077

w25
NASA Conference Publication 3286

Second International
Workshop on
Harmonic Oscillators

Edited by

Daesoo Han
Goddard Space Flight Center
Greenbelt, Maryland

and

Kurt Bernardo Wolf

Instituto de Investigaciones en
Matematicas Aplicadas y en Sistemas
Cuernavaca, Morelos, Mexico

Proceedings of the conference held at
Cocoyoc, Morelos, Mexico
March 23-25, 1994

National Aeronautics and
Space Administration

Scientific and Technical
Information Branch

1995



The Organizing Committee

OcTavio CASTANOS ICN-UNAM
ALEJANDRO FRANK ICN, IF-UNAM
DAESOO HAN NASA/GODDARD
Luis F. URRUTIA ICN-UNAM
KURT BERNARDO WOLF IIMAS-UNAM

for CIFMA ac

Organizing Institution

CIFMA Centro Internacional de Fisica y Matematicas Aplicadas, AC

Supporting Institutions

UNAM Universidad Nacional Auténoma de México, incl.:

CIC Coordinacién de la Investigacién Cientifica
DGAPA Direccién General de Asuntos del Personal Académico
DGIA  Direccién General de Intercambio Académico
ICN Instituto de Ciercias Nucleares
[F  Instituto de Fisica
FC Facultad de Ciencias
IIMAS Instituto de Investigaciones er adas y en Sistemas

FUNED Fundacién Mexicana par la Ciencia, AC

CLAF Centro Latino Ame-
IAMP International A-

ISF  Internations’
NASA Nationa’

This publication is available from the NASA Cenu. .ation,
800 Elkridge Landing Road, Linthicum Heights, MD, 4, 621-0390.




Preface

The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda
Cocoyoc from Makch 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited
lectures, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five
sessions of this volume.

The Organizing Committec was asked by the chairmen of several Mexican funding agencies
what exactly was meant by harmonic oscillators, and for what purpose the new research could be
useful. Osciladores Armoénicos -as we explained—is a code name for a family of mathematical
models based on the theory of Lic algebras and groups, with applications in a growing range of
physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum
optics and communication theory. Yet it is true that the Workshop —and these Proceedings—
are not by/for front-line industrial soldiers, but by/for strategic planners in the staff room, where
academic curiosity should be quite welcome. While in México we have no dearth of academic
excelence (with tradition precisely in harmonic oscillators), local industry has yet to train the
infantry to translate applicable science into applied research.

The Harmonic Oscillators 1T Workshop was funded and organized through the Centro
Internacional de Fisica y Matematicas Aplicadas (C1FMA). Tt is intended that CIFMA
develop in México the manifold activities pionecred by the International Centre for Theoretical
Physics, in Trieste, with special attention to the perceived scientific and technological needs and
strong points of this country and the Latin American region. The Cuernavaca center adds to the
existing networks initiated by the Centro Latino Americano de IFisica, in Brazil, and the Centro
Internacional de Fisica, in Colombia. Through the great generosity of the Moshinsky family it
was possible to announce at the Workshop Dinner that CIFMA is starting construction of it own
installations at the campus of the National and State universities in Cuernavaca. It was very
encouraging for our travails to sce that our guests remarked the meeting’s research atmosphere
more than the excelent weather.

Indeed, on a lighter note, Professor Roy Glauber declared he was on a secret fact-finding
mission for the US Congress, to sce if after the NAFTA agreement all the harmonic oscillators
would be rushing South (— with a giant sucking sound, as KBW recalling RP’s one-time one-liner
remarked) due to better conditions. Yes, they were. We see the motion as harmonic.

Professor Young S. Kim touched a sensitive chord in physics when convening the very
successful first Harmonic Oscillators meeting at the College Park campus of the University of
Maryland (March 25- 28, 1992). [Proccedings: NASA Conference Publication 3197 (1993), Iid. by
D. Han, Y.S. Kim and W.W. Zachary.] An informal harmonic oscillators ‘network’ now cxists
that is strengthened with these Proceedings. The Speakers of the Second Workshop will act as
a Standing Committee for further meetings. It is now up to the local organizers of the Third
Workshop to provide an attractive program for the Harmonic Oscillators community to gather
agalll.

Timely technical help for the composition of this volume is gratefully acknowledged to
Natig M. Atakishiyev. Mesuma K. Atakishiyeva, and Guillermo Krétzsch, at IMAS-UNAM in
Juernavaca.

-—THE EDITORS
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ALGEBRAIC THEORY OF MOLECULES

F. Iachello
Center for Theoretical Physics, Sloane Physics Laboratory,
Yale University, New Haven, CT 06520-8120

Abstract

An algebraic formulation of quantum mechanics is presented. In this formulation, opera-
tors of interest are expanded onto elements of an algebra, G. For bound state problems in v
dimensions the algebra G is taken to be U(v + 1). Applications to the structure of molecules
are presented.

1 Introduction

The development of new experimental techniques is giving rise to a wealth of information on com-
plex systems. This information needs to be understood in terms of theoretical models which can,
on one side, describe the observations and, on the other side, make predictions for other experi-
ments. In view of the accuracy of the experiments, one needs new and more accurate mathematical
models. For quantum mechanical problems, a natural framework is provided by the Schrodinger
equation. In complex systems, the direct solution of the multiparticle Schrodinger equation be-
comes rather difficult and one many seek alternative methods. In this note, an alternative method,
called algebraic theory, will be introduced and discussed briefly. The method will then be applied
to the study of the structure of molecules. Problems of current interest in this field are, among
others, the substitution of atoms in a large molecule leading to a lowering of symmetry, the poly-
merization process in which dimers, trimers, ... are formed from the original molecule, the study
of new molecules, such as the cage fullerene molecules, Ceo; - - ., and, particularly important, the
study of molecules at high excitation energy. An example of the latter will be presented.

2 Algebraic Theory

The logic scheme of algebraic theory is as follows:

Quantum mechanical problem

4

Algebraic Structure



Lie Algebras

Graded Lie Algebras

Infinite Dimensinal Lie Algebras (Kac-Moody)
q-Deformed Lie Algebras (Hopf)
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Observables

Spectra
Transitions
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Experiment

In the first step, all quantum mechanical operators of interest are mapped onto the elements
of an algebra, G. For example, the Hamiltonian operator is written as

H=FE,+) €Ga+ ) upsGoGs+... , GoeG . (1)
o af

The algebra G is called the spectrum generating algebra (SGA) and H is in the enveloping algebra
of G.

In some cases, it may happen that the Hamiltonian H contains only certain elements of G, the
invariant Casimir operators of G and of one of its subalgebra chains, G D G' > G" > ...,

H=f(C) . (2)

This case, called a dynamic symmetry, plays a special role in algebraic theory, since then the
eigenvalues of H can be obtained in closed analytic form in terms of the quantum numbers char-
acterizing the representations of G D G' D ...

Dynamic symmetries and spectrum generating algebras have been used in various contexts for
more than 30 years [1]. As a result of the systematic investigation and use in the context of nuclear
and molecular physics, initiated with the introduction of the interacting boson model [2] in 1974
and of the vibron model [3] in 1981, it has become clear that all quantum mechanical problems
in v space dimensions can be mapped onto the algebra U(v + 1) and all its states assigned to the
totally symmetric representation [N] of U(v + 1)[4]. Examples of this mapping are given in the
following section.

3 One dimensional problems

To begin with, consider the single case of one space dimension, v = 1. A trivial application
of algebraic theory is provided here by the harmonic oscillator. The Schrodinger (differential)
equation



H=s (———+w2) , Hypn = Etm
T
with eigenvalues E, = (n + ;), and eigenfunctions

un(z) = [W%2"n!]—% (:c — Eda—;)n e 57

(the Hermite polynomials), can be mapped into

1
= (da+3) |

with the same eigenvalues E,, = (n + ;) and eigenstates

In>=(n!)"2(a')" |0 >

Vo

Here

The algebra 1s



called the Heisenberg, quantum mechanical or oscillator algebras [5]. The mapping produces a
great simplification both in the evaluation of the matrix elements of operators which are integrals
in the differential formulation

oo d
o = [ k) (5157 ) ool ©)
and algebraic functions in the algebraic formulation

Ly =<n']| f(a,a") |n> . (10)

A slightly more complicated problem is provided by the anharmonic Morse oscillator [6], Fig.1.
The Schrédinger equation with

h? d?
H= gt +V(@), V@)= Dll - cap(-fa)]" (11)
with eigenfunctions
Po(z) = N,z Ve $+isf[20-2v-1(;)
Bz 1 1
z = 2pe P ,n:ﬁ 2uD ,'v=0,1,...,17—§, (12)

and eigenenergies

D 1. 1r%*p? 1
= 2hBy/ — =) — = )2
E(s) = 20830+ )~ 3" 2o+ 1) (13)
can be mapped onto the algebra G = U(2) with elements F,, F_, F;, N and corresponds to the
dynamic symmetry U(2) D 0(2) of this algebra. The Hamiltonian is

'H=AC , C=F}-N* (14)

with eigenenergies

E(m)=A(m? - N?);m=N,N—-2,..., lor0 (N = oddor even) . (15)
The eigenvalues can be brought into the standard vibrational form introducing v = (N — m)/2 ,

E(v) = —4A(Nv —v%); v=10,1,..., %or —21\1 = %(N = evenor odd) . (16)

With some small changes this is seen to correspond to Eq.(13). The eigenstates can be written as
| N,v > and observables calculated as

<N |T(G)|Nyv> , (17)

where T (G) is the appropriate operator built from the elements of G. By making use of the
algebraic method, all results of the anharmonic Morse oscillator can be found easily. (Note that in



the association of the Morse oscillator with U(2) D O(2) only the positive branch of O(2),m > 0,
has been used.)
As a third simple case, consider the anharmonic Poshl-Teller oscillator

D
Viz) = - coshlaz

This potential can also be associated with U (2) D O(2) and Hamiltonian (7]

(18)

H=AC (19)

with eigenvalaues
E(v) = —4A(Nv — v°) (20)
One can see from (16) and (20) that the Morse and Poshl-Teller potentials have the same bound
state spectrum (isospectral potentials). (This statement is not true in v = 2,3,... dimensions.)

The Morse and Pdshl-Teller potentials in 1 dim belong to a class of potentials called exactly
solvable since their eigenvalues can be written in explicit analytic form. All exactly solvable
potentials in 1 dim have been classified.

The overall algebraic structure of 1 dim problems can be written as

U(2) >0(2)=U(Q) ,
Jc
H(2) D0Q2)= U(l) . (21)

In this equation, the arrow with a c denotes a contraction of the algebra of U(2). (In addition
to the contraction U(2) ¢ H(2), there is another one U(2) ¢ E(2), where E(2) is the Euclidean
algebra not discussed here.)

4 Multidimensional problems

In more than one dimension, the connection between the Schrodinger equation and the corre-
sponding algebraic equation is not so straightforward, with the only exception of the harmonic
oscillator and Coulomb problem. It is here that algebraic methods are particularly useful, since by
formulating directly the problem in an algebraic framework one can construct the spectrum and
calculate observables without reference to a specific form of the potential. The algebraic structure
of three dimensional problems can be written as [4],[8]

U@) o 0@3) > 0(2) (I
/
U(4)
o) > 0@3) > 0(2) (11) (22)
cl !
H(4) 5> U@3) > 0@3) O 0(2) (117)



The chain (I) corresponds to Schrédinger problems with Péschl-Teller-like potentials, the chain (II)
corresponds to Morse-like potentials, while the chain (IIT) corresponds to the harmonic oscillator
in 3 dim.

In general, in v dim one has

U(v) D

Ulv+1)

LN

(23)
cl O(v+1) D

Hy+1) > UW) >

where now additional chains may appear in the reduction of U (v +1). The five dimensional case,
v = 5, has been extensively investigated in the context of nuclear physics [9]

5 Algebraic Theory of Large Molecules

The algebraic approach of Sect. 2 can be used to study molecular structure. For reasons that will
be mentioned in the subsequent section, it is convenient to separate large molecules from small
molecules (large here means molecules with more than 4 atoms). In large molecules each degree
of freedom, x,y,z, is quantized with U(2) and the total spectrum generating algebra is taken to be
G = ¥, @Ui(2) [10]. A calculation of spectral properties proceeds then as follows: In step 1, all
atoms are numbered, NV in step 2, three coordinates are assigned to each atom for a total of 3 A/;
in step 3, each coordinate is quantized with U(2) > O(2), thus being treated as an anharmonic
oscillator; in step 4, the oscillators are coupled with Hamiltonians

3N N
H = Zh,’-l— Z wi; . (24)
1=1 i>75=1

The structure of the Hamiltonian (24), when written in terms of the elements of the algebra G is

hi = o + Ai(Fo — N)? Jwij = Ag(Fib; + FLiFyj) (25)

The h; terms are diagonal in the basis U;(2) > 0:(2) characterized by the quantum numbers
|Ni,v; > discussed in Sect. 3, while the w;; are given in Ref. [10],(11]. In the final step 5, the
spurious species corresponding to overall rotations and vibrations, are identified and removed by
diagonalizing the Harhiltonian

H =H+P , (26)

where P is a projection operator into the spurious species and A is taken to be a large number
such that the spurious species are moved to a large energy. The removal of the spurious species



leaves 3N — 6 non spurious vibrations. This procedure produces the vibrational spectrum of the
molecule.

FIG. 2. Schematic representation of benzene ( C¢Hg ).

In a similar way one can compute intensities of transitions. There are two types of transitions
of importance in mo}‘_ecules, infrared (IR) and Raman (R) transitions. For infrared transitions,
the appropriate operator is a vector. Each component x,y,z of this vector is written in terms of
elements of G, 1.e.

Tx = Z [0 5 xii N £,’ = 6_'6'.(13‘+"+ﬁ_i) s e . (27)

The matrix elements of the operator (27) (and T, , T.) are then evaluated algebraically. For
Raman transitions, the appropriate operator is a symmetric quadrupole tensor. The six compo-
nents of this tensor, z%,y?, 22,2y, zz,yz , are also written in terms of G and their matrix elements
evaluated algebraically.

As an example of vibrational analysis of large molecules, consider the case of benzene, C¢He.
The benzene molecule has the geometric structure shown in Fig. 2. A problem which arises in
large molecules is that of the discrete symmetry of the molecule. In the case of benzene, the



appropriate symmetry is Dg,. The discrete symmetries of molecules can be simply implemented
in the algebraic framework. For example, consider the six stretching vibrations of the hydrogen
atoms in benzene. All hydrogen atoms are equivalent. The Hamiltonian (24) which describes
those vibrations . .

H= ZA,'C,’ + Z A,‘jM,'j ) (28)

i=1 1<j=1

where C; and M;; are a short-hand notation for the terms in (25), must be such that one cannot
distinguish the equivalent atoms. Thus, all A;’s must be equal, A; = A. In the interaction term,

there are three contributions, first, second and third neighbor interactions. These too must be
equal, /\,(-JI-) = /\(’),)\,(-JU) = A1) and /\g”) = AUI), The Hamiltonian H thus becomes

H = AC + AN g) 4 \UN gl | \UgIl) | (29)

and is characterized by a smaller set of parameters. The operators C, s gUn) gUI) are ap-
propriate linear combinations of the Ci’s and M;;’s. A corollary of the algebraic method is that
certain linear combinations of the operators M;; are symmetry adapter operators of Dg; and the
irreducible representations of Dg;, are obtained automatically by diagonalizing them [10],[12].

Using the algebraic method discussed above it has been possible to study the complete spec-
troscopy of benzene [13]. This molecule has 12 atoms and thus 36 degrees of freedom, 6 of which
are spurious. The 30 non spurious species are shown in Table I.

TABLE I: Coordinates and symmetry species of benzene.

Coordinates Number Species Spurious
CH stretch 6 By + B+ B+ Ay |

CC stretch 6 Aig+ B+ Eqy + Eyy

CH in plane bend 6 Ey, + Bou + Eoy + Ay,

CH out of plane bend 6 Azy + Byg + Eig + B3,
CC in plane bend 343 By, + Ey A, + Ey,
CC out of plane bend | 343 Bag + E, A, + Eqy

The calculation describes the observed vibrational states not only in the low excitation energy
region, fundamental vibrations, but also in the high excitation energy region, overtones. An
example is shown in Fig. 3. This region cannot be described in the harmonic approximation and
thus the use of algebraic methods based on the anharmonic Morse or Pdschl-Teller oscillators are



crucial for an accurate description of the observed spectra.
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FIG. 3. (a) Opto-thermal spectrum in the region of the Av = 3 overtone of the
stretching CH mode of benzene. The full-line is a low-resolution experiment. (b) The
spectrum calculated by means of algebraic theory. From Ref.[14].



6 Algebraic Theory of Small Molecules

For molecules with a number of atoms less or equal to four, it is possible to quantize each vector
degree of freedom, 7 = (x,y,z), directly in terms of U(4). When quantized in this way both
rotations and vibrations are simultaneously included.

(b)
(a) (c)
Y X
X Y wAG 7
rd
X Z mZ 3V

FIG. 4. Bond variables for small molecules.

It is also convenient to treat as vector variables the bond degrees of freedom, Fig.4, rather than the
coordinates of the individual atoms, thus avoiding the problem of spurious states. The quantization
scheme is thus here G = Y; ®U;(4). This scheme has been extensively used to treat diatomic
molccules with U(4), triatomic molecules with U(4) & U(4) [15] and four atomic molecules with
U(4)® U(4) ® U(4) [16]. It has also been possible recently to study high order interactions such
as rotation-vibration couplings.

7 Conclusions

Algebraic methods have been used in recent years in the study of molecular structure. When
applied to this system, algebraic theory offers two main advantages: (i) The use of Lie algebras to
describe the interaction (Morse, P6schl-Teller, ...) allows one to extend the traditional harmonic
analysis to anharmonic analysis. One can thus deal easily with highly excited states of molecules
where anharmonicities play a crucial role (a subject of current experimental interest especially in
connection with intramolecular relaxation and energy transfer.) (ii) The use of algebraic operators
to couple the individual modes of a molecule allows one to construct symmetry adapted states in
a simple way. One can thus deal with complex molecules where discrete symmetries play a crucial
role.
The algebraic method can be used in molecules in two ways:

A) With rotation and vibrations treated separately. In this case the spectrum generating algebra
is

10



G = Gror®Gvis
Gvip = Z@Ui(2) . (30)

B) With rotations and vibrations treated simultaneously. In this case the spectrum generating

algebra is

G = Z oU(4) . (31)

The latter case is more complete, but more difficult to treat than the former, since one has to deal
with the Racah algebra of U(4).

In view of its simplicity, the method is particularly well suited for a studly of complex systems
such as macromoleculgs, clusters, polymers, .... Work in this direction is in progress. An account
of the algebraic theory of molecules is given in Ref.[17] and the mathematical formalism of Sects.
5 and 6 is reviewed in Ref.[18].
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Abstract

For zero energy, F = 0, we derive exact, classical and quantum solutions for all power-law
oscillators with potentials V(r) = —y/r, ¥ > 0 and —00 < v < co. When the angular mo-
mentum is non-zero, these solutions lead to the classical orbits p(2) = [cos u(@(t) — @o(t))]1/#,
with g = v/2 — 1 # 0. For v > 2, the orbits are bound and go through the origin. We cal-
culate the periods and precessions of these bound orbits, and graph a number of specific
examples. The unbound orbits are also discussed in detail. Quantum mechanically, this sys-
tem is also exactly solvable. We find that when v > 2 the solutions are normalizable (bound),
as in the classical case. Further, there are normalizable discrete, yet unbound, states. They
correspond to unbound classical particles which reach infinity in a finite time. Finally, the
number of space dimensions of the system can determine whether or not an E = 0 state is
bound. These and other interesting comparisons to the classical system will be discussed.

1 Introduction

This all really started in Moscow, in 1992. That is where I met my colleague, Jamil Daboul, at
the Second International Workshop on Squeezed States and Uncertainty Relations. It was held
at the Conference Center-Hotel that the Russian Academy of Sciences uses. Late at night Jamil
and I would get into sessions on life, physics, women, politics — you know, the usual stuff - while
we drank his scotch.

The physics came around to musings about why certain problems can be solved exactly while
others cannot, and the symmetries associated with such problems. There is a “folk-theorem” I
often think of, which certainly is not exact but also certainly is intriguing. This theorem declares
that if you can solve (or not solve) something classically the same is true quantum mechanically,
and visa versa.

lEmail: mmn@pion.lanl.gov
2Email: daboul@bguvms.bgu.ac.il
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Things stood there until Jamil visited me last year, and we took things up again. While
wondering about the role of the Runge-Lenz vector in potential systems, a number of small
observations started us down the line: a) the classical orbit for the attractive —v/r* potential
with centripetal potential barrier can be solved exactly; b) this type of quantum system is usually
only discussed for E # 0; c) for E = 0, both the classical and quantum equations are simpler.
Eventually we found out that all potentials of the form:

v 7

V(r):_;'_l/‘:—r2u+2’ ’7>0, —oo<yr <o, (1)

can be solved exactly, both classically and quantum mechanically, for zero binding energy, £ = 0.
_ In what follows, it will be useful to switch back and forth between the variables v and p related
by

p=( 22, v=20u+1). 2)

Therefore, contrary to the usual scenario of solving a particular potential for all energies, one
could solve an infinite system of potentials for a particular energy. The physics that came out
was most amusing. In this piece I will report on this work. For further details you can consult a
letter on the new results for the quantum system [1], as well as longer articles on the classical and
quantum physics involved (2, 3].

In Section 2 I will demonstrate the solution to the classical problem. Section 3 contains
amusing specific examples of some of the classical trajectories. The quantum solution will be
given in Section 4. Section 5 contains interesting aspects of the quantum solutions, and then I
give a brief closing comment.

Before continuing, 1 wish to further parametrize the power-law potentials as

2 12 g2
V(r)E—lE—&)g—— 0 g—, p=r/a. (3)

rY pY " 9ma? pY

The dimensional coupling constant, 7, is more useful in classical physics. The dimensionless
coupling constant, g*, is more useful in quantum physics. Note, in particular, that the constant Lo
becomes h in quantum physics. Finally, the “effective potential,” including the angular-momentum
barrier, is

L2 ¥

- (4)

2mre ¥

U(L,r) =

2 Classical Solution

Let us now obtain the classical solution. By substituting the angular-momentum conservation

condition
¢ = L/(mr?) (5)

into the energy conservation condition

14



one obtains

(dr) _|_‘,JZM_ (7)

do L2

This is essentially a first-order differential equation, which could be formally integrated. How-

ever, for £ = 0, it is much more efficient to solve Eq. (7) directly. Converting to the dimensionless
variable p = r/a and substituting V into Eq. (7), we obtain

dp :
de

For v = 4 the right-hand side of this equation is unity, so the solution is a cosine. This is the
circular orbit p = cos¢ which we will discuss in the next section. Guided by this we multiply Eq.

(8) by p*~* to yield {
L\t doi \ 2
(ﬂ’ 1@) +P“‘:<ﬂ5¢) b =1 (9)

Now, p* satisfies the differential equation for the trigonometric functions. Therefore, the general
solution of Eq. (9) is given by

v—2
2

p" = cos plp — o) = cos [ (v — @o)] ) (10)

or

p=lcos p(p—po)l'™ = [COS (V;;)(»D—«po))]ui? : (11)

<

The phase, o, is the integration constant.

Actually, for bound trajectories, which are the case for v > 2, the angle ¢ and the phase g
both change value at the origin. There a particle is both at the end of a particular orbit (which
starts and ends at the origin) and also at the beginning of the next orbit. ¢ changes value because
of the use of polar coordinates and ¢ does because of the singular nature of the potentials. One
has to be careful in matching solutions for bound orbits, and I refer you to Ref. [2] for the details.
For now just note that this problem can be taken care of, and we set po = 0 for the first orbit.

3 Classical Trajectories

3.1 Bound trajectories: 2 <vor 1<y

For 2 < v or 1 < p, the trajectories go out of and back in to the origin in a finite amount of time.
The reason for this is that the dynamic potential dominates at the origin, but the centripetal
barrier dominates at a finite distance. The effective potential then asymptotes to zero from above
as r — 0o. This is shown in Figure 1.

These bound orbits have an opening angle at the origin of

o, = " T (12)
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FIG. 1. The effective potential obtained from Eq. (4) for v = 4 in units of &/2,
as a function of p = r/a. The form is U(p) = 4/p* — 1/p*.

Pyz(%—l)r:(j:;>w, \(13)

which means that if v is a rational fraction, the trajectory will close after a finite number of orbits.
The classical period of an orbit is

o [maz] VT T(b) b=
’ L] |ulT(o+1/2)" -

(Once again, see Ref. [2] for details.)

Starting with very large v, the first orbit describes a very thin petal. The second orbit precesses
by almost —x, being a thin petal almost on the opposite side of the first orbit. As v gets smaller,
the petals become larger and the precession per orbit becomes smaller.

For example, the v = 8 case, has three petals. Here a petal is 7/3 wide and the precession per
orbit is —27/3. Thus, there are three orbits before the trajectory closes. Note that here the three
petals in a closed trajectory cover only half of the opening angle from the origin. We show this in
Figure 2.

The case v = 6 is very interesting. The width of a petal is /2 and the precession is —7/2
per orbit. Here, the width of a petal and the precession are exactly such that there is no overlap
and also no “empty angles.” It takes four orbits to close a trajectory. This is shown in Figure 3.
We see that the physical solution consists of two perpendicular lemniscates (figure-eight curves
composed of two opposite petals).

The precession per orbit is

= >0. (14)
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3rd

first

2nd

FIG. 2. The first three orbits for » = 8. Each orbit is precessed —27/3 from the
previous one, so that by the end of the 3rd orbit, the trajectory closes. In this, and
later orbits, we show cartesian coordinates for orientation.

FIG. 3. The first four orbits for » = 6. Each orbit is precessed —x/2 from the
previous one, so that by the end of the 4th orbit, the trajectory closes.
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-0.5

FIG. 4. The orbit for v = 4. It is a circle, and repeats itself continually.

FIG 5. The first two orbits for » = 3. Each orbit is precessed 7 from the previous
one, so that by the end of the 2nd orbit, the trajectory closes.
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When we reach v = 4, the petals have widened so much that they form a circle. The circle
starts at the origin, travels symmetrically about the positive z-axis, and returns to the origin.
The precession is zero, so the orbit continually repeats itself. In I'igure 4 we show this orbit.

As v becomes less than 4, we can think of a petal obtaining a width greater than 7, i.e., an
orbit consists of two spirals, one out and one in, at opposite ends of the orbit.

Consider the special case v = 3. The width of the double-spiral orbit is still given by the
formula for ®,, and is 27. Therefore, the first orbit begins and ends towards the negative z-axis.
The precession is 7, so the trajectory closes after two orbits. We show this case in Figure 5.

As v approaches 2. the spirals become tighter and tighter and the precession (now clockwise)
becomes larger. In fact, the spirals’ angular variation as well as the orbit’s precession both become
infinite in magnitude as v approaches 2.

3.2 Unbound trajectories: v <2 or u <0

When v reaches 2, there is a singular change. First, the double spiral becomes infinite in angular
width. But also, the joining of the two sides of the double spiral at p = | and ¢ = 0 breaks down.
It is as if a tightly-wound double spring broke. The ends spiral out to infinity. This special case
is a Cotes’ (infinite) spiral. It takes an infinite time to reach infinity from the origin.

When the potential parameter v just leaves that of the infinite spiral, that is, when one barely
has v < 2 or < 0, there is another change. Although the two ends of the entire trajectory still
reach to infinity and the spirals in and out almost have infinite angular widths, the distance of
closest approach jumps from p =0 to p = 1.

As the value of v decreases, the value of the angular width of the trajectory, now given by
®, = 7 /|p|, also decreases accordingly. By the time v = [, the angular width has decreased to
27. Eventually it becomes less than 7, meaning the orbit comes in and out in the same half plane.
This happens for v < 0, i.e., when ‘the force becomes repulsive.

When 0 < v < 2, the repulsive centripetal barrier dominates at small » whereas the attractive
potential V = —v/r” dominates at large r. A typical shape is familiar from the Kepler problem.
Therefore, for 0 < v < 2, the I£ = 0 classical orbits are all unbounded. The distance, «, now
has a completely different interpretation. It is now the distance of closest approach. Even so, the
formal solution (10) remains valid for negative values of .

As a first example consider the case v = 3/2 or ¢ = —1/4. This orbit has a total angular
width of 47. It is shown in the two drawings of Figure 6. The large-scale first drawing shows the
trajectory coming in from the top, performing some gyration, and going out at the bottom. The
small-scale second drawing shows the trajectory winding around twice near the origin, with the
distance of closest approach being one.

A second example is the exact Kepler potential, v = 1 or p = —1/2. Eq. (10) gives
p M = cos /2, (15)
so that | -
‘ — = (cos/2)* = —iﬂ . (16)
P 2

This is the famous parabolic orbit for the Kepler problem with £ = 0. This orbit is shown in the
first drawing of Figure 7. The parabola yields an angular width of 27, as it should.
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FIG. 6. A large-scale view, and a small-scale view near the origin, of the trajectory

for v = 3/2.

4
\.

FIG 7. From left to right, he trajectories for the cases i) v = 1, ii) v = 0, iii)
v = =2, and iv) v = —4. The curves are labeled by the numbers v.



If we formally set v = 0 in the expression (3), we get a negative constant potential V(r) = —7.
Therefore, in this case the force vanishes and we have a free particle. Its orbit must be a straight
line. However, Eq. (8) shows that one still has the same type of solution, Eq. (11). Here it is

p=lcosp]™, z=rcosp=a. (17)

This is the equation for a vertical straight line that crosses the z-axis at = a, as required by the
initia] conditions. This orbit is shown in the second drawing Figure 7, it subtending an angular
width of = from the origin.

For v < 0 or 4 < —1 the potentials V(r) in Eq. (3) are repulsive and negative-valued for
all » > 0, with V(r) going to —oo at large distances. Since both the potential, V(r), and the
centripetal potential decrease monotonically, the effective potential has no minima or maxima.
Even so, for E = 0 these unbounded orbits behave qualitatively like those for 0 < v < 2. The
quantity a now labels the distance of closest approach and the solutions are given by the same
expression (10), which is also valid for all x < 0:

p = [cos ]/ = [cos |ulp] /W, n<0. (18)

The most famous special case of these potentials is the “inverted” harmonic-oscillator potential,
with v = p = —2. The orbit is given by p = [cos 20]7Y/% | so that

2 2 2 2

T r . )
1:(—I-ECOS2(p=F(COS2L,9—SHI2LP)=‘G—2—E . (19)

Thus, the trajectory is a special hyperbolic orbit, whose minor and major axes are equal, b* = a®.

We show this orbit as the third drawing in Figure 7. Now the angular width has decreased to 7 /2.

As the last case, we consider the orbit for v = —4 or g = —3. This orbit is shown in the last
drawing of Figure 7. The orbit subtends an angle of /3, again as it should. One sees that as v
becomes more and more negative, the orbits will become narrower and narrower. This is just as
in the bound case, where the petals became narrower and narrower as v became more and more
positive.

4 Quantum Solution
Consider the radial Schrodinger equation with angular-momentum quantum number I:

R (42 2d  I(1+1)
ER; = |:_2_m_ (ﬁ + PR +V(r)| R . (20)

This Schrédinger equation is exactly solvable for the potential of Eq. (3) for all E = 0 and all
oo < 1 < 0o. To see this, set E = 0 in Eq. (20), change variables to p, and then multiply by
—p?. One finds

2

l d? d g
2 2
— ‘ —_—— + + — ).
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This is a well-known differential equation of mathematical physics. For v # 2 or # 0, the
solution can be directly given as

1 2¢ 1 9 .
- %%(;,,_2.,,(“;2))‘plﬂ‘](%(wpu)’ SR

One actually has to be careful about when an absolute value of y is called for in the labels of the
solution, and whether the J Bessel functions are called for vs. the Y function. These details are

given in Ref. [3].

5 Properties of the Quantum Solution

5.1 Normalizable bound states: 2 < v or 1 < i

The normalization constants for the wave functions would have to be of the form

2 o r2dr g
vit= | J“ﬂ“ﬂ’z (l/tlp") | %3)

Changing variables first from r to p and then from p to = = g/(|u|p*), and being careful about
the limits of integration for all ., one obtains

) a’ g B )
NP= [ I . (24)
| \ |l

00z J2
ff:,/0 s () (<) - (25)

This integral is Convérgent and given by |

1 M(5+1) F(Iul “i)

where

I = : (26)
/2 1 BIRESVE
(L) T (145 + 1)
if the following two conditions are satisfied:

2041 2
i +1>-4+1>0. (27)

|| 7

Egs. (26) and (27) lead to two sets of normalizable states. The first is when

£>0 or v>2, [>1/2. (28)

These are ordinary bound states and result because the effective potential asymptotes to zero
from above, as in Figure 1. In this case, for ' = 0, the wave function can reach infinity only by
tunneling through an infinite forbidden region. That takes forever, and so the state is bound.

Note that the condition on [ in Eq. (28) is the minimum nonzero angular momentum allowed
in quantum mechanics, {,,,;, = 1. This agrees with the classical orbit solution which is bound for
any nonzero angular momentum. Also, the above £ = 0 solutions exist for all g > 0, and not
just for discrete values of the coupling constant.
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5.2 Free states: —2<v<2o0or -2<u<0

For -2 < v <2o0r =2 <y <0and! > 1 (as well as the solutions with { = 0 and 0 < px or
2 < v) the solutions are free, continuum solutions. This is in analogy to the classical case, where
the trajectories are normal and free.

5.3 Unbound yet normalizable states: v < —2 or o< =2

There is another class of normalizable solutions which is quite surprising. For any [ and all v < -2
or g < —2, one can verify that the conditions of Eq. (27) are also satisfied. Thus, even though
one here has a repulsive potential that falls off faster than the inverse-harmonic oscillator and the
states are not bound, the solutions are normalizable!

The corresponding classical solutions yield infinite orbits, for which the particle needs only a
finite time to reach infinity [2]. But it is known that a classical potential which yields trajectories
with a finite travel time to infinity also yields a discrete spectrum in the quantum case. This
discrete spectrum is obtained by imposing particular boundary conditions on the solutions, which
defines a self-adjoint extension of the Hamiltonian. (See Ref. [1].)

5.4 Bound states in arbitrary dimensions

One can easily generalize the problem of the last section to arbitrary D space dimensions. Doing
so yields another surprising physical result.

To obtain the D-dimensional analogue of Eq. (21), one simply has to réplace 2p by (D — 1)p
and {({ + 1) by (I + D — 2). The solutions follow similarly as

| 2g
Rip = WJ(%)(W) )

v =2[p

- #J(l-}-D/?l ( g )

pP/a-t 1l

To find out which states are now normalizable one first has to change the integration measure
from r2dr to rP~'dr and then continue as before. The end result is that if the wave functions are
normalizable, the normalization constant is given by

aP 2/u
N = (_g_) Lip (30)
[ \lxl
where /e
141 /
] Ps+y) P -4) (31)
’ 127 1 4 LD/
T (14 ) T (1 B D)
which is defined and convergent for
204D =2 2
il NN (32)
|1 It
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This yields the surprising result that there are bound states for all » > 2 or p > 0 when
[ > 2 — D/2. Explicitly this means that the minimum allowed [ for there to be zero-energy bound
states are:

D=2, lun = 2,
D=3, lpm = 1,
D=4, lnin = 1,
D>4, lwm = 0. (33)

This effect of dimensions is purely quantum mechanical, and exists for all central potentials.
Classically, the number of dimensions involved in a central potential problem has no intrinsic effect
on the dynamics. The orbit remains in two dimensions, and the problem is decided by the form of
the effective potential, U, which contains only the angular momentum barrier and the dynamical
potential.

In quantum mechanics there are two places where an effect of dimension appears. The first is
in the factor (I + D —+ 2) of the angular-momentum barrier. The second is more fundamental. It

is due to the operator
(b-1)d (34)
p dp
This is a new contribution to the “effective potential,” and can be calculated [1]. The end result
is that given in Eq. (33).

The dimensional effect produces what amounts to an additional centrifugal barrier which can
bind the wave function at the threshold, even though the expectation value of the angular mo-

mentum vanishes.

Upm = —

6 Closing Comment

I hope you have found this discussion of anharmonic power potentials entertaining and enlight-
ening. Jamil and I certainly have. The intuition obtained into the workings and relationships
between classical and quantum physics has been delightful to us, to say the least.

Thank you very much. '
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Abstract

We present a description of the vibrational excitations of methane by means of
an algebraic analysis of a model of coupled anharmonic oscillators.

1 Introduction

Consider an AB,-like tetrahedral molecule and suppose we are interested in describing its vi-
brational degrees of freedom. This can be accomplished either in the framework of an integro-
differential scheme or by means of an algebraic approach. The former constitutes the traditional
method, which consists in parametrizing the Hamiltonian in terms of internal coordinates [1],
where the potential is modeled in terms of force field constants that can be obtained from
theoretical calculations or from fits to spectroscopic data [2]. On the other hand, the algebraic
approach represents an alternative to the traditional methods based on the use of Lie algebras to
represent the interactions [3]. The algebra used to describe the vibrational degrees of freedom is
not unique. Michelot and Leroy, for example, use a unitary group U(n) as the dynamical group
of the system with n — 1 vibrational degrees of freedom (4], while Tachello and Oss introduce
an SU(2) algebra for each atomic degree of freedom [5]. In this work we carry out a complete
description of the vibrational excitations of tetraliedral molecules by assigning a U(2) algebra
to each interatomic potential.

2 Algebraic Model

The model is based on the isomorphism of the U(2) algebra with a one-dimensional Morse
oscillator, whose eigenstates may be put into a one to one correspondence with a set of U(2) D
O(2) states, characterized by the quantum numbers |[N],m >, as long as the value of m is
restricted to be non-negative. In this space the Morse Hamiltonian takes the simple form H=
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AC’zo(z), where A and N are related to the Morse potential parameters and C'go(g) corresponds
to the square of the O(2) invariant operator [3].

B

B o<, ——3—10

B

FIG. 1. Assignment of the U¥(2) algebras to tetrahedral molecules.

For the description of a tetrahedral molecule we assign a U'(2) algebra to each interaction
present, as shown in Fig. 1. The first four algebras have been chosen to correspond to the A — B
interactions, while the other six represent the B — B couplings. The molecular dynamical group
is then given by the product U'(2) x ... x U'°(2), and the most general Hamiltonian, up to two
body interactions, conserving the total number of quanta and invariant under the tetrahedral
group 74, can be written as

H=H5+HB 4+ V5B | (1)
The term 15 describes the stretching degrees of freedom and has the form
4 3 4 3 4
M5 =41) Caoizy + Bz > Croiiy+ M2, Y. My,
i=1 =1 y=i+1 =1 j=i+1
while 2 is the bending contribution, given by

= 45 ZCO i(2) + Bsys Z Yo Gt Y. Y o

7=6 i=5,10 1=7,9 i=6,8

+ B5a10 { A205'l°(2) + C"'2()6"”(2) + 6207,9(2)}

=6 i=5,10 1=7,9 i=6,8

+ As,10 {MS,]O + Mc,s + M7,9}

26



The last operator, V-8B represents the stretching-bending interactions, which will be neglected
as a first approximation. In these expressions Czow(z) corresponds to the 0%(2) Casimir in-

variant, while M; ; is the Majorana operator, which is related to the U J(2) Casimir operator

[3].
The simplest basis to diagonalize the Hamiltonian is the one associated to the local-mode

chain [3]

UM2) x ... x UN2)x UG(2) x...x U19(2) 5 0N(2) x ... x 0119(2) > 0(2)
l ! l l ! ! 1 (2)
|[N1] g e [N]] [NQ] s ey [Ng] V1, ..., Ul0; V>,
where below each group we have indicated the quantum numbers characterizing the eigenvalue
of the corresponding invariant operator. The two boson numbers N; and N3, are related to the
two sets of physical modes (stretching and beudmg) The quantum numbers v; correspond to
the number of phonons in each oscillator (v; = 5t —m;), while V = E: ) Vi

A simple analysis of an ABy tetrahedral 111()16‘(‘111(.’ [6] shows that it presents 9 vibrational
degrees of freedom, four of them corresponding to the fundamental stretching modes (4, & )
and the other five to the fundamental bending modes (E & Fy). Comparing this result with the
local basis (2), we deduce that an unphysical bending mode is present in the algebraic formalism.
We thus proceed to eliminate this spurious state both from the Hamiltonian and the basis.

To accomplish this goal we first transform, for the one phonon case, the local basis to a
normal one, which carries the irreducible representations (irreps) of the 7y group. With this
change of basis we obtain the decomposition A; & F; for the stretches and A; & E & F, for the
bends. From this result we readily identify the 4; bending mode as the spurious state. We now
eliminate this spurious state from the space and proceed to construct the higher phonon basis
from the physical one-phonon set by means of the coupling coefficients C( ; )

VitVegl = N o0 T mey) L VL (3)

Y172

where T and 7 label the irreps of 7y and its components, respectively.
To eliminate the spurious contributions from the Hamiltonian we demand its null expecta-
tion value with respect to the one-phonon spurious functions [7]

1,q A 1 1, A —
< \I’bending Ml \I}l)ending >=0, (4)

which leads to a constraint
4(1 — N3)As + 16(1 — 2N;)Bs ¢ + 4(1 — 2N3)Bs 10 = 0
between the interaction parameters.
The vibrational energies are obtained by diagonalizing the Hamiltonian (1) with respect to

the normal basis (3), constructed from the projected one-phonon functions (4, F,)—stretching
and (E, F,)— bending, taking into account the constraint (4).
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TABLE I. Experimental [2,6,9] and calculated energies (cm™!) for methane.

Normal Normal
V  label I' Expt. Cale. |V label I' Expt. Cale.
1| wve F, 13100 1303.7 | 3| v +ve +vs {F1 5745.6
Vs E 1533.0 15204 F, 5775.0 5759.9
" A, 2916.5 2918.4 (A, 5854.4
Vs F, 3019.4 3027.2 E 5854.4
2 A, 2474.5 F 5854.4
2u4 E 2476.4 ve + v3 + vy {FQ 5854.4
F, 2614.0 2610.5 A, 5868.7
v + vy [ Fy 2827.2 E 5868.7
F, 2830.4 2841.5 F 5868.7
21y [Al 3003.7 F, ©5861.0 5868.7
E 3026.3 42, (A 5922.0
v +rvs F, 4223.0 42220 {E 5944.7
A, 4330.9 F, 6030.9
vy + vy E 4330.9 2v9 + 13 y 6053.5
F 4330.9 P> 6053.5
F2 4319.0 4330.9 21/1 + V4 F2 7091.7
vy + 13 {Fl 4547.7 IAI 7160.4
F, 4549.0 4547.7 M43+ lFE 7160.4
v+v, E 4438.8 F 7160.4
2u, A, 5788.0 P 7160.4
vy +vs F, 5861.0 5856.7 (F, 7278.1
A, 5974.4 E 7308.4
23 F, 6004.7 6014.5 A 7318.2
E 6047.7 s + v {Fl 7318.2
3 { F 3624.3 F, 7318.2
v, | F 3778.3 F, 7351.4
F, 3779.4 P 7351.4
(A 3920.4 v+, E 7318.2
(Al 3925.7 vy +ve+ v Fl 7377.1
E 3935.6 F, 7377.1
Ay 4017.6 F 7534.9
F, 4123.0 4123.9 v +2v3 JF, T514.0 7534.9
F 4260.4 1 E 7568.1
F 4425.5 A, 7568.1
21/2 + V4 F2 4317.4 t‘l] 7568.1
F, 4387.6 3u A, 8581.1
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Normal Normal

V| label I' Expt. Calc. | V| label '  Expt. Cale.
3v, E 4510.9 A, 8725.5
A, 4575.7 v +2v3 (F; 8807 879%4.1
A, 5392.8 E 8838.5
n+2 { FE 5394.7 F, 8900.0 8910.0
F, 5501.7 33 F 8944.8
(F) 5503.6 A, 8982.1
E, 5503.6 F, 9045.0 9034.5

E, 5528.8

V3 + 2114 ‘ F2 5637.7

A 5637.7

E 5637.7

1 5637.7

3 Methane

In this section we apply this algebraic approach to describe the vibrational levels of methane.
According to the Hamiltonian (1) the number of parameters is eight, plus the boson numbers
N; and N;. The vibron nunber N; can be fixed from the anharmonicity of the C — H bond,
while for the bending vibrations we have taken N, from the H — H interaction in H,O given
in reference [8]. From these considerations, the number of free parameters is seven, taking into
account the constraint (4).

TABLE II. Parameters of the Hamiltonian obtained in the least square fitting
(em™!). The numbers of bosons are taken to be Ny =43 and N,=28.

Stretching Bending rms

A B, A2 As Bs ¢ Bs .10 As5,6 As,10
12.16

—13.2125 -0.6850 0.6328 | 35.4844 2.6492 —28.0164 9.0501 5.1799

The Hamiltonian (1) is diagonalized in the normal basis, built by repeated couplings of
the form (3). Since by construction this basis is symmetry adapted, the Hamiltonian matrix
separates into blocks corresponding to the irreps of 7;. In Table I we present the least square
fit for methane up to three quanta. Following Herzberg’s notation [6], the four fundamental
energies for 4, F, (stretching) and E, F, (bending) have been denoted by v, v3, v, and vy,
respectively. The final parameters are given in Table II. The model in its simplest form (without
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including the VB~5 interaction or higher order terms) seems to provide a good description of

19 experimental energy levels with an rms deviation of 12.16 cm™!.

4 Conclusions

We have presented a new method, which applied to an algebraic model of coupled anharmonic
oscillators is able to describe the complete vibrational spectrum of polyatomic molecules. We
empbhasize that the method systematically incorporates group theoretical techniques which sim-
plify the diagonalization of the Hamiltonian and provide a clear methodological procedure that
can be applied to other molecules [10]. Although we have used the model in its simplest form, it
can be improved in the following ways: a) Inclusion of the stretching-bending interactions VS-B,
(b) Introduction in the Hamiltonian of higher order terms and (c) Addition of interactions which
do not conserve the total number of quanta.
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Abstract

We describe a new method based on algebraic techniques, which leads to a model
of atom-diatom collisions.

1 Introduction

One-dimensional atom-molecule collisions have been studied using a combination of differential
and algebraic techniques in conjunction with time evolution operator methods for a variety
of molecular potentials [1]. For three-dimensional systems, however, one needs to resort to a
number of computational integro-differential techniques to describe such interactions [2,3]. In
recent papers we have proposed an algebraic framework based on the vibron model [4], that
leads to a three-dimensional scheme for such interactions [5], which starts from a U(4) x U(4)
description of three-atomic molecules. We then apply a coherent state method to one of the
U(4)’s, thus extracting a coordinate dependence for the interaction between one of the atoms and
the remaining diatom, while the latter is still described algebraically. The resulting Hamiltonian
is formally analogous to the ones used in one dimension [1] and can be solved in principle in the
interaction picture [5]. This is a difficult task, however, particularly with respect to assessing the
different degrees of approximation: involved. For this reason we consider here a one-dimensional
version of our model based on a U(2) x U(2) dynamical algebra, which is simpler to analyze and
already incorporates much of the complexity of the full three-dimensional model.

