the most general description

is given by Williamson [14]):

exp(icoT), (11)

exp(-t--c_T), (12)

exp(-t-ipT :1: c_T). (13)

The first one corresponds to the real oscillator with the frequency w in the normal mode of

the Hamiltonian H};) whereas the second and the third cases are related respectively with the

parabolic barriers (1) and (2). Note that in (13) four various eigenvalues are contained according

to various choice of the signs.

The parameter c_ in (12) and (13) coincides with the Lyapunov index which characterizes the

instability of the classical periodic orbit in the linear approximation for the equations of motion.

Indeed, the Lyapunov index is defined by the relation qi(T)/q_(O) = exp(c_7'). According to the

statement (ii) it is related with the description of the quantum system.

The eigenstates of the time-evolution operator coincide with those of the operator rt(T) One"'eft.
has to bear in mind that in the multidimensional system the eigenstates of each type can appear

several times. In order to distinguish them we introduce below the lower indexes. The diagonal-

ization of u(r) generates the subdivision of the transversal coordinate subspace into the directJ Jeff

sum of the subspaces each of which corresponds to some set of the eigenvalues discussed above.

The natural coordinate basis in each subspace is given by the normal coordinates. Depending on

the type of the eigenvalue (see above) the quadratic llamiltonian H(T) in each subspace is of the"'off
oscillatory type (with some frequency a_j,, jl = 1,2, ...N1) or corresponds to the quadratic barrier

described by Eq. (1) or (2) with the related parameters _j: (j2 = 1,2,...N2) in the case (1) or

the parameters c_j_ and /_j_ (j3 = 1,2, ...Na) in the case (2). The lower indexes enumerate the

eigenvalues. The total amount of the eigenvalues is N1 + N2 + N3 = N - 1.

Taking into account the relation (7) we obtain the quasi energy spectrum of the system:

Jl j_

+ -i.j I I+1))
J3

(14)

with some integer nj (nj > 0), mj. The summation is performed over all eigenvalues described

above. The eigenfunctions _ are expressed readily as the products of the Hermit functions of the
normal coordinates.
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Let us summarize the meaning of the quantum numbers. The quantum number n quantizes the

motion along the periodic orbit. The quantum numbers nil quantize the stable vibrational modes

of the transversal motion whereas nj_ and n j3 are theirs analogs in the case of unstable transversal

modes. The quantum number rnj3 are the azimuthal quantum number for the rotations in the

plane locally perpendicular to the cycle.

We should emphasize that the total amount of the quantum numbers (in.eluding n, see (8))

coincides with the dimensionality of the configuration space. However, since theresonance series lie

along the imaginary axis in the complex energy plane, this series is manifested in the experimental

observations as one peak. Thus some of the quantum numbers prove to be 'hidden' and the amount

of the 'observable' quantum numbers is effectively reduced.

4 Discussion

The formulae (8) and (14) contain the essence of the present paper. They are quite transparent

from the physical point of view. Let the orbit energy E0 be chosen to satisfy the semielassical

quantization condition for the motion along the periodic orbit:

SEo = 27rnh. (15)

Then from (8) we obtain

E = Eo A- e. (16)

Thus the quantization problem is separated: first, the motion over the unstable cycle should

be quantized according to Eq.(15) and, second, the motion over the transversal coordinates is

quantized giving the quasi energy spectrum (14). The analogous equations were discussed by

Miller [3] in the case of stable orbit. They reflects effective separation of variables in the vicinity

of the cycle: the quantum number n is large but the other quantum numbers are small being

incorporated into the quasi energy spectrum.
These formulae are also in close relation to the Gutzwiller formula for the density of levels in

the two-dimensional case:

±Imp(E) = _ exp(inS/h).
271" n=l sinh(nc_T/2)

(17)

This sum can be rearranged similarly to the Miller [3] paper:

p(E) = T----Im _ [1 - exp(-nc_T)] -1 exp[n(iS/h - c_T/2)] =
2rr

= Im y_ [1-exp(iS/h-ma)]-lexp[n(iS/h-3o_T/2)].
m_-0

(18)

Thus the density of states has the poles at the complex energies given by the equations (8) and

(14) (since SE = SEo + (OS/OE)(E- Eo), OS/OE = T). However the expression (17) is not

applicable in the complex energy plane. Moreover the expansion of the states density over the
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periodic trajectories does not converge [5]. Therefore the proper description of the individual

resonance states given in the present paper is essential.

Our principle qualitative conclusion is as follows. Since the unstable closed classical orbit

can be characterized by some 'decay time' (namely, the inverse of Lyapunov index), the Uncer-

tainty Relation gives tl_e related resonance width which is linear in the Planck constant h (in
I

contradistinction to the shape resonances where the width is exponentially small). Moreover

whole resonance series correspond to the individual orbit with the resonances lying in the complex

energy plane equidistantly on the line parallel to the imaginary axis (see formula (14)).

The first point to be stressed is that the quadratic approximation demands localization of the

wave function in the vicinity of the orbit whereas the resonance functions constructed above do not

satisfy this requirement since they rise exponentially in the case of the quadratic potential barrier.

This contradiction is removed if one notices that the complex transformation of the transversal

coordinates q = q' exp(i_-/8) makes the eigenfunctions decreasing. The close analogy is traced here

with the method of the complex rotation of the coordinates. This method of the resonance states

calculation proves to be very efficient in the analysis of quite complex atomic systems [15]. The

physical meaning of this states follows from theirs role in the description of the initially prepared

wave packet (see discussion in the Sec.2).

The formula (14) implies that the quantum numbers n i are not too large in order to confine

the major part of the probability to the applicability domain of the quadratic approximation for

the Hamiltonian Htr. Nevertheless it is worth to stress that the resonances of this type generate

series in the complex energy plane (in the quadratic approximation the series are equidistant in

the direction of the imaginary energy axis). This constitutes the principle difference between the

resonances discussed in the present paper and the shape or Feshbach resonances. In particular,

this difference is manifested in the shape of the resonance profiles in the physical observables such

as the cross sections, transition probabilities etc.

In principle the situation is feasible when the quadratic approximation is not applicable even

for the lowest values of ni (hi = 0). This problem is not important for the general construction

of the present theory since in fact its small parameter is the Planck constant (or inverse particle

mass), ttowever it carl limit applicabillty of the theory to the concrete systems. If the quadratic

approximation is dropped, then the theory is reduced to the description of the quasi energy states

of the periodic Hamiltonian with the more general (non-quadratic) dependence on the coordinates.

The practical realozation of this approach (see the next Section) gives good results.

5 Some Applications to Atomic Physics

In this Section some recent applications to the atomic physics are briefly discussed. We emphasize

some modifications of the general scheme which are necessary in the concrete applications. The

states of the atom in the uniform electric field serve in the text books as a typical example of

the shape resonances. These resonances have negative energy and decay by the penetration of

the potential barrier. The resonances exist also for positive energies where they have different

origin being related with the unstable periodic classical trajectory. The electron moves between

the atomic nucleus and the turning point against the force exerted on it by the uniform field. The

calculations [16], [17] within the present approach demonstrate an excellent agreement with the

accurate numerical data both for the resonance positions and widths.
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For the motion of the electron in the field of two Coulomb centers the [ unstable classical

trajectory also represents an interval of line. The calculations of the resonances were carried in

this case by Duet al [18].

In the cited examples the resonance width corresponds to the true ionization (transitions to

the continuum). An alternative situation appears for the helium atom where Klar [19] have found

classical unstable equilibrium configurations (in which the electron-electron and electron-nucleus

separations do not vary with time but the system rotates as a whole). Within the present approach

these configurations are related [20] with the Rydberg series of broad resonances (doubly excited

states) which are interpreted as DQS. Their widths describe not the transitions to the continuum

(autoionization) but the interaction of the diabatic configurations.

The equilibrium electron configurations in the helium atom give an example of the correlated

motion of the electrons which is not described by the effective central field approximation conven-

tional in the theory of atoms. The description of the electron correlations is one of the fundamental

problems in atomic physics.

The other example of the correlated electron motion appears in the study to the two-electron

continuum states which are the final states in the electron impact ionization ((e, 2e) process) or

double photoionization ((3', 2e) process) of the atom. In the near-threshold domain the theory

of the process was developed by Wannier [21] (see also the review by Read [22]). The physical

idea is that the electrons fly apart from the core (with the charge Z) being at equal distances

from it, i.e. at the so called Wannier ridge rl = r2 (?.1, ?.2 are the electron vectors relative to the

atomic nucleus). Otherwise one of the electrons is decelerated and is captured into the high lying

Rydberg state. Hence sliding off the Wannier ridge leads to the population of the one-electron

continuum. For the double escape process this part of the flux is lost. In the framework of the

present approach this is described in terms of the effective width and the whole double escape

process is presented [23] as the system survival on the Wannier ridge.

Due to the Coulomb electron-electron repulsion the emission of the electrons in the opposite

direction has the highest probability, i.e. 012 ,-_ _r, where 012 is the angle between r'l, ?.2).

It is convenient to use collective hyperspherical coordinates: hyperradius R = (r_ + r_) 1/2 and

hyperangle ah = tan(rx/r2). The Wannier treatment presumes two basic assumptions:
1

(i) The vicinity of the Wannier saddle configuration ?.1 = -?'2 (i.e. ah = grr), 012 = rr is

considered with the quadratic approximation in the variables (c_h and (rr 012).

(ii) The motion over the hyperradius R is treated semiclassically.

The hyperradius R plays the role of the longitudinal coordinate s of the Sections 2, and

(ah-¼7r) and (Tr- 012) are the transversal coordinates qi. In the original Wannier theory [21], [22]

the processes in the small-R region (inner zone, R < Ro) are not considered. They are replaced by

some boundary condition on the border R0 and the system evolution in the outer zone to the free

electron motion regime (R _ c_) is considered. Thus in contradistinction to the previous examples

we do not have the periodic classical trajectory in this case. The basic trajectory corresponds to

the double electron escape and terminates at R _ oc.

The analysis of the total double escape cross sections within the present approach was carried

out in Ref. [23]. Some special treatment is required to account for the electrons deceleration (as

R increases) due to the Coulomb attraction to the residual core. This effect becomes crucial when

the energy excess E above the double ionization threshold is small. The postadiabatic scheme was

developed which allowed us to reproduce not only the Wannier power threshold law but also the
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deviations from it for _mall but finite E.

In addition to the total double escape cross section the final electron distributions over the

angles and energies is of great interest as a direct manifestation of the electron correlations. In

a good approximation the angular coordinate 012 is separated from the hyperangle ah- Then the

general scheme of the Sections 2 and 3 shows that the angular dependent wave function obeys [24],

[25] the non-stationary Schrodinger equation for the harmonic oscillator with the time-dependent

frequency (it is worth reiterating that the mock time is simply related with the longitudinal

coordinate R). The final (R ---* oc) angular distributions depend crucially on the boundary (or

initial) condition imposed on the border of the reaction zone. Although this point is completely

obvious in the present formulation via the non-stationary harmonic oscillator (see also Ref. [26]),

it was missed by the previous authors [27] who claimed that the Gaussian angular correlation
pattern universally appear.

In the present approach the problem of the angular correlations is formulated in terms of the

wave packet propagation from R0 to R ---* (x_. Some general features of the propagation can be

established in the harmonic approximation for the problem under consideration [24], [25]. The

more accurate scheme of the calculations drops the harmonic approximation. It incorporates the

exact Coulomb interaction between the electrons and also the effective centrifugal potential which

appears for the double continuum states with the non-zero orbital momentum L. The quantitative

agreement with the experimental data is achieved along this way and a number of new qualitative

features of the double escape process are revealed [28]- [30].
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Abstract

We discuss the Shannon-Wehrl entropy within the squeezing vocabulary for the cosmo-

logical and black hole particle production.

Models and concepts of quantum optics have been applied to quantum cosmology (cosmo-

logical particle production) already in the seventies [1]. More recently Grishchuk and Sidorov

[GS] [2] used the formalism of squeezed states to discuss the spectrum of relic gravitons from

inflation, the spectrum of primordial density perturbations, and even the Hawking radiation

of Schwarzschild black holes. Apparently there is no new physics entailed [3]. However, the

squeezing language may well be more effective in characterizing those physical processes which

are of basic theoretical interest. Therefore many authors started to use this language in the

cosmological context.

Here we apply the Shannon-Wehrl entropy (Ss,,) [4] to the squeezing approach of [GS] [5].