2 One-Dimensional Model

In our one dimensional model, the stretching vibrations of triatomic molecules are described in
terms of the dynamical algebra

Ui(2) x Ua(2) (1)
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by means of the Hamiltonian
H = Eo(Ny,N;)+ AJE + BJ2 +CJ, J,, + DI, - T+ ..., (2)

where J,, J,, and J., are the SU;(2) generators and N; the (fixed) total boson number associ-
ated to U;(2). The dots at the end of (2) indicate that we may also need other combinations of
generators, such as jyl -jyz. Such Hamiltonians are well suited to describe stretching vibrations,
due to the connection that can be established between the U(2) algebra and the one-dimensional
Morse oscillator Schrodinger equation [6]. We now introduce the coherent state basis associated

to bond number 2 (7],

1

where st, tT are two scalar boson creation operators through which the U(2) algebras are realized
[6]. Computing the expectation value of (2) in the basis (3) and carrying out the coordinate
transformation

[N]r >= (st +rthNjo > | (3)

e—bz/ao
r= 5 Thejar (4)
we arrive at a Hamiltonian of the form
where
ﬁo = Ajzl ) (6(1)
f/] — _de—bz/2ao(2 _ e—bz/ao)1/2 , (65)
"‘/2 - _ﬂ(2e—bz/ao _ e-—2bro/ao) , (66)
% — &e——bz/ao : (Gd)
and
1 .
&= _E(C + D)NJ,, , (7a)
1
B = _ZBN(N -1) , (7b)
1 R
5/ = —ED]VJ!,1 . (76)

The potentials (6b) and (6c) generalize the typical interactions of exponential form (6d) used
in previous works [1]. For collision energies high compared with the vibrational excitations, we
may “freeze” the molecular coordinates and substitute J,, and J,, in (7a) and (7c) by their
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expectation values in the |jm > basis, leading to a well defined potential for which we evaluate
classical trajectories, associated to a classical Lagrangian of the form

L=54 4+ V() + V(2) + K@) - (8)
Substituting these trajectories z(t) back into (5) then leads to a time-dependent potential of
the form

Vt) = Vi) ., + Va(t) + Va(t)Jy, + Va(t)Js, (9)

where V;(t) are obtained from (6), except for Vy(t), which is identically zero.

We now use the interaction scheme, which is appropriate to determine time-dependent
solutions for Hamiltonians of the form H = Hy + V(t), as in (5). The evolution operator in this
scheme satisfies the equation

LoU) o -
lh‘—at—— th(t) g (10)

where ) )
f/int(t) — eihHo(l—tl)V(t)e—ihHo(t—ll) . (11)

A great simplification arises when V,’n, is a linear combination of a closed algebra. For the
particular case of SU(2), U(t1,t) can be expressed in the form

O (t) = e~ /h91 (DT g=i/haa() ]y g=i/hga (D) J: g=i/haalt) (12)

If this is the case, substitution of (12) into (10) gives rise to differential equations for g;(t) in
terms of the (known) potentials V;(t). Once U(t;,t) is known, the scattering matrix is defined
in terms of it as

§ =U(-o00,00) , (13)

i.e., the transition probabilities can be obtained through

P(jjm >— |jm' >)=| < jm|S|jm' > [’
— | S e d (7 )2)d (=7 /D), (B (14)

Tma

where B; = gi(—00,00)/h and the d-functions are the usual Jacobi functions appearing in the
definition of Wigner’s D-functions [8].

3 Calculations

The main stumbling Iblock for the evaluation of the evolution opperator is the calculation of
Vint(t) through (11). We proceed to discuss briefly some approximations tb carry out this task.
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a) Sudden Approximation

In the sudden approximation, the interaction time is considered to be very short. A Taylor
expansion of (11) along ¢; leads to

Vine(t) = V(1) + %[ﬁo,V(t)]V(t —t)+... (15)

which at zeroth order gives f/;nt(t) = V(t). This represents an approximation where all dy-
namical information of the molecular potential is lost in equation (10). We may then solve for
the classical trajectories using (12), in some cases analytically, which generalize results known
previously for the exponential interaction (6d) [9]. In this limit we are able to exactly reproduce
the analysis of Levine and Wulfman [10,11] and extend them to the more general interactions
in (6). We omit these results here for lack of space and refer the reader to reference [9].

| .
b) Averaging Techniques for V;,(t)

Since we are interested in comparing our algebraic methods with quantum mechanical ab
initio calculations (when these are available), we should improve the evaluation of Vine s0 as to
introduce the dynamical effects of the molecular potential. The sudden approximation of the
previous subsection fails to account for the fine properties required. Fortunately, a quantum
mechanical calculation for the transition probabilities in the scattering of an atom from a one-
dimensional Morse oscillator has been presented by Clark and Dickinson [12], so we may gauge
our approximations by comparing with their results. Returning to eq. (11), we substitute (6a)
and make use of the commutation relations

(2, J,| = —-J, —2J.J. , (16)
(J2, J.)=—J, +2iJ.J, .

After some algebra we find the expression
. — .. .
Vine(t) = [m (— cos(2rowotd;)Jy + Jy cos(ZwaOth))

1 . . . .
. (—— cos(2zowotJ,)Jy + J, cos(QszOth)) Va(t)
2 sin(zgwot)

+ Vi) ., + Vi) | (17)
where zowp is the standard anharmonicity parameter, which can be expressed in terms of the
Morse potential parareter through Towp = . The problem with eq. (17) is that it no longer
satisfies being linear in the SU(2 generators so (12) is not valid. To degl with this problem,

we proceed as follows. We apply mt(t) to a Morse eigenfunction |jm > and insert a complete
set of states ), |jp >< jp| to the resulting expression. Taking into account the selection rules

for jy, which imply, ¢ = m £ 1, we find a state-dependent potential:
V() = ( cos(2zqwot(m + 1))

cos(2zqwotm)

Va(t) +

Vi(t)ljm +1 >< jm + 1|

cos(zowypt) cos(xowot)
cos(2zqwot(m — 1))V3(t)|jm —1>< jm-— 1|)) Jy + Vi), + Va(t) . (18)
cos(zowgt)
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The m-dependent cosine functions, however, are practically the same for small values of the
phonon number v = j —m (large m values), so we can simplify (18) by averaging the excitation
to the two possible states u = m £ 1, so we arrive at the simple m-dependent potential

Vim(t) = (cos(2x0wotm)cos(zowgt)Vg(t)jy
+ V](t)jz + V2(t) ) (19)
which is linear in the SU(2) generators, so (12) is valid. Since we are interested in comparing

our approach with the calculations of ref. [12] where only V3(t) # 0, the potential (19) simplifies
further and only J, remains. The evolution operator is then given by

U(t) = emi02(m /b (20)
where
ga(m,t) = V3 cos(zowot) cos(2zowomt) . (21)

The differential equation for the evolution operator then lead to exactly solvable forms for the
classical trajectories and to the asymptotic value of ga(mn,t) (see below (14))

Ba(m) = E/ cos(xowpt) cos(2mzowy ) sech? (1 / Ei) dt (22)
h — 0o 2# ap

where E is the collision energy. From (14) this leads to the simple expression for the transition

probabilities .
P(|ljm >— |jm' >) = d}, (B2(m")) (23)

where
(2m' -1 ).’L‘O

sinh((2m' — 1)xoko)

o) = H0T0 [ (24)

(2m' + 1)z
b2h

sinh((2m' + 1)zoko)

with kg = #2527 /7=, In Table I we compare the results of our calculation, using (23), (24),
with those of Clark ahd

TABLE 1. Comparison between the algebraic model and the Clark-Dickinson Model'?
Energy ( hwg /2 units): 16

Initial State = 0 Initial State = 1

Final state Clark-Dickinson Model Clark-Dickinson Model
Probability Probability Probability Probability
0.245000 0.157837
3.38000E(-02) 1.45652E(-02) 0.318000 0.253196

W N~

2.72000E(-03)
1.61000E(-04)

8.65153E(-04)
3.71652E(-05)
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5.72000E(-02)
5.16000E(-03)

3.62444E(-02)
2.86219E(-03)



Final state

G W N = U WO N = CU W N~

W N =

7.44000E(-06)  1.22993E(-06)

3.24000E(-04)

Energy ( hwo/2 units): 12

Initial State = 0

Clark-Dickinson Model
Probability Probability
0.129000 0.124019

6.65000E(-03)
1.49000E(-04)
1.48000E(-06)
4.95000E(-09)

8.57432E(-03)
3.81572E(-04)
1.22807E(-05)
3.04486E(-07)

1.50963E(-04)

Initial State = 1

Clark-Dickinson

Probability

0.167000
8.41000E(-03)
1.38000E(-04)
7.01000E(-07)

Energy ( hwo/2 units): 10

Initial State = 0

7.39000E(-02)
1.66000E(-03)  6.09133E(-03)
1.17000E(-05)  2.25776E(-04)
1.95000E(-08)  6.05219E(-06)

0. 1.24982E(-07)

0.105782

Energy ( hwo/2 units): 8

Initial State = 0

3.15000E(-02)
1.85000E(-04)  3.98810E(-03)
1.18000E(-07)  1.18193E(-04)
0. 2.53330E(-06)
0. 4.18294E(-08)

8.66178E(-02)

Energy ( hwo/2 units): 6

Initial State = 0

7.31000E(-03)  6.64920E(-02)
2.30000E(-06)  2.29488E(-03)
0. 5.09821E(-05)
0. 8.19113E(-07)

36

Model
Probability

0.208828

2.19917E(-02)
1.28983E(-03)
5.07090E(-05)

Initial State = 1

8.15000E(-02)

1.22000E(-03)

5.12000E(-06)
2.95000E(-10)

0.182403
1.58582E(-02)
7.71373E(-04)
2.51949E(-05)

Initial State = 1

2.28000E(-02)

3.07000E(-05)

1.37000E(-11)
0.

0.152903

1.05375E(-02)
4.08112E(-04)
1.06318E(-05)

Initial State = 1

1.25000E(-03)
0.
0.

0.120126
6.15327E(-03)
1.77900E(-04)



5 0. 1.01384E(-08) 0. 3.46550E(-06)

Dickinson [12] for different collision energies and for two different initial states. Although our
results differ from the exact ones, particularly for higher final states where the probabilities are
very small, the general trend is reproduced remarkably well, taking into account our semiclassical
method.

4 Conclusions

The algebraic model seems to provide an attractive alternative to integro-differential techniques
for the description of atom-molecule collisions. The approximation methods developed for the
one-dimensional test model can be readily extended to the three dimensional case and applied to
real systems [2,3]. We are currently exploring the generalization of these techniques to include
reaction channels, which would represent an important development because of the relevance of
these processed in atmospheric interactions [13].
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Abstract

Fibonacci chains are special diatomic, harmonic chains with uniform nearest neighbour in-
teraction and two kinds of atoms (mass-ratio r) arranged according to the self-similar binary
Fibonacci'sequéence ABAABABA..., which is obtained by repeated substitution of A — AB
and B — A.

The implications of the self-similarity of this sequence for the associated orthogonal polyno-
mial systems which govern these Fibonacci chains with fixed mass-ratio r are studied.

1 Introduction

Fibonacci chains are linear diatomic chains with nearest neighbour harmonic interaction
of uniform strength & and the two masses (ratio r = m;/mo) follow the pattern of the binary
sequence {h(n)}{° obtained by repeated substitutions & in the following way.

o(l) = 10 , o(0) =1, (1)

starting with 0. By definition o(uv) = o(u)o(v) for any two strings u and v. o™(0) = H, is a string
of length |H,| = F,41, where F;, = F,_; + Fo_s,n=23,.,Fp=0,F =1 are the Fibonacci
numbers. h(n) is defined to be the n'th entry of the half-infinite string He := limp-ooHn. E.g.
Hs = 0%(0) = 10110101, k(1) = 1, h(2) = 0, etc. (1) is called the Fibonacci substitution rule, and
the masses of the half-infinite chain are taken to be

Mp = Mpn) , n=1,2,.. (2)

This sequence {h(n)}{° is self-similar because the string Hoo satisfies 0(Ha) = Hoo. Aperiodicity
follows from this invariance, or fixed point, property. (This sequence is in fact also quasiperiodic,
but this does not concern us here.)

Chains of this type have been considered as models of binary alloys [1]. For instance, one may
consider chains with an elementary unit determined by the first N members of the {h(n)} sequence
and tepeat it periodically, using certain boundary conditions. This then corresponds to (AB)*®
chains for N = 2, (ABA)* chains for N = 3, etc.
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The dual of such chains (with equal masses but two spring constants x, and «; following the
pattern of the Fibonacci substitution sequence) are related to one-dimensional quasicrystals [2].
One can also make contact to artificially manufactured superlattices [3]. _

Originally such Fibonacci chains were considered as models for the study of the tegime in between
periodic and random structures.[4, 5].

The purpose of this work!is to write down the identities which are satisfied by the characteristic
polynomials of these Fibonacci chains due to the self-similarity of the substituion sequence {h(n)}
which determines the pattern of the masses of the oscillators. These identities will be expressed
in terms of the 2 x 2 transfer matrices M,, which are unimodular and real. The matrix elements

are given by the characteristic polynomials {.S',(,')(:c)}, where r is the mass-ratio of the two types

of atoms and z is a normalized frequency squared (z = w?/2wj, w} = k/my). The zeros of

Sx)(m) determine the eigenfrequencies of finite Fibonacci chains with N atoms and both ends
fixed. One also encounters so-called first associated polynomials {§,£')(z)} They correspond to
a right shift by one unit in the substitution sequence. Hence, the zeros of S'g)(:c) produce the
eigenfrequencies of chains with masses my(;) = my, «yMy(N4+1). Both r—families of polynomials
generalize Chebyshev's {S,(y)} polynomials (S_; = 0, So = 1, S, = yS,._1—S,_3) to two variables
with the identification

$(z) = 50(=) = Sa(2(1-2)). (3)

They constitute, for fixed mass-ratio r, systems of orthogonal polynomials and have been studied
in some detail in refs.[6, 7, 8, 9].

2 Fibonacci Chain Polynomials

For the Fibonacci chains (k,m4(n)) defined in section 1 the equation of motion for longitu-
dinal, time-stationary vibrations g.(t) = ¢, exp (iwt) are

Grtr + ooy — Y(n)g, = 0, n=1,2,... (4)

with
Y(n)=2(1 - w?/(202)) , wl=r/mpp) . (5)

We use the two variables r = m;/mq and =z = w?/(2w}). We put Y(n) = Y if A(n) = 1 and
Y(n) = y if h(n) = 0. Hence

Y =2(1-rz) , y = 2(1-2) . (6)

The equations of motion are rewritten with the help of the SL(2,R) transfer matrix R,.:

(3)=m () = (P 9) () ”

R, is either R, or R, depending on the Y(n) value, i.e R, = Ry(rn). For the half-sided infinite
chains considered here iteration leads to

dn+1 Q1 s
=R.,R,_,--'R =M, , 8
(%) = Boocsoom (2) =00, (2) ®
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with the inputs ¢ and go (the mass at site number 0 is irrelevant). M, is real and unimodular.
The recursion M, = R,M,_; with input M; = R, leads to

_ Sn _gn—l
Mn B (Sn—l —Sn—2) ’ (9)
where the recursion formulae for the generalized two-variable Chebyshev polynomials are
Sn = Y(n)S',,_l — Sn-—2 N S_l = 0, So =1 y (10)
S, = Y(n+1)8u1—8u2 , 85.4=0, So=1 . (11)

These polynomials generate certain combinatorial numbers [10]. The meaning of these numbers
can be understood if one uses the intimate connection of the Fibonacci substitution sequence with
Wythoff’s A and B sequences

An) = n + z—:h(k) . B(n) = n + An). (12)

These sequences { A(n)}{° and {B(n)}{° cover the positive integers in a complementary way: every
number N > 0 is either an A— or a B—number. For an A—number n (i.e. n = A(m) for some
m) h(n) = 1, and for a B—number n (i.e n = B(m) for some m) h(n) = 0. Wythoff’s sequences
are a special case of Beatty sequences: A(n) = |nep]}, B(n) = |np?|, with @? = ¢ + 1, ¢ > 0, the
golden mean.

The characteristic polynomials {S,(f)(a:)}, obtained from {S.(Y,y)} by replacement of ¥ and
y according to eq.(6), constitute, for fixed mass-ratio r, a system of orthogonal polynomials.
{g,(f)(:c)} are the first-associated orthogonal polynomials.

3 Self-Similarity Identities

The string, or 'word’, H, defined in section Iis invariant under the inverse substitution o7 %,

with ¢~1(1) = 0, ¢~*(10) = 1. This is equivalent to the self-similarity of the sequence {h(n)}
which is shown in the FIG.

(1) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7

FIG. Self-similarity of the sequence {h(n)}{°. Circles stand

for the value 1 (A-numbers n), and disks stand for the value

0 (B-numbers n). ¢71(10) =1, 07}(1) =0 . Level (1) is
mapped to level (I + 1) by o1,

13 14 15 16

s ~7

8 9 10
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The upper level, called (I) in the FIG., shows the numbers marked as A— and B—numbers. The
h(n) value is 1 or 0, denoted by a circle or disk, respectively. When the substitution 07! is
applied one reaches the next higher level, called (I + 1) in the FIG., on which the same sequence
is reproduced. Let the position of the n's number at level (I) be e for 1=0,1,.... Level I = 0 is
assumed to correspond to the original sequence. Then one finds for p € No = N U {0}

141 1
Za = Tl (13)
141 !
wg(p)) = mQB(P) ’ (14)

where AB(p) stands for the composition A(B(p)) of Wythoff’s sequences. E.g. The number
A(4) = 6 at level (I + 1) occurs in the FIG. at the same position as B(4) = 10 at level (I), or
B(2) = 5 at level (I + 1) corresponds to AB(2) = A(5) = 8 at level (I).

Iteration, depending on the parity of the level number, leads to

(2k+1) _(0) (2k) _ _(0)

Tap) T Ty 0 Tap) T Taprp) o (15)
2k+1 [} 2k 0

w(B(p) ) = mfu)gut(p) ) w(B(g) = Tgitip) - (16)

Consider the level (I + 1) transfer matrix

1 1+1 I+1
MY = R R (17)
satisfying the recursion relation
B = RPRP RO = Ro= (V7)) e
Yy -1
R((,”l) = Rgz) : RSO) = R, = (1 0) . (19)
Iteration leads , with M,, = M,(.O), to
1+1 141
R = Mg, , RM"Y = Mg, , (20)
with the Fibonacci numbers F,.
Due to (15) and (16) one has
2k+1 2k
Min” = Mpwgy . My = Mupg) (21)
2k+1 2k
Mgn = Mapny o M) = Mping) - (22)

The recursion at each level is

M,(,"H) — RSH) M(l+11)

(n) Tn-

, Ml(l+l) — R§’+l) ) (23)

Combining iteration and recursion, in a systematic way, leads to transfer matrix identities for
level (0), i.e. for the original matrices M,, of eq. (8). One finds alltogether six families of such
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identities, depending on the parity of the level one starts with and the specification of the index.
These identities are, for m € N and k € N,

(I) MBH"(m) = MF2h+x MAB"A(m) ’
(11a) MB"A(A(m)+1)
(IIb) MB"A(B(n\)+1)

Mth.{.] MB.""(M) ’
MF2k+1 MAB*‘“'(m) y (24)

(111) Muprmy = Mpy, Maigmy
(IVa)  Mupracaemyrty = Mrug Maptiigmy
(IVe) MAB"A(B("‘)-H) = MF:(::“) MB"“(m) .

(1), ({1a), (IIb) and (I11) result from odd levels I = 2k + 1, with n put AB(m), AA(A(m) + 1),
AA(B(m) + 1 and B(m), respectively. (III), (IVa) and (IVb) result from even levels I = 2k,
with n put B(m), A(A(m)+ 1) and A(B(m) + 1), respectively.

E.g. (I) and (I1I) produce for m = 1, due to A(1) = 1, B**}(1) = Fyuy5 and AB*(1) = Fa(ks1)s
identities which are the well-known recursion formula for transfer matrices with neighbouring
Fibonacci number indices

Mr,,, = Mg, , Mfp, . (25)

Not all eqs.(24) are independent. E.g. if one puts m = B(p) + 1 in (I), replaces k by k + 1 and
combines it with eqs. (JV'b), with k — k — 1 and m — p, one finds egs. (IIa), due to the identiy
B(p)+1 = A(A(p)+1) and eq.(25) for even n. However, eqs.(I]a) provide identities for Mpap)
which complement those obtained from eqs. (I7b).

It is possible to combine (I) of eq.(24) with (III) specialized to m — A(m) and use (I) again
with k — k — 1 and m — A%(m). Continuing this process one finds for ¥ € N and m € N

(II) MB"“(m) = MF:&-H Msz "'MF, MBA“(m)
(III’) MAB"(m) = MF" Msz—x -+ Mp, MBAzk-x(m) (26)

(I) and (II1)in (24) can be replaced by both egs. (26), and the other egs. of (24) can be rewritten
using (26).

The sum of the indices of the transfer matrices on the r.h.s. of eqs.(24) and (26) have to match
the index of the L.h.s. This fact produces families of identities among iterated Wythoff A and B
sequences. A detailed investigation of these Wythoff composites identities will be given elsewhere.
All of these identities can be rederived as corollaries of a new theorem relating two seemingly dif-
ferent unique number systems: the Wythoff- and the Zeckendorf- (or Fibonacci-) representations.

The transfer matrix identities (24) are equivalent to those for their matrix elements, i.e. the
characteristic polynomials {S.(Y,y)} and {S’n(Y,y)}. In order to derive them one rewrites the
indices of all matrix elements as Wythoff composites. Consider, for example, (I). For the elements
of Mpi+1(,,y one employs the simple identities B*+(m) — 1 = B(B*(m)) — 1 = A?B*(m) and
B*1(m) — 2 = ABAB*"Y(m). The last identity can be proved for m = A(p) and m = B(p)
separately. On the r.h.s. of (I) one rewrites the indices of the matrix elements with the help of
the identities Fiyy = B*(1), Forp1 — 1 = A2B*"Y(1), Fyuyy — 2 = ABAB*%(1) for k = 2,3, ...,
and F3 — 2 = 0. Moreover, AB*A(m) — 1 = BAB**A(m), AB*A(m) -2 = A3Bk-1A(m).
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Finally, (I) decomposes into the following four sets of eqgs.

(I,(1,1)) Sprtigm) = Spra) SaBra(m) ~ Sa2pr-1(1) SBAB*-14(m)

(1,(1,2)) S'AzB'-(m) = Spr:) SBaBM-1A(m) — S'A’B*—l(l) '§A‘B"'1A(m) )

(1,(2,1)) Suiprm)y = SaiBr-1(1) SaBrA(m) Sapapr-2q1) Spasr-ragm) - (27)
(1,(2,2))  Sapapr-imy = Sarpr-i(a) SBaBt-1A(m) — SapaBt-101) Saspr-14(m) -

The last two sets of eqs. hold only for k= 2,3, .... For k = 1 one has
Sapm) = Y SaBaim) — SBAAm) >
Sapam) = Y SBasim) — Sas(m) - (28)

The other egs. in (24) decompose in a similar way. The arguments of the polynomials is always
(Y,y) , which can be replaced using eq.(6).

This concludes the derivation of the self-similarity egs. for the Fibonacci chain polynomials. It is
clear that further work is needed in order to extract from this gamut of eqs. information pertaining
to chain properties, like structure of spectra and displacements.
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Abstract
We test an isospectral potential from harmonic oscillator

simulating H-bond interation in DNA macromolecules.

In the context of Supersymmetric Quantum Mechanics (SQM), several new potentials have

been generated from shape invariant potentials[1] . In particular, with reference to the

harmonic oscillator[2-4]. However, to date, none of these new potentials have been applied

to real physical systems.

Peyrard and Bishop[5] have introduced a theoretical treatment of DNA. In this model,

starting from the classical Hamiltonian and using the transfer integral operator, the partition

functions follow from the eigenvalues of a Schrodinger-type equation.

We intend, in this communication, to demonstrate the feasability of using a new potential

1

generated from the harmonic oscillator in the Schrodinger-type equation to describe H-

bonds in DNA.

In SQM the nilpotent operators Q and Q' satisfy the algebra[6]

{Q.Q"} = Hg:Q? =Q"? =0 (1)
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which can be realized in a usual matrix form. In this case, the supersymmetric Halmitonian
Hgg consists of two partners H, and H. which can be factorized in H, =a'a” and H. = a’a"
(where a’ and a” are bosonic operators), and they have the same spectra except for the
ground state, where only H, has an eigenvalue equal to zero E, = 0. The eigenfunctions of
H,and H. are related to one another by: ¥, = a W and W.=a ¥, , where the bosonic

operators are defined by:

gl
a —{+dx+W(x)}. 2)

Redefining the operators a* , it is possible to obtain a family of Hamiltonians as shown
by Sukumar({7] , or the isoespectral potentials[2-4] . In this second case defining new

operators:

o
A* =F—+F(x) 3)

and imposing H.= A" A" yields a general form to get F(x). The new Hamiltonian is written

as

~ _ d

H,=A A+—2&F(x) (4)
and the eigenfunctions of the new Hamiltonian are related to the original Hamiltonian ones
. The missing ground state is obtained from A" ¥,,=0.

As an example, consider the original potential to be the harmonic oscillador, V(x)=x2 it

then follows[1-4] :

. d? d  exp(-x%)
H+=_d—2+x2—1—2a—; - > 5)
X I+ {) exp(-z°)dz
|
ex (—zz)dz .
W, o= exp{—x2 + E( P 6)

I+ fexp(—yz)dy .
3 DNA Model
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Bishop & Peyrard's DNA model includes two degrees of freedom (u, ,v, ) corresponding to
displacements of the bases from their equilibrium positions along the direction of the H-
bonds connecting them. A harmonic coupling due to the stacking interactions between
neighboring bases is also assumed with the same coupling constant (k) for the two strands.
Each base has the mass m.

The Hamiltonian for this model is

2
H= Z{ X (g X R 2 g = Yo VO, )
where x, = (U, + Vy Yv2 » Yo = (Uy - V4 )/V2 , py = mX,, g, = my, and V(y,) is the potential
for the hydrogen bonds. Using the transfer integral operators to solve configuration integral
energy the classical partition function can be obtained.
The temperature of denaturation of DNA can be monitored through the mean stretching
<y, >of the H-bond. Considering the limit of large N, only the ground state will be

important, and

<y >=< Dy lB () >= Jo2 vy, ®
where @, (y) is the ground state eigenfunction of a Schrédinger-type equation:

2

1 d
oz 26%K dy? + V(y)}®i(y) = {8i+2—Blﬂﬁ}‘D i(¥)- )

It is important to note the mean value <y > depends on the form of the eigenfunction

D(y).
4 H-bond Potential

The Morse potential is usually used to simulate the H-bonds in DNA. However, we suggest
here that the potential generated from the harmonic oscillator using the superalgebra can

also be used. This potential has the form:
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which can be realized in a usual matrix form. In this case, the supersymmetric Halmitonian
Hgg consists of two partners H, and H. which can be factorized in H, = aa andH. = aa
(where a” and a” are bosonic operators), and they have the same spectra except for the
ground state, where only H, has an eigenvalue equal to zero E, = 0. The eigenfunctions of
H,and H. are related to one another by: ¥, = a' . and ¥.=a ¥, , where the bosonic

operators are defined by:

+ _ —__d_ W 2
a _{+dx+ (x)}. (2)

Redefining the operators a* , it is possible to obtain a family of Hamiltonians as shown

by Sukumar[7] , or the isoespectral potentials[2-4] . In this second case defining new

operators:
A =TS 4 ) 3)
T dx
and imposing H.= A" A" yields a general form to get F(x). The new Hamiltonian is written
as
H =AA" ZiF(x) 4)
o dx

and the eigenfunctions of the new Hamiltonian are related to the original Hamiltonian ones
. The missing ground state is obtained from A" ¥,,=0.
|
As an example, consider the original potential to be the harmonic oscillador, V(x)=x’ . It

then follows[1-4] :

Ny d? d —x2
P BT S .. . . 30 (5)
X dx Lexp(—zz)dz

exp(—z2 )dz
I+ ‘Lzexp(—yz )dy

W, o= exp'{—x2 + K (6)

3 DNA Model
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Abstract

Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscil-
lator are described both for time-independent and time-dependent systems. We apply them
to the description of a one dimensional atom-diatom collision. From the resulting evolution
operator, we evaluate vibrational transition probabilities as well as other time-dependent
properties. As expected, the ground vibrational state becomes a squeezed state during the
collision.

1 INTRODUCTION

Let us consider the problem of translation-vibration encrgy transfer in a colinear collision betweeen
an atom A and a diatomic molecule BC. The system is described by a Hamiltonian Il

H = Ho + Vs(z,t),

with the molecule modeled by a Morse Hamiltonian
2
Ho = £ + D(e" — 1)’
2m
and we use a semiclassical approach [1] to construct an effective time-dependent interaction Vg
between the particle and the molecule.

A harmonic Hamiltonian is usually related to Ho just by making a Taylor series expansion of
the potential around r = 0 and keeping up to second order terms. However, as we shall show
here, this is not necessarily the best harmonic approximation to the Morse Hamiltonian.

In this work, we analyze the time evolution of several physical observables during the collision.
To that end, we obtain an approximate time evolution operator by algebraic means. The resulting
vibrational transition probabilities are compared with results obtained by other authors [2]. We
also evaluate the occupancy of the ground state and the dispersion of the relative position and
momentum of the atoms in the diatomic molecule during the collision.

1permanent Address: Instituto de Fisica, Laboratorio de Cuernavaca, U. N. A. M., Apdo. Postal 139-B Cuer-
navaca, Morelos 62191, México. ‘
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2 ALGEBRAIC TECHNIQUES

As usual in this type of problem, we shall work in the interaction picture where the behavior of
the free molecule is separated from that of the total system. The observables © evolve in time
according to

O4(t) = UL OUs, (1)

where Uy is the time evolution operator corresponding to the Hamiltonian Hy, while the time evolu-
tion of states is determined by the operator U, associated with the interaction picture Hamiltonian

Hi(t) = eHolimto)/hyg (g f)emHolt=to)/h, (2)

For both time evolution operators we shall make a harmonic approximationidescribed in the
following paragraphs.

a) On the harmonic approximation to the Morse Hamiltonian.
The harmonic approximation to the Morse Hamiltonian is usually carried out by just considering
the second order Taylor series expansion to the Morse potential

D(e™** —1)? ~ DA%, (3)

Let us consider the introduction of creation and annihilation operators with arbitrary scale pa-
rameter « and a translation parameter d:

1 1
a= ﬁ(ax—{—;p)—d (4)

and . ;
(lt = -\—/—i(az - ;p) — d (5)

The usual commutation relation still holds and the position and momentum operators are given
by
‘ 1

Ir =

(e tal+24)  p= %(a——a*). (6)

In terms of @ and a' the Morse Hamiltonian can be written as

Ho = Z ngaf'aj (7)
ij=0
as can be easily shown using the fact
ea(a+a') = eau'eaae—%az’ (8)

The coefficient Ggo can be interpreted as an estimate of the ground state energy on the harmonic
basis determined by the scale parameter a and the traslation parameter d. Invoking the variational
principle we choose them such that

0Goo

5q 1=t =0 (9)
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and 9G
00
g o= =0 (10)
By direct evaluation of these derivatives it can be shown that the variational conditions are
equivalent to the diagonalization of the approximate Hamiltonian

Ho = Z G,‘j(l*ia‘j (11)

0<i+i<2
taking it to a form similar to the one of a harmonic oscillator

Ho = G]](l*(l—i'Go(), (12)

but with a variationally optimized Goo.

b) Nonperturbative approximate solution for the time-dependent interaction Hamiltonian.
In many scattering problems, a perturbative technique is applied to obtain the major effects of the
collision on the state of the system. In the case of a collision between an atom and a diatom, even-
though transition probabilities may be small, perturbative results differ significantly from exact
numerical results. Besides, as is well known, there are several successful nonperturbative methods
to deal with the parametric harmonic oscillator model. Taking this into account, harmonic ap-
proximations to the time-dependent interaction between an atom and a diatom have been studied
[3] [4]. In this section, we describe an iterative procedure which has proven to take advantage of
this fact in an optimized way [6]. This method has been applied to the calculation of vibrational
transition probabilities when the molecule is described by the usual harmonic oscillator derived
from a Morse potential.’ '

Once the time-independent Hamiltonian Ho has been approximated by the harmonic Hamil-
tonian Hp the evolution operator is simply

u(] — e—i/hGOOte—i/hG“ta'a (13)

thus, the interaction Hamiltonian H;(t), can be easily written in terms of the creation and anihi-
lation operators a and a!

Hi(t) =3 05 (H)a"e’ (14)

with the coeflicients ¢E?) simple functions of time. Solving this problem corresponds to find an
evolution operator U;(t) solution of the equation

hoUy = HilUy, (15)

with the initial condition U;(to,%0) = T.
In analogy with the time-independent problem we split H; as a sum of two terms (6]

My =HP +HYD (16)
with |
0 i
HY) = Y eP()ad (17)
0<i+3<2
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and

HID = 3 0Qt)alal. (18)

3<iti

Accordingly, the time evolution operator will be a product,
Uy = uPul™ (19)

with U}OI) such that
ihoUy) = HDUD Ul (b, t0) = T, (20)

and L(I(DH) an analogous solution for the effective Hamiltonian

Hy, = U HT DU (21)

Due to the fact that the operators contained in 'H ") form a finite Lie algebra, the evolution

operator L{ ) can be expressed as a product of exponentlals [7]

ud = I e (22)

0<i+5<2

where the complex functions ﬂi(f)(t) satisfy a set of coupled, first order differential equations which

can be solved numerically. With this expression for L( ) we can construct the Hamiltonian Hi,.

It again comprises a a,rt which forms a finite Lie a]gebra and a part which does not. The time
evolution operator U 1) is then again written as the product of two evolution operators and we
can proceed in a completely analogous manner as before. The evolution operator obtained after
k-iterations U, would correspond to the product

Uy, = UL U0, (23)

To approximate U; by Uj, corresponds to neglect the Hamiltonian ’H( with respect to 'H
We call this the time-dependent iterative Bogolubov transformation (TDITB) method in ana]ogy
with its quite efficient time-independent counterpart [8].

3 AN EXAMPLE

Let us consider, a colinear collision of an H, molecule with an H, atom. For the H, molecule
the parameters of the Morse potential are taken to be A = 0.183385 and D = 2.33509 so that
comparison with the results of [2] can be done. To study how efficient is the TDITB method,
consider first the H, molecule modeled by the usual harmonic oscillator. In Table I we show the
transition probability from the ground to the first excited vibrational state for several values of the
collision energy E = NEy, Eo = hw with w as given by Secrest and Johnson [5] and for different
levels of approximation [6].
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TABLE 1. Transition probabilities using a harmonic oscillator representing the di-
atomic molecule and one (Py;) or two (Py;) iterations for the time-dependent interac-
tion. Results are shown for comparaison with the Basis Set (BS) and Exact Quantum

Harmonic (UHA) of [5].

E/hw Por Poz BS| UHA
4]9.20(-4) | 9.73(-4) | 9.84(-4) | 7.20(-4)
6 | 3.50(-2) | 3.76(-2) [ 3.89(-2) | 2.95(-2)
8 [ 1.38(-1) | 1.47(-1) | 1.55(-1) | 1.33(-1)
10 [ 2.61(-1) | 2.73(-1) | 2.87(-1) | 2.92(-1)
12 | 3.45(-1) | 3.49(-1) | 3.59(-1) | 4.28(-1)
16 | 3.44(-1) | 3.29(-1) | 2.96(-1) | 4.07(-1)

The results obtained with a basis set expansion (BS) are ezact numerical results within the
semiclassical approximation. We also show in the table the exact quantum results of (5] (UHA).
The transition probabilities using the TDITB method after one (Poy) or two transformations (Poz)
are also reported. That is , Py corresponds to approximating the time evolution operator in the
interaction picture by

U :Ulo

with Uy, the operator which evolves according to the Hamiltonian ’H(,:). Meanwhile Py, corresponds
to
Uy =uuld. (24)

0

In the procedure for finding Z/l,(ol) and L{}II) p to gnartic, 0 <7+ j < 4, terms were kept.

Notice that for all the energies considered the transitions obtained after two transformations
are closer to the (BS) results than those obtained after one transformation. We also see that if we
compare our approximations with the exact quantum results (UHA) then for some energies the
first iteration gives closer results than the second one. However this fact may be misleading since
in our case the exact results are those obtained in the semiclassical approximation. Because the
difference between the results obtained after two transformations and the exact ones is very small
we did not pursue these transformations further. We believe that this example shows clearly that
our method deals quite efficently with the time-dependent anharmonicities.

Now, consider the H, molecule modeled by the alternative harmonic oscillator defined using
the variationaly optimized displacement and scale parameters. In this case do = 0.17 while ag
differs from the usual a in less than two percent. In Table II, we show the results obtained
for the transition probabilities from the lowest three states for several values of the collision
energy. This table also shows the transition probabilities obtained numerically for the exact
Morse potential (MP)[2] and the usual harmonic approximation (UHA)[5]. These results do not
comprise the semiclassical approximation for the atom-molecule interaction and use 1s made of
the full exponential function.
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TABLE II. Transition probabilities using the modified harmonic oscillator for dif-
ferent energies and transitions. The upper value corresponds to Exact Quantum Morse
Results (MP), the next corresponds to our’s and the last to (UHA).

E/hw | .P(0-1) | P(1-2) [ P(0-2)] P(1-3)| P(2-3)] P(0-3)

6 | 7.31(-3) | 1.25(-3) | 2.30(-6)

2.00(-2) | 2.75(-4) | 1.44(-6)
2.95(-2) | 1.42(-3) | 1.07(-5)

10 | 7.39(-2) | 8.15(-2) | 1.66(-3) | 1.22(-3) | 5.47(-2) | 1.17(-5)
2.07(-1) | 1.62(-1) | 1.22(-2) | 2.16(-3) | 4.25(-2) | 7.04(-5)
2.92(-1) | 2.17(-1) | 2.25(-2) | 5.39(-3) | 7.70(-2) | 2.31(-4)

16 | 2.45(-1) | 3.18(-1) | 3.38(-2) | 5.72(-2) | 3.34(-1) | 2.72(-3)
3.13(-1) | 1.92(-1) | 1.57(-1) | 1.72(-1) | 2.07(-1) | 3.30(-2)
4.07(-1) | 1.56(-1) | 3.30(-1) | 2.85(-1) | 1.89(-1) | 9.88(-2)

We observe that our results are in general in better agreement with the exact quantal (MP)
results than the (UHA). If we compare Py, in Table I with the corresponding results in Table II
we see a large difference between them and this is due entirely to the slight change in frequency
that we have done defining the frequency of the transformed oscillator. Though the difference in
frequencies is rather small the differences in the values of the transition probabilities are rather
large, for example, for a collision energy E/hw = 4 we go from Py, = 9.73 x 10~* to 2.51 x 10~4
which is very close to the (MP) value of 2.46 x 107*. This is an indication of the quality of the
approximation made for the Morse oscillator.

Once we have constructed the matrix elements of the time evolution operator, we can calculate
. the survival probability, that is, the probability for the molecule to remain in the initial state. We
have done that from a time long before the collision takes place up to a time where the collision
is over.

We see that the collision lasts the order of 1.5 time units (t.o; & 3 x 10~ "sec); the permanency
probability is one long before the collision begins and starts to decrese around t; = —0.75 time
units reaching an asymptotic value at approximately ¢,, = 1 time units. The frequency of the H,
oscillator is wy, = 8.054 x 10" /sec and the corresponding period is of the order of Th, = 3/2tct
so that the molecule is able to make a couple of oscillations before the collision is over. From this
figure it becomes evident why a perturbative treatment of the problem may lead to wrong results.
Although the asymptotic transition probability may be small, in a short interval around ¢ = 0 the
state of the molecule highly differs from the initial state.

In the interaction picture, the creation-annihilation operators can be written in the form

a(t) = di(t)at + dy(t)a + da(t)

where d;(t) are funtions of the time, and we have used the fact that the set of operators appearing
in the time evolution operators is closed under the operation of commutation. We can now consider
the time evolution of the expectation value of the momentum < p >, the coordinate < x > and
the dispersions Azx and Ap using the expressions for the momentum and the coordinate operators
in terms of the creation-annihilation operators.
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Figure 1: Time dependent survival probability for the ground state of an H; molecule colliding
with a He atom for a collision energy £ = 4hw.

It can be seen in figure 2 that, when the atom is far apart from the molecule, the average
value of the position operator in the ground state is zero as it should since we are dealing with an
effective harmonic oscillator. '

As the atom approaches the molecule, this one recedes, taking also negative values of the
momentum, when ¢ =~ 0 the momentum changes sign and the average value of the position initiates
an increase towards the origin. Since the collision time is larger than the frequency of oscillation,
the projectile is hit again and the oscillator’s momentum changes sign, the position does not reach
the origin and moves away from the origin. After that, the projectile leaves the range of the
interaction and the molecule is left in an excited state as indicated by the oscillatory behavior of
the position and momentum operators around the zero value.
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Figure 2: Time evolution of the average values of P (squares) and X (continous line) as the
collision takes place.

Finally, in figure 3 we see that, since we begin with a minimum uncertainty state the dispersion
in each coordinate is \/m and it remains being a minimum uncertainty state during the collision
because we are dealing with an harmonic oscillator.

However, due to the time dependence of the parameters defining the oscillator, we can see
that there is squeezing in the dispersions which become more pronounced as the energy increases.
Notice that as the projectile approaches the molecule, the dispersion in the momentum decreases
while that of the coordinate increases in such a way as to keep their product constant. The
squeezing of the dispersion reaches its peak value at the time of the collision (t=0). The presence
of squeezing is to be expected since the time dependence of the creation-annihilation operators
which define our harmonic oscillator has the form of a generalized Bogoliubov transformation.
Not long ago it was shown that states of light with nonclassical properties can be generated if the
frequency of the harmonic oscillator is swept as a function of time [12]. In that work, the authors
dealt with a simple time dependence for the frequency of the oscillator in order to obtain exact
analytical results. As we have shown here, the presence of these nonclassical properties is due to
the time dependence of the frequency irrespective of the functional form used to describe it.

4 CONCLUSIONS

In this work we have shown that a suitable harmonic approximation for the description of an
anharmonic potential like, for instance, the Morse potential, can yield very good results when
one is looking for properties like the transition probabilities between the vibrational states of the
oscillator. We found that a slight change in the parameters defining the oscillator with respect to
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Figure 3: Time evolution of the dispersion of the coordinate and momentum values for the ground
state of the molecule during the collision for E=4%iw (thin lines) and E=12Aw (thik lines).

their original values, when no optimization is made, can have a great importance for the evaluation
of transition probabilities. However, when we evaluate the dispersions and the average values of
the position and momentum operators we get essentially the same results for the oscillator before
and after the optimization, this leads us to believe that the non classical behavior that we have
found, like the squeezing, is a property of the system and not of the particular model we are using
for its description.

The method we have used can be taken as a starting point for more accurate calculations
when anharmonic potentials are studied. Here, we are searching for the best harmonic potential
to mimic the anharmonic one and at least part of the information coming from the anharmonic
part of the potential is accounted for with the use of the generalized Bogoliubov transformations.
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QUANTUM FIELD BETWEEN MOVING MIRRORS:
A THREE DIMENSIONAL EXAMPLE
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Abstract

The scalar quantum field between uniformily moving plates in three dimensional space is
studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison
of the resulting wavefunctions with their instantaneous static counterpart is performed via
Bogolubov coefficients. Unlike the one dimensional problem, "particle” creation as well as
squeezing may occur. The time dependent Casimir energy is also evaluated.

1 Introduction.

During the last twenty five years, much effort has been devoted to the understanding of quantum
phenomena in systems under the influence of external conditions. In particular, Moore [1] initi-
ated the study of the quantization of the electromagnetic field in a cavity with perfectly reflecting
movable boundaries. Nowadays, it is recognized that this kind of system has several interesting
nonclassical properties. Among them, there is the possibility of producing a nonadiabatic distor-
tion of vacuum state leading to a modification of the field (Casimir) energy (2], along with the
"creation” of photons [3]. It is also possible to obtain nonclassical statistical properties of the
photons inside such a cavity: squeezing [4] and nonthermal distributions [5] are expected.

In order to avoid technical complications, most investigations of the field between moving
plates have been restricted to the one dimensional case. However, it is not obvious whether all the
results can be extrapolated to the three dimensional space. In this article, we study the quantum
mechanics of a scalar massless field propagating between two plates which approach or recede each
other with constant speed. The main results which follow are that the boundary conditions on the
moving plates produce squeezed states and a nonzero vacuum expectation value of the particle
number operator. Thase effects vanish in the one dimensional case [6]). The nonstationary Casimir
energy is also evaluated.

2 Quantum field between the plates

Consider two parallel 'plates which are moving with a constant relative velocity. The natural
coordinates for this problem are

t =7cosh(, z=7sinh(, (1)
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where 2z and ¢ are the Minkowski coordinates. Taking —oco < 7,{ < oo, the Milne coordinates
cover the entire past and future quadrants of the (z,7) plane.
The equation for a massless scalar field  is:

10 a 1 62 o? i
Dwz—;a_T(T-a—Tw)+[ﬁ—a—CE+a_xi+@5 P =0. (2)

Now, the world-line of each plate can be taken as ( = +(p, where (p is the speed of each plate
as seen in their center of velocity frame. Dirichlet boundary conditions on the plates take the
simple form ¥(£(y) = 0. (It is also straightforward to impose Neumann boundary conditions.) It
will be convenient to normalize the field in a box with fixed walls with separation a and b in the
z and y directions

The general solution of the wave equation with the above boundary conditions can be de-
composed as the product of a function of ¢ and 7, and a plane wave solution propagating in the
r = {z,y} plane with wave vector k = n{n,/a,n,/b}. Explicitely,

Yok = Ny siﬁ(er) sin(k,y) sin [V(¢ + o)) HY (k7) (3)
where
Nys = (i)w etvm/? (4)
v abCo
is a normalization factor, HY) are the standard Hankel functions (J = 1,2), ¥ = |k|, and we

have defined v = n7/2(y, n being a positive integer. In the future region, t > 0, H,-(f) and H,-(,})
correspond to modes of positive and negative frequency respectively, while the opposite is true in
the past region, t < 0 (see, e. g.: [7][8]). We will denote the positive (negative) frequency modes

by ¥* (y7).

At this point, we note that the field between plates separated a fized distance L is given by
ux = Nyeilkr—ob iy [%(z + L/z)] , (5)

where w = [k? + (nm/L)?]!/? and the normalization coefficient is now

4 1/2
N, =
¢ (wabL) (6)
This coeflicient follows from the scalar product in Minkowski coordinates:
_ [ 02 4
(1.0 = i [ d= [dydr(6; 52— ), )

where the subindex I'ns refers to the instantaneous frame: the integration is taken over the volume
enclosed by the fixed box at an arbitrary time t.

Hereafter, the field modes between moving plates will be called dynamical modes, whereas the
modes between fixed plates will be called instantaneous modes. The crucial point is that between
moving plates, the positive frequency modes of the dynamical field are a sum of both positive and
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negative frequency modes of the instantaneous field between fixed plates. In general, any field
mode ¢, can be expanded in terms of ¥, as

Vm = Z AmnPn + Z ﬁmnqb:; ) (8)

where a,,, and B,,, are the Bogolubov coefficients, and the indices m and n describe the set of all
parameters characterizing the modes. In the particular case we are interested in, take ¢ and ¢’ as
the wave functions describing the fields between fixed and moving plates respectively. More pre-
cisely, consider a pair of plates of fixed separation L = 2t tanh (o which coincides instantaneously
at Minkowski time ¢ with a pair of plates moving with relative speed v = tanh(2(p) (Fig. 1). Now,
the Bogolubov coeflicients can be' calculated taking the scalar product between the v, and ¢,
modes over the hypersurface t = const. between the plates, (Note that for definitiveness we are
considering the future region ¢ > 0 where the plates are separating but it is straighforward to
adapt the analysis to the past region.) Thus,

Umnkk = (¢:,k1 'd):,-.’kl)lns (9)

and
ﬂm,n,k,k’ = (¢7_1,ks w;‘k')lns . (10)

The integration involved in Eqgs. (9) and (10) is to be performed over the hypersurfacet = const.
bounded by the plates with separation L = 2t tanh (g, with t interpreted as a parameter. At this
point, we note that in any practical case, the velocities of the plates are non relativistic, that is
(o < 1. This permits to make a convenient approximation which, together with the change of
variables z = t tanh (, simplifies Eq. (9) to the form: ‘

b d .
O ik i%—Nd,Nw&kk,&m‘nCot [aHff)(kt) - z‘wH}f)(kt)] et (11)

i

with an analogous equation for 3. In this nonrelativistic approximation, it is very convenient to use
the asymptotic forms of the Hankel functions which are valid for indices with large magnitudes[10]:

HP (kt) = 2/ (v? + k22) "1/
exp [—wr/? —i(v? + k%)V2? 4 ivArsh(v/kt) — i7r/4] . (12)

It finally follows that the Bogolubov coefficients can be approximated as

a e (Skkl 5 1+ —T(Itt)Q e—m’/4+iuArsh(u/kt) (13)
s " 4[v? + (kt)2]3/2] | \

and

i(kt)2 —mif4—2i[2 +(kt)?]}/ 2 +ivArsh(v/kt)
Bmmkk = Okks S [4[U2 T GO /2] e : (14)

It is also worth mentioning that in the case when there are no plates, the g coefficient turns out

to be null when evaluated as a scalar product over the entire 7 = const. hyperplane (the interested
reader can check this point using the standard properties of the Hankel functions). This implies
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that the Milne vacuum is equivalent to the Minkowski vacuum (see ref.[8] for a discussion of this
point).

However, unlike the one dimensional case, the coefficient 3 is not null when the field is rec-
tricted between the moving plates; thus the Fock space defined by the dynamical modes {¥nx}
is nontrivialy related to the instantaneous Fock space specified by the fixed modes {¢,x}. which,
in principle, can be interpreted as the number of particles “created” by the motion of the plates;
this point will be further discussed in the next section.

In particular, the dynamical vacuum state |0 >p,, has a nonzero expectation value of the
number of “instantaneous” particles. Thus, the dynamical vacuum is a nontrivial distortion of
the instantaneous vacuum state |0 >,,. Explicitly, the “particle” number density is given by the
distribution function

(kt)*

=162 + (k)P

Pan=Y_ |Bkn’ (15)
k.»n

Notice, however, that the real character of this particles is intrinsically related to its measurability.

The Bogolubov coefficients also relate coherent and squeezed sates. A state which is originally
coherent according to a instantaneous configuration of the plates becomes a squeezed state with
variances [2]:

T, X5 1 " 1 » *
{ Z 0Ty } — 56'] + Rez [ﬂniﬁ"j :t §(aniﬂn]’ + anjﬁn{)] 51] )
PiPj n
]
and f |

Oaio = 1 3 [0 + 5 (@il + 0sf3)] (16)

In our problem i denotes the sct of variables k,n. So that,

{ Tzis }= %5,.j + by—kt)S {1 F cos(2[? + (kt)2]'/2)}

Tpirp; J16[p2 + (kt)2P
+ 4 (it)* sin(2[? + (kt)?]'/?) (17)

7 4[v? + (kt)?2]3/2

and
ny’
Onip; = — 0y 16[1/2(’:‘)(“)2]3 sin(2[v? + (kt)?]!/2)
(kt)? 2 21/2y

cos(2[v* + (kt)°)'/*) .. (18)

T4v? + (kt)2]3/2

Thus, the squeezed ellipse in phase space rotates with its ellipticity vanishing as an inverse power
of time.

3 Casimir effect

Boundary conditions in any given system may alter its ground state. A well known example in
quantum field theory is Casimir effect, i.e., the attractive force between two infinite conducting

64



plates in otherwise empty space. A direct consequence of the existence of Casimir forces is that
mantaining even uniform relative motion of a pair of conducting plates requires external forces. It
is also expected that the Casimir energy for nonstationary boundaries differs from the stationary
case. In fact, one could think that the creation of particles with distribution (4.3) or the squeezing
(4.5) of originally coherent states take place at the expense of the Casimir energy between the
plates [2]. Notice, however, that such an interpretation is not obvious because the distribution of
particles (4.3) diverges when integrated over all momenta. This is a consequence of dealing with
idealized conducting plates.
The energy density for our nonstationary problem is given by [11]

1 f= ~ ~
€= ;/ dw?[D* (w,7) + D™ (w, 7)] (19)
0
where D* denotes the Fourier transform of Wightman D* functions:
At ) siwe 1 1
D*(w,7) =f doe™? D¥(7 + 50,7 = 20) (20)
ol —oo
. 1 1 1 1
D (T + EU)T - 50) =Dyn< Olw(T + 50’1" y’C)w(T + 50’ Yy, C)lo >Dyn (21)
The free Wightman function in Milne coordinates is given by
Di(z,7') = - ! ! (22)

472 —72 — 72 4 217 cosh(C £ ') + (y — ¢)2 + (z — 2')?

The boundary conditions in our problem can be easily imposed by image method. So that, for
two infinite plates

1 & 1

D*(z,7') = —— 23
(z,2) 4?2 n_X_:oo —72 — 72 4 277 cosh(C £ ¢’ —4¢n) + (y — ¥)? + (z — ') (23)
The energy of the field between plates per unit area is
1 ¢o
- 24
E p —/—Co dC 7 € (24)

When performing the ¢ integration two different contributions in the energy density arise. The
first one has terms independent of the (y value. It is formed by the D* term and by the zero
mode term of D~. The Fourier tranform of the latter is the well known w/2 which gives rise
to infinite vacuum expectation value in free space. The second kind of terms correspond to the
Casimir energy per unit area, which is explicitely given by

.t G (1 _ 1
€= T yn2 (27)3 [; sh*(2n(p) + zn: sh2(2nC0)] ' (25)
In the nonrelativistic limit:
1 G 1 1
Ee ==t [Z B T 2 <2<on)2] ‘ (26)
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and the instantaneous separation of the plates is
1 .3
L~ QTCQ - ETCO (27)

Thus, we recover the static Casimir energy and find the first order correction due to the movement
of the plates.

4 Concluding remarks

From the results obtained above, it is clear that the three dimensional case contains many features
which are not present in one dimension. Roughly speaking, the one dimensiohal case corresponds
to the limit k = 0 of our formulas, that is, when there are no modes propagating parallel to the
plates.

The first thing to notice is that there is a squeezing of quantum states between the moving
plates, although with peculiar oscillating variances.

The other important result concerns the possibilty of creating “photons”. If one believes
the standard interpretation of particle number (see, e. g. [3]), the motion of the plates creates
new particles with a distribution function given by Eq. (4.3). This interpretation is qualitatively
consistent with the change in Casimir energy due to the movement of the plates. In fact, whether
real particles are created is a question which can be settled only when an operational definition of
particle is given, for instance in terms of the interaction of the field with a well defined detector,
e.g. an atom.

The results presented here are still preliminary since we have analized only a scalar field.
The case of an electromagnetic field will be studied in a forthcoming publication. We expect
that by considering a more realistic field, several problems will become clearer. Among them, the
detectability of "created” particles by an incoming atom originally in an ordinary stationary state.
In any case, the problem seems to be sufficiently rich to deserve further considerations.
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Abstract

Rotor coherent state constructions are given for the Wigner supermultiplet SU(4)D
SU(2)xSU(2) and for the special irreducible representations [N0] of the SO(5)D SO(3)DS0(2)
group chain in exact parallel with the rotor coherent state construction for the SU(3)D
SO(3)D SO(2) case given by Rowe, LeBlanc, and Repka. Matrix elements of the coherent
state realizations of the group generators are given in all cases by very simple expressions
in terms of angular momentum Wigner coefficients involving intrinsic projection labels K.
The K-matrix technique of vector coherent state theory is used to effectively elevate these
K labels to the status of good quantum numbers. Analytic expressions are given for the
(ICICT)-ma.trices for many of the more important irreducible representations.
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1 Introduction

In the past few years two types of coherent state constructions have been widely used to give very
explicit matrix representations of many higher rank symmetry groups. In both, the irreducible
representations of a larger group are constructed by an induction process from the irreducible
representations of a simpler subgroup, hopefully with completely known Wigner-Racah calculus.
In the more widely used first type of vector coherent state construction, [1], [2], [3], state vectors
are mapped onto states of a multi-dimensional harmonic oscillator through a set of Bargmann
variables, z. This VCS construction has been widely used for many of the mathematically natural
group chains such as U(n) D U(n-1) x U(1) D U(n-2) x U(1) D... for which the subgroup chain
gives a complete labelling of the state vectors. In the more recent second type of coherent state
construction rotor expansions are used which are particularly effective for many of the physically
relevant group chains for which an SO(3) or SU(2) subgroup related to a physically meaningful
angular momentum is the important subgroup in the group chain.

In this talk I want to focus on three group chains with particular relevance for nuclear structure
problems: 1) The SU(3) D> SO(3) D SO(2) chain of the 3-dimensional harmonic oscillator of
the nuclear shell model with good orbital angular momentum; 2) The SU(4) D SU(2) x SU(2)
Wigner supermultiplet with good spin and isospin needed to complement the orbital functions of
1); and finally, the SO(5) D SO(3) D SO(2) chain needed e.g. for the 5-dimensional harmonic
oscillator of the quadrupole phonon states of the Bohr-Mottelson collective model or for two of the
important symmetry group chains of the interacting boson model of Iachello and Arima, [4]. Like
all physically relevant group chains, all three suffer from a missing label problem. For all of them
many solutions have been proposed for this problem, some of them highly practical, others quite
elegant or numerically feasible; sec e.g. the pioneering work of Moskinsky [5], [6], [7]. It is the
purpose of this presentation to try to convince you that the new rotor coherent state constructions
give a very elegant yet also very systematic and practical solution to the missing label problem.
Moreover the solution is essentially exactly the same for all three examples.

2 The Rotor Coherent State Expansion for the SU(3) D
SO(3) Case

For the SU(3) scheme in a basis of good orbital angular momentum a coherent state rotor expansion
has recently been given by Rowe, LeBlanc, and Repka, [8]. This construction is closely parallel to
the seminal work of Elliott [9], [10], [11] in which an angular momentum projection label, K, the
projection of the orbital angular momentum onto an intrinsic or body-fixed z’-axis is used in place
of the missing quantum number in the SU(3) D SO(3) D SO(2) scheme. Only a brief synopsis of
this work will be given, the details of the derivations being reserved for the second example.

In the rotor coherent state construction for SU(3) an arbitrary state vector, |¥ >, is trans-
formed into its coherent state wave function, ¥(1),

U () = (dou | R(Q)|T) (1)

where |@(5,) > is the highest weight state in the SU(3) D SU(2) x U(1) scheme. Here R(?) is a
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standard rotation operator . o
R(Q) — elaL,elﬁLyewL, (2)

where a, 3, v are Euler angles, L; are space-fixed components of the orbital angular momentum
operator, and where the scalar product is defined in terms of the standard angular measure

/dQ ———///dasinﬂdﬂd*y (3)

(Note, however, that the conventions for the R(€) of ref [8] are somewhat different from the
most widely used nuclear physics conventions [12].) If |¥ > is expanded in angular momentum
eigenvectors |v;LM>, where v is shorthand for all additional quantum numbers, these angular
momentum base vectors are mapped into their coherent state realizations

U,.Lm(2) = (S| R(Q)|v; LM)
= ;(d’(xu)h/; LEK)D5 ()

= Zcz«\/zL LDk (@). (4)

That is, angular momentum eigenstates are mapped into a basis of (normalized) D-functions which
form a simple orthonormal set with respect to the rotational measure of eq. (3). The symmetries
of the cx are such that the symmetrized, orthonormal rotor basis

\] m%([ﬁia),(_o){pﬁw(ﬂ) + (=1)M#+EDE () (5)

is most convenient. Operators, O, are then mapped into their coherent state realizations, I'(O),
through

T(0)¥(2) = (dpw | R(2)O|T). (6)
It will of course be convenient to express all operators in terms of spherical tensors of rank, r, such
that

F(0%)¥() = (80w | RO, |T)
= (S| RO, R() ™' R(Q)|¥)

—Zka Hdouw|OLR(Q)|9). (7)

The SU(3) group generators are the 3 components of the orbital angular momentum operators,

L! | and the 5 components of the Elliott (Au-preserving) quadrupole operator, Q% . The rotor
realizations I'(L},) are given in terms of their usual Euler angle realizations
10 ; g a
[(Lo) = = [(Li)=e*"{icot B— + —1}, 8
(Lo) o (Lz) = e*{ico ﬂaviaﬁ} (8)

where I'(Lo) has eigenvalue M, while T'(L;.), (T'(L-)) are standard M-raising, (lowering) operators.
Eq. (7) shows that we need both the standard (right-action) rotor realizations of operators, O,
as well as their left-action version which will be denoted by a T,

T(O[)¥(Q) = ($|OLR(Q)] ). (9)
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The latter can be evaluated from the left action of the operator on the SU(3) highest weight state.
For the angular momentum generators

T(L2)Puiim(Q) = (b | L R(Q)|v; LM)
= ZDKM )b [ Lilv; LK)

= EK:DKM(Q)\/ (L + I(LK1K|IL(K + k) {Sowlv; LK +F))
= E Dixc—ipm (Y L(L + I{L(K — E)LE|LK)($(r)|v; LK), (10)

so that T'(Ly), (T'(L-)) are now K-lowering, (raising) operators, a well known property of the
intrinsic (body-fixed) components of angular momentum operators. The ['(Li) can therefore be
given in terms of their Euler angle realizations through the well known rotor expressions for
intrinsic components,

- 19 _ Fia g . o .9
[(Lo) = ida’ [(Ls) = {smﬂa~/ tCOtﬁaa * a3

where T'(Lo) has the simple eigenvalue K. The coherent state realizations of the quadrupole oper-
ator as given by Rowe, LeBlanc, and Repka [4] are

re 2 =0Cx+p+ 3)D2 Q) - %[L2 D2 ()]
+/2{ D3, (Q)(1 — T(Lo)) + D2, (V) (1 + T(Lo))}, (12)

i.e., these are expressed in terms of the very simple operators, L?, I'(Lo), and simple D-functions.
The well-known matrix elements of these D-functions in the orthonormal rotor basis of eq. (5) at
once lead to the (standard) angular-momentum reduced matrix elements

(K; L'||ID(Q)||K; L) = /(2L + 1) {(LK20| L' K)[(2X + p +3)
AL(L +1) + LJL(L + 1)) + x1(L12 = 2L'1)/3(=1)F 1 (0 +1), ) (13)

(K +2); L'||IT(QY)||K; L) = JEL+1){LK2 £ 2|L'(K £ 2)\/3(s F K)okx, (14)

with ok = V2 for either K or K’ = 0, and ok = 1 otherwise. The simplicity of this result
is negated partly by the fact that the I'(Q2) are nonunitary realizations of these operators. In
order to translate the above nonhermitian matrix elements into the hermitian matrix elements of
@2, in ordinary Hilbert space, the nonunitary realizations, ['(O), of coherent state constructions
is converted to a unitary realization ¥(O) via the K-operator equation

~4(0) = K~'T(O)K. (15)

}; (11)

Matrix elements of the X and K1 operators can then be used to convert the nonhermitian matrix
elements of T'(O) to hermitian form 4(O) and hence directly to hermitian form in ordinary Hilbert
space. Thus

(LN Ly = 3 (KTHL)wre( K5 LNID(QP)IIK; LY(K(L)) ko (16)

K,K'
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where the new quantum numbers, v, are defined through the eigenvalues of the hermitian matrix
(KK T) which can be calculated in coherent state theory by simple recursion techniques through the

known matrix elements of the group generators I'(Q?%). The (ICIC*) kK matrix elements, moreover,
can be given in simple analytic form [13] as functions of A, 4, and L. As a simple example, the

(IC)CJ[) matrix for the irreducible representations (A2) with A-L = even is 2-dimensional, with K=2
or 0, in the basis of eq. (5), with

(KK )z = 1201 + 3)* = L(L + 1)]C
(Koo = 200 +2)2 — L(L+ 1)IC

(kK)o = VE(L = L(L + 1)(L +2)C, (17)
with
C=N/A+2-LMNA+L+3), (18)
with
=D+ o A+ ) _
N = 500+ 3) for A = odd,; N = —————2(/\ 12) for A =even, (19)

where M! = A (A-2) ... 2 (or 1). The (L”)Ch-matrix can be converted into the needed matrix
elements of K and X! through the unitary matrix, U, which diagonalizes the hermitian matrix
KKt

wkkhHuh,., = Ab (20)

with

(K)kw = U;[',,\/X:; (K™Nuk = \/—-IA=UVK (21)

defined for all states v with non zero eigenvalue, A,. Note, that a zero eigenvalue A, signals a
forbidden state. The matrix of eq. (17), e.g., has one zero eigenvalue for L = A 4 2; so that there
is but a single allowed state for this maximum L-value. For L > (A\+2) the matrix elements of
I'(Q?) insure that all matrix elements of XK1 are zero. The K-matrix technique of coherent state
theory thus effectively converts the Elliott K-projection label to the status of a good quantum
number.

It should, however, be stressed that the coherent state construction outlined here is very closely
related to the Elliott angular momentum projection technique [10]. The matrix elements of Q2
in the form of egs. 13) and 14) have essentially been given by Elliott in ref. [10]. Except for an
overall normalization, (see eq. (19), which is related to the fact that the 1-dimensional (IC}C]‘) for
the minimum L-value of 0 (or 1) is chosen to be unity in the coherent state construction), the
()CKft)-matrix elements are given by the overlap matrix of Elliott (see e.g., eq. (A.3) for A(KLK')
of ref. [11]; and the specific analytic functions given by Vergados for the lower p-values in table
2A of ref. [14]).

What then are the advantages of the coherent state rotor construction? By mapping the SU(3)
angular momentum eigenstates onto the orthonormal basis, eq. (5), of the rotor expansion the
construction of matrix elements is split into two clearly separated simple steps: In step 1, ma-
trix elements of T'(O) are given very simply in the orthonormal rotor basis where K defines the
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orthonormal states. In step 2, which is the unitarization process, K is converted to the quan-
tum number » in ordinary Hilbert space. By relating v to the non-zero eigenvalues of (ICICT) an
essentially author-independent choice can be made for the quantum number v. Although some
numerical work is required in the determination of the U-matrix elements which diagonalize the
multi-dimensional (ICICT)-matrices; no arbitrary choices are made in a Gram-Schmidt orthonor-
malization process, as in the Vergados basis [14], which is an attempt to make the Hilbert space
quantum number, (the x of ref. ([14]), as close as possible to the Elliott projection label K. (In
this connection, it is interesting to note that both x and v tend to pure K-values in the limit A
>> L as a glance at the special example of eq. (17) will verify.

3 A Double Rotor Coherent State Expansion for the
‘Wigner Supermultiplet SU(4) > SU(2) x SU(2).

A complete labelling scheme for the Wigner supermultiplet has been achieved by Draayer [15]
who used the Elliott angular momentum projection technique to augment the spin and isospin
quantum numbers (SMs), (T M7) with the projection labels Ks and K7. In order to calcu-
late the generator matrix elements and SU(4) reduced Wigner coefficients in this fully labelled
but nonorthogonal basis, however, Draayer first calculates the transformation coeflicients to the
canonical fully specified orthonormal U(4) D U(3) D U(2) D U(1) basis, leading to a somewhat la-
borious calculational algorithm. This example therefore will fully illustrate the power of the rotor
coherent state construction which leads in a very simple and direct way to the desired results.

The supermultiplet scheme is based on the four spin-charge states of a single nucleon, |m,m,),
with nucleon, |m, m; >, with

o) = 1+3+3> |5
IC) = I‘+%_%>, Id)

I

B[ O
o W=

I_ —3>
|-141s. (22)

To gain the most couvenient double rotor expansion it will be useful to define the basis states
[2),i=1,...,4, by

1 1
la} = AU +12)), 1) = —=(=11) +12)),

o) = %aswmn, Id)=%(—l3)+l4)), (23)

and define the 15 supermultiplet generators (17], S,T, and E = o7 in terms of U(4) generators,
Cija

C,'j=2ai,-aaj, Li=1,...,4 (24)
where ¢, j give the spin, isospin quantum numbers and a stands for all additional (orbital) quantum

numbers needed to spe?ify the single nucleon creation and annihilation operators. In terms of the
Ci; the generators are

So = %(CIZ +Cau + Cay + Ci3)
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Sy = 3(=Ciz—Cas+ Cra+ Cr — C31 + Cs3 — Car + Ca2)
S. = H-C3—=Can+Cs+Cp—Ciz+ Cas— Cru+ Caq)
To = '15(012 + Ca1 — C34 — Cy3)
Ty = 3(Cis+Caus+Cru+Ca+Cay—Cs2— Ca + Ca2)
T- = 1(Cs14Csp+Ca + Caa+ Ciz — Caz — Cra + Cag)
Ep = %(Cn + Cyy — C33 — Cy4)
Ey = 212(013 + C23 — C14 — Caa — Ca31 + Caz — Cqy + Cyp),
E_ o = ﬁ;( -C31 — C32 4+ Ca1 + Caz + C13 — Coz + Ciy — Cay),
En ﬁ;( ~C13 — Ca3 — Cia — Coq4 + C31 — C32 4+ Caz — Cay),
Eoy = ﬁ;(csl + Caz + Cq1 + Cy2 — Ci3 + Ca3 — Cag + Cha),
Ey = %( 1+ Co2 + Cra = C),
E_ i, = %( —Ci1 + Cy2 — Ci2+ Cy),
B = %(033 — Cya — O34 + Cy3),
E_y1 = }(Css— Cas+ Csq — Cu3). (25)

The SU(4) irreducible representations are labelled by 4-rowed Young tableaux partition labels
[f1,f2,f3,f4], by the SU(4) labels {\;, A, A3}, or by the Wigner supermultiplet (or standard Cartan
SO(6) labels (P, P’, P”)), with

M= fi—fi, A=fH-f, As = fa— fa,
P == %(Al + 2A2 + /\3), P’ = %(Al + /\3), P” = %(1\1 - /\3) (26)

These characterize the highest weight state |¢) with

C.'j}(ﬁ) =0 for :z <7
Ci1]é) = (M + Az + A3)|é >, C2|é) = (A2 + A3)|¢ >,
Css|d) = A3|¢), Caald >=0. (27)

The double rotor expansion uses the double rotation operator R(2) = R(Qs)R(dr), with
Euler angles as, 8s,vs = Qs and ar, fr,77 = Q7 in the spin and isospin space. Draayer [15] has
shown that the set of states, {R (2) |¢)}, obtained by rotation of the highest weight state through
all possible angles as,...,yr span the full SU(4) space. Arbitrary state vectors |¥) in this space
are now tranformed into their coherent state realizations with coherent state wave function

¥ (Q) = (¢|R(QD)|¥). (28)
A state |aSMgsT M7) with definite spin and isospin quantum numbers is represented by

‘PQSAISTAIT(Q) = (¢|R(Q) IGSAlsTA[T)

Z (¢|GSKSTKT)D}g\'snls(QS)DzT{TMT(QT)- (29)
KsKp
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Draayer [15] has shown that the SU(4) irreducible representations [fi, f2, f3, fa] = {A1A2)A3}
are spanned by the double rotor wave functions with Ks, Kr-values restricted by

(Ks + Kr) = £M, (M —2),2(M —4),...,0(0r £1),
(Ks — Kr) = £X3,2(A3—2),2£(A3 —4),...,0(0or £1). (30)
Again, it will be useful to introduce symmetrized combinations of the D-functions. The double

rotor coherent state wave functions are then spanned by the symmetrized (normalized) double
rotor functions

1 [(25 + 1)(2T + 1)] 3
87(2 2(1 + 5}{505}(7.0)
}{ D3 a5 () Diepay (Qr) + (1) D3 0 (Q5) DY 01, Q1)) (31)

and it will therefore be sufficient to choose Kg > 0, and for Ks = 0 : K7 > 0. The requirement S >
|Ks|, T > |Kr| together with the structure of the k¥ -matrices will determine the multiplicity
of a given S, T value. For states with low values of S + 7', for which the eigenvalues of ICICT are
all nonzero (no redundant states), the number of occurrences of a given S,T will be determined

by the number of possible Kg, K7 combinations. States with the maximum possible value of
S+ T =X+ X+ X = fi — f4, and with S(or T)> -15(/\1 + A3), always have an occurrence of 1.

For these S, T-values the Kkt matrix always has only a single nonzero eigenvalue giving only a
single nonredundant or physically allowed state. In general, the states with S+ T > A; + 2 will
have ICICt-matrices with some zero eigenvalues and hence some physically forbidden states. Table
1 gives a specific example, the possible S, T-values for the irreducible representation [8620] with
{XiA223} = {242}. In this case there are five possible symmetrized states of the type of eq. (31),
with KsKr = 20,11,1 — 1,02, and 00. Note that states with KsKr = 00 must have S+ T =
even since A\; + A3 = even. States with both S and T' > 2 can thus have a 5-fold occurrence for
S + T = even and a 4-fold occurrence for S + T' = odd. The maximum S + 7T'-value is 8 in this
case. States with S+ 7T = 8, S(or T')> 2, are all single as indicated in the first column of the

table. The KK t-matrix for this case has four eigenvalues of 0. In addition, it can be shown that
the ICICT-matrices for states with S + T = 7 have two eigenvalues of 0, thus reducing the possible

number of physical stakes by two, while states with S + T = 6 lead to K:ICF-ma.trices with one
eigenvalue of 0 reducing the possible number of physical states by one.

In the VCS rotor expansion operators, O, are transformed into their VCS realizations, I'(O),
through O|¥) — I['(0)¥(N), with (cf. eq. (6)),

L(0)¥() = (¢|R(Q)O| V). (32)

The SU(4) generators, O = S, T, E are again of greatest interest. Again, both the left and
right realizations of S and T can be expressed in terms of the Euler angles as, 8s, s and or,
Br, 4 as in egs. (8) and (11). Now I'(Sp) has the simple eigenvalue Mg whereas I'(Sy) has
eigenvalue Ks; while I'(S, ), (['(S-) are Ms-raising, (lowering) operators, whereas I'(Sy), (['(5-))
are Ks-lowering, (raising) operators; with similar properties for the I'(T) and T'(T).
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The generators E can be transformed into left-action operators via

F(Emsm'r)\l’( ) = (¢IR(Q)E"15mT| \I’)
(SI(R(Q) Emgmy R () R(Q)|T)
Y (6| Ekskr R(D)| W) Dy g () Dipm (1)

ksky i

(33)

Using the properties of the highest weight state, eq. (27), and the specific expressions of the

generators, egs. (25), it can be seen that

(¢|Eoo0 = %(/\1 + 2X; + A3){dl,
($lExr0 = —Z5(81Ss,  ($|Eoxs = —J5(4|Ts,

($lEsier = YOl (=M £ SoxTo), ($lExriz1 = 3{8|(As F So £ To)).

(34)

At this stage the usefulness of the transformation (22) can be appreciated. Although if seemingly
complicates the relations of the group generators in terms of the Cij, it can now be seen that the
transformation (22) makes it possible to express the operators Ejgky in their left actions on the
single highest weight state into equivalent left actions of components of S or T or the Cartan

generators Cj;. The relations (34) lead to

[(Emomr)¥(R) = {3(M + 222 + 23) Doy (25) Do (1)
T[Dlms(QS)F(S+) + Dl-lms(QS)F( )]DOmT(QT)
TDOms(QS)[DImT(QT)f(T+) + Dl—me(QT)F(T—)] '

+3 Do (Q5) Dl () (=M1 + T(So) + T(To))

+1DY,,. (Qs5)DL,,. (1) (=1 — T(So) — T(To))
+3Dlns(25) DL 1 (1) (A3 — T(So) + T(To))

+1D!,,.(2s) D}, (1) (As + T(So) = T(To)) He| R(D)| ).

Finally, using the identity

[S2, D3 (Q5)] = V2D o (25)T(S4) + DLy (25)T(S-)) + 2Dom s (Rs),

and the similar relation for the isospin operators, we obtain

D(Emgme) = {3(A1 42Xz + X3) + 2} Do (Q5) Do ()

— (8% Do s () Doy (Q1) + Doy (25)[T?, Doy (1)1}
1D}ms(ﬂs)D}M(er)( M +T(So) + T(To))
1D () DL Q1) (=M1 = T(S0) — T(To))
’Dims(ﬂs)D_lmT(QT)(Aa ~ I(So) + I(To))
1D 16 (25) Din () (A5 + T(So) — [(To)).

+ + + +

(35)

(36)

(37)

This is the analogue of eq. (12). Using the symmetrized (normalized) rotor basis states of eq. (31)
the standard S and T-space rotational measure, and a standard definition of a spin, isospin reduced
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double-barred matrix element, together with the well-known triple D-function integrals, we obtain
(for the general KsKr case with Kg + Kt > 1) the result

(KsK1; S'T'||T(E)||KsKr; ST)

= [(25 + 1)(2T + 1)]3(SK10|S"; Ks)(T K710|T'K7)

X{ZM + 20+ X3) +2-18(S"+ 1)+ 18(S+1) - iT(T' + 1) + 1T(T + 1)},

(Ks + 1) (Kt + 1); S'T'||T(E)||KsKr; ST)

= 1{(25 + 1)(2T + 1)]3(SKsl + 1|S'(Ks + 1))(T K71 £ 1|T"(Kr + 1))(=) + Ks + Kr),
(Ks £ 1) (Kt ¥ 1); 8'T'||T(E)||KsKr; ST)

= 1[(25 + 1)(2T + 1)]3(SKs1 + 1]S'(Ks £ )T K71 F 1|T"(Kr F1))(\s F Ks + K1).(38)

The special cases Ks K1 = % %; %, -%; 10 and 01 will again require additional terms, (the analogues

of the special case K = 1 for eq. (13)). The details can be found in ref. [16]. As for the SU(3) case,
the reduced matrix elements of the I'(E) are given by very simple expressions involving ordinary
spin (S) and isopin (T) Wigner coefficients with projection labels Ks and Kr. Since the I'(E) are
nonunitary realizations of the gencrators E these first have to be translated to unitary form via
the K-operators through the analogs of eq. (15) and (16). The (lCICf)—matr‘ix elements are now
calculated most easily through recursion relations such as

> (’C’C]L (8% TNk, wy, iy, Ky, (K5, Ky ST||D(E)|| K5, K75 ST (—1)S+T-5'-T

l\”52 K'T2
= Y (K5 Kp; STNE)|Ks, K3 STYKKT(S, T)) ks, kg, iy Ko, (39)
]\'Sl I\’T1

If the quantum numbers (A, + A3) - are not too large, the dimensions of the (}CICT) matrices will be
of manageable size so that analytic expressions can be given for the matrix elements as functions
of S, T, and the SU(4) quantum numbers. As a special example, the irreducible representation

[fifafafa]l = [y +2,¥,0,0] = {A\A2A3} = {2y0} has the simple (ICICT)-matrix elements

kKt (S, THun = My +3)(y +4) - S(S+1) — T(T + 1)|CF,
(KKT(S, T)oooo = [(v+3)(y +2) — S(S+1) = T(T + 1)]CF,
(KKH(S, D)oo = —[25(S + 1)T(T + 1)J2CF, (40)

with common factor given by

Num

F =
¢ (y+4+ S+ y+2-S-T)!y+3+S-T)Ny+3-S+T)VW (41)
with Num given by
Num = (y+ 4!y (y+ )y + D! for y=even,
(y +5)"(y — )My + 2)!(y + 2)! for y=odd. (42)
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Similar (IC)CT)-matrix elements are given in ref. [16] for most of the important SU(4) irreducible
representations.

For the Wigner supermultiplet therefore, as for the SU(3) D SO(3) scheme, the matrix elements
of double (spin and isospin-space) spherical tensor operators, (not necessarily group generators),
can be evaluated by a simple two-step process. By mapping the SU(4) states of good spin and
isospin onto the symmetrized orthonormal basis states of the double rotor coherent state expansion,
very simple expressions are gained for the reduced matrix elements of the I'(O™s"T). By converting
the nonunitary I'(O"S"T) to unitary form via the K-matrix technique, these can then be converted
to standard Hilbert space matrix elements in which the labels Ks K7 are replaced with the quantum
numbers v which enumerate the nonzero eigenvalues A,, of the (IClCt)-rnatrix. These A, again
give an author-independent meaning to the quantum numbers, v, where now

(V5 STNOS™ |, STy = D> D (KT)ukury (Ks K7 ST DO )| K s K13 ST)(K)K sker
KsKr KLK}
(43)
The K-matrix thus effectively clevates the Draayer (Elliott-type) projection labels Kg, It to the
status of good quantum numbers.

4 A Rotor Coherent State Expansion for the SO(5) D
SO(3) Chain

Very recently, Rowe [18] has also given a vector coherent state rotor realization for the special
irreducible representations [NO] and [NN] of SO(5). With a slight change of emphasis [19] this
rotor construction can be put into exact parallel with that used for the SU(3) D SO(3) and
SU(4) D SU(2) x SU(2) group chains. In the SO(5) basis of good orbital angular momentum,
|[N1N2),...,..., LM), there are two missing quantum numbers, in contrast to the mathematically
natural basis | [N} No| sm,tm,) which exploits the local isomorphism between SO(5) and Sp(4)
and labels the states with the quantum numbers of the SU(2) x SU(2) subgroup generated by two
angular momentum generators s and t (not to be confused with the spin and isospin of the last
section). For this reason it will be convenient to express the group generators in the Sp(4) notation
in terms of the particle creation and annihilation operators for a family of spin-% particles with
states m = + %, + %, - %, - % to be denoted by labels a, b, ¢, d, respectively. In order to generate
the rotor states in terms of a single intrinsic (maximal weight) state, it will be convenient to make

a rotation in the m = + %, - % subspace, viz.
la) = Z(11) +14)), |6) = 12),,
d) = (=) +14),  lo)=3); (44)

where this will achieve the same purpose as the analagous eq. (23).

Since the totally symmetric SO(5) irreducible representations, [N0], are of greatest interest in
nuclear physics applications, we will focus on this case. The rotor coherent state can now again
be given in terms of a single intrinsic state |¢) via (¢|R(Q2|¥). Ior the totally symmetric irreps,
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[NO], |#) is now chosen such that
2(C11 = Cas) _J +3maz _ | +iN }
{HG =G b=t i = { HY J1o (15

C (Cr2+ Ca4)
{Gebia=0d (€o-Cu) tior=0 (46
32 (Cal - C42)

with

" The group generators are now given by the orbital angular momentum vector L, (a spherical

tensor of rank 1), and the 7 components of a spherical tensor of rank 3, 03,. Egs. (45) and (46)
assure that the left action of these octupole generators can be replaced by operators I'(L¢). In
particular,

($l00 = —(8l( +3N),

(#l0 = R(4IL-, (#1041 = F5(¢l L4,

(¢l0s2 = 0, ($l0-2 = —/3(SILs,

(045 = L(dl(Lo — N), (8|05 = L($l(Lo + 2N), (47)

leads to an expression for I'(O,,) in terms of the T'(Li) and D}, (€). Analogs of eq. (36) lead to
the simplest form for I'(O,,)

T(On) = —D3.(RT(Lo)+ 4N +2) + §[L? Dg,,]
+355 D% (T (L) + B D33 (A)(T(Lo) — N)
+VED?,, (=21 (Lo) + 3N +2) — ¥E[L2, D2,,.]. (48)

Note the parallels between this expression and the comparable eqs. (12) and (37) of sections
2 and 3; but also note that in this case it was now not possible to eliminate both ['(L.) and
['(Ly). However, the K-raising matrix element of ['(L-) in combination with the K-lowering of
the D3, () operator leads to a simple contribution to the matrix element diagonal in K in the
rotor basis, D& ,(R2). The I'(Op,) of eq. (48) thus lead to very simple matrix elements in the rotor
basis with K’ = K, K + 3, and K - 3. Williams and Pursey [20] have shown that the allowed K
sequences for the irreps [NO] are the following (with n = integer)

For N = 3n K= ...,-6,-3,0, 43, +6, 49, ...
For N = 3n+1 K= ...,-8,-5,-2, +1, +4, 47, ...
For N = 3n+42 K= ...,-7,-4,-1,+2, 45, 48, ...

Starting with the simplest state for [NO] = [10], with L = 2, with the normalized rotor state

Viasz {Dham(®) + DLy (D), (49)

totally symmetric rotor states for N > 1 can be built up from simple products of D-functions.

In such a basis the reduced matrix elements of the T'(O3) of eq. (48) are again given by
very simple expressions involving ordinary Wigner coefficients with projection labels K. The K-
matrix technique of coherent state theory can again be used to convert these to the status of good
quantum numbers, v, through the eigenvalues A, of the Kkt matrix.
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Table 1: The Possible ST-values for the Irrep. [8620]

1

(60)!
(61)" (50)°
(62)! (51)° (40)
(52)* (41)° (30)!
(53)* (42)* (31)* (20)*
(43)? (32)* (21)°
(44)! (33)* (22)° (11)*  (00)!
(34) (23)* (12)°
(35)! (24)* (13)* (02)?
(25)* (14)° (03)!
(26)! (15)° (04)
(16)* (05)!
(06)"
T T T
4 2 1

The numbers below the arrows give the number of zeros of the ()CICT)-matrices in the columns
indicated by the arrows.
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Abstract

The following questions, concerning to the application of the harmonic oscillator represen-
tation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the
scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR:
separable expansion of the short range potentials and the calenlation of the phase shifts:
isolated states” as generalization of the Wigner-von Newmann bound states embedded in
continuut: a nuclear coupled channel problem in HOR: the description of true three body
scattering in HOR. As an illustration the soft dipole mode in the "Li nucleus is considered
in a frame of the *Li+n+n cluster model with taking into account of three body continuum
effects.

1 Introduction

Usually harmonic oscillator wave functions are used for the description of bound states of quantum
systems that belong to the discrete spectrum [1]. In this talk the application of the harmonie
oscillator (HO) basis to the solution of the scattering problem, i.e. in continuum, will be discussed.

This line of investigations was begun in Refs. [2] (sec also the papers cited there) and inde-
pendently in the papers of Kiev (3] and Moscow [4] groups. The similar approach, also connected
with an application of the HO basis to the scattering problem, was developed by the Hungarian
group [5].

In order to illustrate the essence of the approach to the scattering problem in the harmonic
oscillator basis, we shall consider at first the simplest problem of the scattering of a single particle
by the central potential V(r) [4]. Thus, we come to the Schroedinger equation

[)'2
<-T + V(H) P (1) = 40t (x) - (1)
T

Its solution Y, (r) = ffz(v‘))/l,,L(Sl) will be sought in the form of an expansion in the eigenfunctions

of the harmonic oscillator

H{(?') = Z(‘wnll{nl(r) (‘2)

n=0
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where

n! 1/2 ,
RV = 1 () e ®)

is the radial wave function of three-dimensional harmonic oscillator. This wave function cor-
responds to the eigenvalues of the oscillator energy E2*° = (2n + 1 4+ 3/2)hw [1]. The value
r, = (h/mw)!/? is selected as a length scale in relations (1) and (2). Here w is the oscillator
frequency; the energy € = ¢?/2 is measured in units hw; the wave vector k is expressed in units
o', ¢ = krg is the dimensionless momentum. Substituting expansion (2) in (1) and multiplying
(1) scalarly by R,;Y., we obtain the following equation determining the wave function ¥, in the
harmonic oscillator representation (HOR):

Z(H'nn’ - 6nn'5)Cn’l =0, n= 0, 1,2,.... (4)

nl

Here, H = T +V and only the following matrix elements of the kinetic energy operator T' = P?/2

are nonvanishing:
1/2
1 1
Tnn—1:_§[ n(n+l+§) :, )

1 3
T =7 (2 ! —) s
2<n+ ~I—2 (5)

1/2
1 3

As to behaviour of the coefficient Cy; for n > N, their asymptotics are similar to the asymptotic
of the wave function in the coordinate representation [3] if r is substituted by 2n!/2r,:

Crt ~ 20!y (24/mrg) , o — 00 . (6)

this result can be obtained if the WKB expression for the oscillator function R, (r) is substituted
in the expression for the coefficients

Cot =< Ynim(r)|Yim(r) > (7)

and the integral (7) is calculated by the stationary phase method. The result (6) follows also from
the fact that the finite-difference equation

1/2
1
~[ n(n+l+§) Cn_1,+<2n+l+g——q2)cnl

1/2

Crtu+2)_ <allVIn'l > Coy =0 (8)

n

—[ (n—{—l)(n-i—l.—}—g)



in the limit n > v = [/2 + 3/4 can be replaced by the following second-order differential equation
[4]:

(1+1 00
xp - M0y (7 (e, VEr Xl e + X =0 (9)

z
Here z = 2(n + »)V/?, Xi(z) = 21/2C,;. The Eq. (9) should be solved at the boundary condition

X(2v/v —1)=0. (10)

Thus, in the asymptotic limit for large 7, the wave function of our system X; for the partal
wave with angular momentum [ in the HOR obeys the conventional Schroedinger equation with
nonlocal potential

V(z,2')Wezz' =2 < nl|VIn'l > [(n +v)(n' + v)]H/4 (11)

where the value 2(n + v)Y/?ry plays the role of ” coordinate”. In actual calculations, the potential
matrix has to be cut off by the condition V., = 0, if n or (and) n' > N. Then a set of equations
(4) can be splitted in two parts:

N
a) n S N 9 Z (Hnn' - 56nn’)Cn’l = _5nNTNN+lCN+11 3 (120')
n'=0
b) n 2 N + 1 3 Tnn—lcn—ll + (Tnn - 5)Cnl + Tnn+lcn+ll =0. (12b)

Thus, the coefficients C,; with n > N obey the equation of free motion (12b) or, in the asymptotic
limit of continuous n, the Schroedinger equation of free motion

41
X —i?—)xl-i-qzxt:o-

It means that the condition

Oy ~ 2nt4e 2k (13a)

(where ¢ = —k?/2 is the binding energy) must be satitfied for the bound states. The coefficients
C,, for the scattering problem have the following asymptotic behaviour:

C, ~ 2ntsin(2gv/n — In[2 + &) (13b)

where ¢ = ¢?/2. According to Eq.(6) the phase shift § in Eq. (13b) coincides with the standard
phase shift of the wave function in coordinate spase. For the decaying resonance states, we get
(see in [3]):

Crt ~ Inl/1eavn (13c¢)

If the calculations are made up to sufficiently high values of N > 1 it is possible to use the
asymptotic expressions (13) [3] . At modest N it is necessary to use the exact, rather than
approximate, solution for the equation of free motion (12b) which was found in Refs. [2, 4] in
order to calculate the binding energy, the scattering phases etc. Before considering the solution
for the equation of free motion, we shall note that the solution for the set (12) is equivalent to the
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solution for the Schroedinger equation with Hamiltonian H = T + V¥ containing the many-term
separable potential

N
=Y <nlVI'l > |nl >< 'l (14)

n,n'

with harmonic oscillator formactors. The technique of solving such an equation in the frame of the
momentum representation was described in [5, 6]. Here we shall describe an alternative method
for solving the same problem in HOR.

2 Solution for the equation of free motion in the har-
monic oscillator representation

Consider first the case of positive energy ¢ = ¢?/2 > 0. The Schroedinger equation of free motion
in the coordinate space has two linear-independent solutions (regular and irregular) [1]:

1 {m

R = ji(kr) ~ Esm(kr - 7) ,
l
R = ny(kr) ~ Lcos(kv - _7r) : (15)
kr 2

In accordance with this. the finite difference equation of free motion (12b) will have also two
fundamental solutions in the HOR [4] namely the regular solution

AP+ 1+ 20\ ¢ 2/, 3
reg — 2 =200 2002y
(q)_ ( F(l & AI( 7l,l+2,q)—

o I'(n+1) +3)
23/2
= (=" Rulq) ~ =t ju(2v/nq) (16)
satisfying the boundary condition (6) "% = 0, and the irregular solution
o1 /2 [, i1
2+ 1) \'* (- 1)(, .y 1 1
Curreg — q /ZAI 1 — [ — = _l_+__
2'3/2
Y Zn n(2v/ng) (17)

which is singular at the point n = —1.
The Casorati determinant K, for these two solutions which plays the same role for the differ-
ence equations as the Wronskian for the differential equations [7] is of the form:

. (res (wzrreg —1
. {
[‘nl = 71n+1n (wz;g (wzrrf-g = —_ - (18)
nt1l n41l Tq

Since K,; # 0 for any values of n and I, the expressions (16) and (17) constitute the fundamental
set of solutions for equation (12b). An arbitrary solution for (12b) may be presented as a linear
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combination of fundamental solutions. In particular, the solution for the set (12) for n > N must
be of the form
Cri(q) = cos 6,71 (q) + sin §CTT(q) (19)

nl

whence it follows that . yreg rea
(’nl(’n+1[ — Cn—{—llC

tan é; = rreg thi‘eg : (20)
pnlpn+11 - ('71+1[('n[

The equivalent pair of fundamental solutions for the free motion equation has the asymptotic form
of the type of Hankel functions

CE(q) = C7(q) £iC%(q) . (21)

ni nl

These solutions are useful for the calculation of the S-matrix and analyzing the decayving Gamov
states. If we are interested in bound states (£ = —k?/2,¢ = k) the solution for the equation of
free motion with a corresponding asymptotic

Chmt (k) = i[O (i) i€ G (22)
must be used. The numerical values of solutions (16), (17) can be obtained by using the book 8],

where the function M (a, b: ) is tabulated. Similarly to the regular and irregular solutions of the
eg lTT(]

W are oscillating functions of nand

free motion Schroedinger equation the functions (7;% and

the period of oscillations decreases with increasing energy

3 The solution of the scattering problem in HOR

Consider now the solution for set (12). It follows from equations (12) that the coeflicient (7, for
n > N + 1 obey the equation of free motion with an appropriate asymptotic, e, O = (2,
where ("% is the solution for the equation of free motion with asymptotic (19), (21) or (22). The
coefficients Cpy(n > N +1) form the "external” part of the wave function in HOR. The coefficients
Cn(n < N) belong to the "internal” part of this function. The equation

(j}i\v[t{tern — (w;ﬁtfrn (2;)
plays a role of "fitting” condition of "internal” and "external” parts of the wave function. The
r.h.s. of this equation has one of the form (19), (21) or (22). Into the left hand side of Eq. (23)
the solution of the set (12a) must be substituted. The last one can be found in the following
manner [2]. At first we shall diagonalize the truncated Hamiltonian matrix ||H,nl| using the
unitary transformation I'. i.e. turn from Cy to the new coefficients

\[ — ZFAn nl oy A = 0,1,...’1N . (2‘1)

n=0
As a result of this transformation, equation (12a) takes the form

(Ex—e)C5 = —TawTung1Ongrr s A=0,1,.0 N
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1.e.