In quantum optics Ss,, is known as an important parameter which is employed to distinguish

among various types of coherent states, measuring the relative degree of squeezing with respect

to pure coherent states for which Ss_. = 1 is minimum [6]. It is defined as follows

Ss,_, = --_rl f d:o_O(oOlnO(o 0 (1)

where Q(c_) is the Q representation of the density operator satisfying the normalization condition

1 1 = 1.
7r

The calculation of Ss_ for various types of states is not difficult [7]. Here we quote two

results of which we shall make use in the following. For the one-mode squeezed states

1

Ss_, = 1 + _ln(sinh 2r- lel 2) (2)

where e is the coherent percent component of the squeezed state, e = 0 means the squeezed

vacuum state. For the thermal states the S_,,, parameter may be written

Ss., = 1 - in(1 - _) (3)
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where _ is the inverse of the Boltzmann modal factor _ = exp(-/3hw).

Let us pass now to the squeezing approach of [GS]. The main idea is that gravitons cre-

ated from zero point fluctuations of an initial vacuum cosmological state are at present in an

one-mode squeezed quantum state as the result of the parametric amplification due to the in-

teraction with the variable gravitational background. The squeezing coefficient r is a function

of the cosmological evolution. Most authors [8] use an expansion in three stages: inflationary

(i), radiation-dominated (r), and matter-dominated (m), with the transitions between stages

considered in the 'sudden' approximation in which the kinematic effects of the transitions are

neglected. Thus the Universe remains in the same quantum state as before transitions [9], and

only a redistribution (squeezing) of the quasipartieles takes place. The parametric amplification

occurs mainly at the inflationary stage, where the variation of the background is most rapid.

The squeezing coefficient can be obtained from the ratios of the dimensionless scale factors at

the returning (either at r-stage or m-stage) and exit of a given mode out of the Hubble sphere

at the i-stage, as follows

expr = a(rb.,,)la(rl_= ) (3)

According to [GS] r increased from r _ 1 up to r ,-, 100 for waves with present-day frequencies

ranging from u _ 10 -s - 10-X6Hz, which were amplified at the inflationary stage only. For waves

in the range v _ 10 -16 - 10-1SHz, the squeezing parameter may reach a value of 120 due to the

additional amplification at the matter-dominated transition. We see that cosmological squeezing

is about two orders of magnitude bigger than ordinary laboratory squeezing. This is indicative

of the huge mean number of quasiparticles in every mode. Making use of the numerical values of

the cosmological squeezing coefficient we can plot the $8_, entropic parameter for the one-mode

squeezed graviton states according to Eq.(2).
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Fig. 1: Shannon-Wehrl entropy for graviton squeezed states with different co-

herent components e (full line e = 0%, slash line e = 10%, slash-dot line e = 20%).

The non-zero coherent component we allowed for would correspond to possible deviations of

the initial quantum state of gravitons from the vacuum state [10].

In the case of Schwarzschild black holes a two-mode squeezing comes into play for any type

of radiation detected at asymptotic infinity. However due to the special causal structure of

the black hole spacetime, the asymptotic observations are limited to one mode only. Under
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such conditions the detected states turn into thermal ones. Actually, Hawking radiation is a

distorted blackbody radiation, but we can consider it as an effective thermal one [11]. Therefore

we plotted S,_, according to Eq.(3), with 3' in the effective Boltzmann factor defined by

1
-- (4)

exp(3")- 1 exp(flhhw)- 1

where flh is the horizon inverse temperature parameter, and P(w) is the penetration factor of

the curvature and angular momentum barrier around the black hole.
Fig. 2
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Fig. 2: Shannon-Wehrl entropy for the 'thermal' radiation of a M = 10 lr g
Schwarzschild black hole as a function of the inverse of the effective Bolzmann factor.

We chose the mass of the black hole so that no massive particles are emitted. This would better

correspond to the analogy with quantum optics.
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Abstract

In this talk we re-examine three important properties of quantum laser systems:
(i) Photon counting statistics (ii) Squeezing (iii) Signal-to-Quantum Noise Ratio.

None of these phenomena depends on the choice of hamiltonian; indeed, we analyze them
initially without restriction to any specific form of the commutation relations.

1 Introduction

Although most of the recent motiva_;ion for deforming the bosonic canonical commutation relations

has been derived from considerations of theory, in this note we should like to take a different

tack. To what extent does the assumption of modified (deformed) commutation relations lead to

new, even non-intuitive, physical predictions? Ideally, such predictions should not be based on

the choice of a specific hamiltonian, due to the additional ambiguity involved in such a choice;

unfortunately, this rules out delicate tests involving frequency measurements, some of the most

refined of physics. And, initially at any rate, it would be of interest to embark on the analysis

without resorting to a specific form of deformed commutation relations, although ultimately any

quantitative result will depend on a specific set.

With this minimalist philosophy in mind, let us consider the ingredients necessary for a theory

of quantum photons. First of all, we need an operator a which annihilates photons one at a time;

and its hermitian conjugate a t which creates them. We also postulate a number operator N

which counts photons; Win ) = nln ). The set {In);n = 0,..., } provides a denumerable basis

for the Hilbert space (Fock space). Thus the number operator N satisfies IN, a] = -a, just as

for the usual (non-deformed) boson operators. Necessarily, since the vacuum state 10) is defined

to have no photons, NI0) = 0 and hi0 >= 0. Clearly the combination ata does not change the

number of photons, so it commutes with N and must be a function of N. We write this function

conventionally as [g] ( read "box N'). Thus we have

ata = [N].

1Talk presented at the Second Conference on Harmonic Oscillators, Cocoyoc, Mexico, 23-25 March, 1994.
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Clearly aa t is also a function of N; from evaluation of

, (ata)l.>= > (I)

this function may easily be seen to be

aa t = IN + 11.

The generalized commutation relations may therefore be written

aa t - ata = [N+ 1] - IN] (2)

where [ ] is some (analytic) function.
For example, the two most commonly used deformations of the canonical commutation rela-

tions which have been considered are:

(a) "Maths" Boson:
aa t - qata -- I. (3)

This was introduced by Arik and Coon [1], who also described the corresponding q-coherent states.

In the commutator form, this may be written as

aa t _ ata = qN (4)

where q is some real parameter. We refer to this deformed boson as a "Maths" (or M-) boson

as the "basic" numbers (cf. Equation (15)) and special functions, q-functions, associated with

this operator have been investigated in the mathematical literature for over 150 years; see, for

example, [2].

(b) "Physics" Boson:
aa t _ qata = q-N.

In the commutator form, this may be written as

aa ? - ata = cosh(2N + 1)s/cosh s

(5)

(6)

where q = exp(2s).

This deformation was introduced [3, 4] in order to provide a realization of the "quantum

groups" [5] (non-cocommutative Hopf algebras) which arise naturally in the solution of certain

lattice models [6].

An alternate formulation of Equation 2 is [7]

aa t - f(g)ata = 1 (7)

with the correspondence [8]

[n] - 1 + f(n-1)-I- f(n-1)f(n-2).4- f(n-1)f(n-2)f(n-3)

+ ... + f(n-1)f(.-2).., f(2)f(1) is)

n-1

= __, f(n- 1)! (9)
t:=o f(k)!
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Following the pioneering work of Jackson, we may introduce a generalized calculus related to

our general deformation characterized by the analytic function [ ]. We define an operator D_:
such that

o.=- x . (10)
X

This acts as a generalized derivative operator, e.g.

Dxx" = [nlx ''-1. (11)

The eigenfunction E(x) of D_ given by

oo Xn

E(z) = _ [-_].w" (12)
n----O

is well-defined provided the function [ ] satisfies appropriate convergence criteria. This plays the

role of a generalized exponential function.

A related generalized quantum optics may be described [8], starting with the generalized

coherent states IA) defined to satisfy

alA) = AIA). (13)

Since a E()_a*)lO) = AE(aat)lO), we can use E(x) to define analogues of coherent states as nor-

malized eigenstates of the generalized annihilation operator.

= {E(IXl 2) E(Ad)IO). (14)

The q-coherent states associated with the special cases of the bosons described by Equation 3

and Equation 5 have been investigated by several authors e.g. [4, 9]. For these two special cases,
[n] is given by

_ M-case[n] = q,__q-n (15)
P-case

q_ q-1

We now consider in turn each of three phenomena in quantum optics from our new generalized
viewpoint:

• Photon counting statistics

• Squeezing

• Signal-to-Quantum Noise Ratio.
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2 Photon Counting Statistics

The states of an ideal laser are conventionally described by Glauber coherent states [10]. HoweveT,

real lasers do not strictly adhere to this description; in particular, the photon number statistics

of real lasers are not exactly Poissonian [11]. Furthermore, various non-linear interactions give

rise to well-defined deviations from the Poissonian distribution [12]. Recently, deformations of

the commutation rules of boson operators have been considered as models for physical systems

which deviate from the ideal cases [13]. We approach the problem of the "real" laser in this latter

phenomenological spirit, and show that indeed a coherent state of the deformed boson (q-coherent

state) provides a more accurate model of a non-ideal laser, at least as far as the photon number

statistics is concerned.

An ideal laser may be described as a normalized eigenstate of the photon annihilation operator

a, where a and its hermitian conjugate a t (photon creation operator) satisfy

[a,aq _ aat - _t_ = I. (16)

The normalized eigenstate satisfying ala >= ala > is easily seen to be

[a >= exp(_ I__) _ c_, .=0_.,. I- >. (:7)

The number eigenstates are [n >, and this coherent state gives rise to the Poisson distribution

2 lal2" (18)
P,,-- I < ,,Io,> 12= exp(-I'_1) : •

The factorial moments of this distribution are

< n >= I_12

< n(n- 1) >= lal'

< n(. - 1)(. - 2) >= lal6

etc., from which the variance is found to be

a 2=<n 2>-<n>2=la[2

A convenient measure of the deviation of a distribution from the Poisson distribution is the Mandel

parameter a 2 < n(n - 1) >
1= <n>

Q-<n> <n>

which vanishes for the Poisson distribution, is positive for a super-Poissonian distribution, and

negative for a sub-Poissonian distribution.
In order to enter into the phenomenological spirit of our approach, and to compare with the

experimental data, we need to specify the form of the commutation relations Equation 2; that

is, specify a choice of the function [ ]. It is sufficient for our purposes here to compare the

distributions arising from the M and P forms Equation 3 and Equation 5 respectively. One can
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easily check that the P-type q-Poisson distribution is sub-Poissonian (Q < 0) for all values of

q, reducing to the conventional Poisson distribution for q = 1. On the other hand, the M-type

q-Poisson distribution is super-Poissonian for q < 1 and sub-Poissonian for q > 1.

The q-Poissonian q-factorial moments are < [n] >= [a[ 2, < [n][n- 1] >= [a[ 4, etc.

To evaluate the average number of photons and the Mandel parameter for the q-Poisson dis-

tribution we note that the corresponding factorial moments satisfy

<n> ---- .COEds)I
Eq(x) cOx x=l,12

x 2 cO2Eq(x)I< n(.- 1)> = Eq(x) CXx  :j.12

These expressions may be used to provide estimates of the q-Poissonian parameters q and la[ 2

corresponding to a distribution which is specified in terms of given values of < n > and Q . The

values of q corresponding to given pairs of values of < n > and Q, and the corresponding values

of [(_12 were tabulated in reference [14].

For small deviations from a Poissonian distribution we define q = e -° and obtain in the M-case

2Q

(n)

which is positive (i.e., q < 1) for a super-Poissonian distribution and negative (q > 1) for a
sub-Poissonian distribution. In the P-case we obtain

s 2 = 3Q

so that only the sub-Poissonian distribution (Q < 0) corresponds to a real value of s (and q).
Another useful result is

p- lim O - (191
<,>-.0 < n > 2

q + q-1 - 1 P-case

In the M-case the range of p is -1 < p < 1, corresponding to a sub-Poissonian distribution for

p < 0 and to a super-Poissonian distribution for p > 0. In the P-case the range of p is -1 < p < 0,
exhibiting only a sub-Poissonian distribution.

From Equation (19) we obtain

{ 1+i--_p M-case
q = (20 /

+ 2 - 1 P-case

Using the three highest peaks in the experimental data pertaining to the photon statistics of

a He-Ne laser just above threshold [15] we obtain P_L_ _- _ = 1.319, which in the M-case is a
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quadratic equation in q, yielding q = 0.747. Note that the corresponding equation for the P-case

can be shown to rule out the P-boson as a model of this system since for all real and positive q

the inequality _ >_ _ holds.
If one compares the best fit for the M-boson q-coherent state against the experimental data

[15] and the ideal (Glauber) coherent state, one finds that the value of q corresponding to the

best fit is 0.749, in ver_ close agreement with the value estimated above using the highest three

peaks. It is not surprising that a better fit is obtained with the q-coherent state, due to the extra

parameter q. However, certain constraints are satisfied (for example, the convergence criterion for

the M-type q-exponential function demands that (1 - q)lal 2 <_ 1 and is satisfied here) and, as we

have already remarked, the P-boson model is ruled out.