. AT,
Cu = ——AgA TZ“CNHI (25a)
and
Ll
E 7 ,\NTNN+ICN+11 (25b)
-

where E) - is the eigenvalues of the matrix ||Hp.|| (n,n' < N).
Substituting the ”internal” solution (25b) at n = N into Eq. (23) we obtain

Al F;nF/\N

0 0
Pyn41 CN+11 = —CNz, Pongr = Z
A=0 E/\ —¢

TNN+] . (26)

If we deal with bound states of Gamov resonances, C?, and C¥,,, are the known functions of
energy (see (21) and (22)). In such cases the condition (26) is the transcendent equation which
may be used to find the energies ¢; of the bound or resonant states. For the scattering problem,
we get in accordance with (19):

Cli = CNP + tan § C"Teg ,
CR/+11 = Cyiy +tané Cli\;::fl . (27)
Substituting these expressions in (26), we find in accordance with Refs. [2]:

Cni + P Oy
irreg irreg
C + PNN+1 CN+11

tan é; = (28)

It can be seen now that the scattering phase at an arbitrary energy € can be obtained by diago-
nalizing the Hamiltonian matrix [|H,,|| (n,n’ < N) but one time.

In agreement with the Ritz variational principle, the negative eigenvalues E, < 0 of the
Hamiltonian matrix ||Hun|| (n,n’ < N) may be treated as approximate values of the energies
of discrete levels of a particle in the studied potential. In this case the approximation accuracy
improves with increasing the size of the' matrix N. The question arises, what is the sense of the
matrix positive eigenvalues and of the respective wave functions? The question was answered in
works (2, 4, 9] as follows. In the limit ¢ — E) expression (28) takes on the form

reg
CN+11

tan 6[ (EA) C”-'reg * (29)
N+1l

By comparing this result with formula (19) we get the coefficient Cy{,;(Ex) = 0 for E,. Thus,
by diagonalizing the Hamiltonian matrix ||H,,|| (n,n’ < N), we find the solutions for equations
(12) in the region of the continuum at such discrete energies £, > 0 which correspond to the
vanishing of the HOR: wave function C,;(EX) at the point n = N + 1. The scattering phase
can be calculated at such energies using simple formula (29). In the asymptotlc limit of high N,
the diagonalization of the Hamiltonian matrix on the cutoff basis n < N means the solution for
the Schroedinger equation (9) with the additional condition X;(b) = 0, where b = 2(N + v)'/?,
1.e. when the system is placed within a rigid box of radius 5. In this case the energy spectrum
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for equation (9) gets discrete and the energy of any level becomes a function of the position of
the boundary point b = 2[(N + v)k/mw]'/2. The condition X;(b) = 0 is nothing other than the
equation for the P-matrix poles in the system of radius b described by the Schroedinger equation
(9) [10]. Thus the eigenvalues E) of the Hamiltonian matrix ||H,.|| are poles of the discrete
analogue of the P-matrix. The important point is a convergency of this approach. The practical
calculations 3, 4] show that for rather smooth potentials V() it is sufficent to use a number of
terms N ~ 20 — 30 in the expansion (2) in order to calculate phase shifts and other scattering
characteristics in reasonable accuracy.Therefore the using of HOR, or J-matrix approach [2], is
a rather effective and practicable method for the study of continuum problems. Some additional
example of application of this method will be discussed in section 6.

4 Multichannel case

Let us consider the case of two open (binary, spinless) channel for simplicity. The wave function

has the form of a column
P(r) = ( va(r) ) (30)

ha(r)
and the Hamiltonian is the operator matrix of a size 2 x 2:
Hy Hip
H = . 31
( Hy Ha (31)

Let us assume that the wave function of the entrance channel 1, (r) is characterized by the following
asymptotic behaviour

Pr(r) ~ (77 — SyyetfT) (32a)
while in the second channel only the outgoing wave presents
a(r) ~ — ((Ul/vz)l/zszleik”) /T (32b)

The transition into n-representation consists in the expansion of both channel wave functions

‘/’1(7“) = chn|n,7'01 >,

t/)2(71) - ZC%nlnler’Z > 9 (’33)

m

in terms of harmonic oscillator wave functions |n,re; >, |m,ro; > with a‘ unique frequency hw
while the linear scale parameters ro; = (h/p;w)!/? can be different for the channels 1 and 2 if the
reduced masses p; and gy of two fragments in these channels are different. Assuming that it is
possible to restrict ourselves to a truncated matrix of the potential energy

V'ln,ln’ (0 S n’n/ S Nl)’ VZm,‘Zm’ (0 S m,m' S N‘Z}a

vln,’)m’ V2m,1n (0 S n S leo S m S NZ)
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(generally speaking Ny # N;) we obtain the following set of equations for Cy,, Com coefficients

instead of Egs., (12}, (23), (27)
(H—-E)C =-TC,

Cinvy = O, » Cany = Can,
(VO =07 — q“(" n Z N] ,

1n = 1n

G2m (q2/q1 / S'21(Y2m , M Z N2 . (34)

Here C is a column of N; + N, + 2 coefficients C14Chy...Cin1Ca0...Cong, H is the matrix of
Hamiltonian in a truncated basis |n,ro; >, |m, 1o > (0 < Nyym < Ny). The column T'C contains
only two nonvanishing elements, namely Ty, N1+1C'1N1+] in the Ny + 1-th row and TN2N2+1C2N2+1
in the last row. The functions CEF = CF? £ iC"™ are the same ones as in Eq. (21). As it
was shown in Ref. [2, 11] the asymptotic of the function Pt = 2, CF In > is of the form
k ezp(tikr) for — oo. This fact and the difference of ro; in various channels are the origin of the
factor (¢2/q1)'/% in Eq. (34) instead of the usual velocities ratio (va/v1)Y% in Eq. (32). Solving
the Eq. (34) similarly to Eq. (12) we obtain the following results instead of kq. (26)

In

Ciny = Cin, — SuCin, = PulCin, 1 — SCiy i)+
+P <—((I2/(/l)]/Z'SVZI(*‘;N2+1> ,
Cony = =St Oy (@2/ @) * = P ( T — S Civ gt
+ Py (—(‘h/ql)1/25'21C7-}LN2+1) (35)

where

Uiy, Dan
Fi = z\: E\ — EJTNN’H '

E, is the eigenvalue of the truncated matrix H, (I'yg...Ian, --Tang ) is the corresponding eigenvector

of this matrix. '
The relations (35) should be considered as the equations for elements of the S-matrix. The

solutions of these equimtions are of the form
1 f
=g [(Civy + PuCing o) (Ciny + PraCiyn) = P PraCiy 4 TNa 1)
. | 20P Py .
Sy = m—— (36)
D /Tq1q2

D= [(ClNl + P11C1N,+1)(02N2 + P22(72+N2+1) - P12P2101-I-N1+10‘;N2+1] :

Here the property of the Casorati determinant

cy Ch

‘N+1 (’N+1

2

TnN+1 = e

was used. The elements Sp;, Sp2 of the S-matrix can be obtained from (36) by substitution of
indices 1 and 2. Obviously the S-matrix is symmetrical in accordance with the time reflection
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symmetry of the Hamiltonian. As in the previous section, the eigenvalues E) are the poles of the
discrete analogue of the P-matrix.

The eigenfunctiong ¢, = ¥, I'yn |n > are discrete analogs of "primitives™ (in terms of the
paper [10]).

The expressions (36) allow us to find the numerical values of the S-matrix elements and then
to calculate the cross-sections of elastic scattering and reactions

T, 9 -
Url:z?l-k’ll_” ) (37)

T, a0
o, = k—2[521|2 : (38)
1

the differential cross-sections, various polarization characteristics (taking into account the spin
degree of freedom) ete. If we want to describe the reaction with three-four fragments in the final
states it 1s necessary to extend the above developed formalisim, which is valid only for two body
(binary) channels, to three, four body collisions.

5 The description of ”"true” many body scattering in a
hyperspherical HOR

We restrict ourselves by the case of the so called "true” many body scattering (TMBS) when the
wave function of an A body system is in the asymptotic region of the form

'd’l\'(/)»n) = 6]\'7.]\'070 ()_lkpy'l\'gm(ﬂ) - Z Sl\"w‘,l\'o'yo("ikpyrl{’w’(ﬂ) v O (‘())
1\"‘7’
p? = T2 (r;— R)%is a global radius in 3(A — 1) dimensional space, the angles Q are hyperspher-

ical coordinates in this space. R is the center-of-mass of the system, Y, (Q) is a hypersperical
harmonic with a global momentum K+ substitutes all the rest quantum numbers labelling this
harmonic. The approximation taking into account only the contribution of TMBS is valid if there
is a "democracy” in the A body system i.e. there is no pair of particles with dominating interac-
tion between them in comparison with the rest of the interactions. The TMBS - approximation is
applicable to a lot of processes of three, four body decay of light nuclei and hypernuclei [17] (for
example disintegration *C' — 3« etc.).

For the description of TMBS we shall use the expansion of the A-body wave function ¢/ (7)...77°4)
in terms of A-1 body oscillator wave function (the center of mass variable R is excluded)

[nKvy >= Row(p)Yi(Q) (10)
depending on hyperspherical coordinates p, Q:
Y=Y <nKyp>|nKy> . (41)
nKxy

Further consideration is totally parallel to sections 1-4 and we represent the result in very short
form. Instead of Eq. (3) we have for the many body case

Rui(p) = p~BA=D12¢L(py | (42)
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2n! 2 .
¢1(p) = (—1)"\)————11(71;}4(;)/1“16"" LI (p%) (43)
2

£ =K+ (3A—6)/2, p is taken in units of ro. The Eq. (4) takes on the form
> <nKylH - En'K'y' ><n'K'y'|p >=10. (44)
n'K'y' !

The kinetic term T in the Hamiltonian H = T + V is diagonal in the quantum numbers K and 7.
As for the main quantum number, n, the matrix is three diagonal with respect to n and its matrix
elements coincide with Eq. (5) except for substitution of [ by £. We also truncate the matrix of
potential energy V = zfq- Vjton <N, K < K,az- Then for n > N the expansion coefficients
< nK~lyp >= C, obey the three-term recurrent relation similar to Eq. (12b)

1 3
n(n+£+§)<n—llx’7|d)>—(2n+£+§—q2> < nKylp >+

1
\/(;+1)(n+£+5)<n+1K7|¢>=0,q=\/2 . (45)
~ This difference equation has two fundamental solutions
CT;‘? — 2n! qf+le—q2/2L£+1/2(q2) (46)
m F(n+ £+2) "
{
e - 2 e G )CE)
irreg — _ “n d !
Cnt TCo(4) /0 g—qr 47)
or the equivalent pair of solutions
2q oo 'reg(ql) reg(q/)
C:*: — _ / 0L nl d ’ ]
nt mCo7(q) Jo > —q? %10 9 (48)

The problem of TMBS is similar to the multichannel problem described in section 4. Thus the
wave function (39) with ingoing wave in some channel Koo and outgoing waves in each channels
K'+'" under consideration takes on the form at n > N (in principle the truncation boundary N
may be different in the various channels K~):

< KA >= 6k KovCrig(9) = 3 SkykyCripilq) - (49)
KI,YI

In analogy with Eq. (36) we can obtain
S=A"B (50)

where
(A)K’w’.l\‘"y = PK"Y/»K"YCI-’\}-{»LC(Q) _Ié‘}\!’Y,K”Y'C]-\‘}L'(q) s
(B)kty ki = ProorkiyCri12(9) — k4w Cr () (51)
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< NKHA>< ANK'Y >
Pry iy = ) | T El TNk Ny1K" -
A A

E) and < NK+v|A > are eigenvalues and eigenvector components of the truncated Hamoltonian
matrix < nKvy|H|n'K'y" > (n,n’ < N). The poles of the S-matrix (i.e. bound states and Gamov
resonance states) can be found from the equation

det A=0. (52)

Thus we have all expressions that are necessary for the construction of the wave function for few
body states belonging to continuum or discrete spectrum in the frame of TMBS approximation.

6 Soft dipole mode in ''Li and three body continuum

In order to demonstrate the effectiveness of the HOR in an analysis of concrete nuclear processes
the calculations of the properties of the low energy El excitations in the '"Li nucleus were done.
The remarkable feature of this nucleus is a presence of a large neutron halo formed by two neutrons
weakly bound with the °Li core. In this connection the following model was used for the description
of this nucleus.

6.1 The model

It was assumed that the ''Li ground and continuum states can be imterpreted in the framework
of the three-body cluster structure *Li4+n + n.

1) The cluster °Li is supposed to be structureless and the excitations of its internal degrees of
freedom are not considered.

2) We don’t account for non-central components of the interaction between two valence neu-
trons and between valence neutron and the cluster °Li.  Therefore. the wave function can be
characterized by the three-body orbital angular momentum L, spin S = 3/2. total angular mo-
mentum J and its projection M.

3) The states with the total spin of the valence neutron pair S = 0 are only considered, and
the ground state three-body orbital angular momentum is supposed to be equal to zero: L = 0.

4) n-?Li interaction is described by the shallow potential of Johansen et al [13]. N N-interaction
is described by the Gaussian potential [13].

5) Only democratic decay channels are allowed for.

The wave function of the system *Li+n +n, ¥ (X, ¥), is expanded in three-body hyperspher-
ical functions, ®'=!v/M(Q)) (including the internal wave function of °Li with a spin S = 3/2)
plalvIM 5 ‘
bam(%,y) = 3 B, (0) @M () (53)

Kligly

where K is hypermomentum, [/, and [, are the angular momenta corresponding to the Jacobi

mw 18mw ri+r
x=\[orm =), y=\ g ) (54)

93

coordinates



respectively, m is the neutron mass, r; are coordinates of the valence neutrons (i = 1,2) and the
cluster °Li (i = 3), p= (x* + y?)"/? is a three-body hyperradius.
In the c. m. frame the Hamiltonian is of the form:

H=T+ Vi + Viz+ Vs, (55)

where T is the three-body relative motion kinetic energy operator, and Vj; are the two-body
potentials. For the radial wave functions d)g\‘—’;x ,y(p) we have the usual set of the K-harmonic
method coupled equations (see, e.g., [12]). The equations are solved by expanding the radial wave

function.
o<

W) =3 DUk (B) eaklp), (56)

n=0
i1 the six-dimensional harmonic oscillator eigenfunctions. To calculate the bound state energy,
L.e. to locate the corre&ponding S-matrix pole, one should solve the nonlinea,{ equation [11]

det AH) =0, (57)

where the matrix A is given by the Eq. (51).
For the continuum spectrumn states we calculate S-matrix for any positive energy £ using (50)
The interactions of the valence neutrons with each other and with the cluster %L1 are described
by the potentials Vi5(r12) and Viz(ris) = Via(r23), respectively. We use the following parametriza-
tion of the potentials [13]:

Vi(r) = VA exp [ (/632 + VI exp [=(r/05))7],
Vi) = —31 MeV, A} W) = 1.8 fm;
v — _7MeV, V& =—1MeV, b)) =24fm b5 =3.0fm.

In the external asymptotic region n > N we consequently allow for channels I characterized
by K = Kpin, Kpin + 2,... (Kpin is the minimal possible value of A for a given J) until the
convergence for all physical properties under consideration is achieved. The convergence is found
to be very good, and the allowance for the decay channels with K > Kpin + 2 do not yield any
visual variation of the results. So, we consider in the external asymptotic region n > N the
channels with K < K,.;n + 2 only. Note, that components with all possible values of K < N are
accounted for in the calculation of the wave function in the inner region n < N.

The parameter hw is set to be equal to 7.1 MeV in our calculations. This value corresponds
approximately to the minimum of ground state energy Eo.

6.2 The ground state

The results for the ''Li ground state for different values of the truncation parameter N are pre-
sented in the table 1. The variational ground state energies, E((,d), obtained by the pure diagonal-
ization of the truncated Hamiltonian matrix are listed in the second column, while the J-matrix
results, Eg, which are the solutions of the eq. (57), are listed in the third column. It is seen,
that by locating the S-matrix pole using eq. (57) that is equivalent to the allowance for the
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Table 1: '"'Li ground state properties (see text for details).

Ground state energy, Neutron halo

Truncation MeV mean square radius

boundary N <r? >}]/2, f
E E, <r2> P 2SI

12 -0.012 -0.150 2.83 3.31

16 -0.116 -0.199 2.91 3.29

| 20 -0.171 -0.225 2.98 3.31

24 -0.202 -0.240 3.04 3.32
Experiment -0.24740.080 - 3.1630.11

long asymptotic tail of the wave function, we improve essentially the convergence for the binding
energy.

The results presented in the table 1 have been obtained using l.anczos smoothing of the three-
body potential energy matrix [5, 14].

The "'Li r.m.s. radius, < r? >}{2, can be calculated by the following equation:

< pt >, (H8)

< r? >11= i < r? >9 +

Il IlTmw

where < r? >é/2 is the ?Li r.m.s. radius and the mean square value of the hyperradius, < pt >,

can be easily calculated using the ground state wave function. The values of < r? >1/2 () 4y

< r? >1/% obtained by the pure diagonalization of the truncated Hamiltonian matrix and with the

allowance for the asymptotic tail of the wave function, respectively, are presented in the 1-th and
the 5-th columns of the table 1.

It is seen that in calculation of the ground state, the allowance for the wave function asymp-
totics is very important for a weakly-bound system like "'Li. The terms of expansion (56) with
the number of total oscillator quanta N ~ 100 that cannot be obtained in the usual oscillator-
basis variational calculations, play an essential role in the description of the transverse momentum
distribution, r.m.s. radius, etc. The convergence of < r? >!/2 transverse momentum distribution
and other properties of the wave function in the full J-matrix calculation is rather good. Nev-
ertheless, it is seen that the r.m.s. radius converges to a value that is somewhat larger than the
experimental one, and the calculated transverse momentum distribution appeares narrower than
the experimental one. These shortcomings can be overcome by the adjustment of n- *Li potential.
We have not aimed to fit the potential to the ''Li properties, we have just take its parameters
from ref. [13].

6.3 The soft dipole mode

The dipole transition operator in our model is of the form

N, Z

M(ELp) = -—

ey Y1,(9) (59)
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where e is the proton charge, A =11, Z =3 and the number of valence neutrons, N, = 2. The
operator (59) corresponds to the excitation of the three-body cluster modes only. The excitation
energy of the first excited state of 9Li is relatively high (~4 MeV). So, low-energy FE1-transitions
correspond to the excitation of the cluster degrees of freedom only and should be described by the
operator (59).

B(El;i — f), € fm* / MeV

1.67

T 1 T 1

T T T T T
0.0 0.2 04 06 0.8 ITO 1.2 14 1.6 1.8 2.0

E, MeV

Figure 1: Comparison of our results for B(El;g.s. — continuum) in Li with results of other
authors. | this work (J-matrix method), 2 - ref. [15]., 3 — ref. [16], 4 - experimental data
parametrization of ref. [17].

The cluster reduced probability of the El-transition, B(E1l; E; — Eq), associated with the
operator (59), is displayed on the figure 1.

This figure shows the comparison of the results of our calculations of cluster B(E1; E; — Eo)
with the parametrization of experimental data of ref. [17). The agreement is reasonable. The
form of the B(E1; E; — Eo) peak is well reproduced, the discrepancy in the position of the
B(El; E; — Eg) maximum is supposed to be eliminated by the adjustment of the potentials. The
results of the B(E1; E;— Eo) calculations of refs. (15, 16) are also depicted. All these colculations
give a low energy peak which can be associated with the soft dipole mode.

The soft dipole mode exhausts about 90% of the cluster sum rule (EWSR) associated with the
operator (59). The contribution from the soft dipole mode to the total EWSR is relatively small.
In the vicinity of the sharp B(E1; E; — Eo) maximum at the excitation energy E ~1-2 MeV only
~8Y% fraction of the total EWSR is exhausted. Nevertheless, the account for the soft dipole mode
results in an essential increase of the electromagnetic dissociation cross section of 0.8 GeV /nucleon
111, beams on Pb and Cu targets. Using the sums of the 11 and target nucleus charge radii as
impact parameter we obtain for the electromagnetic dissociation cross sections the values of 0.966
barn for the Pb target and 0.132 barn for the Cu target; the corresponding experimental values
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are 0.890 £ 0.110 barn and 0.21+0.04 barn, respectively [18]. F0- and E2-transitions give only
1.2% contribution in the cross sections. 1

Thuse, it is shown, that cluster model °Li+n+n yields a good description of the ground state
properties and F1-transitions in the ''Li nucleus. The HOR may be used successfully in the
studies of weakly-bound systems with long-tailed wave functions, e.g., in the study of neutron
halo properties. For both bound and continuum states the correct account of the wave function
asymptotics in the framework of the oscillator representation of scattering theory is very important
in such studies. Low-energy Fl-transitions in !'Li are of the cluster nature. The widths and the
position of resonant states calculated in the democratic decay approximation are in a reasonable
agreement with experiment.

Appendix. Isolated States. The scattering problem with nonlocal separable potential V'V
can display some peculiarities which we explain here using a simple example when the Hamiltonian
H is approximated by the matrix of a size 2x2 (i.e. N = 1). In specific situation when Ty, = — 1y,
1.e. the nondiagonal matrix elements of the kinetic and potential energies cancellate cach other
Hp = 0, we obtain that the Harmonic oscillator wave function Ryo(r) is an eigenfunction of this
Hamiltonian corresponding to the eigenvalue Ey = Tog + Voo. If £y > 0 we find an example of the
bound state embedded in continuum [19]. It is clear that the eigenfunction Roo(r) is not connected
with the rest basis states R,o(r). Thus it is isolated from continnum states and can be called an
isolated states. The phase shift dg(k) displays a narrow resonance near energy {2, at small value
of hgy. It transforms into the resonance of zero width when ff,, — 0.
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Abstract

A geometrical interpretation for the outer multiplicity p that occurs in a reduction of the
product of two SU(3) representations, (Ary o) X Oy ) = 2p(As {1)p, is introduced. This
coupling of proton () and neutron (v) representations arises, for example, in both boson and
fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises
the possibility of introducing a simple interaction that provides a physically meaningful way

for distinguishing multiple occurrences of (), ) values that can arise in such products.

1 Introduction

The objective of our program in nuclear structure physics has been to bridge the gap that exists
between collective and shell-model descriptions of observed nuclear phenomena. Progress has been
slow because of the difficulty in making realistic shell-model calculations, at least when measured
against the background of the success of simpler collective models. Algebraic shell-model theories
come closest to realizing this objective. Regarding the latter, there are two basic types of algebraic
theories: those based on a boson description of the dynamics, such as the Interacting Boson Model
(IBM) [1], and those which treat the nucleons as fermions.

The first and most familiar algebraic fermion model is the Elliott SU (3) scheme. It is known
to work well for light (A < 28) nuclei [2]. Another is the Sp(3, R) (denoted Sp(6, R) sometimes)
or symplectic model which is a natural multi-fw extension of the Elliott scheme [3]. For heavier
systems (A > 150) there are currently two algebraic models being employed: the so-called Fermion
Dynamical Symmetry Model (FDSM) which identifies s and d fermion pair operators that form
an algebra which closes under commutation (the SO(8) group for the n = 4 shell and Sp(6) for
n =5 and n = 6, which has SU(3) asa subgroup) and gives a possible microscopic interpretation
of the IBM [4], and the pseudo-SU (3) model and its pseudo-symplectic extension which builds on
the concept of good pseudo-spin symmetry in heavy nuclei [5, 6, 7].

The common algebraic structure in these theories is the SU (3) group. This is understandable
because the angular momentum I and the deformation generating quadrupole operator Q@ — when
restricted to a single major oscillator shell — are generators of SU(3). In particular, large irre-
ducible representations (irreps) of S U(3) correspond to configurations of constant deformation. In
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the next section we expand on the SU (3) - rotor connection, and in so doing establish a basis for
the geometrical picture of the SU (3) outer multiplicity that is presented in the subsequent sec-
tion. While no proofs are given, it should be clear from the discussion that the proposed scheme
has potentially far reaching consequences regarding a physically motivated interpretation of the
outer multiplicity whenever there is an applicable group contraction-expansion procedure, which
is SU(3) & TsASO(3) in the present case. Here T5AS0(3) is the symmetry group of the rotor.

2 SU(3) - Rotor Connection

A geometrical interpretation for SU (3) can be achieved by looking at a shell-model interpretation
of collective quadrupole motion as depicted in terms of a triaxial quantum rotor. The trick
that we apply is to first express the Hamiltonian for the rotor in a frame-independent form
because that expression can then be rewritten in terms of its corresponding microscopic operators.
The rotor is a particularly elegant example because this prescription is easy to apply and leads
immediately to the sought after shell-model representation. Furthermore, the operators that
enter into the expression have historical significance, dating back to Racah’s pioneering work on
the SU(3) > SO(3) symmetry group [8]. Since the argument is illustrative it bears repeating, but
in an abbreviated form. A more complete description can be found in the book by Casten [9].
The triaxial rotor Hamiltonian is given by

HROT = A1]12 + A2[22 + A3[32 (1)

where I, (o = 1,2, 3) is the projection of the total angular momentum on the a-th body-fixed
symmetry axis and A, is the corresponding inertia parameter: A4, = 1 /(2Ja) where 7, is the
moment of inertia about the a-th principal axis. This familiar principal-axis form can be rewritten
in a frame-independent representation by introducing three special scalar operators:

L =3, Lolo =¥, I2,
X3c = Za,ﬁ LanﬂLﬁ = za ’\0121
Xi= Y Lo@y@oly = Y AL (2)

o8,y

The L, and Q4s in this equation are Cartesian forms for the total angular momentum and col-
lective quadrupole operators, respectively. (The superscript ¢ appended to the Q) denotes the
collective quadrupole operator which has non-vanishing matrix elements between major shells
(n =n, nt 2), in contrast with the algebraic quadrupole operators, ()35, which have non-
vanishing matrix elements only within a major shell, n/ = n.) The last expression given for each
scalar in eq.(2) is the form these operators take in the body-fixed, principal-axis system where
the eigenvalues of the Q5s are presumed to be sharp: (Q%5) = Aaba 3. These equations can be
inverted to yield the I? in terms of L?, X35, and X§:

IZ = [(deda) L% + (A2) X5 + (Aa)X§] /Do where Dy = 203 + A ks, (3)
Substituting this result for the I2 into eq.(1) yields
Hpor = aL? + bX$ + cX¢ ; (4)
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where a, b and ¢ depend on the inertia parameters and the eigenvalues of Q44
a=ZaaAa, b———ZbaAa, C=anAa, (5)
« a e 4

Aphy Ao 1

a = =<5 .\ 3 ba = <5 1 1\ = <5 . 1\ 1\
%o = 9N+ Aghy IV VS WAL YERTPYIW

where a # B #£ v # . :

A shell-model image of the rotor Hamiltonian can be obtained by substituting single-particle
forms for the collective L, and Q5 operators: Lo = ila(i) and Qgp = Y5 g5s(1). However, this
ignores the shell structure and the fermion character of the many-body system. It is important to
remember that while the L, have non-vanishing matrix elements only within a major oscillator
shell, the Qg couple shells differing by two quanta (n’ = n,n 2). Indeed, the off-diagonal
(n’ = n % 2) couplings are about equal in magnitude to the diagonal (n' = n) ones. It follows
from this that operators like Q°- Q¢ and the X¢ and X§ (even if used only as residual interactions)
can destroy the shell structure. This catastrophe can be avoided easily by simply setting all off-
diagonal couplings between major shells to zero, an action which corresponds to replacing the
Q5,5 operators by their algebraic counterparts, Qg Elliott was the first person to recognize that
the Q%; operators, along with the Lo, generate SU(3), the symmetry algebra of the isotropic
harmonic oscillator Hamiltonian. The appropriate shell-model image of the rotor Hamiltonian,

eqs.(1) and (4), is thus given by
Hgys = Hy + al?® + bX§ + CXX, (6)

where Hp is the harmonic oscillator Hamiltonian.

Shell-model values for the A, are required to complete the mapping. This follows by equating
invariants of the two theories, a very natural thing to do since constants of the motion relate to
the important physics, which in turn should be independent of the particular description. Because
SU(3) is a rank two group it has two invariants: C, with eigenvalue A2+ A+ p+3(A+ u)], and
C, with eigenvalue [(A — p)(A +2p + 3)(2A + p + 3)/2], where A and p are SU(3) representation
labels with (A + p) and g, respectively, specifying the number of boxes in the first and second
rows in a standard Young diagram Jabeling of irreps of the SU (3) group. Note that C, is of degree
two in the generators of SU (3) while Cs is of degree three. The symmetry group of the rotor
[TsASO(3)] also has two invariants: traces of the square {Trace[(Q2)*]} and cube {Trace[(Q2)°]}
of the collective quadrupole matrix. The eigenvalues of these two invariant operator forms are
A2+ 22402 — (kB)? and A Aods — (k3)® cos(3v), respectively, where (8, ) are the shape variables
of the collective model and k* = %(Ar—z)z. The requirement of a linear correspondence between
these two sets of invariants leads to the following relations,

M= —(—w)/3 h=-(A+2u+3)/3, Aa=+@A+pt 3)/3. )

This correspondence, in turn, sets up a direct relationship between the (8,7) shape variables of
the collective model and the (X, p) irrep labels of SU(3),

4T
5(A7‘_2)2

5 = [A2+Au+u2+3()\+u)+3], 7=tan'1( (8)

¢au+n>'

220+ p+3

101



Since A and 4 are positive integers, this translates into a regular grid when superimposed on a
traditional (8, v) plot, with 8 the radius vector and vy the azimuthal angle:

6. = kcos(n) = 2TEED s kginy) e (9)

Each (A, p)-irrep corresponds to a unique value for the (3,7)-pair. In the limit of large (A, p)
values the constant +3 factor in A2 and A3 can be dropped and in so doing one arrives at the
asymptotic results [3]. The +3 and +1 factors in B? and v as well as those in B: and B, also
disappear in this limit.

3 S5U(3) - Outer Mulitiplicity

Having established the SU(3) - rotor connection, it is instructive to push the (B,7) « (\p)
connection to a consideration of a coupled double-rotor picture which is commonly used to describe
heavy nuclei in a collective model framework, see Figure 1 ahead, with one rotor representing the
protons (7) and another the neutrons (v). This associates physics with the SU(3) coupling picture
and, as we will see in greater detail later, it also leads naturally to a geometrical interpretation for
the SU(3) outer multiplicity label. This picture also suggests a natural way for parameterizing
the proton-neutron interaction in terms of the geometry of this simple scheme, for example, one
with final states of the same (A, ) but different multiplicity energetically separated from one
another due to a simple interaction that senses the relative orientation of the parent proton-neutron
configurations. We will return to this matter after making the geometrical picture quantitative
for the special case of prolate proton-neutron (7 — v ) parent configurations.

To get a feeling for the proposed scheme, consider the special case of prolate m—v factors (7y, = 0
and v, = 0) in the parent configuration. In this case it is sufficient to introduce a single angle
¢ which measures the relative orientation of the principal axes of the two distributions; rotations
about either the proton or neutron symmetry axis effect no change, only rotations about an axis
that is perpendicular to the plane defined by the principal axes are distinguishable. (The scissors
mode used to describe B(M 1) strengths gets its name from this simple picture ... § measures the
angle between the two blades of the scissors. Also note that the Exclusion Principle, which applies
because the nucleons are considered to be fermions, is not violated by the coupling because the
two distributions are made up of different particle types.) For 6§ = 0° the two axially symmetric
ellipsoids overlap maximally (aligned principal axes) whereas when 6 = 90° the principal axes are
perpendicular to one another and the resulting overlap is a minimum.

The (8,v) value of the product can be determined once f3,, 3, and 6 are specified. Recall that
B and +y are determined respectively by the trace of the square and cube of the quadrupole matrix,
see eq.(8), and that the quadrupole matrix of the joint distribution is Just the sum of the separate
proton and neutron distributions, with the second (Q.) rotated by an angle @ relative to the first
(@r): @ =Qr + RQ,R~! where R = exp(if - 1) and # points in the direction of Nix X 7, With 7,
and n, defined to be unit vectors that point respectively along the proton and neutron symmetry
axes. Or vice-versa, given (3, B and (/3,7) one can clearly deduce the relative orientation angle
¢. This construction corresponds to the (Ar i = 0) ® (A, pp, = 0) — >> @ (A u) coupling in
the SU(3) case which is known to be simply reducible, that is, each of the allowed (A, i) irreps
in the product [(X, 1) = (A, + A, 0), (Ar+A —2,1), Ar+ A, — 4, 2), ..oy (As = Ag, AL), where
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As = max(Ar, A,) and A = min(A;, A, )], occurs once and only once. Arguing by analogy with
the collective model picture, it is relatively easy to see that a discrete orientation angle 8, can be
associated with the (A; + A\, — 2n,n) irrep in the product (A, ptr = 0) ® (A, pt, = 0) where n is
an integer given by n =0 (6 = 0° —||), 1, ..., min(A., A,) (6 =90° —_1).

) x 1B = Jf B ¥))dB"y")

relative orientation

P
\ _aad

Q= (""ev¢)

X =

L) x Jae)) = X | um)

(s
P A" K" n

Figure 1: Schematic representation for the expansion of a product of two quadrupole mass dis-
tributions in terms of other quadrupole mass distributions. The upper product is for triaxial
quantum rotors, which are characterized by the (8,7) shape variables of the collective model
and have a [TsASO(3)] symmetry; the lower coupling is for (A, u) irreps of SU(3). The overlap
function fq is the inner product {(8”,v")|(3,7); (3',7'))a where Q = (¢, 8, ¢) specifies the Euler
angles giving the relative orientation of the principal axes of the unprimed (|(5,))) and primed
(1(8',7'))) systems. In the SU(3) case, the decomposition is a sum of SU(3) irreps with integer
multiplicity p which can be determined by the Littlewood rules for coupling Young diagrams. The
multiplicity pq, like fq, can be related to the number of distinguishable orientations of the two
initial distributions that yield the final one.

Finding an expression for 8, in terms of (A;, ur = 0), (A, g, = 0), and the final (A, u)
illustrates a prescription that can also be applied to the case of general shapes when the u values
of the factors (. # 0;a = ,v) are non-zero. First of all note that the various (A, p) values that
enter determine the eigenvalues of the corresponding quadrupole matrix, see eq.(7). It follows from
this that an analytic form for 6, can be derived by requiring that the root$ of the characteristic
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equations for Q + RQ,R™! and Q coincide: |Qx + RQ,R™!| & |Q|. The solution to the set of
equations that this condition generates, yields the following general result for 8, as a function of
Ay and A,

0, = sin™ ([n(Ar + A, — 1)/ (A X)]Y?), (10)

where the integer index n = 0, 1, ..., min(A,, A\,) = Ac. Although this expression is symmetric
in A, and )\, and goes respectively to 0° and 90° for n = 0 and n = A, as required, it has no other
obvious symmetry properties, and in particular, note that the allowed 8 values are not distributed
symmetrically about the § = 45° plane, a result that is related to the occurrence of the square
root in the argument of the inverse sine function.

When one of the two factor distributions is triaxial (7, # 0 and 7, = 0 or 7, = 0 and 7, # 0)
the situation is only slightly more complicated. In this case two angles rather than one are required
to specify the relative orientation of the two distributions: 6 as introduced above to specify the
relative orientation of the major axes, and another angle ¢ that specifies the rotation of the minor
axes of the triaxial shape relative to an axis that is perpendicular to the plane defined by the
principal axes of the two factor distributions. Only values of # and ¢ that lie between 0° and
90° lead to distinguishable configurations. In the SU(3) case this construction corresponds to the
()‘m,u’r) & (’\W/J’V) -2 (’\au) coupling, where p, # 0 and pu, = 0 or pr = 0 and p, # 0,
respectively. While this SU(3) coupling is more complicated than the previous case, it remains
simply reducible, that is, each of the allowed (A, u) irreps in the product occurs just one time.
However, because one of the two y values is now nonzero, the pattern of allowed final (A, u) values
is considerably richer th’an in the previous case: (A, 1) = (Ar +Au, 1), A+ A — 2,5 + 1), ...,
Ortd —Lps—1), At A —=3,85), -, Qe+ A —=2,45-2), (Ar+ A —4,u5—1), ..., where p>
= max(ftx, it). The general result, (Ar, tir) ® (Avs i) = Xnn ® (Ar + Ay — 20 —m, pis +n—m),
requires one additional non-negative integer () that specifies the number of completed (three
box) columns in the final Young diagram.

In general one must deal with two triaxial shapes (v, # 0 and 7, # 0) and the corresponding
product distribution: (Bx,¥x) X (8v, ) — (8,7). The geometrical interpretation is considerably
more complicated in this case because three Euler angles (i, #, ¢) are required to specify the relative
orientation of the factor distributions. For (i, 8, ¢) = (0°,0°0°) the major and minor axes of the
sub-distributions coincide (maximum alignment) whereas if (¢, 6, ¢) = (0°,90°,0°) the semi-axes
(y) remain aligned but the major (z) and minor (x) axes of the two systems are perpendicular to
one another, etc. In the corresponding SU(3) case the allowed product configurations are again
determined by the Littlewood Rules but now for the coupling of two two-rowed Young diagrams.
There is a need for three (y,8,$) « (m,n,p) rather than one [prolate shapes: () < (n)] or
two [one prolate and one triaxial shape: (6,¢) < (m,n)] quantum labels in this general case:
Ary i) @ Ay ) = (An + Ay + My it + 0 + n),, where p is a non-negative integer index
(p = 1,2, ..., Pmaz) labeling distinct occurrences of the same (A, i) in the (Ar, pir) ® (Au, i)
product. Working backwards, it should also be clear that the (3,7) < (A, ) correspondence
can be used to give al geometrical interpretation to the abstract group theoretical concept of
the outer multiplicity — at least for the SU(3) case — which has up until now escaped a simple
physical interpretation. Specifically, the multiplicity p, together with m and n, can be considered
to be a measure of the relative orientation of the two factor distributions. In this way the first
(p = 1) occurrence of (A, u) corresponds to a parent configuration oriented with one set of angles
(¢1,801,¢1) while the second (p = 2) solution corresponds to another set (2,09, ¢2), and so on.

104



If praz = 1, the corresponding (A, u) distribution can only be realized in one way. With this
interpretation in hand the evaluation of reduced matrix elements and especially SU(3) coupling
and recoupling coefficients should be revisited, looking for asymptotic solutions that exploit the
geometrical concept of overlapping ellipsoidal mass distributions.

It is instructive to view the relationship between the rotor and SU(3) theories at a more
fundamental level. This can be achieved by comparing the algebras of their symmetry groups.
The symmetry group of the quantum rotor is the semi-direct product TsA SO(3) where Ts is
generated by the five independent components of the (spherical) collective quadrupole operator
(Q%) and SO(3) is generated by the angular momentum operators (L,). The generators of SU(3),
on the other hand, are the Q% [see the discussion following eq.(1)] and the L, operators. If Q*
denotes a generic quadrupole operator, the commutation relations of the L, and the Q7 are

L, L) = —V2<ligWw|lpu+v>L,,,
[L,,Q%) = —V6<1u2w|2,u+v>Q%,,, (11)
[ i,Qﬁ] = c<2p2v|l,p+v> Ly, ,

where ¢ = 0 for TsA SO(3), (Q* = Q°), ¢ = +3+/10 for SU(3) (Q* = Q%), and ¢ = — 3/10
for a heretofore not mentioned group SI(3,R) [Q* = Q® ~ (z;p; + p;x;)] which is associated with
shear degrees of freedom. In eq.(11) the < —, —|— > symbol denotes an ordinary SO(3) Clebsch-

Gordan coefficient. [All three of these groups, TsASO(3), SU(3) , and SI(3, R), are subgroups
of the symplectic group Sp(3,R).] From these commutation relations it is easy to see how the
SU(3) algebra reduces to that of TsASO(3): if @° is divided by the square root of the second
order invariant of SU(3) (Q® «+ Q%/+/C; where by definition the invariant Cy = (Q*- Q%+ 3L?)/4
commutes with the Q* and L, operators), the first and second commutators in eq.(11) remain
unchanged, while the L., on the right-hand-side of the third goes over into L,,,/C> and for
low L values in large SU(3) irreps, L,;,/Cs — 0. This renormalization of the ()* operator is a
group contraction process and the arguments presented show the SU(3) algebra reduces to the
algebra of TsASO(3) in the contraction limit, and consequently, the SU(3) theory reduces to that
of the quantum rotor. Differences between observables of the two theories occur because SU(3)
is a compact group with finite dimensional irreps while TsASO(3) is non-compact with infinite
dimensional representations. Band termination and a fall-off in B(E2) strengths are examples.

4 Conclusion

A geometrical interpretation for the outer multiplicity p that occurs in a reduction of the product
of two SU(3) representations, (Ar, pr) X (Av, ) = 2 ,(A, it),, has been introduced. This struc-
ture arises, for example, in the coupling of proton (7) and neutron (v) representations that occur
in both boson and fermion descriptions of heavy deformed (rare earth and actinide) nuclei. At-
tributing a geometry to the proton-neutron coupling, raises the possibility of introducing a simple
phenomenological interaction that provides a physically meaningful way for distinguishing among
different (A, 1) and multiple occurrences of the same (A, ) values that arise, for example, when
coupling deformed proton and neutron configurations in heavy deformed nuclei.
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Abstract

Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-
pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon
fields results for large coupling constants into an effective Hamiltonian which separates into
a one describing a scalar field and another one for a field with spin two. The ground state is
dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color
zero and spin two pairs. As color group we used SU(2).

1 Introduction

In this contribution we report on a possible non- perturbative treatment of Quantum- Chromo-
Dynamics (QCD). As the color group we use SU(2). We further restrict to gluons only because
due to their larger color charge, compared to quarks and anti- quarks, they will dominate at low
energy , e.g., in the vacuum state. As has been indicated by several previous contributions [1, 2]
the coupling to color, and spin zero pairs are dominating the low energy structure of QCD, at
least in perturbative calculations. This leads to assume that pair correlatidns play an important
role in the lowest energy state (the vacuum) and that boson mapping techniques may help to
make more transparent the physical structure. Combined with many body techniques of nuclear
physics this can represent a possibility to solve non-perturbatively QCD. The method presented
in this contribution can, e.g., be applied to the Hamiltonian as proposed in ref. [3]. There the
complete Hilbert space in a finite universe (radius of several fm) is mapped to a model space of
constants modes only. The non- constant modes are taken perturbatively into account, leading to
renormalized interaction constants.

In section 2 we discuss the boson mapping after having introduced the Hamiltonian of constant
modes. Furthermore, we give the result of the mavpped' effective Hamiltonian in the limit of
large coupling constant g. Finally in section 3 conclusions are given and future applications are
mentioned.

lwork supported by Departamento General de Asuntos del Personal Académico (DGAPA-UNAM)
2present address: Institut fiir Theoretische Kernphysik, Universitat Bonn, Nussallee 14-16, 53115 Bonn,
Germany
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2 A Boson Mapping of Pair Fields

Confinement properties of QCD are considered to be related to the infrared limit (large wave
lengths) of the QCD. Therefore, in order to get a first idea one may just restrict to constant
modes of gluons, i.e. the vector fields A;, are approximated by constant fields denoted by c,.
Here i is the space and a the color index, both ranging from 1 to 3 (in SU(2)- color the gluons are
in the color T=1 representation). With this the Hamiltonian of gluonic QCD aquires the form([4]

82
Clacm 2 C.'aCja C‘- C)
Z 9C..0Ca + g [(Z ) g(za: )(zb: b b)] (1)

where g is the coupling constant. If the non constant modes are included perturbatively higher
terms will appear but the general pair structure, pairwise coupling to color zero (contraction over
the indices a or b), remains. In equ. (1), having contracted over the color index, only spin zero
and two pairs appear and therefore suggests to apply a boson mapping to the palred expressions.
One often redefines C;, — ¢ -3C;, which as a result produces an overall factor gs in front of the
Hamiltonian.

Normally boson mappings are related to boson creation and annihilation operators. For an
excellent review see ref.[5). One distinguishes between two types of boson mappings: (i) the Dyson
(D) and the (ii) Holstein- Primakoff mapping (HP). The first one results into a non- hermitian
Hamiltonian and the latter into a hermitian one. Both are equivalent and the problem is well
defined but of course the HP gives a more pleasent hermitian structure of the Hamiltonian. Instead
of usmg boson creation and annihilation operators we will use coordinates C;, and derivatives
P = ac_ (for convnience we will use cartesian components, i.e. P = P,). The reason for this
is the more simpler and transparent structure of the Hamiltonian which would be very complicate
in terms of the creation and annihilation operators. First we will give the Dyson mapping which is
completely analog to the one using creation and annihilation operators. Then we go from there to
the HP mapping which will be very different to the one in terms of creation and annihilation
operators!

The boson- pair mapping is given by

- CiCia)p = aij

(E PiaPJ'a)D =

3
(2_CiaPia + 565)p =

> (PriQukPr; + PrjQrrePrri) — Pij
Py

DO |

3
qikPkj + 56 (2)

=[]

with
[pij;%vn] = 6l'n6jm + 6im6j'n (3)
In equation (2) the index D refers to "Dyson mapping”. As can be seen the pair of derivatives

does not preserve their hermitian structure under the D- mapping. Also the operator in the last
line, which is introduced in order to obtain a closed algebra and is anti- hermitian in the original
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space, does also not preserve the anti- hermitian property in the mapped space. The ¢;; and p,;
are not yet normalized as can be seen from equ. (3).

That the hermitian properties are not preserved has to do with an additional assumption,
namely that the volume element is of the simple form dq (=Ili¢; 4ij). However, if one assumes
a more complicate volume element dqK?(q) (in the argument of K the notation q refers to the
dependence on all ¢;;) we can choose then K(q) such that all hermitian properties are conserved.
In order to recover the simple volume element we have to redefine all operators of equ. (2) (denoted
now collectively by O) and the wave functions ¥ by

(Oup = K(a)(O)pK™'(q)
(Wwp = K(Q)W¥)p (4)

where the index H P now refers to the Holstein- Primakoff mapping.

The difference to the HP mapping using creation and annihilation operators becomes obvious
when one remembers that in the latter the K is an operator depending on the Casimir operators
of the unitary group U(3)[5, 6] (the generators are given in the last line of equ. (2) when Cj, is
substituted by a creation and Pi, by an annihilation operator) while in our proposal the K is a
function in the coordinates g;; only. The equivalent in the other case would be a function in pairs
of creation operators. Besides this essential difference the HP mapping results always into a non-
polynomial function in the operators, except this does not represent a difficulty when we deal with
coordinates. Even if the function K is complicate we always can integrate numerically!

In order to determine the function K we require that the anti- hermitian property of (3, CiaPia
+%6,~j) is preserved, i.e.