Experimental studies of the photon statistics of a laser at different intensities above the thresh-

old were reported in refs. [16] and [17]. Since super-Poissonian statistics is exhibited, only M-type

analysis is warranted. In both cases it is found that for counting times short relative to the inten-

sity correlation time the distributions agree with q-Poissonian statistics, the value of q increasing
from a value which could be close to zero at threshold to a value close to unity (Poissonian distri-

bution) for intensities about an order of magnitude higher than the threshold intensity. At twice

the threshold intgnsity values of q ranging between roughly 0.3 and 0.8 were obtained from the

different sets of experimental data.

Another set of experimental data, exhibiting a sub-Poissonian distribution, involves the pho-

tons emitted by single-atom resonance fluorescence [18]. Using the data for P0, P1, P2 we obtained

in Reference [14] qM = 2.44 or qp = 3.12. This is in agreement with the estimate for qM obtained

using Equation (20) and the data reported in [18], < n >= 6.23-10 -3 and Q'= -2.52-10 -3, from

which qM = 2.36.
The examples of this section illustrate cases from quantum optics where a more accurate model

of a physical system may be obtained by use of quantum group ideas.

3 Squeezing

The electromagnetic field components z and p are given by

1 1

z = _(a + a t) and p = _-_(a - at).

As usual, we define the variances (A z) and (A p) by

(_x) 2= <x2)_ <x>2

In the vacuum state
1

(z_x)0- v_
and so

and (,xp)_= <p_)-(p)_.

(21)

(22)

1 (23)
and CAp)0= _.

1 (24)
(a • )0(/xp)o= ].

The commutation relation Equation (16) for a and a t leads to the following uncertainty prin-

ciple 1 1

(Ax)(Z_p) > 21@,P])l = _.
(25)
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Thus the vacuum state attains the lower bound for the uncertainty, as do the coherent states.

While it impossible to lower the product (A x)(A p) below the vacuum uncertainty value, it is

nevertheless possible to define squeezed states [19] for which (at most) one quadrature lies below
the vacuum value, i.e.

1 1
(Ax) < (ZXx)0 = --_ or (AP) < (Ap)0 = --_. (26)

Vz x/z

If we now consider the generalized bosonic operators given by (2), using the same definitions

for the the field quadratures, x and p, as in (21) we find that, just as in the conventional case, the

vacuum uncertainty product (A x)0(A P)o = ½ is a lower bound for all number states.

I

However, unhke the conventional case, it is not a global lower bound.

Consider the quadrature values in eigenstates of the generalized annihilation operator.

Then

and

(_)_= (hi (a t + a)l_) = _(_ + _) (27)

where

1

(x_)x = (hi _((at) 2 + a s + ata + aa t) la) (28)

1

= _{(A + A) _ + 1 - e_,_l_l_) (29)

ei,x = 1- (f(N + 1))x. (30)

If we choose 0 < f(n) < 1, then it can be shown that el,xlA[ 2 E (0, 1) for A within the radius

of convergence of the generalized exponential (12).

Hence
1

(Ax),_ = 5{1 - _j,_,l.Xl_}.

Evaluating the variance for the other component, we find that (A p)_ = (A x)_ so

(31)

1 1

(Ax)a(Ap)x = _{1-ej,xl,Xl 2} < _.

However, it can also be shown that

(32)

{1- _,xlal2}= _l([x,p])xl (33)

SO

1

(A x)_,(Ap)_,= _l([x,p]hl (34)
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Thus we see that these generalized q-coherent states satisfy a restricted form of the Minimum

Uncertainty Property (M.U.P.) of the conventional coherent states. Additionally we see that there

is a general noise reduction in both quadratures compared to their vacuum value. In conventional

coherent states there is no noise reduction relative to the vacuum value. In conventional squeezed

states, there is noise reduction in only one component.

We can apply the preceding analysis to the two usual forms of q-deformed bosons:

(a) 'Physics' q-bosons

First consider the q-bosons of Equation 5. The deformed commutation relation

aa t _ qata = q-N. (35)

can be rewritten [20] as
aa t - f(N)ata = 1 (36)

where f(N)= _.

In this case, for normalizable eigenstates, the function ¢_,x is negative and so simultaneous

two--component noise reduction does not take place. This is in agreement with the findings of

Katriel and Solomon [21] and Chiu et al [22]. However, it can be shown that ordinary squeezing

i.e. noise reduction in one component compared to the vacuum (with a corresponding noise am-

plification in the other component) does take place [23, 24].

(b) 'Maths' q-bosons
We now consider the q-boson described by Arik and Coon [1]. which is characterised by the

deformed commutation relation

aa t - q ata = 1 (37)

For q E (0, 1), the Jackson q-exponential Eq(IAI2) converges, provided

_qlAl2- (1 - q)lAI2 < 1.

Given this condition on A, we have normalizable q-analogue coherent states satisfying (13) in

which 1

(/x_)g = (Ap)g - (_)x(Ap)x = ½{1-eqlAI2}< _. (38)

Hence, for this type of q-boson, we do obtain noise reduction in both quadratures with respect

to the vacuum value.

4 Signal-to-Quantum Noise Ratio

In a classic paper, Yuen [19] showed that for a radiation field of photons the maximum signal-to-

quantum noise ratio p for fixed energy has the value 4rt,(no + 1), where rt, gives the upper limit on

the number of photons in the signal (effectively a maximum power per unit frequency constraint).
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The only mathematical input to this result consisted of the canonical commutation relations for

the photon annihilation operator a, namely;

[a,a t] = 1 (39)

with the photon number operator given by N = ata.

The hermitian components x, p of the electromagnetic field corresponding to our generalized

photons of Equation 2 (which we now write as a_, aq to distinguish from the conventional ones)
satisfy

[Xq, pq] = i([N + 11 -[N]) (40)

which reduces to the canonical commutation relation [x, p] = i when [N] = N.

We now consider a state, which we write as <, >, although everything which follows applies

equally to a general state described by a density function. Introducing the hermitian operators

X __ xq- < Xq >, P _ pq- < pq >,

the quantum dispersion (quantum noise) in each of the components is measured by the quantities

(Azq) 2 =< X 2 > and (Apq)2 =< p2 >. The positivity of the number < A(t)At(t) > for all t,

where A(t) = tX + iP, leads immediately to the modified uncertainty principle

(zxx.)2(Zxp.)2 >
1

< [N + 1]- [N] >2. (41)

This uncertainty product exceeds the conventional value of ¼ in the "Physics" case (5), and in the
"Maths" case (3) for q > 1.

The signal-to-quantum noise ratio

must be maximized subject to the constraint

< ._., > ___[.°] (42)

where no is the maximum number of q-photons for the frequency under consideration, and in-

equality (41) above. We may rewrite constraint (42) as

<Xq>2+<pq>2+(Ax_)2+(Apq)2- <[N+I]_[N]> _< 2[no] (43)

where we have substituted

2 >=< Xq >2 +(Axq)2, < pq >=< pq +(Apq)2.< Xq

Consideration of (43) leads us to infer that it is favourable to use all the available energy; that

is, < N >= no: and to use it in the x-component alone, so that < pq >= 0. The inequality thus
becomes the equation

< _, >2 +(_x_,)2+ (Ap,)2= [..1+ [.. + l]. (44)
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It is a straightforward exercise in the calculus to show that the ratio pq is maximized, subject to

the constraints (41) and (44), at a value

pq = 4[n0][n, + 1]/([n0 + 1] -[n0]) 2. (45)

Given two types of "photon" described by [ ]1 and [' ]2, it is a straightforward exercise in

inequalities to show that the corresponding signal-to-quantum noise ratios pl, p2 satisfy

Pl <P2 if [n+111 > [n+112
- [-h

Taking [n]2 = n ("ordinary" photons) and [n]l as the q-photons defined by Equations (3) and (5)

in turn, we obtain:

>- p >-pP ->

on comparing with Yuen's result for the conventional case

p = 4n°(n° + 1). (46)

Therefore states based on the usual q-photons Equation (5), and Equation (3) for q _ 1, (which

are the more physical cases satisfying the conventional uncertainty principle) will not lead to an

enhanced signal-to-quantum noise ratio over the conventional photon case.

5 Conclusions

In this talk we have given three examples where we are able to model physically observable

properties of real photons by means of deformed photons satisfying very general deformations of

the canonical commutation relations. The viewpoint we have adopted is the phenomenological one;

we do not assume that "real" photons satisfy other than the conventional commutation relations.

Rather, we have shown that simple models involving "dressed" photons, satisfying very general

constraints, may be invoked to describe observed, and sometimes non-intuitive, phenomena.

This by no means addresses the still open question as to whether deformed commutation

relations describe real particles, whatever that means.
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Abstract

We show that the supersymmetric structure (in the sense of supersymmetric quantum

mechanics) appears in Helrnholtz optics describing light propagation in waveguides. For the

case of elliptical waveguides, with the accuracy of paraxial approximation it admits a simple

physical interpretation. The supersymmetry connects light beams of different colors. The

difference in light frequencies for the supersymmetric beams is determined by the transverse

gradient of the refractive index. These beams have the same wavelength in the propagation

direction and can form a stable interference pattern.

1 Introduction

There is a correspondence between quantum mechanics and optics in the paraxial regime [1]

and in the global one [2]. Consequently, many notions can be transported from one to the other,

such as coherent and squeezed states (see, e.g., Ref. [3, 4]). Here we describe an optical system

that exhibits supersymmetry in the sense of supersymmetric quantum mechanics (SUSY QM).

Supersymmetry in quantum me_:hanics connects two Hamiltonians with the same spectrum

except for the ground state (unbroken supersymmetry [5], see [6] and references therein.) SUSY

has been successfully applied in atomic [7] and nuclear physics [8]. The supersymmetric form of

the Dirac equation in an external field [9, 10, 11] presents the Dirac equation as the square root

of the Klein-Gordon equation; the kind of supersymmetry we have here is analogous and finds

the square root of the Helmholtz equation. The supersymmetric structure of Helmholtz optics

describes light propagation in a waveguide and admits a very clear physical interpretation.

We consider optical waveguides along the z-axis, i.e., media that are inhomogeneous only in

the x direction. From Jthe wave equation in 2 + 1 dimensions for solutions of time frequency u we

have the Helmholtz equation

+ + '] f(x,z) = O. (1)

In Section 2 we present the supersymmetric structure of Eq. (1), in Section 3 a physical

reinterpretation, and some concluding remarks in Section 4. Note that until Section 3 we do not

use the paraxial approximation.

i:'t_!Niil P_,_E 2.LP:t_ !';..'.Yi" }_:....
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2 Supersymmetric structure

We start with a system of two first-order equations for a two-component wave function of the

x and z-coordinates,

where k is a constant and

(o1)_(,kOz _2 v_ -ik _2 '

v_=- +o_ + w(z),

with an arbitrary function W(x). The second z-derivative involves the square of this 2 × 2 matrix,

_2 0 -k 2 + v_v+ tP2 "

Therefore we have two different Helmholtz equations for the components:

[o_+o_+e-w_-w_],,=o,
[0_ + 0_ + k 2 + W_ - W 2] _2 = 0. (3)

where W_ -- dW/dx. Now, for a given wavenumber _ in z direction that is common to both

wavefunctions, we write
-i_z

@,,2(x,z) = (I),,2(x)e • (4)

Equations (3) then become the eigenvalue equations for the components,

[-0_+w_+_] _ = [e-_1,2 (_)
Now we introduce the supersymmetric structure by considering the component (I)1 as represent-

ing the 'boson' and ¢2 the 'fermion' sectors of the supersymmetric Hamiltonian eigenfunctions.

The supercharge operators are

(0 0) (0v)Q-= v+ 0 ' Q+= 0 0 "

The supersymmetric Hamiltonian, defined as the anticommutator of the two supercharges, is
t

H. = {Q-,Q+} = 0 v+v_ '

The eigenvalue equations for Hs are then

v_v+q), = (k2 - tc2) qh,

v+v_t_2 = (k2 - t¢2) ¢_2.

These equations coincide with Eqs. (5). Operators v_v+ and v+v_ have the same spectrum

except for the ground skate, which has to be a normalizable solution of one o[ the two equations

%¢1 = 0 or v-¢2 = 0. Therefore, SUSY connects solutions of Helmholtz equations of two different

waveguides with index profiles

u2n2(x)/c 2 = k 2 3= W= - W 2. (6)
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3 Physical Reinterpretation

We now reinterpret these formulas in another way to describe two different beams in the same

waveguide. We choose

W(x)=wx. (7)

The eigenvalue equations (5) are then two SchrSdinger equations for harmonic oscillators with

displaced energy levels,

[--0 2 ÷ W2X 21 (I)i, 2 = (k2 T w - t¢ 2) (I)1,2 . (8)

Meanwhile, seen as Helmholtz equations, Eqs. (8) correspond to

= k2T w - w:x:, (9)

with the same refractive index n(x). In the absence of material dispersion, n is independent of

v. This is an elliptic index-profile waveguide; it approximates the usual parabolic index-profile

waveguide in the paraxial regime [12]. The eigenvalues of the operator on the left of (8) are well
known to be

Em= w(2m + 1), m = 0,1,2, .... (10)

We now find conditions for a supersymmetric pair of Helmholtz solutions propagating in the

same waveguide. Into this waveguide n2(x) = n_ - n_x 2 we inject two light beams with slightly

different time frequencies

v 2 = Vo2(1 _: Q.1,2

To fulfill Eqs. (9), we substitute k = noUo/C, w = nluo/c and find the conditions

-
e- nok - k 2' v°2 -2e. (11)

This determines the frequency shift in terms of the transverse index profile of the waveguide.

From the standard quantum harmonic oscillator solution we know that the Gauss±an beam

width in x-direction is 'Ax = (2w)-l/2. Therefore, the parameter

= [2k2(Ax)2] -1 ,-, (wavelength/beam width) 2

should be small. The two light beams with the frequencies vl,2 obey the Helmholtz equations with

v,_,2n2(x)/c _ = k s _ w - w2x2(1 T e). (12)

When e --+ 0, these two Helmholtz equations become a supersymmetric pair that is slightly broken

by the term ew2x 2. I
I.

It is easy to see that SUSY has the same accuracy as the paraxial approximation. Solution

of the Helmholtz equation (1) with the term (12) (compare with Eqs. (8)) shows that the z-

propagation wavenumbers of the two beams are

a_,2(m)=k2-w[(l±e)(2m+l)±l], m=0,1,...

or
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The term of order _ = w/k 2 exhibits exact SUSY; except for the ground state t¢2(0) = k, the

z-wavenumbers of the two beams coincide

gl(rft -- 1) ---- /¢2(T/t) "_- 0(£2), m ---- 1,2,.. • , (13)

The two terms of order e2 respectively give a nonlinear correction to the paraxial approximation

and break supersymmetry. Therefore, SUSY is exact in the paraxial approximation and is broken

beyond this regime.

Thus, supersymmetry (13) connects light beams of different frequencies u21,2in the same wave-

guide [cf. Eq. (11)], but having the same wavelength 2_r/t¢ in the propagation direction z [Eq.

(4)]. These two beams form a stable interference pattern along the waveguide axis.

4 Conclusions

We have considered the propagation of light in a planar waveguide ruled by the two-dimensional

Helmholtz equation. Two Helmholtz equations with different refractive indices (3) form a super-

symmetric pair in the sense of SUSY QM.

Supersymmetry also describes the propagation of light beams of different colors in the same

waveguide when the transversal index profile is elliptic. This profile determines the difference

of light frequencies. SUSY is exact in the paraxial approximation, and broken beyond. In the

paraxial regime, supersymmetric light beams of different colors have the same wavelength along

the axis of the waveguide, giving rise to a stable interference pattern.
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Abstract

A new way of diagonalizing the .Jaynes-Cummings Hamiltonian is proposed, which allows

the definition of an_hilation operators and coherent states for this model. Mean values and

dispersions over these states are computed and interpreted.

1 Introduction

The Jaynes-Cummiugs (J.C,.) model [1], which is extensively used in Quantum Optics, describes, in

its simplest versi(m, the iT_teraction of a cavity mode with a two-level system. In the rotating-wave

approximati(m, it may be described by the Hamiltonian [1, 2]

Hj_. = _ (ata-F _)a0-t--_a a + _(ata_ + a_r+) , (1)

where {a_, cy2, a 3 } are Pauli matrices, a 0 is the identity, a± = a_ :l:ia:, and a t and a _re the photon

creation an(l annihilation operators. Moreover, _ is the coupling constant, w is the field mode

frequency, and _o is the atomic frequency. Let us Mso introduce the detuning A = w - w o. The

exact solwd)ility of this model is well-known. Working in the Fock space

( (°)
the energy eigenstates take the form (for n -- O, 1,2,...)

, n = 0, 1,2,...} , (2)

leo)--10,-),

l (_v/'_+lln,+)+(_+_r(n+l)),n+l,-)),I/_Z+,>- n(n + 1)

iE+)- R(n+l) +nr(n+l) In,+) nv/n-÷lln+l,-) ,

): ]":r(n) = (5 + n) 1/2, 5= _ , R(n) = + ar(n) + _2n

where

(3)

(4)

(5)

(6)



In the expression of r(n) we have introduced the parameter 5 which will be important in the

ff_llowing. The corresponding energy eigenvalues are

E_ -- wn + tcr(n), E + = w(n + l) - nr(n + l). (7)

The interest of this model, its solvability and its applications have long been discussed. More

precisely, dynmnical properties have been obtained through the use of states which are initially

harmonic oscillator coherent states [3], but that evolve according to the J.C. Hamiltonian [2, 4].

Here, we construct new coherent states which correspond to eigenstates of an annihilation operator

for Hjc:. To do that, we have to find first such an annihilation operator through the diagonalization

of the Jaynes-Cmmnings Hamiltonian (1). Second, we use the theoretical approach, based on the

direct product of the Wb.yl-Heisenherg group with SU (2), to evahlate those coherent states. Finally,

we exhibit some of their properties. More details can be found in [5].

2 Annihilation operators and coherent states for H_c
b

The diagonalization of Hjc: is performed by the unitary operator (.9, so that

Ha _ OtH_cO = ( w(N + l) - ,_r(N + l) 0 )0 wN+,_r(N) '
(s)

where N = ata, and the definition of r(N) is given in Eq. (6). This operator O has the form

O= R(N+I) [_+_r(N+l)] 1 R(]_ +1) a
t_

-a'R(N+1) + (9)

(_learly, an annihilation operator for H d is given by A d = a a 0. Since the states depend also

on the spin index +, we introduce the spinorial annihilation and creation operators:

(00)E-a= 1 0 ' 0 0 "

We then obtain candidates to be annihilation and creation operators for Hjc as:

A = OAaO t, A t = OA_O t, E+ = OE+_O*. (11)

For the determination of coherent states, the situation is particularly simple when we work

with H d in (8), since the energy eigenstates are the Fock-space basis vectors (2). The group

theoretical approach to coherent states leads us to define

Iz,flL = T(z, flLI0,-), z,/_ • C, (12)

in terms of the unitary representation of the direct product of the Weyl-Heisenberg group with

NU(2)

T(z,Z)_ = exp[zm_ - 2A d + ZE+_ - _E_d ]. (13)
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The coherent states for Hjc are then given by

[z,/3) = Olz, [3)e = T(z, {3)[Eo ) = OT(z, /3) eOtlEo ) . (14)

From the harmonic oscillator coherent states we easily get

(0) ()Iz,/_L = cos(0/2) ,Iz) + ei¢ sin(0/2) I;) = cos(0/2)Iz-L + e'* sin(O�2)Iz+)_, (15)

with fl = (0/2)d ¢, and Iz) the normalized state Iz) = e -Izl2/2 E_=0(zVv_._)ln). The state Iz, _)d

is a linear coml)ination of the "fimdamental coherent states" Iz+)d and [z-)e , which are both

eigenstates of A d (but npt of E e)- Similar fimdamental coherent states are defined by using such
a decomposition of Iz, L_)in (14- i.

To be complete, we give the time evolution of such states; the one of the general state (15) will

I)e obtained easily by linear combination. We start with the diagonal case, for which the evolution

operator is

Ud(t) = e-itHd ( eitlw(N+l)-nr(N+l)l o )= 0 6/t[_,N+,, _(N)] , '(16)

and we compute Iz, +, t) = OUn(t)lz , +)d = Ujc(t)OIz, +)d. More precisely, we get

n

oo (ze-,,,t) eit_'_("+l)]E_)
Iz,+,t)= c-IzlV2e -i_t y]_ v_.

rt=0
Tt

(ze-iwt) e_it_r(n )
Iz,-,t)= e-I_l_/__ v_. )E_).

rt=O

(17)

These are similar to the states obtained by the evohltion of the harmonic oscillator coherent states,

except for the supplementary oscillation for each n in the sum. This implies that the coherent state

does not evolve in time to another coherent state, mflike to the ease of the harmonic oscillator.

Moreover, our states (17) are different from those considered in other approaches [2, 4]. Indeed,

all these authors (teal with the states Iz,:t:)e (or a mixture of them) and their evolution is

Uj_(t)lz,±). = e-"mClz,±)_. (18)

3 Relevant physical quantities

Let us recall the introduction of the parameter 6 in the expression of r(n) in (6). It will be used

,as a variable in the following, it contains both the detuning A and the coupling parameter n

and leads to the exact resonance case when 6 = 0 or to the weak coupling limit when 6 --* oc.

The parmneter x = Izl2 is also introduced, and will be proved to be a good approximation of the

number of photons. We will deal with the fimction

oo X n _ X n(;(_,x) = e-_ ,=o_ _ _(n + 1)= _-_,=o--n!_/_+ n + 1. (19)

Its asymptotic behaviour is G(6, x) .._ v'_, which is independent of 6. The calculations will be

d(me explicitly over the states (17), a_d for a general state Iz,/_,t). We can use (15) to write
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the mean vahle and dispersion of ml operator X. Indeed, defining (X)_ = (z, t, +IX[z, t, +) and

(X)±, = (z, t, +IX[z, t, =F), the mean value of X over a general coherent state is
t

(X}- 1-cos0 l+cos0 sin02 (xl++ 2 (x)-+-Y (20)

In the (:_se of having (X)+_ = (X)_+ =0, the square of the dispersion is simply
1

1 + cos 0 sin 2 0 i ]2.
(AXy - (X2)- (X)2_ 1- 2c°s0(AXy++ 2 (AXy_+ ---U-I(X)+- (X)_ (21)

Let, us now compute the relevant physical magnitudes. The operator .IV"= (ata+ 1/2)a0 + a_/2

corresponds to the total number of particles. It is a constant of motion and is invariant under the

transformation by O. We then get

(N}+ =x+l, (N)_ =x, (AN)_+ =(A_') __ =x. (22)

(Those are known results in connection with the susy harmonic oscillator.)
The evaluation of the mean values of the number of photons N = ata is less trivial, and gives

o_ x,_ 1 1 A e -_ _o x,_ 1 (23)
1 Ae-_ n!r(n 1) (N) --x-_+-_g _-'-_.r(n)"(N)+ = x + _ - 4---_ + ' ,_:0

n=0

(k)mparing with the harmonic oscillator, where {N) = x, we have a correction due to the inter-

action. Since _ is usually smM1, a good approximation to the average nuinber of photons is x.

Indeed, the c()ntribution of the terms containing the series is, in this case, approximately 1/2.

We can compute the mean values and dispersions of the energy in the fundamental states and

study their behaviour with respect to both x and 6. Since (Hjc)+_ --(Hjc)_+ --0, the calculations

over the general coherent states through Eqs. (20)-(21) do not give anything new with respect to

the results for the fimdamental states. Indeed, we can see from (21) that the dispersion attains

his nfinimmn over the pure states. The mean values are easily computed and take the simple form

(Hjc}+ : _[(x + 1)- AG(6, x)], (Hjc)_ = _[x + AG(6-1,x)] , (24)

while the values of the dispersion are more complicated and present interesting features

(AHj()2+=w_[A2(I+6)+(I+AH)x+2Ax(G(6, x)_G(6+I,x))-A2(G(5, x))2] , (25)

(AHjc) 2_ = 0)2 [A26 + (1 + A2)x - 2Ax(G(6 - 1,x) - G(6, x)) - A2(G(6 - 1,x)) 2] • (26)

We have introduced A = tc/w. When a large immber of photons is considered, we caal use the

asymptotic behaviour of G(6, x) to see that

(AHjc)_ 1
.._ __ (27)

as in the harmonic oscillator case.
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8

Fig. 1. Behaviour of (AHjc)2+/w 2 as a function of 5 and x for A = 8.