(K(@(X CaPia + 38007 (@)1 = =K(@(ECuaPra + 36,)0K (@) (5)
which results into the condition
Slaapk(@) = ~3K(a)
zk:(Qikijf{(Q)) =0 ,for i#j (6)

This implies that K(q) is a spin scalar and K~* a sum of monomials of order 3 (note that
Zik(qikpkian) = 2qnn)'

Because of lack of space we cannot go into details here but merely give a rough description
of the results. The detailed analysis is given elsewhere[7]. The K(q) is a function in the pair
coordinates g;;. Instead of using decoupled indices we can introduce coordinates of a given spin,
i.e. ¢ with ! = 0,2. The exact dependence is obtained by using a linear combination of all
possible monomials of order three with total spin zero. After that we made a change of variables
by transforming ¢/J to an intrinsic system very similar to what is done in the collective model
of a nucleus where one transforms from the deformation quadrupole coordinate (which has also
angular momentum 2) to a system where the quadrupole operator is diagonal[8]. Also here appear
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some kind of "deformation” coordinates 8 and 7. The physical interpretation is that they describe
the deformation (distribution) of the wave function in coordinate space. Also we have transformed
the coordinate q([,°] to \/fq(l,ol = q+ V2Bcos(y + Z). With this we obtain the final expression of the
exact mapping of the Hamiltonian. However, this expression appears complicate at first sight. It
gets more transparent when one developes around the minimum values of the potential. One finds
that in lowest order the Hamiltonian can be separated in a sum of a pure ¢ and q,[,ﬁ] dependent

part:

. [2 2 d d 9 1 /3
4 < e a  J o222
H, 2 393 { dqqdq + 4q t 2V 27 } {

o 2 d d [0 1 2 s 1

where the square bracket with the cross (x) inbetween means standart angular momentum couling.
This result is only a good approximation when the coupling constant is large! Nevertheless we
can construct a basis of functions with which we can also diagonalize the general expression. The
interesting part of the above result is that we have a Hamiltonian in ¢ which has a minimum in
its potential for values of ¢ # 0! This has as a consequence that the ground state will contain a
g-condensate. The Hamiltonian in 8 is just an anharmonic oscillator, i.e., the ground state will
contain small admixtures in the spin two pair. Within a rough approximation, and taking into
account the relation of ¢ with qg)] and f3,v, we can state that within the model of constant modes
in QCD the vacuum state is dominated by a spin and color zero condensate.

3 Conclusions

We have applied a boson mapping technique to the model of constant modes of QCD. Instead of
using creation and annihilation operators we used coordinates and derivatives. The non- hermitian
Dyson mapping works very similar to the standart boson mapping|5, 6]. However, going from there
to the Holstein- Primakoff mapping is quite different! The mapped Hamiltonian of the model of
constant modes separates for large coupling constant into a part depending on g (essential the
spin and color zero gluon pair) and the other depending on the color zero and spin two gluon
pair. The spin zero part shows a minimum in the potential at values different from zero and
thus produces a spin and color zero condensate for the vacuum state. The spin two part is an
anharmonic oscillator and indicates slight admixtures of those bosons to the vacuum state. For
large coupling constant the Hamiltonian separates into a sum of a pure (g, p) and a pure ( 2, plil)
depending part.

The model used is of course very simple. Nevertheless, using the more realistic Hamiltonian
of ref.[3] the principal qualitative results will not change. This contribution has to be seen as a
further step towards the non- perturbative description of QCD. The detailed analysis of the results
presented here are given in ref.[7].

110



References

(1] T.H.Hansson, K.Johnson, C.Peterson;, Phys. Rev. D26 (1982), 2069
C.E.Carlson, T.H.Hansson, C.Peterson; Phys. Rev. D30 (1984), 1594

(2] P.O.Hess, R.D.Viollier; Nucl. Phys. A468 (1987), 414

[3] M.Lischer, G.Minster; Nucl. Phys. B232 (1984), 445
P.van Baal, J.Koller; Ann. Phys. (N.Y.) 174 (1987), 299
P.van Baal, J.Koller; Nucl. Phys. B302 (1988), 1

[4) G.K.Savvidy; Phys. Lett. B159 (1985), 325
[5] A.Klein, E.R.Marshalek; Rev. of Mod. Phys. 63 (1991), 375

[6] K.T.Hecht; "The Vector Coherent State Method and its Application to problems of higher
symmetries”, Lecture Notes in Physics, Spinger, Heidelberg, Germany (1987)

[7] J.C.Lépez, P.O.Hess, "On the possible structure of the QCD vacuum for pure gauge fields
and the method of boson mapping”, scitt for publication

(8] J.M.Eisenberg, W.Greiner; " Nuclear Theory I: Nuclear Models”, 3rd edition, North-Holland,
Amsterdam, (1987)

111






J995//622 2 Ngs.22070 -

A POSSIBLE GENERALIZATION OF THE
HARMONIC OSCILLATOR POTENTIAL
37
G. Lévai

Institute of Nuclear Research of the Hungarian Academy of Sciences
Debrecen, PO Box 51, Hungary 4001

Abstract

A four-parameter potential is analyzed, which contains the three-dimensional harmonic
oscillator as a special case. This potential is exactly solvable and retains several characteris-
tics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar
generalizations of other potentials is also pointed out.

1 Introduction

Searching for exact solutions of the Schrodinger equation has been an interesting challenge since
the early period of quantum mechanics. This classic area has gained new momentum from the
recent introduction of supersymmetric quantum mechanics (SUSYQM) [1], which relates pairs of
essentially isospectral potentials to each other by means of (super)algebraic manipulations. (See,
for example [2] for a recent review on SUSYQM, and [3] and references for its relation to other
methods of analyzing isospectral potentials.) This new approach helped to view old problems
from a new angle, and allowed unified, systematic treatment of previously unrelated results. New
solutions of the Schrodinger equation have been described and classified, together with already
kuown ones. The most well known potentials have been shown to have the property of shape
invariance [4], a concept introduced in SUSYQM. Much less is known, however, about the more
general Natanzon potentials [5], which are, in principle, solvable, nevertheless their practical use
is hindered by their complicated mathematical structure. The techniques inspired by SUSYQM
allow a straightforward generalization of the simplest shape-invariant potentials, while avoiding
most of the mathematical complications characterizing the general Natanzon potentials.

Here | discuss a potential which can be considered the simultaneous generalization of the three-
dimensional harmonic oscillator and Coulomb potentials: these two shape-invariant potentials
can be obtained from it by tuning one of its four parameters. Its Coulomb limit has already
been described [6], and here I discuss its connection with the harmonic oscillator. In contrast
with other anharmonic oscillators, this potential converges to a finite value in the 7 — oo limit.
It alco inherited several characteristics from its two “parent potentials”, which may enable its
applications to physical problems, where deviations from these two fundamental potentials are
relevant.

In Section 2. I give a brief account of a simple procedure which can be used to derive exactly
solvable potentials. Section 3. contains the main results of this contribution, while in Section 4.
a summary is given and directions towards futher investigations are pointed ont.
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2 Transformations of the Schrodinger Equation

Here I describe an old method of solving the Schrodinger equation to demonstrate how a wide
range of solvable potentials can be derived in a relatively straightforward way. Originally this
procedure was used [7] to derive only some well-known potentials, but it can be shown that the
general Natanzon potentials can also be derived from it. This procedure was also connected to
the formalism of SUSYQM [8].

The solutions of the one-dimensional Schrodinger equation (with A = 2m = 1)

A2y

dua?

+(E = V{)¥(e) =0 (1)

are generally written as
W(r) = fla)F(g(x)), (2)

where F(g) is a special function which satisfies a second-order differential equation

de2Fdr
ig? + Q(g)

+ R(g)F(g) = 0. (3)
dy
Here Q(g) and R(g) are well-known for any specified special function /7(g), while f(x) and g(x)
are some functions to be determined. Substituting (2) in (1) and comparing the results with (3)
we arrive at the following expression [8] after some straightforward algehra:

o 0@ 3 (N e (e - L@ Ly
E - V() = 555 4(9,(”) +(g'(r)) (H(J( D il A CE ))). (4)

Eq. (4) relates the only undetermined function g(x) to the difference of the energy £ and the
potential V(z). Observing that the energy term [0 on the left-handside of Eq. (4) represents
a constant, the authors of Ref. [7] equated certain terms of the right -handside with a constant
to account for it. This results simple differential equations for g(x). The authors in Ref. [7]
applied this method to the hypergeometric and confluent hypergeometric function and obtained
the solutions of some simple potentials.

Considering the particular example of the confluent hypergeometric function F(—n, 3; g(zx))
and introducing the simple ¢g(x) = ph(z) substitution we get

By V() = 212) %(LQ)

20 (x) h'(x)
(A'(x))? & o2 Pt (W) s
+T.E)p (?l-’rz) —(h (l)) Z+W§ (I—E) (5)

Identifying one of the last three terms on the right-hand side of Eq. (5) with a constant, the three
shape-invariant potentials of the confluent hypergeometric case, the three-dimensional harmonic
oscillator, the Coulomb problem and the Morse potential, are recovered. These potentials appear
in the radial Schrodinger equation, therefore in what follows [ shall replace  with r.
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3 Generalization of the Harmonic Oscillator Potential

A straightforward way of generalizing the simplest possible solvable potentials to more general
ones is identifying combinations of several terms on the right-hand side of (5) with a constant.
This procedure recovers the Natanzon confluent potentials [5], the solutions of which contain
confluent hypergeometric functions. The most general six-parameter version of these potentials
can be obtained by considering the combination of all three terms on the right—hand side of (5),
which explicitly contain parameters, however, the technical difficulties increase considerably in
this case. The problem remains relatively easy to handle if we take the combination of two such
terms only. Considering the differential equation

' 2 4
(h'(x)) (l + h(x)) =C (6)
corresponds to “mixing” the harmonic oscillator and the Coulomb potentials: § — 0 recovers the
latter one [6], while # — oo combined with (" = ('8 yields the former one. (See Eq. (5)). The
Coulomb limit has been discussed in detail iu Ref. [6], and here we focus on the harmonic oscillator
limit. The potential described here and in Ref. [6] is essentially the same for any finite value of 8,
nevertheless, it is more convenient to use different notations when we discuss its connection to the
two limiting case. In order to make the formalism of the two limits compatible with each other,
here we follow the notations of Ref. [6] as closely as possible.

As described in [6], the differential equation (6) can be solved explicitly for the inverse r(h)

function only:
~_1) / h 1/2 h 1/2
L =172 [ p12 -1 n
r=( (9 tanh (h n 9) + (h (1 + 0)) : (7)

This function, of course, can be used to determine h(r) as well to any desired accuracy.

30 : [ .
2h - j
h(r) )
20+ /4/ /
S
o Yy
///
7
) p
10 s ]
5 b P
(,) _’(L‘éji_- 1 -_W - 47]’;7 l
R TR

r
FIG. 1. The h(r) function defined by Eq. (7), displayed for 8 = 0.1, 1, 10, 100, oo

and (' = 1. (Curves lying higher correspond to higher value of 6.)
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We have plotted k(r) in Fig. 1. for several values of the parameter 6. As discussed in Ref. 6],
h(r) can be approximated by Cr?/4 near the origin, and asymptotically follows h(r) — (CO)/2y
in the » — oo limit, which correspond to the h(r) functions characterizing the harmonic oscillator
and Coulomb problems, respectively. (See e.g. Ref. [8].) The range of the transition between
these two regions is governed by the f parameter: it moves towards larger values of » as 0 increases
(see Fig. 1.), and disappears completely in the § — oo (harmonic oscillator) limit.

Substituting k(r) into (5) and removing the n—dependence from the potential terms by intro-

ducing the constant
2
=_P P )
D=—+= = 8
1 +5 (n + 2) (8)

(which amounts to a specific choice of p = p,,) we arrive at the following potential

— h(r) 3 1 C 3C 5C
V(’I) = ( [)—ﬁ" + (,f - ‘—) (/f - _—) . - = + - (9)
I+ Mo 2 2/ () (1+"2) 160 (14 260)" 160 (1+ 22 )’

and energy eigenvalues

. 1/2
_ & LA A R -
E,=C(2n+pB) (02 (n+ 2) +D) ~ 3 (n+ 2) . (10)

These formulas differ from the corresponding ones in Ref. [6] only in a shift of the energy scale
and in the usage of slightly different parameters. The changes reflect the difference between the
Coulomb and harmonic oscillator limits of the general problem containing both potentials as a
special case. These differences, however, do not essentially influence the form of the wavefunctions:

I'(p) n!((B + 2n)8-1 + p,
x(1+ h,(1')/0)1/4(h(r))y_*_—]exp (-—%h(r)) F(—n, 3; puh(r)). (11)

~ EEay A
(14 T(n+ 73 12
Ur) = ( (n+5) ))

(Here and in Eq. (10) n denotes the number of nodes in the radial wavefunction.)

As we can expect from (6), these formulas reduce to the corresponding ones for the harmonic
oscillator in the # — oc limit, if we introduce the notation w = CDV? and [ = 8 - 3/2. In
particular, the two last terms in (9) vanish and the first and second terms transform into the
harmonic oscillator and centrifugal terms, respectively. We have displayed V (r) and the position of
some of the lowest-lying energy eigenvalues in Fig. 2. for some values of parameter 6. As it can be
seen there, the oscillator character of the potential strenghtens with increasing 6. V() is oscillator-
like near the origin, and approximates the Coulomb potential (with Ze? = CY2D3/?) for large r.
The domain of oscillator-like behavior expands with increasing #: this is related to the structure
of h(r) discussed previously. (See also Fig. 1.) Also, the energy spectrum is oscillator-like for
small values of n, and Coulomb-like for large n: E, converges to E,_ ., = V(r — oo) = CD§.
See Ref. [6] for a more detailed description of V() in terms of powers of 7.
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FIG. 2. Potential V(r) in Eq. (9) displayed together with the lowest-lying energy
levels for 8 = 1, 10, 100 angl’go. The other parameters are C =1, D =5and g = 1.5
in all cases. V(r — oo0) = C'D in each case.

Similarly to the Coulomb limit discussed in (6], this potential can be rewritten into the sum
of a central, centrifugal and {-dependent part:

I(1+1)

r? ?

V(r) = Vo(r) + Vi(r) + (12)
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where
hr) 3C N 5C
14+ h(r)/0 166(1 + h(r)/8)?  166(1 + h(r)/6)%’

L+ Cr? RESVI
v =" (s ) = "

The definition of { is, however, different in the two limits: [ = 3/2 — 1 for the Coulomb [6}, and
| = 8 —3/2 for the oscillator limit. (Fig. 2. displays potentials with = 0 only.) Also in contrast
with the Coulomb limit, v(r) in Eq. (14) does not vanish for large values of r, rather it goes to
the value —3/4. This, again, is the consequence of the asymptotical Coulomb-like character of
V(r).

It is remarkable, that £, depends on the combination 2rn + 8 only (i.e. on 2n + 1+ 3/2
in the oscillator limit), therefore the generalized harmonic oscillator potential has a degeneracy
pattern similar to that of the harmonic oscillator. In other words, the terms representing the
anharmonicity do not remove the degeneracy of the energy levels.

This generalization of the harmonic oscillator potential could be applied to physical problems,
where an attractive Coulomb potential is distorted by an oscillator-like potential component for

Vo(r) = CD (13)

and

small values of r. This is the case, for example, for a finite, homogenous, spherical charge distri-
bution, but in that case the resulting potential can strictly be separated into two domains, where
it exactly follows 12-like and r~'-like behavour. The potential discussed here can be considered a
deviation from this simple model problem. An example for a similar situation is discussed in Ref.
[9] in connection with a potential experienced by electrons in certain crystal environments.

Finally, there are some other potentials occupying a similar intermediate position between the
simple shape-invariant potentials and the general Natanzon potentials. Some of these, like the
Woods-Saxon [10] and Ginocchio [11] potentials have been found earlier, while some others, the
“PII” [12] potential and those in Refs. [13,14,15] have been identified only recently, mainly in
SUSYQM -related studies. See Ref. [6] for more details.

4 Summary

Here 1 have analyzed a four-parameter potential, which contains both the harmonic oscillator and
the Coulomb potential as special cases. | have interpreted this potential as the generalization of
the harmonic oscillator potential, and have established that it is a special admixture of a long-
range attractive Coulomb term, and an oscillator-like term near the origin. This is also reflected
in the structure of the energy spectrum.

Exact analytical solution of the radial Schrédinger equation can be obtained for any partial
wave, however, an angular-momentum-dependent term appears for [ # 0. A remarkable finding
is that the anharmonicity appearing in the general form of the potential does not remove the
degeneracy of the energy levels.

Similar generalizations of the harmonic oscillator and other well-known potentials are also
possible by considering further simple differential equations similar to that in Eq. (6). These
subclasses of the Natanzon potentials seem to be suitable for applications, because they have
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more flexible shape than the simplest solvable potentials, but may still remain relatively simple

to handle mathematically.
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AN ALGEBRAIC CLUSTER MODEL BASED ON THE -/
HARMONIC OSCILLATOR BASIS
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Abstract

We discuss the semimicroscopic algebraic cluster model introduced recently, in which the
internal structure of the nuclear clusters is described by the harmonic oscillator shell model,
while their relative motion is accounted for by the Vibron model. The algebraic formulation
of the model makes extensive use of techniques associated with harmonic oscillators and
their symmetry group, SU(3). The model is applied to some cluster systems and is found to
reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3)
dynamical symmetry is also found to hold for the "¢’ + 2 system.

1 Introduction

The harmonic oscillator and the SU(3) group have proven to be invaluable tools of nuclear physics.
(See, e.g. Ref. [1].) These concepts can be used to describe complex physical systems in a relatively
straightforward way by utilizing the advantages of the group theoretical description. The harmonic
oscillator picture has been found to be a suitable approach to various nuclear excitations, which
sometimes could also be related to each other in terms of it.

Clustering can be considered a special collective excitation of certain nuclei. The structure of
these (mainly hight) nuclei can be interpreted in termns of a picture based on the relative motion of
two (or more) nuclear clusters. In order to describe these nuclear systems cluster models have to
take into account the relative motion, as well as the internal structure of the clusters. These models
generally differ in their basic model assumptions, mathematical formulation and, consequently,
also in the range of ‘their applicability. Microscopic cluster models apply effective two—-nucleon
forces and rigorously take into account the effect of the Pauli principle by using antisymmetrized
wavefunctions. However, fully microscopic calculations may turn out to be prohibitively difficult
for a large number of realistic cluster systems. Phenomenologic cluster models, which are based
on less strict model assumptions may have a wider range of applicability, and are generally used
to describe a large amount of experimental data in a systematic way. Semimicroscopic cluster
models utilize the advantageous sides of microscopic and phenomenologic models by combining
the microscopic (antisymmetrized) basis with phenomenologic cluster-cluster interactions. This
allows calculations in a wider range of nuclei without forgetting about the fermionic nature of the
nucleons, i.e. without abandoning the Pauli principle.

From the technical point of view, most of the cluster models apply the geometric description,
i.e. they use (nucleon—nucleon or cluster--cluster) potentials and work in the geometric space, while
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some others prefer the algebraic description in terms of creation and annihilation operators and
the second quantized formalism. Harmonic oscillators appear in a natural way in both approaches
and offer a convenient way of interrelating them.

Recently we have intoduced a semimicroscopic algebraic cluster model [2,3] which makes ex-
tensive use of the harmonic oscillator picture in describing the relative motion as well as the
internal structure of the clusters. In the first applications of the model we tested its ability of
reproducing certain features of realistic cluster systems and tried to estimate the validity of the
harmonic oscillator picture it is based on.

2 The Semimicroscopic Algebraic Cluster Model

Our earlier attempts of describing various nuclear cluster systems in terms of a pheonomenologic
cluster model, the Vibron model [4] and its extensions have revealed [5,6] that these models can
not distinguish between Pauli-forbidden and allowed states: complete forbidden shells can be
excluded by a simple rule, the Wildermuth condition, but no such distinction can be made within
allowed shells. These studies, however, have also pointed out the importance of the SU(3) group
as a possible of tool combining the relative motion and the internal structure of the clusters. This
group appears in a special limit of the Vibron model accounting for the relative motion sector,
and it can also be used to describe the internal excitations of the individual clusters. These
preliminaries have paved the way to the introduction of the semimicroscopic algebraic cluster
model [2,3].

In this model the internal structure of a cluster is described in terms of the SU/(3) (harmonic
oscillator) shell model [7], therefore its wavefunction is characterized by the 5T (4) @ Uc(3)
symmetry, where (" refers to cluster, and U57(4) is Wigner’s spin-isospin group [8]. The relative
motion of the clusters is accounted for by the vibron model with Ux(4) group structure [4]. The
representation labels of the group chain

UET(4) @ Uc, (3) 0 UZT (4) © Uc, (3) © Ur(4)
S UST(4) @ Ue(3) 5 Ur(3) D UE(2) » U(3)
S US2) = O3) DU2) D O(2) (1)

provide us with the quantum numbers for the basis states of a two-cluster sys{em. From this set we
have to skip those states, which are Pauli forbidden, or which correspond to spurious excitations of
the center of mass. A siuple recipe for eliminating these states is applying a matching requirement
between the quantum numbers of the shell model basis of the whole nucleus and its cluster model
basis [2,3]. This recipe is based on the connection between the harmonic oscillator shell model and
harmonic oscillator cluster model {10]. This procedure corresponds to a special truncation of the
extensive shell model basis in the sense, that only those states survive, which are Pauli-allowed,
and are relevant to the cluster structure under study.

When the internal structure of each cluster is described by a single U327 (4) @ Uc(3) represen-
tation, then the physical operators of the system can be obtained in terms of the generators of the
(/ng(/l) W Ue, (3) 0o UST(4) 0 Uey (3) ¢ Ug(4) group. In such a case the description is algebraically
closed, i.e. the matrix elements can be deduced by means of group theoretical techniques. In the
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limiting case when the Hamiltonian is given by the invariant operators of (1), then the eigenvalue
problem has an analytical solution, and a U(3) dynamical symmetry is said to hold.

The problem can be simplified further if one or both of the clusters are even—even nuclei
(i.e. they consist of even number of protons and neutrons). In this case the clusters are said to
be UST(4) scalars, furthermore, if the clusters are closed shell nuclei, then they are also (/c(3)
scalars. In this case these groups and the quantum numbers associated with them do not appear
explicitly in the formulas. In Ref. [3] the formalism is presented in detail for the (/o (3) © Ug(4)
and Uc, (3) ¢ Uc, (3) 2 Ur(4) models, as well as for the restricted UST(4) 00 Ue(3) o0 Ur(4) model.
In this latter case the restriction implies that only spin and isospin free interactions and a single
UZT(4) representation are considered. If both of the clusters are UST(4) and U4 (3) scalars, the
model reduces to that of the simple vibron model with a basis truncation corresponding to the
Wildermuth condition [5].

Here we give a brief account of the Ue(3) @ Ur(4) model, which is able to describe two-
cluster systems in which one of the clusters is a closed-shell nucleus (e.g. *He, '°0, or *°(Cq),
while the other one is an even—even nucleus. In this simple case the basis states can be labeled
without explicit reference to the /57 (4) group, (unless some higher excitations of the non-closed—
shell nucleus are also considered), and the cluster model basis states are characterized by the
representation labels of the group chain:

Uc(3) 0 Ur(4) D Uc(3) 9 Un(3) D SUx(3) ¢ SUR(3) D SU(3) D 0(3) D 0O(2)

ny", ng, nS],[N,0,0,0], [, 0,0,], (M) s (20.0) , (Ap), Ko, L . M ).
(2)
The irreducible representations (A, u) of SU/(3) are obtained by taking the outer product of
(Acype) 0 (ng,0). N stands for the maximal number of the excitation quanta assigned to the
relative motion, and it determines the size of the model space. The angular momentum content
of a (A, ) representation is given by the usual relations of the Elliott model [7]. For technical rea-
sons, however, it is more convenient to use the orthonormal SU(3) basis of Draayer and Akiyama
[11], rather than tHe Elliott basis, which is not orthogonal. The parity of the basis states is de-
termined by the parity assigned to the relative motion: Py = (=1)". (The internal states of the
non-{/(3)-scalar cluster carry positive parity Fr = (=1 415 unless major shell excitations

of the clusters are also considered.)
The coupled wavefunction can be expressed in terms of SU(3) D O(3) Wigner coefficients:

[(Ac, te ), N(ng,0); (/\»H)XLM)
= Z E ((/\(:,/t(r))((,'L(,'A/](';x’V(II,,,,O)LHMRI(/\,p)xLAf)
xcLcMe LpMpg
X |(/\C, ;L(;")X(,'LcM(;)lN(?I‘,r, O)LRA/[R>. (3)

The physical operators can be constructed from the generators of the groups present in group
chain (2). In particular, the most general form of the Hamiltonian can be obtained in terms of
a series expansion of these generators. In the simplest case, however, when we use the SU(3)
dynamical symmetry approximation, and consider only one Ux(3) representation to describe the
structure of the non-closed-shell even-even cluster, the energy eigenvalues can be obtained in a
closed form:

E = e4+an, + 2 +9Cy(M p) + BL(L + 1). (4)
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In this approximation the energy levels can easily be assigned to rotational bands labeled by the
quantum numbers n (X, g)x. (See Egs. (3) and (4).) Bands following an approximate rotational
pattern usually appear in the energy spectrum of nuclear cluster systems.

The electromagnetic transition operators are also constructed from the group generators, which
automatically implies selection rules in the dynamical symmetry approximation. The electric
quadrupole transition operator, for example, is written as the sum of the rank-2 generators of the

Uc(3) and the Ugr(3) groups:
TED = grQ) +acQe (5)

The matrix elements of the operators with the basis states (3) are calculated using tensor algebraic
techniques [12].

The formulation of the Ug, (3) & Ugy(3) ® Ugr(4) and UST(4) ® Uc(3) ® U/r(4) models can
be done via a straightforward generalization of the results presented here. These models can
also be used away from the SU(3) dynamical symmetry limit: in this case the diagonalization
of the Hamiltonian becomes necessary. Although the interactions applied in this approach are
phenomenological ones, they can be related to the effective two-nucleon forces, due to the use of
the microscopic SU(3) cluster model basis. See Ref. [13] for the details.

3 Applications

The applications of the semimicroscopic algebraic cluster model have been carried out so far
within the SU(3) dynamical symmetry approximation. This approximation allows exact analytical
expression of the energy eigenvalues and electromagnetic transition rates in terms of reduced
matrix elements, Clepsch-Gordan coefficients, etc. obtained from the algebraic description. lIts
validity, and also that of the underlying oscillator picture can be estimated'from the comparison
of the results with the corresponding experimental data.

As an illustrative example we present here the description of the T = 0 states of the Mg
hucleus in terms of a 2C° + 2C cluster model [14]. The structure of this nucleus has been studied
carefully via various reactions both in the ground-state region and in the ragion of molecular
resonances observed in 12C 4 '2C heavy ion collisions. These experiments have resulted a large
amount of experimental information on the structure of the 2M ¢ nucleus. Most of the theoretical
investigations have focused only on one of the two regions mentioned above, and relatively little
effort has been put into their simultaneous investigation.

Our aim was to give a unified description of these two domains in terms of the Ug (3) ®
Uc,(3) © Ur(4) model. In this description the internal structure of the '2(" clusters is accounted
for by the (A¢,pe) = (0,4) Uc(3) representation, which corresponds to an oblate deformation
in the geometric picture. We have analyzed about 150 experimental levels in the energy range
of 0 to 40 MeV (see Fig. 1.), and nearly 100 electric quadrupole transition probability data in
our study, which is a more complete account of the energy spectrum and E2 transitions of the
24 M g nucleus than any previous model calculation. We have displayed the B(E2) values for the
in—band transitions in Table 1. Our results for interband £2 transitions are also satisfactory. The
fact that most of the transitions forbidden by the selection rules due to the SU(3) dynamical
symmetry have very weak experimental counterparts seems to indicate that the SU(3) dynamical
symmetry approach is a realistic approximation of the actual physical situation here. The model
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was able to describe the general features of the moleular resonance spectrum as well. E2 transition
probabilities calculated for in-band transitions within this region were significantly smaller than
most of the corresponding results of other models. The example of the 2¢ + 12¢7 system
demonstrated that a large number of experimental data, including the ground-state region as well
as the highly excited molecular resonances can be reconciled in terms of relatively straightforward
calculations, which is one of the major advantages of the semimicroscopic algebraic cluster model.

MTrT T 7T T 7 1 T ! T T I T
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02 4 6 8 10 12 13 5 7 9

FIG. 1. Positive- and negative-parity 7' = 0 energy levels of the Mg nuclens
displayed separately in rotational diagram form [14]. Circles (o) stand for states with
uncertain J7 assignment. The lines denote the position of the calculated model bands.
(Dashed lines indicate bands with y = 0, which contain only every second possible J
value.)

Similar conclusions have been drawn from another application of the model to the (' + a
system in terms of the restricted UST(3) 0 Un(3) 2 U/(4) model, describing the T' = 1 states of the
'®0 nucleus [15). Being a considerably less complex nuclear system than "2C' + (| this example
also allowed comparison of our results with those of microscopic calculations. We have found
strong correlation between these two data sets, which seems to indicate, that the semimicroscopic
algebraic cluster model approximates certain microscopic features reasonably well.

The model has been applied in other areas of nuclear physics as well, where the cluster picture
may be relevant. In particular, the link between superdeformed and cluster states of a-like

(N = Z = even) nuclei has been discussed [16]; the allowed and forbidden binary fission modes
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of ground-state-like confignrations in sd—shell nuclei have been studied [17}; and the possibility
of describing exotic cluster radioactivity has been pointed out via the example of aopy 4 MO
clusterization of the 22* Ra nucleus [18]. In this latter case the model has to be adapted to heavy
nuclei by introducing the pseudo-SU(3) scheme.

TABLE L. In-band transitions for the 2* Mg nucleus. See Ref. [14] for the sources
of the experimental data. The quantun numbers n.(A, p)x assigned to the bands are
also displayed.

JI(Exi) J7(E.f) B(EQ)gsy  B(E2mn  na(A p)x
2+(1.37) 0+(0.0) 21.0 £ 0.42 21.02 12(8,4)0
4% (4.12) 2%(1.37) 37.8 £ 3.0 28.0

6%(8.11) 4% (4.12) 38 £+ 13 27.1

8+ (13.21) 6+(8.11) 30 £ 14 23.1

3t(5.24) 2t(4.24) 38.0 £ 5.5 375 12(84)2
4%(6.01) 2+(4.24) 18.7 + 2.4 11.4

5+(7.81) 3%(5.24) 35.0 £ 4.9 17.5

5+(7.81) 4%(6.01) 24 £ 10 19.5

6%(9.53) 4%(6.01) 18 + 3 13.0

7H(12.35) 5+(7.81) 21 + 14 19.7

8% (14.15) 6%(9.53) 9.1 + 2.4 13.7

2+(8.65) 0%(6.43) 14.0 + 4.3 12.4 12(6,2)0
67 (12.86) 4%(9.30) 11.2 £ 2.1 12.2

57(10.03) 37 (8.36) 20%% 34.7 13(9,4)0
77(12.44) 57(10.03) 51 £ 10 32.3

5(13.06) 37(10.33) 22 £ 4 28.1 13(8.3)1
4-(9.30) 37(7.62) 29+ 6 35.1 13(5.3)3
57(11.60) 37(7.62) 4.6+ 1.4 73

57(11.60) 47(9.30) 37 + 11 318

a Used to fit model parameters.

4 Summary and Outlook

We have discussed the new semimicroscopic algebraic cluster model, in which a harmonic oscillator
picture is used to account for the internal structure and the relative motion of nuclear clusters.
The model combines a microscopic harmonic oscillator basis with phenomenologic interactions
formulated in algebraic terms. lIts first applications to realistic nuclear systems have shown, that
it is able to describe a large amount of experimental data in a coherent way, and also seems to
reproduce certain microscopic effects reasonably well. The SU(3) dynamical symmetry limit of
the model was found to be a realistic approximation for several sd-shell nuclei.
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The model can be developed further along several lines. First, the treatment of cluster systems
with arbitrary open-shell structure can be considered by introducing spin and isospin degrees
of freedom. The formalism of the model can also be extended to incorporate several internal
configurations, including major shell excitations. Furthermore, by considering symmetry breaking
terms in the Hamiltonian a more realistic description of nuclei can be given, relaxing, for example
the selection rules imposed by the SU(3) dynamical symmetry.
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HARMONIC OSCILLATOR. IN QUANTUM ROTATIONAL
SPECTRA: MOLECULES AND NUCLEI

I. M. Pavlichenkov
Russian Research Center ”Kurchatoy Institute”, Moscow, 123182, Russia

Abstract

The mapping of a rotational dynamics on a harmonic oscillator one is considered. The
method is used for studying the stabilization of the rigid top rotation around the intermediate
moment of inertia axis by orbiting particle.

1 Introduction

The quantum rotation is a specific type of excitation of microscopic system: hadrons, nuclei,
molecules, and even atoms. The rotational excitations of molecules and nuclei have been studied
in more detail. Electronic excitations are much higher than vibrational ones for most so-called
"normal” molecules. Therefore they may be described adequately in the Born-Oppenheimer ap-
proximation. There is no analog of the Born-Oppenheimer approximation for atomic nuclei. Yet
the occurrence of the rotational bands with strong (nearly 100 single particles) E2-transitions
between neighboring states shows the existence of the collective rotation. All nucleons participate
cooperatively into this collective motion with internal degrees of freedom being frozen completely
or partly. The rotational excitations are grouped into rotational bands having states characterized
in simplest case of a rigid axially-symmetric top by the energy (h = 1)

E=1I(I+1)/28, (1)

and quantum number [ of the total angular momentum. $ is a moment of inertia. A simplest
non-axial system is a rigid asymmetric top with the Hamiltonian

H = Alllz + A2]22 + A3]32, (2)

where I, are the projections of the total angular momentum operator on the BFF (body-fixed
frame) axes a = 1,2,3. The rotational constants A, = 1/(2S,) depend on the principal moments
of inertia &,. The rotational band of an asymmetric top consists of rotational multiplets, i.e., of
the levels with the same value of the quantum number /. Besides I, these levels are characterized
by the irreducible representations of the group D, = {1, R, Rz, R3}, which contains the identity
operator and three 180° rotations around the BFF axes R,(7) = exp(—inl,). The irreducible
representations of D, are labeled ai, az, by, b;. They correspond to the eigenvalues r, = +1 of the
operators ®,. The subscripts 1 and 2 label even and odd symmetry levels with respect to the R,
rotation, a and b label even and odd symmetry levels with respect to the 3 rotation. Note that
rirer3 = 1 is true for each four representations.
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Different methods are used to solve the Hamiltonian (2). As the first step we will calculate
the classical rotation energy E as the function defined in the system phase space (a rotational
energy surface). The phase space of a rotational motion is formed by three Euler angles ¢,9,%
and three conjugated momenta pe, P9, Py The absolute value of the angular momentum I and its
projection I; = ps on the z-axis of the space-fixed frame are the integrals of motion. It is suitable
to do the canonical transformation [1] to new conjugated variables I and gy, I, and ¢, I3 and ¢.
Since ¢; and g, are cyclic variables, the phase space of a rotational motion is two-dimensional. It
‘s convenient to map it on the surface of the sphere of the I radius with a center in the origin
of the BFF. The point on the sphere with coordinates @ and ¢ determines the orientation of the
vector I in the BFF. The canonical transformation enables us to relate the conjugated variables I
and ¢ to the angles 0 and ¢. For I, =qr =0 and an arbitrary g, we have cos 8 = L/, ¢=3%—4
Thus, the trajectories of the tip of I on the phase sphere are classical trajectories of the system
in its rotational phase space. When the rotational energy is close to A% or AsI?, where Ay and
Aj correspond to the smallest or the largest moment of inertia, the classical trajectories are small
ellipses around axes 1 or 3. They represent precession motion around these axes. The trajectories
close to axis 2 with the intermediate moment of inertia are unclosed. They represent unstable
motion. A small deviation from this axis takes a top away from it.

2 Precession motion

Let us begin with classical precession. It is described by the Euler equations
i, ={H, L}, a =123, (3)

for the projections of the vector I on the BFF axes. In this equation {...} are the Poisson
brackets. Let us introduce the classical concept of stationary rotation axis defined by the three
equations {H, Ioo} =0- The stationary states I are :dentical with the fixed points of the energy
surface. There are three stationary axes coinciding with the principal axes of a rigid top. For
small precession around axis 1 (I = I; I, I3 < I) Egs. (3) have the form

I, = —(As — A,

j3 = (A2 - Al)IIQ (4)

They describe a harmonic oscillation motion

Ig(t) = ’io\/ A3/A1 - 1COSUJ11t, Ig(t) = —’i()\/ AQ/A] — 1sinw11t, (5)

with small amplitude io and frequency
w1 = 21\/(742 e A])(A3 - Al) (6)

In the BFF, the I vector precess around axis 1 and, in the laboratory frame, the top precess around
the angular momentum L It follows from the stability condition w? > 0 that the precession motion
around the axis with the smallest or the largest moment of ‘nertia is stable and around the axis
with the intermediate one is unstable.

To obtain the energy level structure of a rotational band corresponding to a precession motion
one must quantize this motion. It can be done by different methods.
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Holstein-Primakoff Representation of Angular Momentum Operators. The method developed
by Marshalek for a quantized rotator [2] is based on the one boson realization of angular momentum
operators [3] ‘

L=T-b I, =5L+il5=bV21—b%b= (1.)*, (7)
in the space of wavefunctions
I (b+)I—K
o= & wgn O ©

where v is the quantum number of a state in a rotational multiplet. The state | 0) corresponding
to ' = I is a vacuum state of the boson creation and annihilation operators b*, b. For describing
precession motion we expand the square-root operator in I and I_ in the series of a small quantity
n/1, where i = b*b is the boson number operator. In the harmonic approximation (n <« I), the
Hamiltonian (2) is quadratic in boson operators

1 1
H=ATI*+ 5(A2 + As) + I(Az + Az — 2A4,)bT b + 5(/42 + A3)(b*b + bb). (9)

The Hamiltonian (9) can be diagonalized by a canonical transformation
b=uB+v8", |ul—|v|=1, (10)
to new boson operators § and 8*. The energy of the lowest levels is given by
Enn=AIIT+1)+wn(n+1/2), n=0,1,2,... . (11)
The quantum number n describes the precession motion. For the state with n = 0 the wave
function v
pro =l u |V exp (b8 | 0), (12
u

localizes near rotational axis 1. It corresponds to the sharply localized orientation of the angular
momentum I along the positive direction of axis 1. Eq. (12) is not the eigenfunction of D,
symmetries. Thus, the harmonic approximation is a ”symmetry-breaking approximation.” Being
a linear theory it cannot describe tunneling the vector I through a potential barrier separating
two degenerate minima.

Bargmann Representation [4]. Let us consider the complex variable
: ; 6
(=z+1y =e€%cot 7 (13)

which is the stereographic projection of a point on the phase sphere with polar angles § and ¢
on the plane passing through the south pole. As shown in Ref. [5], it is possible to construct the

SU(2) group representation in the space of the polynomials

1

p(()= Y ax('th. (14)

K=-
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The angular momentum operators in this representation have the form

d
d¢’
Many problems in nuclear and molecular physics can be treated by this approach [6]. With the

operators (15), the Schrodinger equation for a top is reduced to the Heine equation [7]. To describe
for example the precession motion around axis 3 we should consider the approximation | { |« 1.

= 1G4+ H1— ) l= 10 S0+ ) o= =T+ (15)

a’

Approzimate Solution of Reccurence Relations. This method is based on the approximation of
recurrence relations by a second-order differential equation for high-I values [8]. The eigenfunction
of the Hamiltonian (2) can be written in the form

I
U, = 3 arxeDigi(9), (16)
K=-

where M and K are the quantum numbers of the operators I, and I3 respectively. Disg is
the Wigner function depending on the Euler angles 9. For the coefficients ajx., the three-term
recurrence relation is obtained

Pxark-2, + (Hrkx — En)arg, + Pryzaris2, =0, (17)
where
Hy = Hrx = (A1 + A2) + 3(245 — Al — A2) K2, (18)
Px = Hikxoa = YA - AU - K +2)(I + K- 1)(I - K+ 1){{ + KV

By using the small parameter § = [I(/ + 1)]"/2 let us introduce the continuous variable k = Ké.
We will treat the coefficients P and H as the smooth functions of this variable. As a result, the
recurrence relation (17) may be rewritten in the form of the Schrédinger equation

I(I + )Hay, (k) = Enar(k), (19)
with the Hamiltonian
H = [P(k + 26) + P(k)] cos 2pé + i[P(k + 26) — P(k)]sin2pé + H(k), (20)
where p = —id/dk is the canonically conjugated momentum to the coordinate k.

In the harmonic approximation K < I, Eq. (19) is reduced to the second-order differential
equation
d2a1,,
dK?
in the space of quantum numbers K. The equation describes the motion of the angular momentum
I with effective mass m = 1/[2(Az — A1)I(I+1)] in potential V(K) = (As— A;)K?. This harmonic
oscillator has the energy spectrum (11) and the wave function

1/2
2 2w 2w wkK?
n = I'I,,l (4| —— —
“ [Z"n! r(2l +1) ] (1‘ Var+1 ) eXp( ol + 1) ! (22)
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where w = [(A3 — A1)/(Az2 — A)]/?, and H, is the Hermite polynomial. We have again a sharp
localized state with broken symmetry.

The rotational dynamics of real many-body systems is more complicated than that of a rigid
top because of the centrifugal and Coriolis forces. However the harmonic approximation can
be used in this chase to understand the physical nature of the phenomenon under study. The
example is bifurcations in quantum rotational spectra considered in Ref. [9]. In the next section
we consider another problem having a bearing on a precessional motion.

3 Precession Motion around Intermediate Moment of In-
ertia Axis

As we proved above, the rotation of a rigid top around the intermediate axis is unstable. This is
not a case if a system has additional degrees of freedom apart from rotational ones. We are going
to consider a particle coupled with an asymmetric rigid top. This is the situation of one-electron
Rydberg states in triatomic molecules, such as H,0O [10], and rotational bands in odd deformed
nuclei [11].

The Born-Oppenheimer approximation breaks down in the molecular Rydberg spectra. As the
total angular momentum I increases, the rotational levels pass from Hund’s case (a) or (b) (the
strong-coupling scheme), where the electronic splitting is large compared with the rotational one,
to the Hund’s case (d) (the weak-coupling scheme), where it is small. The model of an isolated j-
complex is widely used for the description of the transition from strong to weak coupling in nuclear
[11] and molecular [12] physics. This approximation is valid if coupling the states of a j-complex
with other Rydberg states is small compared to the Coriolis coupling. The assumption means
that one-particle angular momentum j is an integral of motion. As [ increases, the momentum
J decouples from the molecular ion core and couples to the axis of rotation with the maximal
moment of inertia.

Let us consider the effective Hamiltonian describirg the two degrees of freedom: rotational and
one-particle. The rotational part of the Hamiltonian is the kinetic energy of a rigid top. We will
use the self-consistent field approximation for describing one-particle motion. The non-spherical
part of this field can be written in terms of the particle multipole momenta ¢u(r) as follows:
V = 35, @ruqru(r), where A-values are even for the reflection symmetric field. For an isolated
j-complex, the one-particle part of the Hamiltonian can be expressed in terms of the spherical
tensor operators T,(j). Thus, the effective Hamiltonian of the system for an isolated j-complex
is algebraic with symmetry SU(2) ® SU(2). We consider this Hamiltonian in the quadrupole
approximation when the components of mean field V with A > 2 are smaller than the ones with
A = 2. It is convenient to write the Hamiltonian in the coordinate system fixed by the principal
inertia axes:

H =Y [Aa(ls = ja)* + 9072, (23)

where g1 = —g, = (gosiny)/V/3, gs = gocosy (—00 < go < 400, 0° <y < 60°) are the parameters
of the quadroupole part of the self-consistent field, which is diagonal in the considered frame. In
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classical mechanics, the system dynamics is described by the equations of motion:

_Ija = —2eap,Ap(lp — j?)IV . (24)
Ja = 2€aﬁ7[-Aﬁ(Iﬁ - Jﬁ) + qﬂlﬁ]J‘Y’

where repeated indexes are summed.

The stationary state Iy and jo of Eqs. (24) is determined by the eight algebraic equations
since the two integrals of motion I? and j? exist. Therefore, the stationary state with an arbitrary
orientation does not exist. There are two types of stationary states of Egs. (24), corresponding to
the lowest level of the rotational multiplets. The three aligned states So:ly=1,jo=73,0=1,2,3

with the energy
Eo = Aa(I = j)" + gai’ (25)

have the parallel vectors Iy and jo aligned along axis a. In the three plane stationary states Sag,
these vectors are placed in the (af)-plane. As I increases the sequence of stationary states Sy and
S,p with the minimal energy for given I leads to the aligned state with the maximal moment of
inertia. The transition from aligned state S, to plane one S, is accompanied by the bifurcation
of the Ca,-type [9] at the critical angular momentum

(. Gu—9s  [(9«—9\2 (9 —98)As ]%}
Le=i{1 _ e = 9008 |21
p ]{ t oA, +[( 94, ) A(An — Ag) (26)

The index a denotes the axis from which the angular momenta Io and jo decouple, while index
B denotes the axis to which they approach. Both indexes (a83) denote the plane, in which these
vectors move for j < Ing < I < Ig,. Another pair of critical momenta determines the similar
bifurcation points in the region I < j. The expression for these values is the same as Eq. (26)
except the sign before a square root. We will consider below only the region I > j in the case
when A; < A2< A3, go> 0.

The precessional motion near the stable stationary state is described by linearized set of Egs.
(24). Four linear differential equations describe two normal modes corresponding to the small
harmonic oscillations of vectors I and j. The frequencies of these modes are obtained as the roots
of a biquadratic equation. We begin our consideration with the precession near the Sj-state in
the weak-coupling limit Al >> goj. To simplify expressions let us use assumption [ >> . The
precessional mode with smaller frequency w11 (6) represents the precession of the vectors I and
j with different amplitudes. While the I vector circumscribes according to Eqgs. (5) an elliptical
cone around axis 1 with the amplitude %o, the amplitude of the j vector is j/I times smaller that
of the I one. Thus, this mode involves the precession of core angular momentum vector R = I— ),
which coincides, in considered approximation, to rigid top precession. Another normal mode with
the frequency wya = 21 Ay, which is equal to the core angular velocity around axis 1, involves the
uniform rotation of the angular momentum vectors around this axis with identical amplitudes:

Iz(t) =]2(t) = io COS8 wlzt, Ig(t) =]3(t) = 7:0 sin wlgt. (27)

Consequently the momentum R does not participate in this motion.
Now we consider precession near the stationary state S,, corresponding to the central axis. An
orbiting particle stabélizes this state due to the anisotropic (quadrupole) interaction with a top.
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The small values of (A; — A;)/A; favors stability of the aligned state S, lowering its energy E,
relative to E; (see Eq.(25)). To clarify the physical picture we will use the approximations I>> j
and (A; — A;)/A; <<1 in describing precessional motion. The smaller frequency

]1/2

wa =2 [(Az — Ai)(As = Ag) (13, = I?) (28)

vanishes at the critical momentum I3, (26). The time-dependence of the angular momentum
components for this mode is defined by

Ii(t) = i9[As/ Az — 1] cos wart,

I3(t) = —io[(A2/ Ay — 1) (U2, /1? — 1)]*sinwyyt, (29)

and j(t) = (7/1)I(t). The interpretation of this result is straightforward. Since the amplitude of the
j-vector is small compared to that of the I ones, the considered mode represents the precession of
the core angular momentum R similar to the rigid top precession (5). Yet unlike the latter, the tips
of vectors I and j move on elliptic orbits stretched along axis 1 if the angular momentum 7 is close
to I3;. This is just a consequence of the bifurcation, which shifts the angular momentum vectors
into the (12)-plane. For another normal mode of frequency wy; = 21A,, the time-dependence of
angular momentum components has the same form as in Eq. (27).