If' we want to see how the dispersion evolves with respe'ct to a variation of the characteristics

of the system 6 and A, we analyse the form of (AHjc)2+, since (AH_c) 2 shows a similar qualitative

behaviour. If we fix A, the typical behaviour of (AH_c)2+ is as in Fig. I. It can be proved that for

fixed wdues of 6 smaller than a certain 60, (AH_c,)2+ has a minimmn for x ¢ 0.

The atomic inversion is the last quantity we will consider. Over a general coherent state, we

h ave

1_ x" A 1-cos0 l+cos0 0cos_.(t)]
(as)= 2 ,_n-_ _ r(n+l) - r(n) +2sin _-_[_j, (28)

where _,_(t) = cp+2tt_r(n+ 1). If we take A = 0 and 0 = -¢ = rr/2, we have a temporal

behaviour which is similar to the one obtained by Narozhny et al. [2] (let us recall that their

states are different from ours). It consists of Rabi oscillations, ms shown in Fig. 2:

oc x n sin(2tt¢_)] .: 2 -1 + 2E j (29)
n=0

The derivative of this function with respect to t is essentially the value obtained in Ref. [2]. In

Fig. 2, we show the graph of our {a_} for x = 20. It is similar to those obtained in many other

papers, and that although the expression of {ors) is not exactly the same in all the cases.

These results indicate that it is reasonable to analyze the coherent states associated to the

J.C,. Hamiltonian in the way we are doing, but we do not know for the present if they could be

interesting for the experiments.
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Fig. 2. Collal)ses and revivals of the atomic inversion ill a general coherent state for x=20 and 5=0.
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Abstract

We consider an arbitrary atomic system (n-level atom or many such atoms) interacting

with a strong resonant quantum field. The approximate evolution operator for a quantum

field case can be produced from the atomic evolution operator in an external classical field by

a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many

important phenomena arising from the quantum nature of the field can be described by such

a way.

1 Introduction

The behaviour of atomic systems interacting with a quantized electromagnetic field in a cavity

has been studied for a long time. Even the simplest model of a single two-level system interacting

with a single field mode in a lossless cavity, the Jaynes-Cummings model (JCM) [1], reveals

interesting properties like collapses and revivals of atomic inversion oscillations, trapping states,

SchrSdinger Cats, etc. [1-3]. They stem from the nonlinear nature of the JCM.

For a linear system, the Hamiltonian is usually a linear function of generators of some rep-

resentation of a finite-dimensional Lie algebra, and the Evolution operator (EO) belongs to the

corresponding Lie group representation. This property is referred as a Dynamical Symmetry. The

most familiar examples are the Harmonic oscillator and the spin rotation in an external magnetic

field. Their dynamical groups are, correspondingly, SU(1, 1) and SU(2). Dynamical symmetry

results in an equidistant spectrum (or a spectrum consisted of several equidistant parts), coherent

states (i.e., nonspreading wave packets) and many other attributes of 'harmonic behaviour' [4, 5].

Real systems are oftenly nonlinear. Interesting phenomena appear, if the nonlinearity is 'weak',

i.e., the dynamics is 'almost harmonic' one. For instance, the JCM in the classic field limit

is equivalent to the spin-l/2 rotation in the external field, that gives the simplest example of

the dynamical symmetry (two-dimensional representation of SU(2)). JCM collapses and revivals

appear in the case of a strong quantum field, when the system is slightly nonlinear.

JCM dynamics is very instructive and we may say more about it. The JCM possesses an

exact solution and its EO can be found explicitly. It is 2 × 2-matrix with coefficients depending
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on photon operators, see, e.g. [3]. On the other hand, the number of excitation N is a constant

of motion in this model, and its EO can be written as a direct sum of infinitely many 2 x 2-

matrices corresponding to different values of N, Every matrix is similar to the spin-l/2 rotation

around x-axis, but different blocks rotate with different frequencies, FIN, called quantum Rabi

frequencies. The spectrum consists from infinitely many pairs of levels separated by 2f_u, and

anharmonicity results in a nonlinear dependence of quantum Rabi frequency on the excitation

number, FIN = 9vYN (g is a coupling constant). Therefore, the JCM can be considered as an

interesting example of a nonlinear system, however possessing the exact dynamical symmetry.

Treating the field classically, we put Flu --+ _ "-_ 9v#_, using the classical Rabi frequency

rather than quantum ones. (Here g is the field intensity in units of photon number.) For

a strong quantum field with Poisson photon distribution, different _N contribute to dynamics,

K- _ < N < _ + x/_. The difference in frequencies gv/-_-+An - gv/-_Z--Ang "_ _/_ "" g

becomes important for times _ 9 -1. This is just the JCM cQllapse time. It is in the range of modern

experimental possibilities, both for Rydberg atom micromasers and for optical microcavities (see

the references in the review [1]). The frequency of revivals is proportional to g/v'_. Thus, it is

not surprising, that JCM collapses and revivals can be described in the frame of expansion over

the inverse field intensity [3].

Natural generalizations of JCM involve more resonant levels and more atoms. Already a

system of many two-level atoms (the Dicke model [6]) does not allow an exact solution. Itowever,

for very general class of atomic systems interacting with the quantum field under the Rotating

Wave Approximation, the excitation number remains a constant of motion. If one of the field

modes contains a lot of photons, we can neglect the other modes and develop a perturbation

theory with the inverse excitation number as a small parameter. Precisely, the initial number of

photons must be much larger then the maximum possible number of atomic excitations ,4. This

program has been realized at the level of wave functions for the. Dicke model in Refs. [7] and for

more general systems in Ref. [8].

Here, we shall find an explicit form of the EO for an arbitrary atomic system interacting with a

strong resonant quantum field. The atomic operators for such a system form a finite-dimensional

representation of some compact Lie algebra (see, e.g., [9]). For the case of identical atoms, the

algebra depends on the number of levels while the representation depends on the number of atoms

and symmetry properties of initial atomic state under the atomic permutations. For instance, the

case of A identical two-level atoms excited from a symmetric state leads to the (A+I)-dimensional

representation of SU(2). The exact EO can be written as a direct sum of finite dimensional-blocks
with different excitation numbers. The dimension of blocks for the case N > .A is determined

by the atomic algebra representation, but the exact Hamiltonian in every block is a nonlinear

function of the representation generators (see Eq. (9) below). However, we shall show that the

dynamical symmetry can be restored in the zeroth- and the first-order approximations. It means

that the evolution operator in every block can be well approximated by the operator from the

corresponding Lie group representation. In the Dicke model case this approximate motion is a

rotation of the collective atomic pseudospin (of the length A/2) around z-axis. Once again, the

rotation frequencies in different blocks depend nonlinearly on the excitation number (see Eq. (10)

below). Therefore, our zeroth-order approximation possesses a dynamical symmetry in the same

sense as the exact JCM solution. The difference is that the motion in every block is described

by the appropriate representation of atomic algebra instead of spinor SU(2) representations for
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JCM. Being restricted to JCM case our theory just reproduces its exact solution.

The work is organized as follows. In the next section we shall describe the model. In Sec. 3 the

asymptotic evolution operator for an arbitrary atomic system interacting with a strong quantum

field is found. It has a matrix form in the atomic basis with coefficients depending on the photon

operators. Let us remind, that the evolution operator for the atomic system in an external classical

field (semiclassical EO ) is a matrix of a finite rotation from the atomic group representation. The

corresponding matrix elements are calculated by the group representation theory (see, e.g., [10]).

Remarkably, the approximate 'quantum' EO can be obtained from the semiclassical one by a

simple 'qnantization prescription' (see the text before Eq. (23)), which introduces the operator

arguments into the Wigner D-functions. Therefore, our results enable to write (without calcula-

tions) approximate matrix elements of the quantum evolution operator as far as the ones of the

semiclassical EO are known.

We demonstrate the convenience of the form (23) for the EO in Sec. 4, where it is used to

reproduce the wave functions found in Ref. [8] and to prove the approximate factorization of the

system wave function for special initial conditions. Making use of Eq. (23) drastically simplifies the

original proof of factorization [8]. The wave functions of Ref. [8] contain the information about

collapses and revivals, trapping states and Schrgdinger cats and provide the correct structure

of the field quasiprobability distribution for the systems under study. Therefore, the proposed

asymptotic form for the EO describes all these phenomena connected with the quantum nature

of the field.

2 Description of the model

We shall work with the following ttamiltonian

t) h)+ 9, f/:g(a2++a'2-). (1)

Here, a,a t, h = ata are the photon annihilation, creation and number operators, describing a

cavity quantized field mode with the frequency co. g is the coupling constant with resonant atoms

placed into the cavity, (we consider the exact resonance case for simplicity), h is the bare atomic

system Hamiltonian determining the configuration of atomic levels, X± are atomic operators

describing transitions between resonant levels and obeying commutation relations

[h,2_] =-2_, [h,2+] = 2+. (2)

Hamiltonian (1) with conditions (2) describes quite general atomic system interacting with

a resonant mode of quantized field under the Rotating Wave Approximation. The Dicke model

corresponds to the particular case when an atomic system consists of A two-level atoms [6]. Then

the operators h, 3_+ belong to the (A+l)-dimensional representation of su(2) algebra and obey the

additional commutation relation

[2+,2_1= 2h (3)

The simplest case of the JCM corresponds to the two-dimensional representationof su(2).

We definethe basis of the atomic algebra representationas

O k .A, (4)
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where k is a number of excitations in the atomic system, .,4 is its maximal value, C is a constant

corresponding to the bottom energy level of the atomic system (k = 0). 7 denotes all the other

atomic indexes (atomic level populations), which are given by eigenvalues of the operators from

the Cartan subalgebra. For example, in the case of su(2) algebra we have the only Caftan operator

h and there are no additional indexes. Then the maximum possible number of atomic excitations

.,4 is equal to the number of atoms A, and the bottom level of atomic energy is C = A/2. In the

presence of additional indexes (say, for three-level atoms) the bare atomic levels may be degenerate

and the dimension of the representation is then larger than .,4+1.

It follows from Eqs. (2) that the excitation number operator commutes with the Hamiltonian

/V = a+a+ h, [N,.f/] = 0. (5)

It is useful to introduce the basis

)N,k) = ]N-k}l ® Ik}sl, 0 < k < .,4, IVIN, k ) = (N-C)[N, kl, (6)

where In),, is a Fock field states, Ik)at is a bare atomic state (4). For a fixed value of N, the

Hamiltonian (1) in the basis (6) is a finite dimensional matrix. It's rows and columns are numerated

by the indexes k and -y. (In Eq. (6) and below, we omit the index 7.)

We shall explore the field phase operators defined as [11]

at = exp(-iq;) l, a = x/ +l exp(i¢),
exp(-i¢)ln)s = In+l)/ exp(i¢)ln)/= In-l)/, n > 0. (7)

These phase operators are unitary and provide the correct physical results for large n's. The

following commutation relations are valid:

f(n)exp(-i¢) =exp(-i¢)f(h + 1), exp(i¢)f(h)= f(h + 1)exp(i¢), (8)

where f(h) is an arbitrary function of the photon number operator (determined by its Taylor

expansion). Eqs. (8) follow from similar relations for the operators a, a t.

3 The Evolution Operator for the strong field case

We consider here the case of initially strong field. Then, the total number of excitations is

larger than the maximum possible atomic excitation number, i.e."N _ h >> h", and we can build

a perturbation theory with fi¢--1 as a small parameter. It is convenient to divide the derivation

into subsequent steps.

1. We eliminate a, a 1'and h from the Hamiltonian (1) using Eqs. (7) and the excitation number

conservation, fi = N - ]_,

1_ :g (_/N-h+l exp(iq_))(+ + X_ exp(-i¢)_/N-]_+ 1.)

2. The square roots in the last equation can be written as series of powers of the operator

(9)

(/_ + 1/2)-1 _ g2/fi2, h(/_) = g_N + 1/2. (10)
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We get

[ g' ]= h :/o+ +... , (11)

/2/0 = exp (i¢))(+ + exp (--i¢))(_, (12)

9, = -1/2{]_,[/0}+, .... (13)

Here {, }+ stands for anticommutator.

Our choice of a small parameter (nq. (10) rather than _-1) is important, since it provides

vanishing first order corrections to eigenfrequencies, as it has been shown in Ref. [7]. In fact,

the first-order corrections are in such a way included into the zeroth-order ones, that improves

the quality of the zeroth-order approximation. According to Eq. (11), the whole time scale is
^ ^

determined by the factor f_(N), which plays the role of the Rabi frequency for the problem under

study.

3. It is convenient to use the following transformation

_) = exp [iq_(h + C)] . (14)

This operator is unitary on the states n > .,4 > k. Acting on the basis vectors it gives

_)]k)_t ® In): = exp(iCk)lk)_,t ® In)! = ]k)_t ® [n - k): = IN=n, k). (15)

Since the operator h+C has an integer spectrum, the operator _) is a direct sum of different

powers of the phase operator.

Directly from the definitions (14),(7) and from the commutators (2),(8) we find

f(fi)(_-I = (_-lf(fi + ]t + C), Of(fi) = f(fi + ]z + C)Q, (16)

QX+Q-' = exp(i¢)X+, (02__)-l=exp(-i¢)2+. (17)

4. Here we shall lind the zeroth-order EO. (Wave functions in the second order for the Dicke

model have been calculated in Ref. [7].) Applying the Q-transformation to the zeroth-order

Hamiltonian and using Eqs. (16),(17)we have

_/*,_h(_--_h):Qh(_-C)gciQ -I , 9c1_--2+ +X_. (18)

Therefore, Q-transformation removes the nondiagonal photon operators from the zeroth-order

Hamiltonian. It transforms the operator /2/o into the purely atomic operator /2/d, which has a

sense of the atomic system Hamiltonian in an external constant classical field. Moreover, the

Q-transformation removes the field operators from the coefficients/2/o,/?/1, • • • in all the orders. Si-

multaneously, the @transformation changes the expansion parameter, h(N)---* h(h-C), trans-

forming it into the function of the photon number operator. Therefore, the Q-transformation

separates field and atomic variables in the expansion (11) in such a way, that atomic operators ap-

pear in the coefficients and the photon number operator is included into the expansion parameter.

Thus, the calculation of high order corrections involve only the atomic operators.

5. Now we can calculate the matrix elements of the EO with the Hamiltonian (18)

exp(-itl)') _ exp f-it'(iV)f/o] = 0 exp [-h(fi - C)/2/d] (_-1 (19)
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between the atomic states (they are still operators in the field space). Taking into account the

action of the Q-operator on the atomic states, we find

at( k Iexp(-it f/) lm)at ,._ e iSk at( kJ exp [-ith(fi - C)/:/cl] Irn)at e -iSm

= _t(kJex p [--itfik[Id] [m)_t exp(i¢(k- m)), (20)

where we have denoted

- fi(a + k - c) = g /a + k - c + 1/2. (21)

Shifting e_gk to the right in the last line of Eq. (20), we have used the commutator (7).

What profit have we got with Eq. ^(20)? We have separated the field phase operators, writing

them on the right. The operator flkHd contains the only field operator fi which commutes with

all the other ingredients and may be treated as a Q-number in the calculation of the exponent.

Thus, we can reconstruct the quantum field EO if we know the atomic EO in the external classical

field

Ud(co) = exp(-itw/2/_l) • (22)

The matrix /)_t(co) is the rotation operator from the atomic group representation. It's matrix

elements are known from the standard group representation theory. For the Dicke model case, the

operator //d = )(+ + 2_ = 2S_ is just a generator of rotations around x-axis, and the matrix

elements of exp(-itw2Sx) are the usual Wigner D-functions.

The quantum EO matrix elements can be produced from the matrix Ud(co) by the following

'quantization prescription':

(i) to substitute the group parameter w in the (k,7)-th row of the matrix /)el(w) by the

operator co ---, _k = eft+k-C+ 1/2, (here k is the atomic excitation number in the row (k, 3') );

(ii) to multiply every matrix element from the right by the power of the

phase operator exp(iC(k-m)).

Writing explicitly in Eq. (20) the additional atomic indexes "y, we have

at(k, "_lUIrn,"f')at = at(k, 7[ffcl((_k )lm,'7')at exp( i¢( k-m) ). (23)

This equation is our principal result. It corresponds to the wave functions found in Ref. [8]. Being

restricted to the case of a single two-level atom, it gives the exact JCM EO (see, e.g., [3]). The

quantization prescription formulated above can be easily generalized to include detuning [12].

4 The wave function factorization

The most remarkable feature of dynamics with the EO (23) is an approximate wave function

factorization for special initial states. Let the field initially be in a coherent state, lin)f = ]a), _ -

v/_e i¢, where g and ¢ are the initial photon number and the phase of the field. (The number e i¢

may not be confused with the phase operator exp(i0;)). The initial atomic state is taken as an

eigenstate of the operator
i

/-/d(¢) = eiCx+ -+- e5 i¢2- = ei*h[_Icle-iCh' [Id(¢)]p(¢)>at = _plP(¢)>at, I/_(¢))a_ = eiChIp}at"
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Here, [/d is determined by Eq. (lS). We shall call Av and Ip(¢))_, as semiclassical eigenvalues and

eigenvectors. The vector [P)_t is also an eigenvector of the semiclassical evolution operator (22)

_rc,(w)]p_)_, = exp (-iwApt)IP_}_,. (24)

It is known [13], that coherent states with large photon numbers are approximately eigenstates
of the phase operators. More precisely,

exp(ikq;)la) = exp(ik¢)la} + O(k/v/-_). (25)

Now we act by the E® (23) to the initial state [in} = la} ® ]p)_,. Multiplying the equation from

the left by an arbitrary atomic vector (kl_ t and substituting t-he E® matrix element, Eq. (23) we
have

ol )s
m

: o,(k e Ipht® )j

_t(klexp(-itApg_h+tz+l/2) [p(¢))_t® la)y. (26)

Here, in the first line, the phase factor coming from the action of the field phase operator e_$(k-m)

on the coherent state, Eq. (25) cancels the atomic phase factor _t(mlp(¢)) = e;_C_-e) _,(rn[p_)_, to

give ei_(k-c). In the second line we use the property (24), that is br_t(fik)lp_)_t = e-'t_,ak[p)_,. We

stress, that the operator-valued group parameter Dk depends on the number of the row, so for

rows with different k's we must use different semiclassical EO's with different values of the group

parameter. Finally, in the last line of Eq. (26) we substitute ei¢(k-C) at(klp_)_, t : _t(klp(¢))_t and

_t(kle -ita'hk = _t(klexp(-itApgCh+]z+l/2). Since _t(k I is an arbitrary atomic state, we can
write the wave function in the form

(](t)lin)'_exp[-itApg_/h+h+ 1/2][in}.

Introducing the notation _ --=9¢g + 1/2 we can approximate the square root as

and we find the factorized wave function

It_(t)) _ I rbp(t))®lAp(t)),

[A,(t)) = exp [-itg2a,h/(2fl)] [p_)_,, (27)

This wave functionlhas been found by a different way in Ref. [8] and used for the discussion

of the trapping states, i:ollapses, revivals and Schr6dinger Cat states for the s)'stems under study.

If different semiclassical eigenstates contribute to the initial state, the wave function is a

superposition of corresponding factorized states (27). The evolution operator Eq. (23) describes

the dynamics from any initial state, such that the initial photon number is much larger then the
maximum number of atomic excitations.
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Abstract

Coherent dynamics of two-, three-, and four-leVel quantum

systems, simultaneously driven by concurrent laser pulses of

arbitrary and different forms, is treated by using a

nonperturbative group-theoretical approach. The respective

evolution matrices are calculated in an explicit form. General

aspects of controllability of few-level atoms by using laser

fields are treated analytically.

I. INTRODUCTION

We analyze the general aspects of the problem of dynamical

coherent control of atomic populations in the framework of

semiclassical approach when an external (laser) field is

considered as an inexauztible energy reservoir and only the atomic

behaviour is considered to be controllable. The natural

controllers are strengths, frequencies and phases of the

components of a polychromatic laser field driving simultaneously

different atomic transitions. An initial atomic state may be also

considered as a controller.

The dynamics of any nonstationary quantum system is described

by the time evolution equation

i _ UCt, O) = HOt) UCL, O) , ll£O,O) = I , b = 1 (I)

with the Hamiltonian

m

H(t) = E hk(t) H k • C2)
k=1

which depends on time explicite].y. It is not an easy task to solve

the eq.l analitically even for a two-level system exposed to an
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arbitrary varying external field. Usualy used adiabatic and

weak-field approximations as well as the approximation with slowly

varying amplitudes breaks down if we deal with short and/or

intense laser pulses. The well-known Floke method is useful only

in the case of periodic excitations. The high level of control of

atomic populations by using designed laser fields calls for a new

nonperturbative_technique that, should be, on the one hand, rather

general to enable one to treat uniformely the atomic dynamics

under various excitation conditions, and on the other hand, it

should be able to result in explicit solutions of the evolution

equation fl).

The group-theoretical technique will be applied to solve this

task for two-, three-, and four-level atoms exposed to an

arbitrary time-varying polychromatic laser field. It is based on

the concept of dynamical symmetry of nonstationary quantum

processes 11-31.

After solving the eq. 1 for a given model system, the problem of

finite control 14l is to find such values of controllers {h_ft3,

j=1,...,m) that enables us to transform the system from an in_tial

state to the desired final state at the target time T > O. Such a

transition is governed by the equation

I sCT) > = UCT, O) I sCO) >. C3)

Generally speaking, the solution of this task is not unique. In

addition one can put the task of optimal control which is to find

such values of controllers that minimizes a given loss functional

or maximizes a desired quality criterion 151.

E. GENERAL BACKGROUND

A single atom with N nondegenerate and nonequidistant levels

H° ISm> = wm ISm>, m = 1,2,...,N, [4)

interacts with amplitude- modulated components of a polychromatic

field
N N

E = (l/E) _ _ Ekl ft) exp (i Wkl t) + c.c. fg)

1> k
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by such a way that only one Ck, l]-component of the field Ekl is in

resonance with the fk, 1)- atomic transition. If one deals with the
electric dipole transitions

Hin t = -ECt.) d{t) ,

then by the parity reasons the energetic matrix H0 + Hin t turns

out to be tridiagonal. However, we will treat the general case

Cwhen all the N(N-1),r2. atomic transitions are driven independently

on each other) to he able to include into consideration, if

necessary, other interactions that may couple nonadjacent levels.

The complex variable Ekl(t) measures amplitude, phase, and

polarization of the respective component.

Writing the state vector of a N-level atom in the form

N

Is(t)> = m___iCm(t) ISm> exp f-i wm t), (6)

one can obtain from the nonst, ationary Scrndinger equation the

following set of equations for the probability amplitudes in the

rotating wave approximation

N

iskCt) " _ hI ft,) sl(t) + c.c.
Lk< 1 1 , (7)

where

hklft) = - (I/R_) Ekl(t) dklCt) . f8)

The resonant Hamiltonian has the following structure

Hnnft) -- O, Hklft) = hklft) = H_kCt) , k x I. (9)

Finally, the probability of finding our N-level system on level

n at time t is expressed in terms of the evolution-matrix elements

and the initial populations P as follows
m

N

Pn Ct) = m__l [UnmCt) l?_ Pm £0). C10)
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3. COHERENT CONTROL ON THE SIJ(2) DYNAMICAL GROUP

A quantum system with the

fundamental model in the semiclassical

interactions. The hermitean Hamiltonian

driven system can he cast, in the form

SUC2) dynamical symmetry is a

theory of field-matter

of such an arbitrarily

HOt,) = hoot,) R0 + h*Ct) R_ + hot) R+

with the generators satisfying the commutation relations

JR+, R_ l = 2RO, IRo, R+,_] = tR+_,

where c-number parameters h 0 and h

analytic functions. Writing the

factorized Wei-Norman form [fi]

U = exp (gO - il_ hoCT) dz) R0 exp g_R_ exp g÷R+,

(11)

(12)

are assumed to be arbitrary

evolution operator in the

(13)

one can obtain the. governing equation for g - exp(go_)

.. .
g - ( _ + i h 0 ) g + lhl R g - O, g(O) = 1, (0) = O. C14)

Once the eq. 14 is solved all the other SUCP.) group parameters are

found in quadrat.ures [15,2,3l It follows .from the unitariry of C13)

the simple conservation laws

Igl P" - g_ 9+ = I, 1912 c I + Ig+l P" ) = 1. ClS)
In the two-dimensional representation we get the expression

(1/_) f g [2i(g)* + hog*l/2h*

U = I " I
L C2i g -hog)/2h g * J (16)

which is the time-evolution matrix for a two-level system driven

by an external field with arbitrary amplitude and frequency

modulation. In terms of populations the complete formal solution

of the problem of two-level control is given by the formula

igCT)l?_ = [2P1(0 ) _ 1l -1 [PlCT) + P1(O) - 1l, C17)

where PICO) and PICT) are the input and the output values of the

first, level population, respectively. Since the evolution is

unitary one has P1(t) + P2(t.) = I.
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4. POPULATION CONTROl. OF A RESONANTLY DRIVEN THREE-LEVEL SYSTEM

Let us consider the coherent dynamics of a three-state system

with an arbitrary level configuration simultaneously driven in

resonance by three lasers with arbitrary and different time

dependence_ of their amplitudes. Choosing the phases in an

appropriate way we can write the system Hamiltonian in the matrix

form with the following nonvanishing elements

HIE= H_l = hl2Ct) , H_3 = H3_ = hE3Ct) , H13 = -H31 = -ihl3Ct).
If we write this matrix in terms of the generators of the standard

representation of the SUCE) group, then the time-evolution matrix

is simply the three-dimensional representation of this group [71

u _ Yauv v ?f
UC1) = L-c2,uv*

[Cv_)a lula-lvl a _u*v]
-¥au*v* Cutl2J ' c18)

where u _ g and v* _ - Caig - hog)fdh. ,The governing equation for

the driven three-level system is given by
II

g- IChla-iha3)Chla-iha3 )-1., .. + ih13'g + CI/4)Ch1_ , h?_) g = O.