Thus, we have shown that the precession motion around the axis with intermediate moment of
inertia is possible for a system consisting of a particle anisotropically coupled with an asymmetric
top. The isolated j-complex approximation is used in considering this phenomenon. To examine
it one can solve the classical equation of motion for a particle coupled with an asymmetric top
without this restriction. The equations involve two different time scales: fast particle motion and
slow core rotational motion. After averaging on the fast motion, one can obtain the closed set of
nine equations for components of I and particle angular and quadrupole momenta. The averaged
equations can describe the stabilization phenomenon and the precession around intermediate axis.
This insight into the problem reveals the close relationship of our stabilization effect with that of
the Kapitza pendulum [13]. Another intriguing analogy is the new discovery in planetary science
where it has been shown recently [14] that the Moon stabilizes the chaotic wobble of the Earth’s
rotational axis, which is unstable due to orbital coupling with other planets. Thus, without the
Moon, large variations in obliquity resulting from the chaotic wobble might have driven dramatic
changes in the Earth’s climate. There are two fundamental distinctions of our problem from
considered above: we deal with the isolated and quantum system.

The above found precessional frequencies are associated with the splitting between the lowest
levels of a multiplet. To obtain this result one must quantize the precession motion. It can
be done by using the Holstein-Primakoff representation. The result for lowest multiplet levels
corresponding to the stationary state S, is

Epn = E,(I) + war(n1 + 1/2) + waz(ne +1/2) (30)

where E, is given by Eq. (25), and n, and n; are the numbers of bosons in corresponding mode.
The boson operators b and b connect the odd and even with respect to'the C¢-transformation
states inside a rotational multiplet. Consider, for example, the precession around axis 1 in the
weak-coupling limit. In this approximation, any rotational multiplet (7-multiplet) consists of R-
multiplets with the quantum numbers R =7 —j+4+m, m =0,1,...,2j. The levels in R-multiplets
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with the same quantum number R but different I are degenerated. The frequency (6) describing
the precession of the R-vector is equal to the splitting between the lowest levels a; and b; (or
a; and by) in a R-multiplet. Another frequency wy; = 2] A, is equal to the splitting between
the lowest levels of adjacent R-multiplets belonging to the same I-multiplet. The situation for
the precession around the intermediate axis is more complicated. According to the precessional
approximation, the lowest states of a multiplet involve two groups of roughly equidistant levels,
which are described by Eq. (30). But a smaller frequency vanishes in a critical point and the
precessional approximation becomes inappropriate in this region. This means the redistribution of
multiplet levels, which provides a method for the identification of the intermediate axis precession
in an experiment.
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Abstract

Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear
function of the ('artesian coordinates of the galactic masses. In nuclear physics, the kinetic
energy in the linear velocity field approximation is known as the collective kinetic energy.
But, the lincar approximation neglects intrinsic degrees of freedom associated with nonlinear
velocity ficlds. To remove this limitation, the theory of symplectic dynamical symmetry
is developed for classical systems. A classical phase space for a self-gravitating symplectic
system is a co-adjoint orbit of the noncompact group Sp(3,R). The degenerate co-adjoint
orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact
subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations
of motion on each orbit form a Lax system X = (X, F], where X and F are elements of the
symplectic Lie algebra. The clements of the matrix X are the generators of the symplectic
Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta
of the galactic masses. The matrix F is composed from the self-gravitating potential energy,
the angular velocity. and the hydostatic pressure. Solutions to the Hamiltonian dynamical
system on Sp(3.R)/U(3) are given by symplectic isospectral deformations. The Casimirs of
Sp(3,R), equal to the traces of powers of X, are conserved quantities.

1 Riemann Ellipsoids

A remarkably unified picture of rotating systems is attained by adopting an algebraic perspective.
Classical rotating hodies such as galaxies (period=10"%s), stars (10°s), and fluid droplets (1s), and
quantum rotating nuclei (107*"s) may be described in terms of a single'subgroup GCM(3) (for
general collective motion in 3 dimensions) of the noncompact symplectic Lie group Sp(3,R). In
classical physics, the GCM(3) theory is identical to the Riemann ellipsoidal model [1, 2, 3].

A Riemann ellipsoid is a uniform density thiid with an ellipsoidal boundary whose velocity field
is a linear function of the inertial frame Cartesian position coordinates X. The isodensity surfaces
of elliptical galaxies are very nearly ellipsoidal [4]. Linear velocity fields oL (the superscript L
indicates a laboratory inertial frame qnantity) span the dynamical continuum from rigid rotation,
(7’“(’;;) =l x .‘;;, to irrotational flow, V x OF = 0. Thus, Riemann ellipsoids can model a wide
class of rotating systems.

The principal aim of this paper is to present the classical symplectic model with particular em-
phasis upon its relationship with the Riemann ellipsoidal model [5]. But first the Riemann model
and its equivalence to the algebraic GCM(3) theory will be reviewed. To describe a linear velocity
field, the dynamical gronp GCM(3) contains the general linear group GL(3,R) as a subgroup. In
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addition, to characterize the size, deformation, and orientation of an ellipsoid, the GCM(3) Lie
algebra includes the inertia tensor.

There are several advantages to adopting the powerful dynamical group method. First, the
Euler fluid equations of motion for a Riemann ellipsoid can be proven to form a Hamiltonian
dynamical system [3, 6). A Riemann ellipsoid phase space is a co-adjoint orbit of GCM(3), and its
Poisson bracket is inherited from the Lie algebra structure of GCM(3). Moreover, this Hamiltonian
system is a special Lax pair system [7]. Second, the group method is not restricted to continuum
fluids. GCM(3) dynamical symmetry applies equally well to discrete systems of particles. Third,
GCM(3) dynamical symmetry also applies to some quantum rotating bodies. For example, the
Bohr-Mottelson irrotational surface wave model of collective rotational and vibrational states
forms an irreducible unitary representation of GCM(3) [8, 9, 10]. Finally, GCM(3) symmetry
suggests a natural extension to symplectic Sp(3,R) dynamical symmetry [11]. The latter replaces
the collective kinetic energy of the GCM(3) theory by its exact microscopic expression.

The hydrodynamic Riemann ellipsoidal model provides a physical interpretation to the abstract
GCM(3) theory: The length " of the KRelvin circulation vector, a constant of the motion for a
frictionless, homoentropic fluid flow, is the Casimir invariant for GCM(3) [6].

The velocity fields of rigid rotors and irrotational droplets have very different Kelvin circulation
vectors C. Suppose the rotating system has an ellipsoidal boundary with semi-axes lengths ax.
The inertial frame Kelvin circulation vector, projected onto the kth body-fixed axis, is defined as
the line integral of the velocity field {7 around the boundary of the ellipse Dy in the i — j principal
plane for 7, j, k cyclic. According to Stoke’s theorem, these line integrals equal the surface integrals
of the curl of the velocity field,

‘4“‘1 el - — il —
(' = — U-dl:ﬂf/ V xU-dS, (n
57 J Jbpy

hr Jop,

where U denotes the projection of the inertial frame velocity field onto the body-fixed axes, and
M is the fluid’s mass. ‘

By definition, the curl of the velocity field of an irrotational droplet is zero, and, hence,
the Kelvin circulation of an irrotational flnid vanishes, C = 0. For a rigid rotor velocity field,
V x [} = 2. Because ma;a; is the area of the ellipse Dy, the rigid rotor circulation components
equal Cy = (2M/5)a;q;wy. . For a general linear velocity field, the curl is a constant vectorfield V x
U = ¢+ 23, where Cis called the uniform vorticity. As the uniform vorticity ranges continuously
from zero to the negative of twice the angular velocity, the complete Riemann sequence from rigid
rotation to irrotational flow is traversed.

2 GCM(3) Dynamical Symmetry

The symplectic algebra Sp(3,R) consists of the inertia, virial momentum, and kinetic tensors [11]:

Q}‘, = Z”laxai)‘,aja
N = 3 XaiPaj, (2)
Th = 3 my PaiPaj,
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where the sums are carried over the particle index « = 1,..., A, m, denotes the mass of particle

a, and Xa, B, are the inertial frame vector Cartesian pos:tlon and momentum of particle a. In

ﬂu1d dynamlcs the sums over particles are replaced by integrals over the density distribution, e. g,
= [ p(X)XiX;d>X. The Poisson brackets close to form the symplectic algebra:

{NE NG} = 6uNE — 8N,

{@h.Qi} = o,

{Q5NE} = 6uQh + 6,04

{1t 15} = o,

{NETEY = 6uTh + 64T

{Q5. T} = 6aNY + 6uNL + 65Nk + 6, Nk,

The general collective motion GCM(3) subalgebra includes only the inertia tensor Q and the
virial momentum tensor VY k. The rotational ROT(3) subalgebra is spanned by just the inertia
tensor and the antisymme txn part of the viral momentum tensor, viz., the angular momentum
Lt = e,JkN The Lie algebra GL(3,R) of the general linear group is generated by the virial
momentum tensor, and the Lie algebra SO(3) of the rotation group is generated by the angu-
lar momentum. The inertia tensor generates a 6 dimensional R® abelian Lie algebra. GCM(3)
and ROT(3) are semidirect sum Lie algebras of the abelian ideal R® with GL(3,R) and SO(3),
respectively. »

In the principal axis frame, the inertia tensor () is, by definition, diagonal, and its eigenvalues
are proportional to the squared axis lengths «? of the inertia ellipsoid.

Although the exact kinetic tensor 7, is not an element of GCM(3), its linear velocity field value,
the collective kinetic tensor, is a function of the algebra generators, [12] ¢t = *N - Q! - N. The
Kelvin circulation of a linear velocity tield may be expressed in terms of the GCM(3) generators
as Ci = 4;;(Q7V2- N - QV?),,.

Time evolution in the classical collective models based upon ROT(3), GCM(3), and Sp(3,R)
1s governed by Hamiltonian dynamics of a special type known as a Lax system. Consider first
the simple case of ROT(3) for which the dynamics corresponds to Euler rigid body rotation. If
the inertia ellipsoid is rotating with an angular velocity Q; = e and Ly; = Ny — Ny is the
angular momentum tensor. then Hamiltonian dynamics is given by

L=[0L. (3)

In terms of vectors, this equation is the familiar law L = =3 x L that, determines the precession
of the angular momentum vector in the body-fixed frame.

A matrix equation of the form X = [, X] is called a Lax equation and X — F are referred to
as a Lax pair [13, 14]. A useful property of any Lax equation is that the trace of any power of X
is conserved. Let [, denote the trace of the pth power of the matrix X.

|
I, = ~Te(X). (4)
])
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For any Lax equation, it is evident that every [, is a constant of the motion,
f=Te (X770 X) = Te (XP71 - [F, X]) = Te (X*'FX - X"F) = 0. (5)

In the case of the Euler equation, [, = _L- L is the negative of the squared length of the angular
momentum vector. If p is odd, then I, is zero. If p > 2 is even, then [, is a function of the squared
length of the angular momentum vector. Thus, there is only one independent invariant among
the Lax invariants.

Suppose that X(t) is a solution to the Lax equation, X = [F, X], corresponding to the initial
condition X = Xo. If g(t) is a smooth curve of invertible matrices satisfying the matrix differential
equation ¢ = F - g with the initial condition g = I, then the solution to the Lax equation is just
the isospectral deformation,

X{1) = g(t)- Xo- g(t)™". (6)
This is proven using the identity dg~'/dt = —g7'gg™'. If Q is constant, the matrix differential
equation ¢ = {1 - ¢ for the Euler equation has the unique solution g(t) = exp(Qt) for the initial
condition g(0) = /. Thus, y(f) is a curve in the rotation group SO(3), and the isospectral
deformation L(t) = g¢(t)Log(t)™" describes explicitly the precession of the angular momentum
in the body-fixed framme resulting from the rotation g(t) of the intrinsic frame relative to the
laboratory frame. Because of the choice of initial conditions for g, Lo represents the constant
angular momentum vector in the inertial laboratory frame.

To present the time evolution for Riemann ellipsoids as a Lax system, suppose the potential
energy in the body-fixed frame 1" = V(a,,az,a3) is a smooth function of the axes lengths. For
a star or galaxy, V is the attractive gravitational self- energy. For a nucleus, V may be approxi-
mated by the sum of the attractive sarface energy and the repulsive Coulomb energy. Define the
Chandrasekhar potential encrgy tensor W in the rotating frame to be the diagonal matrix,

A%

VV,‘]‘ = —6,']‘(L,'—,((;—(-L—l, (7)
and, to impose a constraint to constant volume, define the pressure tensor II = pv to be the
product of the hydrostatic pressure p times the ellipsoid’s volume v = 47ra;azasz/3. Hamiltonian
dynamics for Riemann ellipsoids is given as follows [7]:

Theorem. If the inertia ellipsoid is rotating with an angular velocity {4i; = €ijrw, then the
Riemann ellipsoid Hamiltonian dynamical system is equivalent to the Lax system, X = [F, X],
where the 6 x 6 real matrices X and F in the body-fixed frame are given by

(N QN o 0 I
"“(t —‘N)‘F—((W+H)-Q“ n>' (8)

The quadratic Lax invariant equals the negative of the squared length of the Kelvin circulation
vector, Iy = Tr(N? —t - ()) = =%, The higher order Lax invariants are either zero (odd powers)
or are functions of the circulation vector’s squared length.

The phase space for a Ricmann ellipsoid obeying the Lax equation is a co-adjoint orbit of

GCM(3):
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Theorem. Each Riemann ellipsoid orbit is diffeomorphic to some coset space of GCM(3). The
coset depends upon the value of the circulation C:

0, = § GOM(3)/SO(2) = R x S5, C#0, dim= 14 )
“T GOM(3)/S0(3) = R, C =0, dim=12

The degenerate orbit is diffeomorphic to 12-dimensional Euclidean space. This irrotational
flow phase space, coordinatized by ay,, 7, ag, 7o for the quadrupole and monopole degrees of
freedom, was quaytized by A. Bohr. The generic orbits C # 0 were undiscovered for many years
because the significant role of Lie groups in this problem was not appreciated by the Copenhagen
school. The generic orbits are diffeomorphic to the Cartesian product R'? x S, of Euclidean space
with the two-dimensional sphere. The topology of the sphere forces the circulation to be quantized
to integer multiples of  in a way parallel to the usual angular momentum quantization. Thus, the
spectrum of the squared length of the quantum circulation operator is quantized to C(C + 1)R?,
where (U is a nonnegative integer.

3 Sp(3,R) Dynamical Symmetry

Classical symplectic Sp(3,R) time evolution in the rotating frame is given by the Lax equation,
X = [F, X], if, in the Lax matrix X, the linear approximation ¢ to the kinetic energy is replaced
by its exact expression T. In this way, the restriction to linear velocity fields of the Riemann
GCM(3) model is removed in the symplectic Sp(3,R) theory.

The symplectic conservation laws are provided by the Lax invariants I,. The quadratic Casmir
invariant of the symplectic algebra is the quadratic Lax invariant, C(*) = Tr(N? — Q- T). Note
that for a linear velocity field, the quadratic symplectic invariant simplifies to the negative of the
squared length of the Kelvin circulation vector. The odd order invariants vanish. The quartic
symplectic Casimir invariant is the quartic Lax invariant,

CW =T [(NQ = Q'N)(TN = ‘NT)| - 1/2Tx [(N* - QT)Y]. (10)
There is only one more independent Casimir and Lax invariant C®) = J;: the higher order invari-
ants are functionally dependent upon the three independent Casimirs C®) = I, for p =2,4,6.

Since the matrices X and £ are elements of the symplectic Lie algebra, the following theorem
may be proved:

Theorem. Every solution to the classical symplectic Lax system is given by a isospectral trans-
formation g(¢) € Sp(3,R) applied to the initial state

X(t) = g(t)- Xo-g(t)7", (11)
where Xq and X are elements of the symplectic Lie algebra sp(3,R). The group element g(t) is a

solution to the matrix differential equation ¢ = Fg with the initial condition g = I if and only if
X is a solution to the Lax cquation with the initial condition X = X,.
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Consider the co-adjoint orbit of the symplectic group through the point X,
Ox ={g- X-¢7" | g €Sp(3,R)}. (12)

The co-adjoint orbit is regarded as a surface in the Euclidean symplectic dual space, sp(3, R)*. A
manifold that intersect each co-adjoint orbit exactly once is called a “tralllsversa . A transversal
T for the symplectic co-adjoint group action 1s provided by a three-dimensional surface (15, 16]

T = {S‘ = ( 2 —OS ) esp(3,R) | S= diag(sl,sz,s;;)}. (13)

Transversal points correspond to elementary systems for which the virial momentum tensor van-
ishes, N = 0, and the inertia and kinetic tensors are equal and diagonal, @ =T = §. Since the
‘nertia and kinetic tensors are positive-definite, the physically relevant transversal consists of only
those points for whicli S is positive-definite, s; > 0.

An orbit of the transversal point § € T is diffeomorphic to a coset space of the symplectic
group modulo the isotropy subgroup. These isotropy subgroups may be proven to be subgroups
of the unitary group,

|
U(3) ~ {( v ) € Sp(3.R) | U+iV e U(B)}, (14)
and, thereby, the coset spaces are given explicitly as follows [15, 16, 5]:

Theorem. The symplectic phase spaces are diffeomorphic to coset spaces of Sp(3,R):

Sp(3, R)/[U7(1) x U(1) x U(1)], s; distinet, ~ dim = 18
Os ={ Sp(3, R)/[U(2) x U(1)), sy = 83 # s3, dim =16 (15)
Sp(3, R)JU(3), sp = 83 = 83, dim =12

The degenerate orbit Sp(3,R)/U(3) 1s diffeomorphic to the complex Siegel half- plane. In future
work, the dynamical system on the Siegel half-plane will be reported.
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Abstract

A generalization of the procedure to study shapes and stability of algebraic nuclear models
introduced by Gilmore is presented. One calculates the expectation value of the hamiltonian
with respect to the coherent states of the algebraic structurce of the system. Then equilibrium
configurations of the resulting cnergy surface, which depends in general on state variables
and a sct of paramecters, are classified through the Catastrophe theory. For one and two-
body interactions in the hamiltonian of the interacting boson model-1, the critical points
are organized through the Cusp catastrophe. As an cxample, we apply this Separatriz to
describe the energy surfaces associated to the Rutenium and Samarium isotopes.

1 Introduction

The geometry of algebraic nuclear models can be studied by means of the time-dependent varia-
tional principle {1], {2]. This formalism provides us with a classical limit of the nuclcar model, in
particular we are mainly concerned with the static properties of the hamiltonian function (energy
surface) associated to the considercd algebraic nuclear model. In general these hamiltonian func-
tions depend on state variables and a sct of parameters, then the appropriate mathematical tool
to determine the most general behaviour of their equilibrium configurations is the Catastrophe
formalism [3].

A conncection between the interacting boson model-1(IBM-1) [4] and the gcometrical approach
of Bohr-Mottelson [5] was done by cxpressing the IBM-1 hamiltonian in terms of shape variables.
This can be achicved by means of the intrinsic boson states defined by [6] or by the corresponding
colicrent states [2]. Analysis of shape and phase transitions in this modecl have been done by [7],
[8]. In this work we apply the procedure introduced in Ref. [2] to the interacting boson model,
but for the general hamiltonian of one and two-body central interactions involving s and d bosons
[4] and dctermining its associated Separatriz. We show that the equilibrium configurations can be

"Work supported in part by project UNAM-DGAPA IN103091.
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classified through the Cusp catastrophe, this means that two parameters are enough to describe
the most general energy surface. Therefore this analysis generalize thpse presented previously
[4], in which only transitions between pairs of exact SU(5), O(6) and SU (3) symmetries are
considered. In the last decade, effective hamiltonians of the IBM-1 have been used to describe
energy spectra and transition probabilities of chains of isotopes and isotones [9], [10]. In particular,
the effective hamiltonians for Ru [11] and Sm [12] isotopes were determined, i.e., the best choice of
the parameters of the general IBM-1 hamiltonian that reproduced the corresponding experimental
data. Using these effective hamiltonians we construct their energy surfaces and show that their
critical points follow a curve in the parameters space organized by the Cusp Separatriz. This let
us to know: i) How many equilibrium configurations yield the system and ii) If the behaviour of
the model around the critical points may or may not be approximated by an harmonic oscillator.

In the Second Section we review how the energy surfaces can be determined considering a
Lamiltonian constructed in terms of the generators of a Heisenberg-Weyl algebra. In the Third
Section a brief summary of the IBM-1 is presented. In the Fourth Section, an analysis of the
shape and stability of the most general energy surfaces of the IBM-1 is made, also the curves
associated to the Ru and Sm isotopes are plotted in the parameters space. Finally some remarks
are indicated in the last section.

2 Energy Surfaces of Algebraic Models

The cnergy surfaces (ES) of algebraic models can be determined by means of the coherent states
of the associated algebraic structure of the hamiltonian. As an example, a hamiltonian written in
terms of the generators of a Heisenberg-Weyl algebra is considered, i.¢.,

H=c0b1b+c2(b12+b2)+cl (bt+b), (1)

where the operators b' and b satisfy standard creation and annihilation commutation relations.
Although this hamiltonian can be solved analytically by mcans of a Bogoliubov transformation,
we use it to illustrate the procedure to construct the coherent states and the ES of an algebraic
model.

The coherent state is defined by the action of the raising generator on the vacuum state [1]

|a) = exp(a” b")[0) . (2)

The Baker-Campbell-Hausdorff formulas can be used to calculate the overlap of two coherent
states and the coherent state representation of the creation and annihilation boson operators

(a'|a) = exp (a'a”) , (3)
(alb=a-(al,  {a]d'=ala]. (@)
| do '’
Then the energy surface is given by
E(a) = lim {a|Hla) . (5)

a'» o (a'|a)
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Substituting the expressions (1), (3) and (4) into the previous one, onc gets the result

E(p) = (co + 2c2)p* + 2c1p , (6)

where the reality condition a = o* = p was also used.

3 The Interacting Boson Model

In 1975 this model [4] was introduced to describe collective properties of even-even nuclei far from
closed shells through the interactions between two kinds of bosons, one with angular momentum
L = 0 (the s-boson) and another with angular momentum L = 2 (the d-boson). The six possible
boson states give rise to a U(6) group structure. The bosons represent pairs of fermions, the
s-boson reflects the strong pairing attraction of identical nucleons whereas the d-boson is a result
of the weaker J = 2% attraction [4]. Therefore nuclei are pictured as systems of s and d bosons,
whose number is equal to half the number of the valence nuclcons, the core being considered inert.
When a shell is more than half full, hole-pairs are counted instead of particle-pairs.

The most general one and two body hamiltonian that conserves the total number of bosons is

Hipm = esN,+e4Ny+ Z %\/2L+1 [[df x dt] (L] [a X &] [L]] (0]
L=0,2,4

+ % ([[d' xd"] B xd] O s 4 st [l x [d xd)] @) 0
%2 ([[df x df] O 52 4 st2 [d x d] )
+ VBug sts[d! x d] @ +u, 51252, (7)

where the scts of boson operators s, st and dlf‘, d, satisfy the following, different from zcro, com-

mutators
[s, s"] =1, [d,,, cl:‘.] =6, . (8)

Now, we construct the coherent state of a six dimensional harmonic oscillator, following the
procedure indicated in the previous section. However in this case the associated group is compact
and then we restrict the exponential to only one term of the Taylor serics expansion,

IN, @) = An(s' + 5 a,di)V|0) (9)

where Ay is the normalization constant. Evaluating the corresponding Eq.(5) one arrives to the
formulae for the energy surface of the model (8}, i.c.,

pg? LNV
(1+p52) ° (1+67)?
where it was used that the laboratory variables a, can be expressed in terms of two intrinsic
parameters  and v plus threc Euler angles. Besides as the energy surface is a rotational invariant

E(B,7)=Ne (a1 8%+ az B2 cos 3y + a3 B2 + uy) | (10)
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all the dependence in the Euler angles disappear. The paramecters ay, as, a3, and ¢ of the Eq.(10)
are combinations of those that appear in the IBM-1 hamiltonian (7)

co  C2 9y

a = ﬁ+7+§— ) (11)
’8

a = - 33’00 , (12)

ag = ——?—v +u (13)

3 \/3 2 0,

€ = € —¢€,. (14)

4 Shapes and Stability of Energy Surfaces

The energy surfaces define functions of state variables and a set of parameters, and the Catastrophe
theory is used to analize their equilibrium configurations. This formalism let us organize all the
possible shapes of the ES into well defined separated regions of the paramcters space.

To illustrate how this is done, we consider the potential cnergy surfaces (PES) of the simplest
version of the Generalized Collective Model {5, i.e.,

V(B,7;Ca, C3) = B* = C3 fPcos3y + C2 3% . (15)

The cquilibrium or critical points are determined by solving the equation YV (8,7) = 0. The
results arc given by (0,0) and (S8, y0), with

_ 3C3%4/9CF - 32C, . 6)

0 — 8 ’

The set of degenerated critical points defines a locus in the parameters space which is called the
Separatriz. This can be obtained through the determinant of the Hessian matrix or by other
procedures, in this case it is immediate that the critical points are double degencrated if the
parameters satisfy the expressions

9C2-32C, = 0, (17)
C,=0, C3 # 0. (18)

For the expression (17) the critical points are localized in Gp = 3C3/8 while for (18) in Bp = 0.
Besides, it is straight to prove that if C; = 0 and C3 = 0 the critical point is triple degenerated
and localized at By = 0. The Separatriz of the system is shown in Fig.1. It divides the space in
regions cach characterizing a typical shape yicld by the model. By means of the transformation
B = y + C3/4 the Separatriz is taken to the canonical form of the Cusp catastrophe.

Now we study the cquilibrium configurations of the encrgy surface associated to the IBM-1,
which is given in Eq.(10). Then we calculate the critical points by taking the derivatives with
respect to @ and 7 variables. It is straightforward to sce that the critical points correspond only
to v = 0 (prolate casc) or v = 7/3 (oblate case). Therefore we can restrict to the prolate case,
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without losing gencerality. The cnergy surface (10), with ¥ = 0, can be re-written in terms of the
following parameters

2ue(N — 1) - (N —-1)ag — ¢

T T (N = (N—Date’ (19)
v - 202(N - 1)
T= 2¢/(N-1)—(N-=1)azg + ¢’ (20)
and it takes the form
1
EB) = Ty {8 + 1?8 +2) - %} (21)

where E(B) = E(B,7 = 0)/N — ¢, — u2(N — 1). Onc has to noticc that the oblate case can be
regained by interchanging 9 by —r; or cquivalently a; by —as.

0.2
0.1

e

C2
(=)

-0.1
-0.2

-1 -0.5 0 0.5 1
C3

FIG. 1. Scparatrix for the Bolhir Mottelson Hamiltonian

To find the extrema in 3 of the Eq.(21) onc needs to solve the cquation
B(raBf+402—3r8+4r)=0. (22)

From this cxpression, one determines the locus in the parameters space (rq, 1) of degenerated
critical points. Then the Separatriz of the model is defined by the curves

(16 + 9r2)%2 32
5472 2712
™ = 0. (24)

i =

1, (23)

This Separatrizis shown in Fig.2 and it corresponds to the Cusp catastrophg although it does not
has the canonical form.
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FIG. 2. Scparatrix for the IBM-1 Hamiltonian

Now we applied the results to find the shapes and stability of the Ru and Sm isotopes. For
the Ru case, one has the number of valence protons pairs, N, = 3. As we consider isotopes with a
mass number varying from A = 98 — 110, the corresponding number of neutron bosons runs from
N, = 2 to N, = 8. Thus the size of the space in the IBM-1 is determined by the total number
of bosons, which is the sum of the numbers of proton and neutron bosons. In the Sm case, one
has the number of proton bosons, N, = 6, and as we take into account A = 148 — 160, the
number of neutron bosons runs from N, = 2 to N, = 8. An analysis of their energy spectra and
electromagnetic transitions using the hamiltonian (7) is made in [11] and [12]. For both isotope
chains, the parameters uscd are presented in the first eight columns of Table I. Substituting these
parameters into the equations (11) to (13) we get the values of a; , a3 and a3. These are given in
the last three columns of Table I, by means of which one can easily construct the corresponding
energy surface of each nucleus.

To find the region of the Separatriz, Fig. 2, where the different isotopes are localized one
calculates the parameters r; and 7o through the equations (19) and (20), as functions of the total
number of bosons. For the Ru, one gets the expressions

_990.2 4+ 146.2(N — 1)

= =0
"= S02+4d02(N-1) °  *T (25)
while for the Sm isotopes the parameters arc
21712+ 2583 (N - 1) ] 86 (N —1)

M= olo+ 5l2(N—1)" ' * 2I75—151(N-1)
The localization of the ysoiuts (25) and (26) are shown in Fig. 3 and Fig 4, respectively.

TABLE 1. Parameters, in eV units, used to describe the Ru and Sm isotope chains
€ Co Ca C4 U Ua Vo Vo a) as ag
Ru | 9902 [-185.4 | -77.4 | -.0.4 |-53.0 (23.3| 0 |-52.1| -29.7 0 -52.1
Sm | 2170.6 | -613.7 | -318.8 | -377.6 [ 227.4 | 0.4 | 89.9 | -33.0 | -204.1 | -43.0 | -256.9
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FIG. 3. Plot of the points (25) associated to the Ru isotopes chain.

-10 5 0 5 10
r2

FIG. 4. Plot of the points (26) associated to the Sm isotopes chain.

5 Conclusions

For the Bohr-Mottclson model the yiclded shapes and equilibrium configurations are classificd by
the Separatriz of Fig.1. Onc can identify four regions: (i) Above the parabola, the PES have one
minimum at § = 0. ii) Between the parabola and the C, axis, in the PES appcar additionally
a sccond minumum at § # 0. iii) Below the Cy axis the PES have two mimima at g # 0 and
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the maximum occurs at 8 = 0. The PES around these critical points can be approximated by
an harmonic oscillator. iv) On the locus of points that define the Separatriz, we have shape
transitions and in the vecinity of the critical points (16) the PES cannot be approximated by
quadratic functions. It is important to remark that the PES have a mirror symmetry along the
C; axis, which physically represents transitions from prolate to oblate shapes.

For the IBM-1 hamiltonian one gets (see Fig. 2): (i) For positive values of r; one has two
regions, above the curve the ES present one minimum at 8 = 0 and below the curve they have
a second minumum at 3 # 0. ii) For negative values of r; onc has again two regions, above the
curve the ES are built with two minima at 8 # 0 and a maximum at § = 0 and below of it,
the ES have one mimimum point at 8 # 0 and a maximum at § = 0. For the critical points
mentioned above the energy surfaces can be approximated by an harmonic oscillator. iii) Finally
on the Separatriz, there are shape transitions, and in the vecinity of their critical points the ES
cannot be approximated by quadratic functions. It is important to remark that thesc ES have
also a mirror symmetry along the ry axis, representing transitions from prolate to oblate shapes.
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Abstract
A Ramanujan-type representation for the Askey-Wilson g¢-beta integral, admitting the
transformation ¢ — ¢~!, is obtained. Orthogonality of the Askey-Wilson polynomials with
respect to a measure, entering into this representation, is proved. A simple way of evaluating
the Askey-Wilson g-beta integral is also given.

1 Introduction.

The Askey-Wilson polynomials p,(z;a,b,c,d|q) [1], which have already become classical, represent
a five-parameter system of polynomials. They satisfy the orthogonality relation

1
/pm(m; a,lb, ¢,d|q) pa(z; a, b, c,d|lg) w(z;a,b,c,d|q) dz = 6,unln(a, b, c,d|q) (1.1)
1

with respect to the absolutely continuous measure da(z) = w(z)dz, with the weight function

1 h(cos20,1;q)

. b d — = 6
w(zia,b,c,dlq) sin 0 [T,=q 44 h(cos B,v;q)’ T =08
(1.2)
h(a,b;q) = JJ(1 — 2abg’ + b¢¥).
=0
As special and limiting cases, the Askey-Wilson polynomials contain many known systems of
polynomials (see, for example, [2]). In particular, the choice of the parameters a = —b = /B,

c = —d = \/qpB, leads to the continuous g-ultraspherical polynomials C,(z;8|q) (3], i.e.,

(z:/B, —/B,\/2B, ~JaBlq) = ﬂ(ﬂqg;‘(q;) (z: Blq), (1.3)

!Permanent Address: Institute of Physics, Academy of Sciences of Azerbaijan, Baku-370143, Azerbaijan. Visi-
ting Scientist at IIMAS-UNAM/Cuernavaca with Catedra Patrimonial CONACYT, México.
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where we have used the standard notation of the theory of ¢g-special functions

(m@n=fy1—wn, (@1,--r50)s = [T (@550 (1.4)

In turn, from Cy(z; 8]q) one can obtain the continuous ¢-Hermite polynomials H,(z|g) =
(¢; ¢)nCr(z;0|q), the Gegenbauer (ultraspherical) polynomials C)Nz) = limy—, Cu(z;¢%|q), and
also the Chebyshev polynomials of the first and second kinds, T.(z) and Un(z), by taking the
limit 8 — 1 or by putting 8 = ¢ in Cn(z; Blg), respectively.

The key ingredient of the original proof of the orthogonality (1.1), which led to the discovery
of the Askey-Wilson system of polynomials (see the discussion of this point in [4] ), was the
evaluation of the Askey-Wilson g-beta integral:

27 (abed; ) oo
(g,ab,ac,ad, bc,bd, cd; q) o’

1
Io(a,b,¢,dlg) = [ w(zia,b,c,dlg)ds =
-1

(1.5)
maxv:a.b,c,d|v| < 17 lql <L

The integral (1.5) has acquired its name because in a special case, when the parameters a =
®*1/2, b= —¢f*/2 and c = —d = ¢'/%, the ¢ — 1~ limit of Io(a,b,c,d|q) is the beta function
( or Euler’s integral of the first kind )

T(a+ T8 +1)
(a+B8+2)

1
/u_@%u+@%x=rW“Bm+Lﬁ+n=2M“’ (1.6)
-1

A nonstandard form of the orthogonality on the full real line for the continuous g-Hermite
polynomials H,(sin kz|q), ¢ = exp(—2x?) , was considered in [5]. It turned out that if one uses the
modular transformation and the periodicity property of the J-function appearing in the weight
function for these polynomials, the finite interval of orthogonality can be transformed into an
infinite one. This technique is of interest both from a mathematical point of view and from the
point of view of possible applications in theoretical physics, beginning with a number of problems,
related with g-oscillators (see the review [6] ).

The purpose of this article is to discuss the applicability of this idea to the more general case,
i.e. to the Askey-Wilson g-beta integral (1.5) [7, 8]. To simplify consideration it will be assumed
in Sections 2-4 that |v| < 1, v = a,b,c,d, and that the parameter ¢ = exp(—2«?) satisfies the
requirement 0 < ¢ < 1. The possibility of extending these results to other values of the parameters
is discussed in Section 3.

2 A Ramanujan-type representation for the ¢g-beta inte-
gral.

From the point of view of symmetry the parametrization x = sin is most convenient; it corres-
ponds to the change of variable § = 2 — ¢, —% < ¢ < I in formula (1.2). Consequently, the left
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sae of (1.5) is equal to

/2
h(—cos2p,1;q)
Iy(a,b,c,d|q) = / s dp. 2.1
of 9 i Momaded A(sin @, v;0) 7 @1)
Comparison of the numerator
h(—cos2¢p,1;¢) = TT(1 + 2¢° cos 2¢ + ¢%¥)
J=0

of the integral (2.1) with Jacobi’s expression for the theta-function 9,(z, ¢) = 93(z|7), ¢ = exp(miT)
as an infinite product [9]

92(2,9) = 2¢"7*(¢% ¢%)oo cos 2 TI(1 +2¢% cos 2z + ¢%), (2.2)
3=1
shows that 9
. cos p 1/2
h(—cos2p,1;q) = ————3(p, q 2.3
( )= bVl ) 23)
and therefore )
/2 §
2 92(p, ¢'/%) cos o
Io(a, b,c,d|q) = / , do. 2.4
ol ) /%4 9)0_J, Tomapea hising, vig) (24)
With the aid of the modular transformation [9]
_iz? 2
192(2,7’) _ eXP( 7;1') ‘194(ZT_11_T-1)’ T = l—:—, v (25)

(—it)2

and the change of variable ¢ = kz, the integral (2.4) can be written as

m/2x ; 27,2 2
2 (= e /x -z
Io(a, b, c,dlq) = 1/8 L / dere ) — = dz. (2.6)
7'/%(g; q)oo_m’c M=o pcd h(sin sz, v; q)
Using the expansion
Bu(z,q) = 30 (—1)5qH B (2.7)
k=—-00

and taking into account the uniform convergence of the series (2.7) in any bounded domain of
values of z [9], we substitute (2.7) into (2.6) and integrate this series termwise, i.e.,

w/2k

Io(a,b,6,dlg) = 2T 3 (1 [

V345 9)oo L,

2
e~ (@+m/8k)® o5 kzdr

Hv:u,b,c,d h(SiD KT, v, q) .

(2.8)

~7r/2r
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The change of variable zx = z + 1k, gpin = T(k—3) <o < Sk 4+ 1) = z** and an account
for the relation z[%f = zp*" allows to sum the right-hand side of (2 8) with respect to k and
represent (2.8) in the form

/ e~ cos kzdz
I/SQQ)oo Hv_abcdh sinkz,v;q)

Io(a,b,c,dlg) = ——2—\—/———Io(a b,c,d|q) = (2.9)

q'/%(¢; )

Thus, combining formulas (1.5) and (2.9) yields the following representation for the Askey-Wilson
g-beta integral (7]

qu% (abed; q)

~ 2

. —x d ] o0 .1
Io(a, b, c,d|q) —:_/ p(kz;a,b,c,dlg)e”™ coskzdr = (ab, ac, ad, be, bd, cd; q) , (2.10)

where, in accordance with the definition (1.2),

p(z;a,b,c,dlg) = I h'(sinz,v;q9) = ]I eq(ive"’)eq(‘—ivei’), (2.11)

v=a,b,c,d v=a,b,c,d

and e (z) = (2;¢)z! is the g-exponential function [2].
We note that each factor h~(sin xz,v;q), v = a,b,¢,d, in the integrand (2.10) is represented

* ) exp[—i(n — 2k)kz]

h~(sin kz,v; q) iv) 2.12
( nz;o g (95 9)k(4; @)n—k (212)
if one uses the generating function for the continuous g-Hermite polynomials H,(z|q)
> H. 0
(e, te™q)2) = ) __(_co_s_|g_) it] < 1, (2.13)
= (@9
and their explicit representation [2]
Ho(cosblg) = 3 [”] (i(n=2K)0 (2.14)
k=0 k q

where the symbol [ ] denotes the g-binomial coefficient [2]. Therefore the integration over z in

(2.10) is reduced to the Fourier transformation formula for the ground state of the linear harmonic
oscillator

exp(—x?/2 + izy)dz = exp(—y2/2). (2.15)

g

An explicit evaluation of the nonstandard form of the Askey-Wilson g-beta integral (2.10) will
be discussed in greater detail in Section 4.

As mentioned above, the weight function (1.2) with the parameters a = —b = g2 c=—-d=
aq'/?, corresponds to the continuous g¢- ultraspherical polynomials C(z; B|g). The relations (2]

(;9)o0 = (@595 ¢*)oo> (a, —a;q)oo = (6% %) oo,
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enable the representation (2.10) for this particular case to be simplified to

/ exp (—z* + ixz)dz _ V738,485 9)
| Chexp @ina), —Beoxp (—2indhi e~ (P

(2.16)

If one compares (2.16) with the Ramanujan integral ( ¢ = exp (—2k?), |q| < 1) [10, 11]

o0 7712 . .
/ e_x2+2m”eq(aq1/262ikr)eq(bqlne"r"““) dr = G%Eq(aqezmk)l’jq(bqe_zmk)a (2.17)

it is easy to verify that (2.16) agrees with (2.17) if one sets 2m = ik = tx and a = b = —fg¢'/2.

3 Orthogonality of the Askey-Wilson polynomials with
respect to the measure p(kz;a,b,c,d|q).

A direct proof of the orthogonality for the Askey-Wilson polynomials

/ Pm(sin kz; a,b, ¢, d|q)p.(sinkz; a, b, c, d|q)p(kz;a,b,c, d|q) exp (—=z?) cos krdz =

— 00

= 6mnln(a, b, c,d|q) (3.1)

with respect to the weight function appearing in the nonstandard integral representation (2.10), is
analogous to the proof of eigenfunctions orthogonality for the Sturm-Liouville differential equation
[12] . Indeed, the difference differentiation formula for the Askey-Wilson polynomials [1]

sin k0, p,(sin kz;a, b, ¢, d|q) = (3.2)

= ¢ "3 (1 — ¢")(1 — abedq™") cos kz pa-i(sin kz; ag'/?, bg'12, cg'?, dg"'?|q)

provides a lowering operator for these polynomials. To find a raising operator one can use the

relation a( 1/2)
29,(p, q
— 7 7 ;a,b,¢,d|q), 3.3
() pp ) (3.3)

which follows from (1.2),(2.3) and (2.11), and write the difference equation for the Askey-Wilson
polynomials [1] in the form

w(sin@; a,b, ¢, dlg) =

02('5"37 q1/2)

p— p(kz;aq'’? bg'/?, cq'/?, dq*’?|q) sin kO:pn(sinkz; a,b,c,d|q)| =

sin kO,

(3.4)
= (1= ¢7")(1 — abedg™ ) cos kz I3 (kz,¢" ) p(K2; a, b, ¢, d|q) pa(sin kz; a, b, c, d|q).

157



Now, using the difference differentiation formula (3.2) in the left-hand side of (3.4) and the perio-
dicity property of the J,-function [9],

9x(z £ 77,q) = ¢ " exp (F2iz)¥2(z, 9), q = exp (miT), (3.5)
we arrive at the raising operator
(sin 2k cos k8, — cos 2k sin k0; ) p(KT; aq'’?, 6"/, cq*/?, dg'/?|q)

P (sin 573 agV/2, bg'/?, cg'/%, dg\/?|g) = ¢'T" cos kz p(xz; 0, b,c, dlg)pa(sin k25 a, by, dlg).  (3.6)

We are now in a position to give a direct proof of the orthogonality relation (3.1). We multiply
both sides of the equality (3.6) by pm(sin £z; a, b, ¢, d|q) exp (—z?) and integrate in z over the full
real line. As a result we obtain in the right-hand side ,

¢ / Pm (sin kz; a, b, ¢, d|q) pa(sin kz; a, b, ¢, d, |q) p(xz; 0, b, C, d|q) e coskrdr =
q-l_;ﬂlmn(a) b, ¢, dlq) (37)

The left-hand side

/ dzp,(sinkz;a,b,c, d|q)e_’2(sin 2k cos kO — cos 2Kz sin KOy )
—co

(3.8)
p(ka; ag’, bg'/?, cq'1?, dg'/*|q) pa-1 (sin hz; ag'/?,bg' %, cq'1%, dg'*lq),
can be integrated by parts with the aid of (3.2) and the evident relations
/ dz f(z) cos k0 p(z) = / dz o(z) cos kO f(z),
(3.9)

7 dz f(z)sin k0, p(z) = — 7 dz p(z) sin k0, f(x),

which apply to (3.8) because the function p(xz; aq'’?,bg'/?, cq'/?, dq*/?|q) has no singularities inside
of the strip —k <y <k, —oo<z<oo inthe complex plane z = z + iy . This leads to

ql';_m(l —q™(1 - abcdqm_l)lm_ln_l(aql/z, bg'/?, cq*'?, dq'’?|q). - (3.10)
Equating the right-hand (3.7) and left-hand (3.10) sides thus yields

m-—n

g 7 Inn(a,b,cdlg)=(1- g™ (1 — abcdqm'l)lm_ln_l(aq”z,bql/z,cql/z,dql/zlq). (3.11)
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We now iﬂterchange m and n in (3.11) and take into account that the integral I,,,(a, b, c,d|q)
1s symmetric in m and n due to the definition (3.7), i.e.,

¢°% Inn(a,b,¢,dlq) = (1 = ¢")(1 = abedq" ™) Im_1n-1(ag'/? bg"/2, cg'/?, dg"?q).  (3.11%)

Finally, multiplying both sides of (3.11) by (1 —¢")(1 — abcdg™!) and of (3.11") by (1 —¢™)(1 -
abcdg™™') and subtracting the second expression from the first, we get

(¢7
From (3.12) it follows that Innn(a,b,¢,d|q) = 6mnln(a,d,c,d|q), confirming the orthogonality (3.1)
of the Askey-Wilson polynomials for m # n [8].

We note that as special and limiting cases, (3.1) contains the orthogonality relations for other
known sets of polynomials, such as the continuous g-ultraspherical polynomials C,(z;3|q), the
continuous ¢-Hermite polynomials H,(z;¢) = (¢;¢)n Cn(z;0|q) (the corresponding special case of
(3.1), when the all parameters a, b, c,d are equal to zero, is considered in [5] ), the Chebyshev
polynomials of the first and second kinds, T,(z) and U,(z) , and so on.

~q 2 )(1 — abedg™" Y0 (a, b, c, d|q) = 0. (3.12)

4 Evaluation of the integrals I,(a,b,c, d|q).

Iterating the recurrence relation
In(a,b,¢,dlq) = (1 — ¢*)(1 — abedg™ ") [,—1(ag'’?, bg"?, cq'/?, dg'/?|q), (4.1)

which follows from (3.11) or (3.11') when m = n, allows to express the normalization inte-
grals I.(a,b,c,dlg), n = 1,2,..., through a known value of the Askey-Wilson g-beta integral
Io(a,b,c,d|q), i.e.

. (q,ab, ac,ad, bc,bd, cd; q),,

In(a,b,¢c,d|q) = (1- abedg?n—1)(abed; q)n_ Io(a, b, c,d|q). (4.2)

It only remains to evaluate the integral fo(a,b, c,d|q) itself. To this end, having defined the
symmetrical py(z) and antisymmetrical p_(z) combinations with respect to the inversion z —

Pi(x; a, b’ ¢, dlq) = %[p(z; a, b) ¢, dlq) + p(—:c; a, ba ¢, dl(])], (43)

it is convenient to rewrite (2.10) as

Io(a,b,c,d|q) = / dzexp (—z° + ikz)py(kz;a,b, ¢, d|q). (4.4)

Let us carry out the replacements v — vy/q, v=a,b,c,d, and the subsequent shift of the variable
of integration z — z 4 ik in (4.4). (We remind that the function p(xz;aq!/?, bg'/?, cq'/?, dq'/?|q)
does not have singularities in the strip —x <y <k, —oco <z <oo of the complex plane z =
z + iy ). Then, taking into account that in accordance with the definitions (1.2) and (2.11)

p(r(z + ix); aq'/? bg' %, cg'/?, dg'?|q) = p(kz;a,b,c,dlg) [ (1 +ivexp(irz)),  (4.5)

v=a,b,c,d

159



we obtain 3 5
Tolaq'’?, bg*'?, cq'/?,dg"*|q) = (1 — s2)1o(a, b, ¢, dlq)+

(4.6)

+34 / dz exp (—z* 4 3ikz)p4(kz;a,b,c,dlg) — 153 / dz exp (—z% + 2ixz)p-(xz;a,b, c,dlq),

—0o0 —o0

where

sy = ab+ ac+ ad + be+ bd + cd,
(4.7)
s3 = abc + abd 4 acd + bed, s34 = abed.