The complete formal solution of the problem of three-level

population control is given by the formula

{PICO)-PaCO))CPICT)-PaCO))- CP3CO)-PaCO))CP3CT)-PafO))
IgCT)l a =

CPICO)-P3CO))CPICO)+P3fO)-aP2CO))

The useful relation exists between two variables u and v

luCt)l4 - IvCt)l 4 = [PICO) - P3CO)]-I [PICL) - P3Ct)l.

Using the eqs. lO and C18) we can now easily find simple exact

conditions for complete transfer of population from one level to

another and for complete return of population to an initial level.

Let at t=O level 1 is fully populated, i.e. PlCO)= 1, P2fO)= P3{O).

O, then the population is transferod completely to the level 3 at

t,ime t, i.e. P3Ct,)= I, PICt) = P_CL)- O, if gCL) - O. For the same

initial conditions the population returns to the first level at

time t, i.e. PICt) = I, PaCt)= P3Ct)= O, when IgCt) I = I.
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5. POPULATION DYNAMICS OF A RESONANTLY DRIVEN FOUR-LEVEl. SYSTEM

The resonant Hamiltonian of a four-level system simultaneously

driven by six lasers with arbitrary and different time dependences

of amplitudes is given by the eq. 9 with N=4. If the phases are

chooson in such a way that all the Rabi frequencies C8) are purely

imagine ones then the four-level Hamiltonian generates the

following 4x4-matrix realization of the S0{43 algebra

3E 13 El E3 31 IE 14 E4 34 41 4E 43

R I • RE = R 3 "-R I --R_ --R 3 - J1 • JE TM J3 "-J1 "-JE =-J3 • I,
with zero remaining matrix elements and with the following

commutation relations

[Rj, Rk] = ejk I R I, [lj, Jk ] " ejk I RI, [Rj, lk ] = ejk I Jl"
i

One can rearrange this basis by such a way to obtain from the

matrices Rj and .Ik two mutually commuting sets of matrices Ao,+,_

and Be,+,_ with the commutation relations {1E}. Now we can rewrite
our Hamiltonian in the form

HOt} = _ amCt3 A m + bmCt} Bm , C193
mmo, ÷, -

where the following short-hand notations are introduced

ao _ iCh12 - h34 ), 2a_ _ ih23 + h13 -ih14 + hE4,

Ea+ _ ihE3 - h13 -ih14 - hE4, bo _ ifhlE + h343,
C_O}

2b_ = ih23 + h13 +ih14 - h24, b+ _ ih23 - h13 +ih14 + h24.

Since H(t} exactly equals to the sum of the two SU[23

Hamiltonians, commuting with each other, we may use all the results

obtained for the SUCE) dynamical symmetry. Thus the system

posasses SURE3 • SU[2} dynamical symmetry [81 and the evolution

operator can be written in the factorized form U = Ug Uf, where

Ug ffiexp {go A03 exp {g_ A_} exp [g+ A+3,

Uf ffiexp [fo BO} exp [f_ B_} exp [f+ B+)
eel)

4oo



The governing equations for our four-level system take the form

g - _*_;_g * cl_C_o - 1_o;e; 1 * 2_,, c1_o2_g, o,

_" - b,C1 _ * cl_C_o - lbo _÷b;1 , 2b_b,, cl_bo2_f, o,
with the variables g - exp Cgo/2) and f - asp Cfo/2) respectively.

In an explicit form the evolution matrices are the following

-1
Ug =g

g Reg g Img Reg_ -Img_

-g Img g Rag Img_ Reg_

-Reg_ -Img_ gReg -g Img

Img_ -Reg_ g Img g Reg

Uf = f-1

f Ref f Imf Ref Imf
-- t

-f Im f f Ref Imf -Ref
m

-Ref_ -Imf_ f Ref f Imf

-Imf_ Ref_ -f Imf f Ref

where g_ . g C2ig - a 0 g)_a+ and f_ = f C2if - b0 f)/'db+.

Let at t = 0 the first .level is occupied with probability one,

i.e. PICO)= I, P2CO)= p3(o)= P4CO) = O. Then the exact condition

for complete transfer of population to the upper level is given by

Ig-ICRef Img_ + Reg_ Imf) - f-ICReg Imf + Ref_ Img_)i _ . I C8_)

and the condition for the first, level to be completely depleted of
population is

Rag Imf - Img Imf - Cgf)-1CReg_ Ref_ - Img_ Imf_) - O.
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Abstract

Kravchuk orthogonal functions -- Kravchuk polynomials multiplied by the square root

of the weight function -- simplify the inversion algorithm for the analysis of discrete, finite

signals in harmonic oscillator components. They can be regarded as the best approximation

set. As the number of sampling points increases, the Kravchuk expansion becomes the
standard oscillator expansion.

1 Introduction

In a harmonic oscillator environment, such as Fourier optics in a multimodal parabolic index-profile

fiber, sampling on a finite set of discrete observation points reconstructs the wavefunction

through partial wave synthesis. For the harmonic oscillator eigenfunctions, one must invert a
nondiagonal matrix with the dimension of the number of data.

We show that Kravchuk orthogonal functions optimize the algorithm for the expansion coef-

fients, because the matrix is already diagonal.

• Kravchuk functions [1, 2] are solutions of the difference analogue of the SchrSdinger equation

describing a discrete harmonic oscillator system.

• Kravchuk functions have a well-defined analytical structure inside the measurement interval.
i

• Kravchuk functions become the standard oscillator wavefunctions, as the number of sampling
points increases.

J

This contribution is a rdsum6 of Ref. [3].
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2 Harmonic oscillator expansions over a lattice of sam-

pling points

The standard harmonic oscillator eigenfuctions are

1 H,_(_)e__/2, n = 0,1,2,...,

where H.(_) are the Hermite polynomials, _ = VU_/h x, m is oscillator mass, w is oscillation

frequency, and the position coordinate is x. This function set is orthonormal under the /22(_)

inner product:

f/ { 1, whenm=n,(era, _b,_)_ = d_ Cm(_) _b_(_) = 5m,_ = 0, when m 5_ n.
oo

Thus, an arbitrary function f(_) E/:2(_) can be approximated in the norm as

oo

f(_) = y_ c, ¢,_(_),
n=0

where the expansion coefficients {c_}=_=0 are determined by

//c= = (_b,, f)_ = d_ ¢,(_) f(_).
oo

When the g -4- 1 values {f(_j)}N=0 of function f(_) are sampled on the points

1 ___ 1_o= -_gh,... _ (-_N +j) h,... _N= _gh,

then N

f(¢j)= _c(y)¢,(_j), j=o,1,...:v.
'n .= O

The task to determine the N + 1 coefficients {c(N)}N=o is formulated in matrix form as

f = _II(N) c(N),

(2.1)

where

and

f

(f(_0) )

f(_l)

f(_N)

(4N) )

c_N)
e (N) = .

c(Nu)

lilt(N) =

¢0(fo) ¢0(6) ... ¢o(_N))

¢,(_o) ¢,(6) ... 0,(¢N)
• • , . , °

CN(_0) _N(6)... CN(_N)

This is the N x N matrix that has to be inverted to find the coefficients in (2.1).
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3 Kravchuk functions are difference analogs of the osci-

llator eigenfunctions

Kravchuk polynomials k(V)(x, N) are:

• polynomials of degree 0 < n < N,

• in the variable x C [0, N],

• of the parameter 0 < p < 1.

These polynomials are related to the binomial distribution of probability theory [4, 5]. They form
an orthogonal set

N

_-_e(j)k_)(j,N)k(P)(j,N) 2
j=0

with respect to a discrete binomial weight function

e(x) = c;_px(1 -;) N-_.

Kravchuk functions are defined as

¢(V)(x,N) = d-_' k(P)(Np + x,N) e'/2(x + Np),

O < n < N, -Np < x < (1- p)N

(cf. definition of the Hermite functions in Ref. [6]). They obey the three-term recurrence relation

'"-(p) _x N) + p(1 ;)(N + X)g_, (x, N),[x- n - p(N - 9n)]k(V)(x,N) = (n + _),_,_+,_ , - - n

and satisfy the equation

H(N)(z)d(V)(x,N) = (n + l_),./)(v)i_ N),
"r- n _ 2],.t_rt \,L_

with the difference Hamiltonian

_ , _ v/p(1 p)[.(x)_ -°_ +.(z + 1)_°-],H(N)(x) = (1 -- 2p)x + 2p(1 p)N + _ -

namely

[(1 - 2p)x - n + 2p(1 - p)N]¢_)(x,N) = Cp(1 - p)[a(x)¢_V)(x - 1,N) + a(x + 1)¢_l(x + 1, N)].

The oscillator equation of motion in the SchrSdinger representation [7] is [H, [H,x]] = (hw)2x.

l_he difference analogue of this relation satisfied by this Hamiltonian is [1]

[H(N)(x),[H(N)(x),x]] : x.

Finally, the limit N --_ oc of Kravchuk functions is

lira h-I/2¢(;)(h-lf- N) = g,,_(_).
N"-_ oo n \ _,
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The set of Kravchuk functions ¢_)(x, N), n = 0, 1,..., N forms a basis for irreducible represen-

tations of the rotation group SO(3) [8], corresponding to the eigenvalues _ = X:N of the invariant

Casimir operator; the eigenvalues of generator dz are the integer m = n -_N = n -/?. The

representations corresponding to different values of the parameter p turn out to be unitarily equi-

valent [1], so it is sufficient to consider a set of functions ¢_)(x, N) with some fixed value of this

parameter. It is convenient to choose the value p = _, since these Kravchuk functions have definite

parity with respect to reflections of x,

¢O/2)(-x,N) = (-1)n¢O/2)(x,N).

We thus use henceforth the symmetric Kravchuk functions

1 _ n! (N - n)!¢=(x, N) = 2'_-N/2k,_(x + -_N,N) F(½(N + x + 1) F(_(N- x + 1)"

4 Finite approximation by Kravchuk functions

A function f(_) that 'lives in a harmonic oscillator environment', of which the values on N + 1

equidistant points _j are known, is meaningfully expanded in symmetric Kravchuk functions as

1 N

f,,(_j)_ v/__ a(_)¢,_(_j/h,N), j=0,1,...g.
q n=O t

n--0' weTo find the expansion coefficients {_(N) N multiply the above equation by Cm(_j/h, N) and

sum over the sample points _j:

N

_(N) = v/_ ¢,_(_j/h,N) f(_j).
j=O

We thus have only to multiply the sampled values f(_j) by the (numerically calculated) values

of the Kravchuk functions at the points xj = (j/h, for n = 0, 1,..., N, to find the expansion

coefficients. No matrix inversion is necessary.

The sum
1 N

f(_,N)- x/_ _a(N)d'_(_/h'g)' j=0,1,-..,g,
n_--0

interpolates the original function defined on discrete points to the interval [_0, _g] and is a finite

approximation to the square-integrable function f(_). This approximant is finite because for

any fixed N it has a finite support (-h- h -_,h+ h -_) with h = k/2_. When N grows,

the approximation to f(_) becomes better. The time evolution of the approximating function

multiplies each ¢_(_j, N) by the usual time dependence exp(-iE,_t/h), with the equally spaced

energy eigenvalues E_ = hw(n + ½).
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5 Position and momentum functions

The canonical vector basis of position functions

is interpolated to

Ao () A 1 _- (0/1(0)0• , "'" AN = .

o i

N

f(_i)=y_f(N)Ak(_j,N) =f_N), j=0,1,...N.
k=O

These basis functions can be expanded in terms of Kravchuk functions as

1 N

Ak((j, N)=----_LE._(N)¢n(_j/h,N),k,n j = O, 1, ... N,
VU n--O

where the coefficients are

._(u) v/-_¢_(_k/h,U)i k,n
J

for k = 0, 1,... [N/2] and continuous _. These functions are the localized states of the discrete

oscillator.

Momentum basis functions are defined in the same way, because Kravchuk functions are

self-reproducing under the discrete Fourier transformation [2], i.e.

N

3.k(_, N)= _ i'_¢,_(_k/h,N)¢,_(_/h,N).
n_-0
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Abstract

From the minimal action principle follow the Hamilton equations of evolution for geomet-

ric optical rays in anisotropic media. As in classical mechanics of velocity-dependent poten-

tials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy

vector potential, similar to that of linear electromagnetism. Descartes' well known diagram

for refraction is generalized and a factorization theorem holds for interfaces between two

anisotropic media.

1 Fermat's principle

evolution of the ray q" =

Fermat's principle as [3]

Fermat's principle states that the light ray joining two points in an optical medium takes the path

where it employs an extremal time [1]:

dt = _ ds_(¢(s), s)) = 0.

dg
Here we denote by ds the length element along the ray _', the ray direction by q-"= _ and by n the

refractive index of the medium. The refractive index characterizes the optical medium. Constant.

n indicates that the medium is homogeneous (invariant under translations) and isotropic (invariant

under rotations). In anisotropic media, the refractive index depends also on the direction of the

ray [2].
We use one of the Cartesian coordinates of T_3 as the evolution parameter to describe the

q Defining v =- with ds- -dz v/i + v 2 we write
z " dz

ZB dz L(q(z),z;v(z)) = O,
J Z A

with the Lagrangian function /(q, z; v) = V_ + v 2 n(q,z; v).
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2 Evolution equations

The Euler-Lagrange equations that follow from the Fermat principle are [4]

d OL

where the canonical momentuff_ is

0L nv

0= = aji-4-
+ lx/i---+_O--n-n=nil-t - A(q,z,/l),

0v

and we define the anisotropy vector

A = lx/i-4-_ 0_ = (1 _qqT)
0v

On(q,z, it)

We obtain the Hamilton evolution equations through the Legendre transformation

dq OH dp OH

dz- Op' dz Oq

with the Hamiltonian function'

(p-A).A
H(q,z; p)-- p.v - L(q, z;v) -- -_/n 2 -IP - AI _ +

_/n2- IP- AI 2

In anisotropic media, the three-vectors of ray direction q, momentum/7, and anisotropy .4, are

thus characterized by:

/7= nq_+ A(4, q-'), pz = -H, Iq-*l= 1, I/7- AI = n(4, 4),

i.e., we have the orthogonal decomposition of momentum/Tinto ray direction 4and the anisotropy

three-vector

• " _ =i_oOn 6¢ On

The anisotropy vector is orthogonal to the direction of ray propagation _.

While Iq-'l sweeps over the ray direction sphere $2, the vector/7- A draws out a closed surface

n(q, 4)--the ray surface at the space point _*, and the three-vector/7 ranges correspondingly over
another closed surface that we call the Descartes ovoid of the anisotropic medium at _'.

The Hamilton equations are thus written in manifestly euclidean-covariant form as

d4 OH /7- ,4 d/7 OH _ n On
-- __ .

dz 0/7 pz - A_' dz 04 p_ - Az 04

On

From the second equation it follows that d/7 x -_ = O. As in the isotropic case, we get the Ibn

SaM [5] Snell law of refraction between two anisotropic media [6].
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FIGURE 1. Dipole medium: the momen-

tum 1_of a ray is obtained by adding the

direction vector q-times n o to the dipole

vector of the medium/:J. The _nisotropy

vector A ranges over a cardioid-type sur-

face.

3 Dipole anisotropic media

Consider the refractive index with linear dependence on ray direction

n(q,q-*) = n°(_*)+ D(_',q-'),

D(g, q-') = _ Dj(g)q_ = _(g)T_.
j=x,y,z

We call n o the monopole part of the medium and/_ its dipole vector. The anisotropy vector is

_(1) : (1 - gq--T)/j :/_ _/jT(q-*)g= (g X /_) X _.

This vector lies in the plane of g and /_, and is orthogonalto the ra.y direction _. The relation

between ray direction and optical momentum is ig= n°g+ D. While g E $2, the Descartes ovoid

is a sphere of radius n°(q) and center at/_. (See Figure 1).

4 Quadrupole media

Consider now a refractive index with quadratic dependence on ray direction g

n(g,g) = n°(g)+Q(_,q'),

Q(q, q-') = Z Qj,k q_gk = q-'TQ_.
j,k=x,y,z

We have a _-quadratic summand with coefficients Qi,a in a 3 x 3 optical quadrupole matrix

that must be symmetric and traceless. It is common to restrict consideration to principal axes; in

that frame of reference, Q = diag (Qx, Qy, Qz) and Q_ + Qy + Q_ = 0. Then, the anisotropy and

momentum vectors are

%(:) = 2(1- q-.q-.Z)(_g= 2[Qq-'- Q(g,g) g],

_= [n(g,g)+ 2(1_ gq_T)_lq-=(_0+ 2Q_ g_Qg)_
In two-dimensional optics, 2 x 2 symmetric traceless matrices have two independent coefficients

that describe the ellipticity and orientation of the figure. When q_ ranges over the sphere of

directions $2, iff will range over the Descartes ovoid of the quadrupole medium. (See Figure 2).
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FIGURE 2. n°q" ranges over the sphere

(circle in the two dimensions of the figure)

of radius n °, n_ over the peanut-shaped

surface, and the momentum /7 draws a

Descartes oval. The thin lines joining

points on tile circle and on the oval re-

late the direction of the ray with the corre-

sponding direction of the momentum vec-

tor.

i

l" \

5 Free propagation in homogeneous uniaxial media

For the uniaxial quadrupole media we can write the refractive index as

n(q = no + 0 u 0 _)

0 0 -2u

where n o is the monopole part and u is a quadrupole anisotropy coefficient.

Putting dI in terms of v, we can write out the components of momentum as

p = (n ° + 4.)q - 3v/t 2 _t = (1 + v2)-z/2[(n ° + 4v) + (n o + u)v2]v

For free propagation, the Hamilton equations and their solutions are:

dq
d--_ = v =_ q(z) = q(O) + zv,

dp=
dz 0 =_ p(z)= p(O).

Although the solutions are apparently independent of the anisotropy of the medium (they are

straight lines in space), the anisotropy is expressed through the relation between the ray momen-

tum p and the ray direction v. In isotropic media, the momentum vector is n times the direction

vector and we can easily invert this particular case to [7]

P P = n °v = - -- Iv[ tan0 (u = 0).
pz'

In the more general uniaxial anisotropic case, to find a simple closed inversion, we expand this

equation with a Taylor series in (v2)kv for k = 0, 1,2,... and propose a similar expansion of v in

powers of (p2)kp. Equating the series we find the expansion coeffÉcients

1 0 3/ 0",2 _.5nOv1 _n +5u p2 _t n ) + +51u2
v(p) - nO+4--------_p+ (n0+4u)4 p+ (nO+4v)7 (p2)2p

+_(n°) 3 + _(n°) 2v + 114n°u2 + 650ua (p2)3p + ...
(s o + 4u) 1°
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FIGURE 3. Descartes diagram to construct

refraction angles between two anisotropic

media. /
J

Q

The evolution Hamiltonian is then

V 2

H(p) = p.v-(n °-2u)v/i -+v 2 -3v
v/i + v2

n o + 10u 3(n°) 2 + 60n°u + 408u 2
1 p2 + (p2)_ -t- (p2)3

= -(n o - 2u) + 2n----g 8(ne)4 16(n_) _

-t 5(n°)3 + 150(n°)2v + 1824n°u2 + 10400u3
128(n_) '° (p2)4 +... ,

where n _ = n o + 4u plays the role of an effective paraxial refractive index. In the isotropic case

(when u = 0), this is the expansion of -_, the well-known optical Hamiltonian for such a

media [8].

6 Finite refraction

Let us consider the case when rays cross the flat interface z = 0 between two different aligned

uniaxial quadrupole anisotropic media. Let their refractive indices in two half-spaces be n(q*)

and n'(q-*) with monopole parameters n o and n °', and quadrupole anisotropy coefficients u and

u _, respectively. The refraction law claims that the projection of the momentum vector on the

refracting surface is conserved, which for our refracting surface gives p = p'. Generally, the

incident and refracted rays are not coplanar with the surface normal. However, in the aligned

uniaxial case both refractive indexes are axially symmetric (under rotations around z-axis) and

the two anisotropic vectors are coplanar with the suface normal (z-axis). Refraction in our case

is thus coplanar.

Using 'ruler, compass and plotter' on the plane Figure 3, we construct the Descartes diagram

for the point at the interface joining two 'half Descartes diagrams' and matching the length of the

momentum vectors p and pr on the interface. To find the angle of refraction 0_ in terms of the

angle of incidence O, we construct _1'(_t; n °, u; n °', v') expanded in series of sines, and find

sin0' n_ --3 [( n_)u' ] __27 (' n_ '/2 u, [( n_ )a , ]- n_ , sin0 + n_ , _ - u sin 3 0 + (ne,)2 \_72 _ u - u sin s 0
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v' v' - v 4_-g7 - v sin _ 0 +...,/

The first summand is the very well know law of sines (Ibm SaM-Snell law [5]); it is here also the

pavazial approzimation with the ratio of effective refractive coefficients. The succeding terms are

corrections of orders v k'and sin 2k+1 0 due to anisotropy.

7 The roots of refraction

We consider now the ray transformation due to refraction at a smooth surface S(_ = ((q) -z = 0

between two general anisotropic, homogeneous media n(q-') and n'(q_). The rays in the first and

in the second media are given correspondingly by the equations

q(z)=q+zv, p(z)=p, z<2,

q'(z) = q' + zv', p'(z) = p', z >

where we have indicated the point of impact at the refracting surface by bars q-"= (_t, 5 = _(q)).

We can formally consider the second pair of equations also on the left of the refracting surface,

z < £_. It allows to parametrize the rays behind the surface by the coordinate q' and momentum

p' on the same screen z = 0; v and v' are the two ray directions on the screen. Thus, the point

of impact coordinates can be written in two ways:

q(£') = q + _(g::l)V = q = q' + (((:t)v '= q'(5).

This is the first root equation of refraction [9]; it is an implicit equation for Cl.

The second root equation follows from the conservation of the tangential component of mo-

mentum and implies the refraction law. If the normal to the surface S is denoted by VS(_ =

(¢'_, Cy,-1) = (E(q),-1) then we have (/7-/7') × VS(_ = 0. As we know, the momentum

vector has components/7 = (p_,py,pz) = (P,-H). Denoting the Hamiltonians before and after

the refracting suface as H and H' we can rewrite the last equation containing the vector product

aS

p- H(p):E(_/) = p = p'- H'(p'):E(q).

This is the second root equation determaning explicitly p once q has been found.

We have thus determined the root transformation for generic surfaces S = _(q) -z = 0 between

homogeneous, anisotropic media. On optical phase space the root transformation is

TC,_;_:q H q=q+v(p)_(q),

T_n;¢:p H p=p-H(p)_(q),

where v(p) and H(p) contain the refractive index function n(q-'). From our construction follows

that the refracting surface transformation

S,,=,;< : (q,p)_-* (q', p')

thus factorizes into the product of the root transformation in the first medium and the inverse

root transformation in the second medium, S,,,,¢;i = T_=;i (T_,_,;i) -1. When the surface S is a
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FIGURE 4. Refraction at a surface is

a map between phase space points (q,p)

and (ql, pl). This transformation visi-

bly factors into transformations back and

forth from the point of impact q on the

surface z = ((q).

q"

q

._ I_ I_ !

i
/ *

z = constant plane, the second root transformation is simple free flight by generic z. The root

transformation is illustrated in figure 4.

Let us consider explicitly the example of the symmetrical surface under rotations around z-axis

((q) = (2q 2 + _4q 4 +....

The refraction by such a surface is determined to third aberration order as [9]

q! __--

pt =

q 2(1 1) i 0,2 ,IE 0_2 1n o' + 4v' n o + 4u q2p + 2(22 n o' + 4u q2q,

(1 ,)p+2(2([n °'-2u']-[n °-2v])q+(2 nO,+4u, n °+4v p2q

[n°' - 2_']- [n°- 2_] [n°' - 2_']- In° - 2.]
-4(_ n o' + 4v p.qq- 2(_ n °' + 4u q2p

+4@ 3 ([n°'- 2u'] - [n° - 2u])2 )n °' + 4u - (4 ([ n°'- 2u'] - [n o - 2u]) q2q.

The paraxial part of the transformation is recognizably,that of a quadratic surface.
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