It remains only to express the second and third integrals in the right-hand side of (4.6) in terms
of Io(a,b,c,d|g). To that end one can use the n = 1 case of (3.6)

(sin 2k cos KO, — cos 2KT sin k0;)p(Kz; ag'’?, bg'’?, cq'’? dq'?|q) =

(4.8)
= [(1 — s4)sin 2kz + (s3 — 81) cos kz]p(kz; a, b, c,d|q),

taking into account that po(z;a,b,c¢,dlg) = 1, p(z;a,b,c,d|g) = 2(1 — sq)z + 83 — 1 and s; =
a + b+ ¢+ d. The symmetrization of (4.8) leads to the relations

(sin 2Kz cos KO, — cos 2Kz sin kO )p+(KT; aq'’? bq'?, ¢ %, d ¢%q) =

(4.9)
= (1 — s4) sin 2k7 py (kT; @, b, ¢, d|q) + (s3 — s1) cos kT p(kz;a,b,c dlg).
Multiplying both sides of the equality (4.9) for the antisymmetrical combination p_(kz) by

exp(—z?) and integrating over the variable z yields

(1 — s4) / dz exp (—z* + 2ikz)p_(kT;a,b,c,dlg) = i(s1 — s3)o(a, b, ¢, d|q). (4.10)

Now we multiply both sides of (4.9) for p+(kz; aq/?, bg'/2, cq'/?,dq'/?|q) by exp(—z® + ixz)
and integrate over z . Using (4.10), the result can be written as

/ dz exp(—2z* + 3ikz)p4(Kkz;a,b,c,dlg) =
(4.11)

s3—51)°%] + l1-gq -
- [1 - (‘(11__34%} Io(a, b, c.dlg) = T—- Ip(aq'?,bg'?, cq'/?, dg'/|q).
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Substituting (4.10) and (4.11) into (4.6), we find
(1 - ade)(l - qade) io(aq1/2, bq1/2a qu/z’ dql/zlq) =
(4.12)
= (1 = ab)(1 — ac)(1 — ad)(1 — be)(1 — bd)(1 — cd) Io(a, b, ¢, d|q).

Since 0 < ¢ < 1, by iterating equation (4.12) one can express the Askey-Wilson g-beta integral
(2.10) with arbitrary parameters in terms of its value for vanishing parameters a, b, c, d, i.e.,

- _ (abed; @)oo .
Io(a,b,c,dlq) = (ab, ac, ad, be, bd, od, s 15(0,0,0,0]q). (4.13)

The value of I(0,0,0,0]|q) is easily found from (2.10) and (3.1) with the aid of the Fourier
transformation formula (2.15) for the quadratically decreasing exponential function, i.e.,

15(0,0,0,0]q) = /w dzexp (—z% + ikz) = /7q'/%. (4.14)
Combining formulas (4.13) and (4.14) leads to

V7q'/8(abed; g)oo (4.15)
(ab,ac,ad, be,bd, cd; q)0 ’ '

iO(aa b7 c, d'q) =

which is the known value of the Askey-Wilson ¢-beta integral [1]

27 (abed; ¢)oo
(g,ab,ac,ad, be,bd, cd; q) oo

2T .
Io(a,b,c,d|q) = mlo(a, b,c,dlg) =

Substituting (4.15) into (4.2), we finally obtain the explicit form for the normalization integral

(4.15")

- VTq'3(g; q)n(abedg™ 1 ¢)oo
I(a,d,c, d|q) = . 16
(a,d,¢, dlg) (1 — abedg?~1)(abg™, acq™, adg™, beq™, bdg™, cdg™; q)oo (4.16)

The complications arising in the evaluation of the standard form of the Askey-Wilson g-beta
integral (1.5) can be illustrated by the following short quotation from reference [4]: ”This was
surprisingly hard, and it has taken over five years before relatively simple ways of evaluating this
integral were found”.

5 The transformation ¢ — ¢! .

It is necessary to emphasize that the nonstandard orthogonality relation (3.1) admits the trans-
formation ¢ — ¢! [7, 8]. The standard form of the Askey-Willson integral (1.5) does not in
general have this property. Even in the simplest case of vanishing parameters a, b, c and d, which
corresponds to the continuous ¢-Hermite polynomials H,(z|q) , the definition of a weight function
for the system of polynomials h,(z;q) = i ™" H,(iz]¢') requires a special analysis (13, 14].
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Since
(219 Voo = (421 9)50 (5.1)
the change ¢ — ¢~! (i.e. £ — ix) in the function p(kz; a,b,c,d|g) appearing in (2.10) and (3.1),
transforms it into

plicz;a,bc,dlg”) = [1 (fvge™, —ivge™;q)o = [ E.(ivge™™)Eq(—ivge™), (5.2)

v=a,b,c,d v=a,b,c,d

where E,(z) = €;'(~2) = (—=%¢)w [2]. Therefore, under the transformation ¢ — ¢~', the
orthogonality relation (3.1) for the Askey-Wilson polynomials with the parameter ¢ < 1 converts
into the following orthogonality relation for the Askey-Wilson polynomials with ¢ > 1:

/ pm(isinh kz;a, b, ¢, d|g7!) po(isinh kz;a,b,c, dlg™") p(ikz;a, b, c, dlg™") e~® cosh kzdz =

-0

Smnin(a,b,c,d|g™") (5.3)

The explicit form of fn(a,b, ¢,d|g™1) is readily obtained from (4.16), upon making use of the
formulas (5.1) and (a;¢™")n = (a5 q)n(—a) g " 1/2 [2].

On the other hand, with the aid of the explicit representation for the Askey-Wilson polynomials
(1, 2]

g ", abcdg™ !, iae'?, —tae™"¥

pa(sin; a, b, c,d|q) = (ab,ac,ad; g)na™" 403 4, q (5.4)

ab,ac,ad

and the inversion formula (with respect to the transformation ¢ — q!) for the basic hypergeo-
metric series 4¢3 ( see [2], p.21, exercise 1.4(i) ), it is easy to show that

pa(®;0,b,¢,dlg™") = (=1)"(abed)" ¢=2"" "V pu (23071, 671, ¢, d 7 g). (5.5)

Consequently, from (5.3) and (5.5) it follows the orthogonality relation

/ P (i sinh kz; a~ b7t ¢t d 7Y q)pn(t sinh Kz a~ b7, ¢, d7 Y q)p(ik; g, by c, dlg™")*
(5.6)
(q,1/ab,1/ac,1/ad,1/bc,1/bd,1/cd; g)n
(1 — g?"=1/abcd)(1/abed;q)n-1

for the Askey-Wilson polynomials with the parameters lv| > 1,v = @a,b,c,dand 0 < ¢ < 1. The
value of the integral Io(a, b, c, d|g™?) is simple to obtain from (4.15) by means of the formula (5.1).

2
e % cosh kxdx =

'fo(a’, b’ C, dlq—l) 677171
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6 Concluding remarks.

The orthogonality relations (3.1) and (5.6) are bound to be related by the Fourier transforma-
tion for the Askey-Wilson functions, analogous to the well-known transformation for the har-
monic oscillator wave functions H,(z) exp (—z?/2) ( or Hermite functions in the terminology
of mathematicians [15, 16] ) connecting the coordinate and momentum realizations in quan-
tum mechanics. It should be interesting to compare this Fourier transformation with the q-
transformations, that reproduce the Askey-Wilson polynomials (17, 18]. For the g-Hermite func-
tions H,(sin kz|q) exp (—2%/2), q = exp (—2x2) , which are the simplest case of the Askey-Wilson
functions with vanishing parameters a,b,c, and d, such Fourier transformation has the form [5]

1 Ioo
Vor / exp (izy — 2°/2) Hy (sin kz|q)dz = i"q" /h,(sinh xy|q) exp (—y?/2).

The general case needs to be analyzed in greater detail.
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Abstract

It is shown that the even and odd coherent light and other nonclassical states of light
like superposition of coherent states with different phases may replace the squeezed light in
interferometric gravitational wave detector to increase its sensitivity.

1 Introduction

The problem of detecting gravitational wave has been a subject of interest for many years [1]. Spe-
cially the quantum sensitivity of Michelson interferometric gravitational wave detection (GWD)
has been discussed by Caves [2]. In Michelson interferometer, the light from an input laser beam
splits through a 50-50 beam splitter (BS), bounces back and forth between two end mirrors of
interferometer and recombines again at the BS. The intensity at one or both output ports of the
interferometer provides informations about the difference between the two displacements of the
end mirrors. The quantum mechanical treatment of the system shows that the vacuum fluctua-
tions enter in to the interferometer from the unused port and result in a limit on the optimum
power of the input laser, which comes out to be quite large and of no experimental interest.
Caves [2] suggested that by squeezing the vacuum, the optimum power of the laser can be reduced
considerably. Squeezed states [3] of an electromagnetic field are non-classical states in which the
quantum fluctuations in one quadrature can be reduced below the standard quantum limit at the
expanse of the increased fluctuations in the other quadrature such that the Heisenberg uncertainty
principle remains valid.

It is also interesting to try to use the other non-classical light in the place of squeezed light and
study its effect on the better sensitivity of the interferometer in GWD. The different superpositions
of coherent states because of their non-classical nature are of our particular interest. Yurke and
Stoler [4], have predicted that a coherent state propagating in a dispersive medium evolves into a
superposition of two coherent states 180° out of phase. Another type of superposition of coherent
states, namely, even and odd coherent states was introduced by Dodonov, Malkin, and Man’ko
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[5]. Even coherent states are closely related to the squeezed vacuum states because they too are
the superposition of even number of photons but with different coefficients. The non-classical
properties of Yurke-Stoler coherent states and even and odd coherent states have been discussed
in [6]. In Refs.[7] -[10], different theoretical possibilities regarding the generations of even and
odd coherent states have been discussed. The properties of even and odd coherent states as a
representatives of a set of nonclassical light states have been considered recently by Nieto and
Truax [11].

In the following sections we will study the effects of the non-classical light on the optimal power
of the input laser for interferometric GWD. The most general analysis of non-classical states in
interferometry was done by Yurke, McCall and Klauder [12]. We will following the approach
adopted by Ansari et al.[13], in which the noise error can be expressed as a product of two factors
with tensorial-like structure, each of the factors being related to the geometry of an interferometer
and light states correspondingly.

2 Nonclassical Light

In this section we will briefly discuss the properties of three types of superposition of coherent
states, Yurke-Stoler coherent states (YS), even (ECS) and odd (OCS) coherent states.

2.1 Even and Odd Coherent States
The even and odd coherent states may be defined in the form [5]
| B >= Nu(| B> £ | =5 >), (1)

where + sign is for ECS and - sign is for OCS. | 8 > is a coherent state and the normalizing
constants N are

N (8172
v 2\/cosh|3|2’
(o172
N = —S (2)

2\/sink | B |2

Also from Eq.(1), we can define the relations

a|By> = Bytanh|B|*|B- >,
a|B-> = Bycoth |B[*]| By >. (3)

With the help of above equations we can easily evaluate the expectation values of first and higher
order moments of annihilation and creation operators of even and odd coherent states. For exam-

ple,

<a>y=<py|a| Py >=PFtanh | B < B4 | B~ >=0, (4)
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as even and odd coherent states are orthogonal states. Similarly,

< ata >y = l ﬂ |2 tanh I IB |2’
< ata > = 'ﬁ |2 coth l ﬁ lz,
< (12 >3 = ﬂza
<al?>, = pg= (5)

2.2  Yurke-Stoler Coherent States
Yurke-Stoler (YS) coherent states are defined as [4],[6]

1 ' .
/2
Sys= — >+ -3 >). 6
| B >ys \/5” B € | B ) ( )
In terms of number states these states can be defined as

eIz o gn

| B >ys= 7 ’g \/H(l +i(=1)") [n>. (7)

The first order moments of YS coherent states are not equal to zero as in the case of ECS or OCS

<a>ys= —ifle WP, (8)
and second order moments are
< aTa >ys = |83
< a2 >ys = ﬁz. (9)

We will use different first and second order moments as given in Egs.(4-9) in the following section,
when we will discuss the important rcle played by nonclassical light for GWD.

3 Michelson Interferometer for GWD

Michelson interferometer is a two arms device at the end of which two mirrors are attached to
strings, thus behaving as two pendula. The positions of the mirrors are controlled by the joint
action of the restoring force and the radiation pressure [14]. We will suppose that in all process
the dissipative and active effects are negligible and the conservation of energy is ensured.

There are two input field modes described by the operators (a;,a;) at the two ports of the
interferometer. At the end mirrors M;, the fields are defined by (b, bj) The output fields at the
two ports P; are described by (¢, c:r ). The input fields are related with the fields at the mirrors
through the relations

b = Va,
ot = alty, (10)
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where

of = (b b;‘). (11)
Also
V = 0K, (12)
with
et 0
(b:( 0 ei"’?)’
(G &
K"(fl cz)' (13)

In Eq.(13) ¢ and £ are the complex transitivity and reflectivity parameters of the BS arbitrarily
oriented for the i-th field mode respectively and ¢Cj is the phase distance between BS and M.

The relations between the input field and the output fields at the two interferometric ports are
of the form

¢c = Ua,
Jd = dtut (14)
with
U=-KT®*K = -VTV, (15)

where — sign in Eq.(15) corresponds to the phase change on reflection at the mirrors. Thus
from the above equations we can define the relations between different fields by including all the
informations about influence of the BS and the end mirrors M;.

3.1 Sources of Noise

The accuracy with which the difference in displacement z can be measured is limited by the
Heisenberg uncertainty principle. Following [2], we have two sources of errors namely radiation
pressure error and photon counting noise. The standard quantum limit for a Michelson interfer-
ometer can be obtained by balancing these two sources of error. Radiation pressure error (PR) is
due to the pressure exerted by the field on the mirrors and the photon counting noise (PC) is due
to the fluctuations in the number of photons in the input field. So,

Az = \KAZRP)z + (Ach)z, (16)
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where

2 5 hwt\?
(AZRP) = Opp\—_ ’

mc

t -2

waner = e (57655)
Also

olp = < (blosb)? > — < blasb >,

ot = < (c]tagc)2 > - < CTU3C >2, (18)

In Eq.(17), 7 is the observation time and m is the mass of the end mirrors. Here we consider that
BS is attached to a large mass M (M >> m), which remained fixed during the observation time.
By using Eqs.(10-15), we can write

U%P = (VTUBV)ik(VtU3V)mﬂTikmn7
ope = (UtUSU)ik(UTU3U)mnTikmn7 (19)

with the summation over the repeated indices taken from 1 to 2 and

Tikmn =< (lj'(llcaJr a, > — < ajak >< ajnan > . (20)

m

Eq.(20) allows us to study the use of different field modes from the input port. By using Eqgs.(16-
20), we can write

Az = XikmnTikmn (zkmn = 1,2), (21)

where Xikmn contains the geometrical and physical properties of the interferometer.
If we consider a 50-50 ideally thin BS which introduces a phase difference of 7/2 between the
reflected and the transmitted waves, then from Eq.(10) and (13), we can write

o 1
vig,v = ( oo ) (22)
and 5 n
—cosp —sin
UtasU - ( —sing cos¢ ) ’ (23)

where ¢ = ¢, — @;. Also if the interferometer is operated in the dark fringe, then two arms of the
interferometer can be adjusted such that ¢ = (2n + 1)n/2. For dark fringe operation we get

X212 = X1 = —A2+B2a
Xi221 = Xo112 = A*+ B2 (24)
Also
4 = (fw_)
mc
or\ "
B = (3_2) (25)
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and
I = < cta;,c >,
c
Z = ¢—. 26
aa (26)
The variable Z corresponds to the difference between the displacement of two end mirrors with
respect to their mean position due to radiation pressure exerted by the input laser.
(i) The corresponding field contributions can be found from Eq.(20). If we consider that

the input field at port P; is a coherent light and from the second port is in even or odd coherent
states, then the two fields are anticorrelated and the states of these fields can be written as

| >=|a,f: >. (27)

For the case of even coherent light we can write the coeflicients Tk, as

Tyun = o?

Tz = 0

T2 = o | B 12 >

T = o®| B tanh | B* +a?

Toe = & | tank |B)* + |8 tanh |8 |?

T2121 —_ az Iﬁ |2 e—zio,

Tyon = 0

Ty = |B* =181 tank® | B>+ |8 | tank | B |, (28)

where 8, is the phase of 3 and we have consider a to be real. Also for OCS we will get the same
expressions as in the above equation except tanh | 8 |* should be replace by coth | 3 |2.

(ii)  For the case of Yurke-Stoler coherent states from the second port and the coherent state
from the first port we can define the states as

| ¥ >=| a,Bys >, (29)
and the new expressions for Tij,,, are
Tiun = o’
Tiae = 0
T1212 — a2 |ﬁ '2 621'02(1 + e_4|g|2)
Tigy = ol [l B ‘2 (1 _ e—4lﬁ|2) n 1]
Tonz = |6 [02 (1 - E-W’P) + 1]
T2121 — a2 |ﬂ |2 6-2:'02(1 + e_4w|2)
Toann = 0
T2 = |8 (30)

where ; is the phase of 3 in the case of YS coherent states. A comparison of Egs.(29) and (31)
shows the difference between different order correlations between the two types of the input fields
from port P;.
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3.2 Optimum Input Laser Power
The general expression for (Az)? by using Eqs.(21) and (25) becomes
(Az)? = AX(Ti221 + Tornz — Tharz — Torna) + B*(Thaa1 + Toriz + Tionz + To121). (31)

Minimizing the total error with respect to o? gives optimal value of a? (coherent field intensity
from port P;). In the presence of ordinary vacuum fluctuations from the second port, the optimum
intensity of the input laser becomes [2]

2
2 mc

ort)” = Gty

(a (32)
Caves (2] showed that the optimal laser intensity can be reduced considerably if we squeezed the
vacuum from the second port. We will analyze the situation when the squeezed vacuum is replaced
by the nonclassical light as discussed before.

In the first case, we will study the effect of even and odd coherent states on the optimum value
of a?. Under the condition of a® >>| 3 | tanh | B |2, we get

2|82 tanh | B> +2| 8 |? cos20, + 1
2 yev _ 2 Yo
o)™ =\ 2B tanh | 57 =2 B cos2ty + 1) (33)
and for OCS
218 1%coth| 8124281 cos26, + 1
2 yod __ 2 \o
(0 ) = N 2|82 coth|B12—2]| 8| cos26; + 1 ope ) (34)
Thus for 6, = /2 and under the limit 1 <<| 3 |*<< o?, we get
2 Yo
2 ev (aapt)
= . 35
aopt) 2 I ﬂ l ( )

Eq. (35) allows us an alternative way to reduce the optimum input laser power or to increase
the sensitivity of interferﬂmeter by using even or odd coherent states from the second port of the
interferoeter. As | 8 |>>'1, from Eq.(35), we predict that the optimum value qf the input laser
intensity can be reduced considerably if we apply even or odd coherent state from the second port.
- When we apply Yurke-Stoler coherent states and for the choices of a? >>| B |* and 0; = 7/2,
we get the relation

(a2 )YS = \‘ —2 I ﬂ |2 e—4|ﬁ|2 +1 a2 )o (36)

opt 4 IIB '2 +1 opt

Also in the limit of 1 <<| 8 |*<< a?, we will get the same expression as we get in the case of
ECS or OCS, i.e.,

_ (a?)pt)o
, 2181
Eqs.(35) and (37) show that we get the same expressions for the optimum power of input laser for
large | B |. Thus we predict an important property of the superposition of coherent states that
differet superpositions of coherent states may play an important role in reducing the optimum
power of input laser. In other words by applying these coherent states, better quantum sensitivity

of interferometer can be achieved as compare to no field contribution from the second port.

(agpt)ys

(37)
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Abstract

Infinitely many new conservation laws both for free fields as well as for test fields evolving
on a given gravita.tg()nal background are presented. The conserved currents are constructed
using the field theoretical counterpart of a recently discovered non-Noetherian symmetry
which gives rise to a new way of solving the classical small oscillations problemn. Several
examples are discussed.

1 Introduction

Noether’s theorem plays a fundamental role in field theory [1]. Besides Noetherian symme-
tries there are, however, other kinds of symmetry transformations for the field equations which,
loosely speaking, do not preserve the variational principle, i.e., they do not satisfy Noether’s
theorem {2,3,4]. They are non-Noetherian symmetries. Noether theorem gives rise to a conser-
vation law associated to each Noetherian symmetry transformation of a system. On the other
hand, non-Noetherian symmetries provide several (and sometimes infinitely many) conservation
laws associated to one transformation {3,4,5,6]. In some instances one non-Noetherian symmetry
transformation provides enough information to solve completely an n degrees of freedom prob-
lem [4]. In order to be more precise let us turn our attention to the small oscillations problem
in classical mechanics. The Lagrangian is

1 .l' . 1 " y . .
L= E i;9 qJ - §qu qJ 5] = 1)2)"'-177' (1)
with
and o
det 5505 =detT; #0 (3)
Consider the transformation ' . _
¢'=q¢+48¢, t'=t (4)
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with . o
6¢' = e(T7'V)',¢ (5)

It is straightforward to prove that (4)-(5) is a non-Noetherian symmetry transformation for
Lagrangian (1) as it maps the space of solutions of its equations of motion into itself (for details,
see [4]). As it is well known, energy is conserved for Lagrangian (1) and therefore

1 .. 1o ..
Ho =3 uqq’+§quQ’ (6)

is a constant of motion. It may be easily proved [2,3,4] that the deformation é6H, of Hy along a
symmetry transformation oq',

OH, . OHy,d, _ .
28¢' + = =(8q") (7

6Hy = = .
Ho dq' bg* dt

is also a constant of motion. Thus, we get for the symmetry transformation given by Eqgs.
(4)-(5) that
1, .., 1 - i g
Hy=3Viud'¢ +5(VT Vid'd (8)

is a constant of motion. Deforming H;, so on and so forth we get that, in general,
1 —1\§— TET 1 —1\vs 1.7
H, = (VT V)udid + (VT V)isd'd 9)

is a constant of motion for s > 1. At most n of these constants of motion are functionally
independent due to the Cayley-Hamilton theorem. Note that this restriction dissappears in
field theory. Furthermore, it may be proved that all these constants are in involution. In the
next sections we will obtain the counterpart of these results for different examples in field theory.

2 Free Scalar Field

Consider the scalar field Lagrangian [7]

1 1
L= 30,00 — sm’y’ (10)

where ¢ = p(z*) is a real scalar field. The equation of motion is

9,00 + m*e =0 (11)
which written in detail reads &
@
a0 = (V —m)e (12)
Consider the transformation
b10 = (V2 —m?)p = Dy (13)
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It is straightforward to prove that é,¢ satisfies Eq. (12) , i.e.,
0?
5t—26'¢ = Déiyp (14)
Therefore, if ¢ is a solution of Eq. (12), then, ¢’ given by
¢ =pt+byp (15)
also solves it. The energy-momentuin tensor Té‘o")
T (16)

is conserved for the scalar field. It is easy to prove that its first deformation given by

L 1 ! v 14 13 W (o4
m=3 [0 (D) + ¢ (Dp)* — 19 (9 (D).« — m*¢Dy)] , (17)
is also conserved (the factor 1 has been introduced for convenience). The transformations
bpop=€D" n=12.. (18)

are also symmetry transformations for Eq. (11). Therefore, in general,

(154 1 1] n v He n 1 L [0 4 n n
Ty =3 [90"‘(0 @) + @ (D )" = " (p°(D"p) o — m’pD sO)], (19)

is conserved for any n, as it can be readily checked. To understand the physical meaning of
T;‘:) it is interesting to consider its expression in terms of the Fourier transform of ¢(z). The
solution () of Eq. (11) may be written in terms of ¢(k) as

1 tkr —tkxr _=*
o) = Gy [ 8k — w)B(k ) e (k) + 5" (k) (20)
where kz = k,z* and the star denotes complex conjugation, then one gets that the energy is
PY, = / d*x TV = / 4%k kO o (K)p(K) (21)

where cp(E) = (2k%)"12p(k), with k° = 4/ k2 + m? and
Phy = [a% T = (-1 [ €% (6™ 0" ()e(F) (22)

which is a result very similar to the one obtained for the small oscillations problem [4]. We
have, therefore obtained infinitely many conservation laws for the free scalar field. Of course,
getting infinitely many conserved quantities for the free scalar field is no surprise since the
general solution to the problem has been known for a long time. The purpose of discussing the
free scalar field is to get a better understanding of the meaning of the non-Noetherian charges,
in the next section we will obtain similar conservation laws for a test scalar field evolving on a
given static gravitational background which constitutes a more powerful result.
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3 Test Scalar Field on a Static Gravitational Background

Consider the Lagrangian
1
L= E,/—g(g‘“’ 00, — m?p?) (23)

where the gravitational field is described by the static metric g,,, with determinant g, which
satisfies

Oguv ,
=0 24
0x° (24)

and
goi =0 (25)
and g is the determinant of the metric. The equation of motion for the scalar field 1s
8u(V=99"dup) + V=gm’p =0 (26)
or, in full detail
20.5,(v/=99"050) = g0 (27)

e

where ¢ = Op/8x°. The Lagrangian is time independent

oc
dady
0z (28)
and therefore energy is conserved
BuTigyp =0 (29)
with
Tiop = ——'2g (29" 0rpp — 66(9°° DapBpp — m?y?)) (30)
Again we may prove that
bip = €Dy (31)
is a symmetry transformation for Eq. (27) with
D= ——-—,_ \/—g"a ) — m®goo (32)
Therefore, we find that
T = VoI (490,00 + 0040 D" — (g™ 000D — o)) (33)

is conserved for any n as it can be readily checked. We have thus found infinitely many inde-
pendent new conservation laws for a scalar field evolving on a static gravitational background.
Note that. the general solution for Eq. (27) on a Schwarzschild background metric is not known
at present.
Consider the Schwarzschild metric [8]

= diag(1 — 2—7']\1, T—__—lz,z, —r?

r

, —r’sin’4) (34)

176



in units such that G=c=1. In this case,

e J J J J 1 0
D= e | == ,2‘; 9‘,\___ ——{si il —_ 2.2 ¢ |4
S (OT(I siu fe Or) + 3 (8111969) + S0 547 m'r smﬁ) (35)
with e* = 1 — 2M/r. We get that
o rlsinf, .., 2 1 2 1 2 2 2
Ty = —5 (e (@)t et(er) + 5(pe) + —2—-2—9(804») + m®p?) (36)
1 r2sin
and
r¥sind /.. . n 1 "
Tl = 5 (e "oD + ey (D), + —Po(Dhp)o +
1 D 2 D 7
g2 s(D"p) 4 + M D"p) (37)

are conserved for all n. Thus we have infinitely many new conservation laws for the scalar
field evolving on a gravitational background. In regard to the convergence of the integrals
which define the conserved charges associated to T (()n)()’ it is straightforward to realize that D"y
behaves no worse than ¢ in the limit » — oo, for the massive case, while it vanishes faster than ¢
for the massless case. In other words, the new conserved charges behave (at worst) in the same
fashion as the usual conserved energy does (and much better in the massless case). This fact
may be explicitly verified for the particular case of a massless scalar field of angular momentum
and frequency equal to 0. The explicit solution to Eq. (27) is [9]

2M
p(r)=In(l1--7) (38)
as it can be readily verified. From Eq. (37) we have that T% and T{}), behave as r~2 and r=5.
For n > 1, T{,), converges faster than r=° when r — oo.
As another example, consider the following metric [10]
g, = diag(r?, -8, —1r?, —r’sin’ #) (39)

which has been considered as a model for galactic dark matter dynamics. In Eq. (38) « and §
are constants with o = 2(y—1)/y and 8 = (y* +4v—4)/v, where 2 > v > 1. The Klein-Gordon
equation for a inassless scalar field evolving on this metric is separable and its solutions are
known [11]. The radial part of ¢(z") is

R(r) = r v (AJ,(wz) + BN, (wz)) (40)

where J,(z) and N, (z) are the Bessel and Neumann functions, w is the frequency and

. \/(724'4’7—4)1_3%1 (41)

2—-7y

L Br=2/44+ U+ (" +4v—4)
(2 —9)?

]
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Since the metric (38) satisfies Eqs. (24) and (25) we have that (36) and (37) are conserved. The
interesting fact in this case, is that if one studies the asymptotic behaviour of solution (39), one
finds that TG and T¢,), when » — oo behave as

1 . 1

T ~ — N ————
0 o ? (n)o 1.211(l—a)+oz

(42)
Since 1 > a > 0 this implies that 2n(1 — o) + « > 1 for n > 1. It is straightforward to realize
that the conserved charge associated to T9 diverges, while the ones linked to T?n)O do exist, for
n > 1. Of course the metric is not asymptotically flat, so there is no Poincaré invariance (at
infinity). Nevertheless the new conservation laws provide relevant information for the problem

at hand.

4 Non-Linear Systems: Burgers Equation

The results we have presented above hold, in general, for linear differential systems. Never-
theless, there are some physically relevant non-linear equations to which our findings may be
applied. Burgers equation is one such example. It has been known for some time [12,13] that
(the non-linear) Burgers equation may be, in fact, related to a linear equation, which is, of
course, tractable using our method. Therefore, even though in an indirect way, we will use
our methods to deal with physically relevant non-linear evolution equations. These results may
prove, in the future, to be applicable to other non linear systems.
Consider the linear equation

up + e = 0, (43)
for the field u(x,). Here, u, means partial differentiation of the field u with respect to ¢, and

similarly for the other suffixes. Define the new field v(r,t) by the transformation

b (44)

u

il

v

It is a straightforward matter to prove that v satisfies Burgers equation
v + veg + (v?)s = 0. (45)

We have already scen a general algorithm to generate symmetry transformations for linear
differential equations. We find that éu defined by

bu = Ugrrrz, (46)

is a symmetry transformation for Eq. (43). A symmetry transformation év based on (46) can
now be found for Burgers equation (45),

bv = (v + 6v?v, + dvvg, + 3v,2 + Vazg)z- (47)
Of course, simnpler transformations can also be constructed, but they will usually produce van-
ishing deformations of the conserved quantities already obtained.
We are not aware of the existence of a Lagrangian for Eq. (43) by itself, i.e., without con-
sidering it together with its time reversed counterpart, in which case the construction of the
Lagrangian is trivial. Under these considerations, all the symmetry transformations presented
in this Section are non-Noetherian.
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5 Summary and Conclusions

We have presented non-Noetherian symmetry transformations for oscillators in classical me-
chanics as well as in field theory which give rise to many conservation laws by deformation of
a given conserved quantity. For the classical mechanical case, the symmetry transformation
produced enough constants of the motion to completely solve the small oscillations problem.
In the case of field theory, we have found infinitely many conserved quantities even for fields
interacting with a given background gravitational field. In some cases, this procedure can be
extended to physically relevant non-linear equations such as Burgers equation. These results
may also be helpful to deal with Eckhaus equation [13]. The method presented here could be
used as an alternative way to diagonalize matrices using the procedure described in the classical
mechanical case [4], and it also affords a different procedure to deal with differential equations
such as the kind which give rise to special functions, for instance. Finally, we should mention
that the results presented in this note may be generalized to include electromagnetic like forces
linear in the velocities for the classical mechanical oscillators and the corresponding changes can
be introduced in the partial differential equations for the field oscillators.
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Abstract

The general form and associativity conditions of deformed oscillator algebras are reviewed.
It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation
when this solution has three distinct eigenvalues and satisfies a Birman-Wenz]l-Murakami
condition. As an example, an SU,(n) x SUg(m)-covariant g-bosonic algebra is discussed in
some details.

1 Introduction

Since the advent of quantum groups and g-algebras (see e.g. [1] and references quoted therein),
much attention has been paid to deformations of the algebras of bosonic and fermionic creation
and annihilation operators [2]-[6]. Different deformations of the latter arise depending on which
property of the undeformed operators is preserved.

In the simple case of the su(2) Lie algebra, two pairs of bosonic creation and annihilation
operators af, a;,t =1, 2, give rise to the Jordan-Schwinger realization

J+ = a{a2, Jo = a;ala Jo = %(Nl - N2)7 (1)
where N, = afai, i = 1, 2, are number operators. In addition, the creation operators al, a; (as well
as the modified annihilation operators &, = a,, @, = —a,) are the components +1/2 and —1/2 of
an su(2) spinor, respectively. When extending these two properties to the corresponding q-algebra
su,4(2) (where g is real and positive), one gets two different sets of g-bosonic operators.

On the one hand, those first considered by Biedenharn [2], Macfarlane (3], Sun and Fu [4], give
rise to a Jordan-Schwinger realization'of su,(2) of the same type as (1), where al,a;,i=1,2,
now satisfy the relations

a,af — ¢*'ala; = ¢, (2)
while operators with different indices do still commute, and ala; = [N]), = (™ —¢ ™)/ (g—q7?).
However, the operators af, al do not transform any more under a definite representation of the

algebra.

I Directeur de recherches FNRS
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On the other hand, the operators A!, A;, i = 1, 2, introduced by Pusz and Woronowicz [5),
satisfy different relations

AlAl —gtAlAl = A A -qAA =0, i<,
AAL—qAlA; = 0, i#j, (3)

-1
AAl = FATA, = T+(@ -1 Al4,
Jj=1
where the two modes are not independent any more. As a result of this coupling, the operators
Al Al (as well as A; = ¢'/2A,, A, = —¢'/?A,) are the components +1/2 and —1/2 of an su,(2)
spinor respectively, but yield an su,(2) realization that is substantially more complicated than (1).
The algebra (3) has also important covariance properties under the quantum group SU,(2), dual
to su,(2).

The present communication is concerned with the construction of covariant deformed oscillator
algebras that generalize the Pusz-Woronowicz algebra for other quantum groups than SU,(2) (or
more generally SU,(n)). The method used will be based on an R-matrix approach similar to that
applied in noncommutative differential geometry [7,8]. In Sec. 2, after reviewing the general form
and associativity conditions of deformed oscillator algebras, we will show how to fulfil the latter
in terms of a solution of the Yang-Baxter equation with three distinct eigenvalues. The example
of an SU,(n) x SU,(m)-covariant g-bosonic algebra A,(n, m) will be treated in some details in
Sec. 3. Finally, in Sec. 4, an alternative derivation of the same algebra, based upon the ¢-algebra
uq(n) + ug(m) will be presented.

2 Deformed Oscillator Algebras

Let us consider the complex algebras generated by I, A:-r A = (Af)f, t=1, ..., N,subject to the
relations [9,10] \

AIA} = Xij,klA;rcA;(’

AiAj = X;i,lchkAlv (4)

AiA;[ = 6ij+Zjl,ikAchAh

where X and Z are some complex N? x N? matrices, and there are summations over dummy
indices. As a consequence of the Hermiticity properties of the generators, X* is the complex
conjugate of X, and Z is a Hermitian matrix.

For these algebras to be associative, it is sufficient to require the braid transposition schemes
for triples of generators. The braid scheme for AIA}AL yields the condition

XijabXok,cz Xaczy = XjkabXia,zeXebyz (5)
i.e., in compact tensor notation, the Yang-Baxter equation for X (in the “braid” version)

X12X23X12 = X093 X12X23. _ (6)
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Similarly, for A,A}A,t, one gets the two conditions

0;ibkz — Xjkiz + Zyk iz — XjkabZabiz = 0, (7)
and
Zkz,acha,ibXbc,zy = Xjk,abez.cyZac,ira (8)
which may be written in compact form as
(liz — Xi2)(D12 + Z12) = 0, (9)
and
233212 X923 = X12223213. (10)

From the Hermiticity properties of the generators, it follows that the remaining two triple products
A;A; A, and A;A;A] will be associative if AJAIAl and A;A1A] are so. Hence, egs. (6), (9), and
(10) are the only associativity conditions of algebra (4).

Let now R be any N2 x N? solution of the Yang-Baxter equation

R12RIBRZS = R23R13R12~ (11)

Then the corresponding braid matrix R = 7R, where 7 is the twist operator (i.e., Ti; k1 = 6;16%),
satisfies an equation similar to (6).
If R has three distinct eigenvalues A,, = 1, 2, 3, and satisfies a Birman-Wenzl-Murakami
(BWM) condition?
(R — MD) (R — MR = X1) =0, (12)

then with each eigenspace of R, one can associate two solutions of the set of associativity condi-
tions (6), (9), and (10). In terms of the projector

(R — Asl)

P":[,Il__——(&—/\g) (13)

onto the eigenspace corresponding to the eigenvalue ., these two solutions can be written as
I-X~P, and Z=-M'R or Z=-X\R" (14)

Considering for instance Z = —A7! R leads to the following deformed oscillator algebra (written
in compact tensor form)

ALAl = SATAL,  AA, = S4,A,,  AjAL =1, - AJ'RY ALA,, (15)

where S = 7.X is found from (13) and (14), and ¢, means transposition with respect to the first
space in the tensor produét.

Several examples of such deformed oscillator algebras have been worked out so far [9]-[11]. In
all cases, the solution of the Yang-Baxter equation that has been considered is the fundamental R-
matrix of some classical quantum group. In such circumstances, the deformed oscillator algebras

2The SU,(n)-covariant algebra constructed by Pusz and Woronowicz [5] corresponds to the simpler case where
R has only two distinct eigenvalues, and satisfies a Hecke condition (see Sec. 3).
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are left invariant under the transformations induced by the quantum group. The construction
presented here is not restricted however to such a choice, and any solution of (11) and (12) might
actually be used. In a similar way, deformed oscillator algebras differing from that of Pusz-
Woronowicz have been built by considering non-standard solutions of the Yang-Baxter equation
and the Hecke condition {12}.

The algebras constructed in refs. [9]-[11] include both standard and non-standard ones. The
former [9,10] are either of g-bosonic or g-fermionic type, meaning that whenever ¢ — 1, they go
over smoothly into ordinary bosonic or fermionic algebras, respectively. The latter [11], on the
contrary, do not have such a smooth behaviour, but share instead some features with the quon
algebra [13]. In the next section, we shall consider in more details a covariant g-bosonic algebra
generalizing that of Pusz-Woronowicz.

3 An SU,(n) x SUy(m)-Covariant ¢-Bosonic Algebra

The SU,(n) quantum group [1] is a complex associative algebra generated by [ and the noncom-
mutative elements T};,%, 7 = 1, ..., n of an n X n matrix T, subject to the relations

RT1T2 Z‘TleR, detq T= 1, (16)

and the *-involution condition

"= (T, (17)

with g real. In (16), det, denotes the quantum determinant, and R is the fundamental R-matrix
associated with the A,_, series of Lie algebras,

quzeii®eii+ E ei®e;+(g—q7") Z ei; @ €ji, (18)
=1 ‘;;jl t,{]<=jl
where (e;;)x = 861 The coproduct, counit and antipode are defined by
A(T) = TTQTx, e(T) =1, S(T)y=T7"1, (19)

where A(T;;) = Tix ® Tk;.

The braid matrix R, carresponding to (18), is a real symmetric matrix with two distinct
eigenvalues, ¢ and —g~'. Their respective multiplicities are jn(n + 1) and in(n,— 1), ie., the
dimensions of the symmetric and antisymmetric irreps [20], and [120],, of SU,(n). ‘The R-matrix
satisfies the Hecke condition

(R—q)(R+q'1)=0. (20)

Similar relations are valid for SU,(m). Its generators and fundamental R-matrix will be
denoted by Ty, s, t =1, ..., m, and R, respectively, to distinguish them from the corresponding
quantities for SU,(n). Note that T}; and 7,; are assumed to commute with one another.

For the product SU,(n) x SU,(m), one can introduce a “large” R-matrix, R = g 'RR, of
dimension (nm)? x (nm)? [10]. Its matrix elements are defined by

Ris) i) (kuyv) = 47 Rij ki Rstun- (21)
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From the properties of the two “small” braid matrices R and R, it follows that R = ¢ 'RR
has three distinct eigenvalues q, —¢™!, and ¢~3, with respective multiplicities corresponding to
the dimensions of the representations [20],[20],, [20].[1%0])m + [120].[20],, and [120],[120], of
SU,(n) x SU,(m), and satisfies the BWM condition (12).

By applying the results of the previous section to the antisymmetric (reducible) eigenspace of
R associated with the cigenvalue —g™', one gets a deformed oscillator algebra of type (15), which
will be denoted by A,(n,m), and whose defining relations are [10]

AlA] = SAlA], A4, =AA,S,  AAl =1, +qR"AlA,, (22)

where . .

- (R-qI)(R-q°I)
S=rI-(q+q¢")P4), Pa= - ,
( ) (¢+q )¢ +47°)
and the creation and annihilation openators AL, A,, now have two indices, = 1, 2, ..., n, and
s=1,2,..., m. Whenever ¢ —» 1, R and S go over into I, so that (22) becomes an ordinary

bosonic algebra.
The defining relations (22) of the g-bosonic algebra A,(n, m) may be rewritten in terms of the
two “small” R-matrices as

RA'Al = ALAIR, RA,A, = A, A,R, A, Al = 111, + R RY AL A,, (24)

(23)

or, in a more explicit form, as
RouAlAl = ALALRy,..
Rij,klAItAks = AiuAjuRuu,at) (25)
AisA}t = 6,6, + Rki,JlRus,thIuAlv‘
Let us consider the map ¢ : A,(n,m) = A,(n,m) ® (SU,(n) x SU,(m)), defined by
Al = o(Al) = AlTT,,

A, = w(A,) = AT =TT Ay, (26)
where the elements T;; and 7, of SU,(n) x SU,(m) are assumed to commute with Al and A,,. As
a consequence of (16) and its counterpart for SU,(m), this map leaves the defining relations (25)
of Ay (n,m) invariant. Hence, the latter is an SU,(n) x SU,(m)-covariant algebra.

In the next section, an important part will be played by the modified annihilation operators

-~

Ais = AthjiCts’ Cji = (—1)n—jq—(n—2j+l)/26j.i’, Ct.s = (_1)m_tq—(m_2t+])/26t,a’9 (27)

where ! =n+1—1,s' =m+1—-s. Eq. (24) can be rewritten in terms of Al,, A,, as
RAlA!l = AlAIR, RAA,= A AR, AAl=C,C0+ ¢ AlARTIR™Y,  (28)
where R is defined by

R=Yei®ew+q) ei®e;j+(a—q") Y (—g)7*e; ® einy, (29)
i=1 1,7=1 1,0=1
g <
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and a similar definition holds for R. Under map ¢ of eq. (26), fiis is transformed into
A, =p(A,) = A,TT, T=cNTY)e T=c (T (30)
Finally, combining egs. (18) and (25) yields the detailed form of the Ay(n, m) defining relations
ALAl -qlalal =0, s<y,
ALAL —¢'ALAL = 0, i<y,
ALl —AlLAl =0, i>j  s<i, (31)
Alal - AlAlL = —(g-¢hALAL i<i s<t
and

AisA;t - A}tA:'s = 03 l 74 ja 8 # t3
s—1
A Al —qAl A, = (¢-q7") Z} ALA,, i #],
t=

i—-1
A AL —qALA, = (g-¢ )Y AlLA,,,  s#t, (32)
i=1

i—1 s—-1
AisA:'[s - qu:'fsAis = I+ (q2 - 1)(2 A}SAjs + Z A:'[tAit
i=1 t=1

1—1s—1

ST - LY Al

j=11t=1

together with the Hermitian'conjugates of (31). Whenever m = 1, substituting Al A, for Al A,
in (31) and (32) yields the Pusz-Woronowicz relations (3) for arbitrary n values. Hence, the
covariant g-bosonic algebra A,(n,m) is a generalization of that of Pusz-Woronowicz for values of
m greater than 1.

4 Aliternative Derivation in Terms of u,(n) + u,(m)

An alternative approach to the construction of covariant deformed oscillator algebras, based upon
g-algebras, has been developed elsewhere [14,15]. In the case of the algebra A,(n, m) introduced in
the previous section, one considers the g-algebra u,(n) +u,(m). The Cartan-Chevalley generators
of u,(n) are denoted by E;; = (Ex)',i=1,2,...,n, Eip1, Eipri = (Biip),i=1,2,..,n—1,
and satisfy the commutation relations ‘
[Ei, Ejj] = 0, [Ew Ejjl = (8 — 8i4) Ejjnas

[Ei, Ejv13] = (8ijer = 65)Ejnn s [Biier, Ejp gl = 8[Hil,, (33)
together with the quadratic and cubic g-Serre relations. In (33), H; = Ei; — Eiy1i41 The algebra
is endowed with a Hopf algebra structure with coproduct A, counit €, and antipode S, defined by

A(E;) = E;1+1Q Ey, A(Eii41) = Eiip1 ® ¢ 4 B2 Q Ey iy,
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A(Eipr1;) = Eigi®¢11 44702 Eing, (34)

€(Ei) = €(Eiiy1) = €(Eiy1) =0, (35)
S(Bi) = =Ei,  S(Biin1)=—qEiis1,  S(Eip1) = —¢ ' Eiprs. (36)
'

The Cartan-Chevalley generators of u,(m) are denoted by &,,, s = 1, N (T P N
s=1,2,...,m—1, and satisfy relations similar to (33)~(36), while commuting with the generators

of uy(n).
In the approach based upon u,(n)+u,(m), the g-bosonic creation operators Al, i = 1, 2, .. wn
s =1, 2, ..., m, belonging to Ay(n,m), are defined as the components of a double irreducible

tensor T[w] (10l with respect to this g-algebra. This means that they fulfil the relations
Ej(AL) = &AL, Ea(Al) =64l B4l =64l (1)

17

gtt(AIs) = 6 A;rs’ gt t+1(A )‘—6ts lAls 1 gt+l,t(Ais) = 6t3AJ,s+l’ (38)

where, for any u,(n) + u,(m) generator X, X(Al,) denotes the quantum adjoint action X(A}) =
>, X} AL S(X?), with A(L X) =3, X] ® X?. The modified annihilation operators A4,,, 7 = 1, 2,

yn,s=1,2,...,m, of eq. (27), are SJmllarly defined as the components of a double 1rreduc1ble
tensor T =3[0 -1} w1th respect to u,(n) + u,(m), and satisfy the relations

(‘i ) = _6ji’l"iis7 EJ]+1( ] ) - 5 ’A: 1,s° E_H—lj(fi' ) 6] :{ 1A1+1 89 (39)

gtt(Ais) - _623’1&1'3’ gt,t+1(‘/ii ) - 6ts’At s—11 gt-H t(Ats) - 6t s’ — lAI ,841° (40)

The operators AL and /iia can be explicitly written down in terms of m independent copies
of the Pusz-Woronowicz operators [14]. By using such expressions and exploiting the tensorial
character of the operators, it is straightforward to prove that their g-commutation relations are
given in coupled form by

(Al AT]IZO]nU’()]m — [Af,AT]U?f)]n[?f)lm - [A’A][é =2 (0(=1)%)m _ [A,A]lﬁ(—lﬂn[ﬁ ~2m _
[A, ARO[, A0 (4, At o, (41)

[A AT][(H:[S-]"' =y [n]q[m]q’

where, for simplicity’s sake, the row labels of the coupled ug(n) + uqy(m) irreps have been dropped.
In (41), the coupled g-commutator of two double irreducible tensors TPinl2lm and P Dlm g
defined by [14]

[TPdePal Bl [Asln(Azlm

(M1 )n(Mz}mg®
— [pPuadDale o DD AR L e i aDhal] At A2
- [T X U ! ](Ml)n(M2)m ( 1) q [U T ](Ml) (Mz)m (42)

Here

e = ¢([Aln) + ¢([Mn) — #([M]n )+¢({A2]m)+¢([)‘2]m)— ¢([A2)m),

m

#([Mln) = %fj(n +1—2i)Ay, (a)m) = ;Z m 41— 2s)Ag, (43)

=1 s=1

187



and

Mln[r2]m (M Jn(M ] | 1In[A2]m
[T 1 2 8 U 1 ’ ](Ml)n(M2)m
N 2 (Paln(1)n, Ain ()l [A]n(Mi)n)g{[Aa)m(2)m, (A)m (42 m |[A2)m (M2)m)
(81 )n (22)m (8] )npg )m
X T["‘l]n['\2]m [A;]n[/\'glm (44)

(l‘-l)n(l‘Q)m (#;)n(ﬂra)m’

where (, | ), denotes a uy(n) or u,(m) Wigner coefficient.

By using the values of the latter, eq. (41) can be written in an explicit form [14]. The resulting
relations coincide with egs. (31) and (32), thereby proving the equivalence of the two constructions
of A,(n,m) based upon SUy(n) X SU,(m) and uy(n) + ug(m), respectively.
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Abstract

In this talk it is shown that in one version of q-algebras there exists states -a subset of the
coherent states- that have negligible dispersion in energy, position and momentum.

1 General remarks

This talk is devoted to the construction of localized states in deformed quantum mechanics. These
states will be exhibited explicitly. A localized state is defined as one whose dispersion vanishes
or that is at least near zero. To start with I will say that the version of g-algebras [1, 2, 3, 4, 5]

that will be used in the sequel is Aat - qA]LA = I where ¢ : 0 — 1. The operators A and Al are
realized as operators on a space of analytic functions of a complex variable z as follows

g fE) - fez) e
Alf(z) = 24(2) (2)
The space of functions -denoted H,- has an inner product (f,g) defined by [10, 1, 4] see also
[6, 9, 7, 8]

[oc] 2r
(f9)= [ D2f(m = Phgz) = v~ [T D= ) [T dof(yml = Phgtz)  (3)

where the kernel m(| z |?) is fixed by the requirement that A has to be the hermitian conjugate
of At. The explicit form of the kernel m(] z |?) is

1

D= e e

(4)
where the deformed exponential exp,(z) is defined as the solution to the equation Df(z) = f(z)

and has the explicit expression

emw=iﬁg (5)

n=0
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The box symbol [r] is defined as [n] = —qq— the special value with n = oo is given by [oo] = 1
and the deformed factorial is defined as [n]! = [1]- - [n] and [1]! = 1. At this point it is convenient
to remark that the form of the box symbol is intimately related to the particular version of the
.q-algebra that is being used\whlle the realization 1 and 2 is not. See [11]

Under the inner product 3 the set of functions u,(z) = #{; n =0,...,00 are orthonormal.
nj.
It is clear that u,(z) is an eigenfunction of the operator z4 with eigenvalue n; in fact z is the

number operator. To each function u,(z) there corresponds a ket | n > which is an eigenket of the
number operator. As a further remark, it is clear from the definition of the deformed exponential
function that its series expansion converges in a finite region of the complex z-plane; this region
is defined by | z |< [oo]. )

2 Coherent states

Coherent states are defined as eigenfunctions of the anihilation operator. Each function will be
labelled with a complex number 3 so that the function fs(z) represents the coherent state | 5 >
in the ket notation. The explicit expression for the coherent state fg(z) is

fal2) = C(B)eapy(Bz) = m}:"" n(2) (6)

n=0
where the normalization constant C(3) is given by

1
cen| A ) ™

The set of all coherent states is overcomplete as seen by the fact that the functions fg(2) are
not orthogonal to one another and that a resolution of the identity can be constructed with them.
This construction requires that the identity be resolved both in terms of the orthonormal set of
functions u,(z) defined above and in terms of coherent states. This leads to the equation

C(B)* =

= S uehn(a) = [ DM 8 P )

where the kernel M(] 8 |*) is obtained by requiring that the above equation be satisfied. Its
explicit expression is [5]
ezpy(| B )

M(|ﬂ|2)=m (9)

At this point it is convenient to reconsider the convergence question. The coherent states are
constructed so as to be normalized. This implies that the region in the 8 -complex plane allowed
for the label of the coherent states is | § |*< [00]. The same upper bound is found for | z |2 to
have a convergent power series.As a result it is found that the functions that belong to the Hilbert
space H, are analytic in a finite region of the complex z-plane. This region extends to the whole
complex z-plane when q goes to 1 and reduces to the unit circle when q goes to zero.
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3 Localization

To study localization two hermitian operators Q and P will be introduced in such a way that their

relation to the creation and anihilation operators A and Al resembles closely the relation valid
for q=1. Then Q and P are written in the form [12]

Q=sA+sAl P =ra4ral (10)
From the commutation relations for A and Al it is found that Q) and P satisfy
(@, P = (rs" = r"s)[1 + (g - 1)Al 4] (11)

which reduces to the usual commutation relation for the position and momentum operators when

q=1 after a particular selection of the constants r and s that appear in equation ( 10). This

justifies calling Q the deformed position operator and P the deformed momentum operator.
From the commutation relation equation( 11) for Q and P it follows the urcertainty relation

(aQyapy > <@ (12

In equation (12) (AQ)} =< Q* >; — < Q >% and < Q >;= (f,Qf) f is any function in H,.
Now the expectation values and dispersions will be computed using the coherent state basis (that
means that f(z) is taken as f3(z)). The results are

(AQF=Is*[1+(¢~-1) |5 (13)
(AP} =|r " [1+(¢~1) B[] (14)
<PQ >3 —<QP>p=(rs" —1s)[1+ (¢ 1) | B /] (13)

From these results it follows that, unlike the non-deformed (q=1) case, the uncertainties depend
on the label § of the particular coherent state used to compute them. Notice that if q=1 then
all uncertainties are constant. The fact that the uncertainties depend on S is the crucial result to
exhibit localization; in fact, if | 3 |* has a value near 1——— which is an annulus near the boundary
of the convergence region then all uncertainties in equatlons( 13), (‘14) and ( 15) are negligible.
So those coherent states whose labels are near the boundary show localization according to the
definition stated above. Moreover, near the boundary the operators Q and P are commuting, at
least in the weak sense that < PQ >p — < QP >4 tends to 0. Those coherent states that are
localized behave as classical states in a much closer way than the usual (q= 1) coherent states
which exhibit minimum non-vanishing uncertainty. The deformed coherent states are in this sense
a better answer to the original Schroedinger question of finding those states that resemble classical
states than the ordinary coherent states.

Now I will show that the deformed coherent states are minimum uncertainty states and that
they can be generated by the action of a shifting operator acting on the vacuum. To start with,
the right-hand side of 12 (T denotes the right-hand side of 11) is found to be

|<T >p°=|7 |’ s |*[2 — exp2i(¢, — ¢,) — exp2i(¢, — S, )1 + (g—1) | B 7] (16)
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which tends to zero when | 3 |? tends to -1%5; in the above equation ¢, and ¢, denote the phases of
the complex numbers r and s, respectively. If exp2i(¢, — #,) = —1 then the equality sign is valid
in equation (12) so that for any fixed value of (8 the corresponding coherent state has minimum
uncertainty; on the other hand, if the boundary of the convergence region is approached both
sides of 12 tend to zero.

4 Shifting operator

Next, turn to the shifting operator. Notice that the function fa(z) representing the coherent state
labelled by 3 can be written

fol2) = C(Bexpy BANfo(2) (17)
where fo(z) = 1 represents the vacuum state. Then
fs = C(B)D4(4, AT B)fy (18)

where

D,(A, At; B) = exp,(BAT) (19)

b
expy(B*A)

Dq(A,AT; ) is the shifting operator. It follows that D 14 D;‘ so that D, is non-unitary. The
action of Dq(A,At;ﬂ) on fo(z) generates unnormalized coherent states; that is why the factor
C(B) appears in an explicit way. Finally, it is easy to verify that D (A, AT; 3) satisfies

)
DA, Al 3)AD; (4, AL 8 _emmlBAD) 4 gy 20
(4.419)407 (4, 4t ) = S A - o] (20)
which gives the usual result when g = 1. For labels o, B and v
D, (4, A% a)D,(4, 41;8) # D (4, AT ) (21)

5 Hamiltonian

The last point concerns the hamiltonian of the system. This is constructed from the commutation
relation for Q and P and has the form

2 2
_aatpata= 9L
he =AMl AlA= 5 b (22)
whose uncertainty is
(ARG =B [1+(a-1) B8 (23)
which tends to zero when | 8 |* approaches Tl—q. This is another indication that the system

described by the coherent states near the boundary of the convergence region resembles a classical
system.

To summarize: V\.fhen | B |* is near {2 then (AQ)%, (AP)}), (Ahy)} and < PQ >3 — < QP >4
all tend to zero. This corresponds closely to the behavior of a classical system.
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Abstract

Coherent mixed states (or thermal coherent states) associated with the
displaced harmonic oscillator at finite temperature, are introduced as a
"random" (or "thermal” or "noisy") basis in Hilbert space. A resolution of
the identity for these states is proved and used to generalise the usual

coherent state formalism for the finite temperature case. The Bargmann
representation of an operator is introduced and its relation to the P and Q
representations, is studied. Generalised P and Q representations for the

finite temperature case are also considered and several interesting
relations among them are derived.

1. Introduction

Coherent states have played an important role in various areas of
physics. They provide a non-orthonormal, over-complete basis in the Hilbert
space, which however is very useful in many problems. In spite of the
non-orthonormal nature of this basis, the resolution of the identity makes
it practically usable in the sense that it can be used for the expansion of
an arbitrary state in the coherent state basis.

In a previous publication (1] we have considered a generalisation of
the ordinary coherent states into the so-called "coherent mixed states"™ or

"thermal coherent states". They describe displaced harmonic oscillators at
finite temperature T; or alternatively, mixtures of coherent states in
thermal noise [2]. In contrast to the various types of coherent states

considered in the literature which are pure states, our coherent mixed
states are, as the name indicates, mixed states in general; and they are
pure states only in the special case of zero temperature. They can be
considered as a "noisy" or "random"” basis in the Hilbert space. We prove
that there exists a resolution of the identity for these states, and this
makes possible an expansion of an arbitrary state in the coherent mixed
state basis. The Q and P representations which are usually defined in terms
of ordinary coherent states are generalised within our formalism.

The purpose of this paper is to expand our previous work and express it
within the Bargmann representation [3]. This representation makes possible

185
PREGEANG Fa o @0 o it 18



the exploitation of the powerful theory of analytic functions in the complex
plane, within a quantum mechanical context. In section 2, we define the

coherent mixed states in the Bargmann representation. For example, we
derive a transformation which connects the Bargmann representation with the
usual x- an p- representations. We also explain how an operator can be

expressed in a differential form or in an integral form (i.e. as the kernel
of an integral) in the Bargmann formalism. In section 3 we explain how our
mixed coherent states can be considered as a "random" or "noisy" basis in
the Hilbert space. In section 4 we explain the relation between the
Bargmann representation of on operator and its P, Q, W (Wigner)
representations. In section 5 we introduce generalised (finite temperature)
P and Q representations and examine various relations among them. Known
results (4, 5, 6] on P and Q represéntations are in this section generalised
for the finite temperature P and Q representations. We conclude in section
6 with a discussion of our results.

2. Displaced oscillator at finite temperature in the Bargmann
representation

We consider the Glauber coherent states

z> =D (2) |05 = exp |- % |2)2] 3T 2N an? [w
N=20
(1)

D (z) = exp [za+ - z*a]; [a,a+] =1
<z|z'> = exp [-5|z|2 - le'|2 + z*z']

We introduce the Bargmann analytic representation by considering an
arbitrary state

L £, an”t @hH¥ o>

a0
|£> = TE N> -
N-0 N=0
[+ +]
2 (2)
e =1
N=0 N

-]
* *
<€ | = [1€5]" - T g
N=0
and representing it with the analytical function

fN.zN(N!)'* (3)

p (-]
|f>———> fB (z) = FB (|f>;z = exp [H|z|2] <z*|f> -Nzo

Using the resolution of the identity

" 21
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2
d z 2 1 *
|z> <z| =1, dz = d(Rez) d (Imz) = — dzdz (4)



we easily prove that the scalar product of two states |f>, |g> can be
expressed as

2
dz
* * 2
<f |g> - JfB (z) Eg (z ) exp (—|z| ) (5)
n
The creation and annihilation operators are represented as
d
a—> — (6)
dz
+
a—>z

As an example we consider the coherent states |A> and the number
eigenstates |N> which in the Bargmann representation are represented by the
analytical functions:

| A>——> FB (|a>;z) = exp [- el IAI2 + Az]

(7)
IN>——> Fy (|N>;2) = 2" N1y
We  next introduce transformations that connect the Bargmann

representation with the usual position and momentum representations denoted
here with the indices x,p correspondingly

( Yy
-3/4 2 2 b
fx (zR) n exp |- » zp dzI exp (-zI ) fB (2°2) (8)
. . L P [o's]
r A
-3/4 2 2 by
fp (zI) =-n exp |- % z; dzR exp (-zR ) fB (2°z ) (9)
. P J o

where z_ = Rez and z_ = Imz. The proof is based on equ (3) and the integral
representations of tﬁe Hermite Polynomials:

Hy () = Mt | (x + i)Y exp (-2 at (10)
[ ]

An operator 8

8 - ZGNM|N> <M| (11)

can be represented by the analytic function of two variables:

6—>8

* 2 2 * *
B (21,22+) =B (8;21,22 ) = exp [lel| + hlzz| ] <z1 Ilelz2 >
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"
-3 eNleN (z," " [(N!)(M!)] (12)

N,M
We refer to this as the B-representation. It provides an "integral”
representation of an operator in the Bargmann formalism. The operator is

here represented by a kernel of an integral. The action of this operator on
the (arbitrary) state |f> of equ (2) can be described by the integral

* 2 dzz'
8|f>——>[B (8;z,,2' ) f; (z') exp -z |5y — (13)

n

The B - representation of the product of two operators is given by

2
; * 8, ; *y B (8,; * | |2 <% 14
B (9162121922 ) - |B ( 1:21:23 ) ( 2)23122 ) exp ( = 23 ) ( )

x

The creation and annihilation operators (already given in equ (6)) are
here represented by the functions:

* *
B (a;z,,z,*%) = 2 exp (z.z, )
1'72 2 172 (15)

B (a+'

29,2, ) =z

*
1 exp (2122 )

The representations of equ (15) are consistent with these of equ (6).
Indeed

o> 2
* exp (z,2,") exp (-| |2>f<z>d22-ri £ (z,)
z, exp (z;z, ) exp z, 9 (%1
n dz
- 1
(16)
~ 2
* | 2 . d z2 .
z, exp (zlz2 ) exp (- ZZI ) (zz) —;—— -z B(zl)

Both equations can be proved using the fact that f(z) 1is a holomorphic
function therefore

1 f(ZZ)
;—; dz2 - fB(zl) (17)
n 2,24

Where the integral Is taken around some suitable contour enclosing the point
z, in an anticlockwise direction. Note that the trace of an oper1tor can be
eXpressed as

n

d2z
2 *
Tr(8) -J exp (-]z|°) B (8;z,2 ) (18)

and that the trace of the product of two operators can be expressed as:
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Tr (8.6 B (8, *y B (8,: * | 2 |2
r (8,6,) = |B (81:z,2,7) B (8,52,,2) ) exp (-]z]"-[z,|")

(19)

For later use we mention that the unit operator I is represented by the
function
*
* * -
B (1,21,22 ) exp (zlz2 ) (20)

and that the displacement operator is represented by the function

) * 2 *  * *
B (D(A),zl,z2 ) = exp -5|A| - A z, + zlA + z,2, (21)

),

A density matrix p with eigenvalues p eigenstates |e and matrix

elements with respect to the number eigensgates Pum
(M (M)
p=Lpy let > <e | = Tpg, N> <
0< pNsl

Lpg-1

can be represented by the analytical function of two variables (equ (12)):

(22)

* 2 2 * *
) = exp a|z1| + lezl <z, lolz, > (23)

.

- * [ 1
N N -3
s 2|y SURPEE 2, M| vp un) |

pB(zl.z2

- X py M

The displaced oscillator of finite temperature is represented by the
density matrix (kB =h =w=1):

p(A:B) = D(A) pxp [-gataipt (a) (1-¢7P)
- exp [-ﬂ(a+-A*)(a ; A)] a-e?

where B is the inverse temperature. We can easily prove that in limit g—>w
(T—>0)

lim p (A;8) = |A> <a|
p—>w (25)

The Bargmann representation of this density matrix can be found from
equ (23). We prove:

pp(hiBizy z®) = (1 - P
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(26)
* -8

A - |A|2) + z.z, e

1 172

- * %
x exp |(1 - e ﬂ) (A z, + z
3. Mixed states as "noisy bases" in Hilbert space:

The simplest type of basis in a Hilbert space is the orthonormal {|uN>}
for which

- g <l @
™ " SN (28)

ZnN =1 (29)

The =, are orthonormal projection operators. Equ (29) is important for two
reasons. First, it 1is a proof of the completeness of the basis. And
second, it can be used to expand an arbitrary state |s> as:

|s> = Tsylug> (30)

Sy = <uN|s> (31)

This second point is very important from a practical point of view, because
for some bases we might have an abstract proof of completeness, but not a
resolution of the identity like (29); and then we do not know how to wuse
this basis, in practice.

Another type of basis is provided by the coherent states,' which is
overcomplete and non-orthonormal:

x(a) - |a> <al] (32)
x2(A) = n(A) (33)
d2A

— x(A) =1 (34)
"

The =x(A) are still projection operators (describing pure states); but in
this case they are non-orthonormal. And yet, the resolution of the identity
(34) allows us to express an arbitrary state |s> as

a%a

|s> = |— s(a) |a> (35)
©

s(A) = <A|s> (36)

Our proposal in this and in our previous work {1] is to use a set of
mixed states as a basis in a Hilbert space. A mixed state described by a
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density matrix p with eigenstates |eN> and eigenvalues Py

- o]
p =3 ple> <ol 37
EoPN e SN

L]

p. = 1; Os<p <1, (38)
N-0 N N~

represents a set of states (|e } with a probability distribution (p,]}.
Therefore the idea of using mixed states as a basis replaces the "fixed"
veetors which are usually used, in a basis with "noisy vectors" (i.e. "random
vectors").

The basis used in this paper is the set of all density matrices p(A;B8)
of equ (24) for all complex values A and fixed (but arbitrary) value of 8.
In this case equ (37) becomes

p (A;8) = L py (B) |N;A> <N;a| (39)
|N;a> = D(A) N> (40)
Py (B) - [1 - exp (-ﬂ)} exp (-BN) (41)
We have proved in [1] that the p(A;B) obey the resolution of the identity
d2A |
— p (AB) =1 (42)
n

This 1is a significant relation for our purposes because it can be wused to
expand an arbitrary state |s> as

dzA
|s> = |— » (A,8)|s> (43)
x

The density matrices p(A;B) have been expressed in the Bargmann

representation in equ (26). The resolution of the identity (42) can be
written in the Bargmann representation as:

* dZA *
PR (A;ﬂ;zl.z2 )—;— = exp (zlz2 ) (44)

where as explained in equ (18) the right hand side is the unit operator in
this formalism. '

4, B- representation and its relationship to P, Q. W representations:

There has been a lot of discussion in the literature (reviewed in [4,
5, 6]) on the Q, P and Weyl representations and the relationships among
them. The purpose of this section is to examine the relationship of the
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B-representation with the others; and also to present some basic material
which will be used in the next section, where all these quantities will be
generalised into their finite temperature equivalents.

The Q and P representations of an operator 6 are defined as

Q (8;A) - <al8|a> (45)
aa

8 = [P(8;A)n(A)— (46)
T

where the x(A) have been defined in (32).

The Q and P-representations are related with the Bargmann
representation of equ (12) as follows:

2 *
Q(8;z) = {exp (-1z]")B(B;2 ,z>] (47)
2
2. 42 * * *
P(8;A) = exp (IAI Y|/ B(8; - z ,z) exp (Az - A 2z) (48)
n

Equ (47) can be easily proved with the use of the definition (12); equ (48)
is similar to the result given by Mehta [7].

We introduce the notation F(w) for the two-dimensional Fourier transform of
the function f(z) defined as:

f(w) = szz exp {1(szR + wIzI)]f(z) (49)

where the indices R,I indicate the real and imaginary parts correspondingly.
We can prove the following relations that express the Bargmann
representation in terms of the P and Q representations:

2
B(8; * P (8; *2 ¥ 2 ki 0
( ,21,22 ) = (8;z) exp (zz1 + z 22 - |z| ) “ (50)
*..2
zZ.Z dw
B(8;z,,2, ) = e 172 Q (8;w) exp |- il(wz, + W'z, (51)
1'72 —_—2 1 2
(2n)
We next use the relation
d2A % 2 1 *
— £ (A ,A) k exp (-k|A - B|") = exp |— & | £ (B",B)
B
x | 4k
a2
AB -4 s ko0 (52)
3BdB
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which can be proved with a Fourier transform of both sides. A, 1s the
B
Laplacian in a two-dimensional space.

We next consider the Wigner function corresponding to an operator 6.

ew (A) = Tr [GD(A)} (53)
It is known [4] that
d2A + d2A
6 = |— Tr [D (A)8B]| D(A) = |— ew (-A) D (A) (54)
n n

For a density matrix p the definition (53) leads to the more familiar
expression

py (A) = Tr [p?(A)] - fdx<-2'”AR + X |p|2-HAR + x> exp[i x (THAI)} (55)

It is convenient for later purposes to make a trivial change of variables

from A to hiw and denote the resulting function by W(6;w)

W (8;w) = nTr {GD(Hiw)] - 76, (hiw) (56)

We shall also use its Fourier transform W(z;8) defined as the inverse of the
transform given in equ (36). Using equs (54), (21) we prove:
dzA ~ 2 * % *
B(8;z,,2,%) = [— W (8;2iA) exp |-|a|" + Az, - ATz, + z,2, (57)

2 1 2
.4

Using equs (19), (21), (56) we prove the inverse of this transform:

W (8;2iA) = z a’z, a%z. B (8:z,,z. )
’ . 1 2 172
; * * *
exp [-5|A|2'- |zl,|2 - |22|2 - Az |+ z,A+ z,z) } (58)
5. Generalized P and Q representations for finite temperature

The formalism of P and Q representations is based on coherent states.
Although they form an overcomplete basis, it is the fact that a resolution
of the identity (equ(4)) is available, that makes them practically wusable.
The density matrices p(A;B) provide a generalization of the coherent states
and they also obey the resolution of the identity (42). It seems therefore
natural to define generalized P and Q representations based on p(A;B). More
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specifically we introduce:

Q (8;A;8) =~ Tr [p(A;ﬂ)e] (59)

d2A
0= |— 5 (a:8) P (8;4;8) (60)

n

It is clear from equ (25) that in the limit T—>0 (f—>=) they reduce to
the ordinary Q and P representations.

From equs (59), (60) we easil et
q | Yy 8

d&B ‘
Q (8;A;8) = |— P(8,B;8') Tr |p(B.B') p (A,B) (61)
T
We next show
_1 1
Tr [p(B,ﬂ') p <A,ﬂ>] -2 [g(ﬂ.ﬂ')] exp [-2 —_— IA-BIz] (62)
g(B8.8")

where

sinh [} (8 + B')]

g(B,B') = (63)
sinh (% B8) sinh (% B')

Combining equs (61), (62), (63) and taking into account equ (32) we get:

1
Q (8;2;8) = exp [‘ g (B.B") Az] P (8;2;8') (64)
8
Fourier transforé of this equation gives
~ 1 2] =
Q (8;w;B) = exp |- =g (8,8") |w|®| B (8;w;p") (65)
8

In the special case 8 = B8' equs (63), (64), (65) give

g (8,8) = 2 coth (}8) (66)
Q (8;z;8) = exp |% coth (%8) Az] P (8;z;8) (67)
Q (8;w;B) = exp |-% coth (%8) |W|2} P (8;w;8) (68)

In the zero temperature limit

lim g (B8,8) = 2 (69)
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p—>w

and equs (67), (68) reduce to

Q (8;2)

3 (8:;w) - exp (% |w|®) B (8;w)

- exﬁ (% Az) P (9;2)

(70)

(71)

Equs (70), (71) are known in the literature (4, 5, 6]. Our contribution is
to generalize them into equs (64), (65).

We next relate the P and Q representations to the Wigner function
introduced in the previous section. Using equs (54), (55), (59), (60) we
prove

a%s - BRI
Q (8;4;8) = [— LW (8;B) exp (- — |B|” coth (4p)
(2n) B
1
X exp -i(ARBR + AIBI) = exp ; coth (Hﬂ)AA w (G;A) (72)
i L
a’s _ 1 2
P (8;4;8) = |— W (8;B) exp |- |B|© coth (38)| x
(2n) | 8
1
X exp |- 1(ARBR + AlBl) = exp |- ; coth (hﬂ)AA W (8;4) (73)
Note that from equs (72), (73) we can derive equ (67). The
expressions (72), (73) are identical, apart from a minus sign. In this

sense the Q-representation can be considered as the analytic continuation of

the

P-representation at "negative temperatures”.

In the zero temperature

limit (B—>=) the above equations reduce to

1

Q (8;4) = exp |- A} W (8;4)

A

| 8
[ 1

P (B8;A) = exp |- — A W (6:4)

A
| 8
6. Conclusions
Generalizations

replacing the Weyl group with another one (e.g. SU(2),
these coherent states are pure states.
coherent mixed states associated with the displaced oscillator
We have shown that these states
(or "noisy" or "thermal") basis in the Hilbert Space.

studied
finite temperature.
consisting a "random"

The fact that we were able to prove a resolution of the identity for

(74)

(75)

of the original coherent states are usually based on

SU(1,1) ete.). All
In this paper and in ref [1] we have
at
can be viewed as

these

states, makes them practically usable.

All the calculations in this paper have been presented in the

Bargmann
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representation. Relations between the Bargmann and the P, Q representations
of an operator have been studied. A generalization of the P and Q
representations for the finite temperature case, has been proposed and
various relations among them have been studied.

From a practical point of view our coherent mixed states can be wused
for the description of coherent signals in thermal noise. There is a lot of
activity in this area [8] and our work provides theoretical support to such
studies.
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of a research grant from the Science and Engineering Research Council (SERC)
of Great Britain.

References
1. R.F. Bishop and A. Vourdas, J. Phys. A.20, 3743 (1987)

2. B.R. Mollow and R.J. Glauber, Phys. Rev. 160, 1076 (1967)
G. Lachs, Phys. Rev. 138 B1012 (1965)
B. Saleh "Photoelectron statistics" (Springer, Berlin, 1978)
J. Perina "Coherence of light" (Van Nostrand, New York 1972)

3. V. Bargmann Commun. Pure Appl. Math 14, 187 (1961)
4. J. E. Moyal Proc. Cambridge. Phil. Soc. 45, 99 (1949)

5. M. Hillery, R.F. 0'Connell, M.O0. Scully and E.P. Wigner Phys. Rep. 106,
121 (1984)
N.L. Balazs and B.K. Jennings Phys Rep. 104, 347 (1984)

6. F.A. Berezin Commun. Math. Phys. 40, 153 (1975), Math. USSR Izv. 8,
1109 (1974); 9, 341 (1975)

7. C.L. Mehta Phys. Rev. Let, 18, 752 (1967)

Fearn and M.J. Collett J. Mod. Opt. 35,553 (1988)

. Vourdas Phys. Rev. A39, 206 (1989); Phys. Rev. A37, 3890 (1988)

.S. Kim, F.A.M. Oliveira, P.L. Knight Phys. Rev. A40, 2492 (1989)
Ezawa, A. Mann, K. Nakamura, M. Revzen, Ann. Phys. 209, 216 (1991)

. Marian, Phys. Rev. A45, 2044 (1992)

Marian and T.A. Marian Phys. Rev. A47, 4474 (1993); Phys Rev. A47,
48 (1993)

.J.W. Hall and M.J. O'Rourke, Quantum Optics 5, 161 (1993)

.V. Dodonov, V.I. Man'ko, V.V. Semyonov in Group theoretical methods
in Physics Vol. 1 Ed. M.A. Markov, V.I. Man'ko, A.E. Shabad (Harwood,
New York, 1985): Nuovo Cimento B83,145 (1984)

D. Han, Y.S. Kim, M.E. Noz, L. Yeh, J. Maths. Phys. 34, 5493 (1993).

< RPN DX> T

206



19957/ 65t
N95- 22981

GEOMETRIC PHASES, EVOLUTION LOOPS AND
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Abstract

The geometric phases for dynamical processes where the evolution operator becomes the
identity (evolution loops) are studied. The case of time-independent Hamiltonians with
equally spaced energy levels is considered; special emphasis is made on the potentials having
the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials)
and their recently found coherent states.

1 Introduction

Departing from Berry’s work |1], a geometric phase 8 has been associated to the cyclic evolution
of a vector state [y (t)), i.e., [v (7)) = €*®|$(0)), where 7 is the period, (' (t)[¢:(t)) = 1, and ¢ € R..
For a non-relativistic system with Hamiltonian H (t), 3 takes the form [2]:

g0+ [[wOlgvoa =11 [(wOIHOWOM 1)

The geometric phase describes some curvature effects arising on the projective space P associated
to the system’s Hilbert space H: 3 turns out to be the holonomy of the horizontal lifting of the
closed trajectory |y (t)){v(t)| € P to H.

Eq.(1) is valid for any cyclic evolution, regardless of whether or not it is induced by a time-
dependent Hamiltonian. There is a widespread believing, however, that 8 becomes non-null just
when the Hamiltonian inducing the cyclic evolution is time-dependent. This could be understood
if one realizes the great influence of Berry’s article; so one could think of Eq.(1) as applied to the
cyclic evolutions of the eigenstates of a cyclic H (t) changing adiabatically in time [1]. Making
use of this idea, § = 0 for the eigenstates of a time-independent Hamiltonian H. In this paper
we are going to show that for any H having at least two bounded states there are a lot of cyclic
evolutions for which g # 0.

On the other hand, some developments in the analysis of the dynamics of a quantum system
led to the concept of evolution loop (EL) |3, 4]. An evolution loop is a specific dynamical process,
induced by time-dependent (3, 4] or time-independent Hamiltonians [5], whose evolution operator
becomes the identity 1 (modulo phase) for a certain time 7 > 0 (the loop period):

U(r) = e*1, (2)
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where U (0) = 1. The EL is interesting because, if perturbed by some additional external fields, it
can induce any unitary transformation of H as the result of the small precessions of the distorted
loop [6]. There is, moreover, an obvious interelation between the evolution loops and the geometric
phases.

2 Geometric phases and evolution loops

In this work, we restrict the discussion to systems with a time-independent Hamiltonian whose
evolution operator performs an evolution loop. The main property of these systems is that any
state evolves cyclically from ¢ = 0 until t = 7:

[9(1)) = e (0)). (3)

According to (1), |@(t)) will have associated, in general, a non-null geometric phase. Indeed,
because U (t) = e *H** commutes with H we have:

p=p+h7 [GOIIOHUOWO)d = ¢+ 1 r(H), @)

where (H) = ((0)|H |4(0)). In terms of the basis {|Emm) } of eigenstates of H, |¢(0)) = ¥ cm|Em)
with ¢, = (En|¥(0)), and Eq.(4) becomes:

8 =¢+h"172§cm|2Em, (5)

There are some interesting systems whose time-independent Hamiltonian induces evolution
loops (see, e.g., [7, 5, 8, 9]). We will illustrate this assertion with the simplest generic case.
Suppose that H has an equally spaced spectrum of the form:

En = Eo +nAE, (6)
where AE is the level’s spacing, Eq is the ground state energy and n = 0,1, --, N, being N either
finite or infinite. The evolution operator reads:

N i
U(t) = Y e F*MEn)(En| (7)
n=0

As can be seen, an evolution loop is present at 7 = 2nh/AE:

N .
U(T) — Z e—i21r(Eo+nAE)/AE‘|En>(EnI — e—i21rEo/AE1. (8)

n=0

By comparing with (2), ¢ = —2mEo/AE, and according with (4-5) the geometric phase for the
cyclic state |y (t)) is: ;
((H) — Eo)

b=2"—RE

N
=27 En]cn|2 > 0. 9)

n=1
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By restricting 8 (modulo 27) to the interval [0, 27) one can interpret (9) in the following way: 8
measures the energy excess in dimensionless units of (H) with respect to its nearest energy level
E\ (see Fig.1).

Epsy 2
<H> “

Ey,

5, ae{

FIG. 1. Schematic representation of the N + 1 energy levels and the geometric
phase for a system with equally spaced spectrum.

Suppose now that, due to some physical reasons, we are faced with a situation involving
just two energy levels of H. Restricting considerations to the subspace £; generated by the two
eigenstates |Eq) and |E)) it can be shown that the evolution operator performs an evolution loop.
Formulae (6-9) are valid in this situation with N = 1 and 7 = 2rh/AE. In particular, (9)
becomes § = 2w]c;|?, where c; is the component along |E;). As there are an infinite number
of linear combinations co|Eq) + ¢;|E;) such that |co|? + |c1]? = 1, co # 0 and ¢; # 1, we have
shown the following: for any H having at least two bounded states there are an infinity of cyclic
evolutions for which g # 0 (see also [10]).

Other examples for which formulae (6-9) can be applied are the following: a spin-j system
interacting with a constant homogeneous magnetic field B; the harmonic oscillator potential and
all the Hamiltonians having the same spéctrum as the harmonic oscillator (generalized oscillators).
Next, we will derive the geometric phases for a family of generalized oscillator Hamiltonians.

3 The generalized oscillator potentials

The simplest method to derive a family of generalized oscillator potentials was introduced by
Mielnik by means of a modification of the well known factorization method [11|. Consider the
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classical factorization of the harmonic oscillator Hamiltonian in dimensionless coordinates m =
w=h=1
1 d? 2 t 1 "

H==-|-—+2z"}, aa:HJrE, aa:H—E, (10)
where @ = (d/dz + z)/V2, and o' = (-d/dz + z)/v/2 are the ordinary ladder operators with
[a,aT] = 1. The eigenfunctions and eigenvalues of the harmonic oscillator can be constructed
using the relations '

Ha' =o' (H +1), Ha=a(H -1). (11)

The ground state ¥o(z) has eigenvalue Eo = 1/2 and satisfies ayo(z) = 0 = Yolz) o 6‘12/2,

while the ¥,(z)’s associated to E, = n + 1/2 are:

(a®)"

Yn(z) = mwo(z)- (12)

The generalized factorization method [11] consists in looking for more general operators

1 d 1 d
b= 75 <E;+ﬂ($)), bt = —\/—‘-2* (—E+,ﬁ(l‘)), (13)

satisfying just one of relations (10):

1
bbt = H + 5 (14)

Hence, the unknown function §(z) obeys the Riccati equation
g+ 8% =1+2" (15)

whose general solution is

2
eI

Hz) =2+ ———— A€ER. 16
Now, the point is that b'b is not related with the harmonic oscillator Hamiltonian, but it leads to

a new operator Hy:

1
:bTb:H,\—§, (17)
where
Hy = —l£+VA($) (18)
2 dz? ’
with

2 d e~ e 2 g2
Vilz) = — — — [ —= ) = ¢ )\ _z gy
x(2) 2 dz (/\ + /5 e‘yzdy) (cz + A +f6° e“ygdy) 2’ A > vir/2 (19)

The relationships analogous to (11) provide now the way to obtaining the eigenfunctions and
eigenvalues of Hy:
Hxbt =b1(H +1), Hb=>b(Hy—1). (20)
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Hence, the states 8,(z) = b'¢,_1(z)/v/n, n = 1,2, -- form an orthonormal set of eigenfunctions of
H), with eigenvalues E, = n + 1/2. However, {8,(z), n = 1,2,--} is not a basis of L*(R). There
is a missing vector 8y(z), orthogonal to 8,(z),n = 1,2,---. It turns out to be an eigenfunction of
H, with eigenvalue E( = 1/2 satisfying b8(z) = 0, and taking the form:

to(a) o exp (— [ B)ay). (21)

The set {f,(z), n = 0,1,2,---} forms an orthonormal basis in L?(R); then {Hj : |A| > /7/2}
is a family of Hamiltonians distinct of the harmonic oscillator one but having exactly the same
spectrum as the oscillator. In the limit |A\| — oo, the harmonic oscillator potential is recovered,
Via(z) — x2%/2.

We return now to our original subject. Due to the kind of spectrum of Hj, relations (6-9)
involving the evolution loops and the geometric phases can be applied here with Eg = 1/2, AE =
l, 7 =2r, ¢ = —n and N = oc. In particular, § = 2n((H,) — 1/2), and when applied to the
cyclic states {6,(z),n = 0,1,2---} we recover again 3 — 2nw. Is there any other set of generic
states for which we can evaluate explicitly the geometric phase?

The answer turns out positive if we consider the recently found coherent states of Hj (the
generalized coherent states GCS) [12]. Let’s denote them as |2) with z € C. The annihilation and
creation operators of the system can be identified as:

A=1blab, A!=dlalp. (22)

Define now |z) by Alz) = z|z). A direct calculation leads to:

1 o0 L

|2) = = |00 41), (23)
oF2(1,2;]2]?) nX::O nly/(n + 1)!

where |0,,) represents to 6,(x) and oF2(1, 2;y) is a generalized hypergeometric function [13]. Each
z # 0 is a non—-degenerate eigenvalue. However, z = 0 is a double degenerate eigenvalue of A with
eigenvectors |§p) and |z = 0) = [6;). It is possible to find a measurc in the complex plane such
that {|6o), |2)} is complete in H.

To evaluate the geometric phase fgcs, (2|Hx|z) is needed. A direct calculation leads to:

FQ(lal;Izlg)
H)) = (z|Hylz) = 1/2 + 2 24
W) = Gl = 172+ o .
Finally:
Fo(1, 1 |2|?
Becs = 2r° 2 121 (25)

oF2(1,2;]2%)
The behaviour of f¢cs, is shown in Fig.2. Notice that Sgcs is independent of A. Moreover, its
behaviour is quite different compared with the standard coherent state (SCS) of the harmonic
oscillator for which Bgcg = 27|z|? (see Fig.2). The difference rests on the fact that the GCS do
not tend to the SCS when A — oo and A, = lim,_, o, A = a'a? # a even though V,(z) — z%/2 in
this limit.
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10

Im(z)

FIG. 2. The geometric phases versus z for the standard coherent states of the
harmonic oscillator (8scs) and the coherent states of the generalized oscillator (Bgcs)-
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Abstract

Coherent states for a family of isospectral oscillator Hamiltonians are derived from a
suitable choice of annihilation and creation operators. The Fock-Bargmann representation

is also obtained.

1 Generalized Oscillator

Let us consider the harmonic oscillator Hamiltonian and its annihilation and creation operators

|

1 d? 1 4 1 d 1 d
H:___ —_ [ — _— T:— —_—— s TZI 1
2dz2 T 2% ¢ ﬁ(d:c”)’ ‘ \/5( dr“‘) o, 4] 0

We obviously have a'a = H — 2, aa’ = H + 3, Ha' = a'(H + 1) and Ha = a(H — 1). The
eigenstates verify

|¢>:M. allyn) = Vi + 1 |[Yns1) alyn) = vV [¥n-1) (2)
n \/m ’ n n+1/) n/ = n-1/-

In his paper of 1984, Mielnik [1] (see also [2]) looked for operators b and b' such that bb" = H + %
and taking the following form:

1 d 1 d
b= (Ew(m)), b = = (—E—Fﬁ(x)). 3)

Hence, 3(z) must verify the Riccati equation

[

revay <R W

B'+ 8% =1+z% whose general solution is f(z) =z +

-

m)gh(ﬂ ;:,—"-:,.L'.‘ {-'_"3?“ et s Pty 215



The inverted product of the new operators is not related to the oscillator Hamiltonian, but gives
a one-parametric family of operators:

d2 1 d? 2 4 -z’
— + Wa(z) = = [ - :

11
Hy=bb+35=-332 (5)

“3d2 V2 T @ |3 Fe vy

Va(x)

=

-% A=10

A=0.88625
|
i N
™ x:"%no“‘

=201

FIG. 1. The potentials V,(z) associated to Hy.

The operator b' connects H and Hy: Hb' = bt(H + 1). Therefore, the normalized eigenstates
and eigenvalues of H ) are

b'|¥n- 1
IGn)=—|i—1—), En=n+5 n=12... (6)

N
They do not generate all L2(R). There is a missing vector |fo) verifying b|6o) = 0 and given by

Coe—z2/2

—_— 7
At [TeVidy (7)

fo(z) =

It is an eigenvector of H) with eigenvalue 1/2; then H) is a Hamiltonian with spectrum equal to
that of the harmonic oscillator. The annihilation and creation operators for Hy can be chosen

A = blab, At = bl (8)
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2 New Coherent States

It is well-known that there are several non-equivalent definitions of coherent states [3, 4]. One of
the possibilities is to look for eigenstates of an annihilation operator. We have seen that A is such
an operator. Hence, tue states |z) we are looking for must verify

Alz) = z|z),  |2) = 3 anlfn). (9)
n=0
After normalizing, we get
) S . A—— (10)
= +1/»
VoPa(1, 2% 12]) iont/n+ 1)1
where the generalized hypergeometric function is defined as (5]
= [e)'(8) "
F iT) = —. 11

We see that z = 0 is a doubly degenerated eigenvalue for A, with eigenvectors |0) = |0;) and |6).
We analyze now the overcompleteness. The resolution of the identity must take the form

I = 160) (60l + [ 12)(z1dn(), (12)

where the measure du(z) can be determined as in [6] (see [7] for details). This measure is positive
and non-singular. Some other interesting results are the form of the reproducing kernel (z|z")

Fo(1,2: 22
(al') = ofe(l 2;27) , (13)
VoFa(1,2;121%) oF2(1,2;21%)

the dynamical evolution of the coherent states

1 (o o] n

e—itH,\len+l) - e-—i3t/2'e+itz), (14)

vl = VoF2(1,2,[z]?) :L:a nly/(n+1)!

and the expected value of the Hamiltonian H in a coherent state

(elte) = S L)

"~ oF2(1,2;]20?) (19)

L1
L

3 The harmonic oscillator limit

Notice that H, tends to the harmonic oscillator Hamiltonian when |A|] — oo. Let us consider
this limit to see if there is a relationship between the coherent states we have computed and the
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harmonic oscillator ones. In the limit, 8(z) — z; therefore, b — a and b — af. Then, we get
|0n) — |n). Nevertheless, A — A, = a'a®; as a consequence, the coherent states (10) become

z
OE 1 = n ) 16
[2)o = fim_|2) WFa(1,2; 2 ]?) 2 (n+l)!w + (18)

1 o0 n

which are not the usual coherent states. For |z) it is difficult to compute the expectation values
of the position and momentum operators, but for |z}, the problem can be easily solved using

1 i
- t - t
r=—7—=I(a'"+a), = —(a'—a) 17
e = sl -a) (17
For the position operator we get
A+ E oFa(2 22 |
o{2]|Z12)0 = ; 18
(=12lz) V2 oF(1,2;]2]2) (18)
1 (z + 2)?
~2 2 2
0 o= 3oFa(1,2; Fq(2, 3; . 19
(z|27]2) 20Fs(1,2;|2]2) ( oF2( |2|%) + 5 0 Fy( H )) (19)
For the momentum operator we obtain similar results. The uncertainty product is then
A 3\, 3, ., 2
(a)(@p) = /(5) +5lelel=D + [Re(:)im(=)e(l=D)}", (20)

where

_oFa(1,2; 1270 F2(2, 35 |2[*) — 2[0F2(2,2;|2[*))?

o(l2) = b -2l .
[0F2(1,2; |2[%))

A plot of (A#)(Ap) is shown in Figure 2. It can be rigorously proved that 1/2 < (Az)(Ap) < 3/2.

(21)

32

FIG. 2. The uncertainty product (AZ)(Ap) as a function of z.
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4 The Fock-Bargmann representation

For the harmonic oscillator it is possible to find a realization of the Hilbert space in terms of
entire functions [4, 8]. The same is true for the coherent states of the Lie algebra su(1,1) [6, 9].
We will show next that we can construct a similar realization for the problem under study. The
Hilbert space H is generated by the basis vectors {|fo), |01}, [02),...}; the state |8;) is isolated
from the others, in the sense that it is an atypical coherent state. Let us call Hy the one-
dimensional subspace generated by |6y} and H; the Hilbert space generated by {|§1), |62), ...}, so

that H = Ho & H;. From now on, we are going to concentrate on H;. A vector |§) € H,, is
o0
9) = Z Cmlbm) € Hi; cm = (Omlg); (9l9) = Z |Cm|2 < oo. (22)
m=1

- Using (10)

1 o 211

z = On+1
t#lo) oF2(1,2;]2]?) 7;)11!\/(71+ 1! < o)

A realization of H, as a space F of entire analytic functions is obtained by associating to every
lg) € H, the entire function

(23)

i_oz n+1|g 2T <~| > _ g(f) ‘ (24)

) z|g
LW+ 1) 0F2(1,2;|2?)

From the relation |g(2)| < |lgll\/oF2(1,2;]2|?), Vg(z) € F (issued from the Schwarz inequality),
we can show that g(z) is an entire function of order 2/3 and type 3/2 (see [7]). This characterizes
completely the space F (the usual coherent states are related to the Segal-Bargmann space of
entire functions of growth (1/2,2)). In particular, the entire function corresponding to a coherent
state |a) is

F2(1,2;
a(z) - 2L Zies) (25)
oFa(1,2;]el?)
The functions n
Opi1(z) = — e = 0,1,2,. .., (26)
(n+1)!
form an orthonormal basis of F so that g(z) may be written
2) = 3 cnsibaii(2). (27)
n=0

Notice that the function §(z, 2') = ¢F3(1,2;2z’) plays the role of the delta function in F.
Finally, we want to know what is the abstract realization of the operators acting on F as a
multiplication by z and as a derivation J/0z. Let us consider the function

29(2 z Cnt 1~ F——= \/———‘ Z +1 cm9m+l(z)
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On the other hand, the action of the operator A on |g) is
Allgh=b1a"0 3 cmplfmss) = 3 canv/m & 1 [6ns). (29)
m=0 n=1

Then, At is the operator whose realization in F is a multiplication by 2. Let us consider now the

function
m—1

09(2) _ 5~ d _ N _Cmil g,
0z Z=1m+l(m—l)!\/(m+1)! mg mr o) (30

As |A, AT] # I, the abstract operator corresponding to the derivative is not A. Therefore, we have
to find an operator B such that

— o~  Cm+1
Blg) = Blé = Om)- 31
l9) mzzocn&l |8m+1) mz=:1 m‘ m) (31)
We suppose it has the form
B =blaf(N)b, N =ala, (32)
and the function f becomes
1
N)= ———. 33
It is easy to see that
|[B,AY) =1, |ABY =1, (34)
and therefore, up to normalization,
12} = exp(zB)9y). (35)

However, it is not possible to obtain |2) as the action of a unitary representation of the algebras
in (34).
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Abstract

The finite-element approach to lattice field theory is both highly accurate (relative errors
~ 1/N?, where N is the number of lattice points) and exactly unitary (in the sense that
canonical commutation relations are exactly preserved at the lattice sites). In this talk
I construct matrix elements for dynamical variables and for the time evolution operator
for the anharmonic oscillator, for which the continuum Hamiltonian is H = p*/2 4+ A\¢*/4.
Construction of such matrix elements does not require solving the implicit equations of
motion. Low order approximations turn out to be extremely accurate. For example, the
matrix element of the time evolution operator in the harmonic oscillator ground state gives
a result for the anharmonic oscillator ground state energy accurate to better than 1%, while
a two-state approximation reduces the error to less than 0.1%.

1 Introduction

For over a decade now, the finite-element method has been developed for application to quantum
systems. (For a review of the program see [1].) The essence of the approach is to put the
Heisenberg equations of motion for the quantum system on a Minkowski space-time lattice in
such a way as to preserve exactly the canonical commutation relations at each lattice site. Doing
so corresponds precisely to the classical finite-element prescription of requiring continuity at the
lattice sites while imposing the equations of motion at the Gaussian knots, a prescription chosen
to minimize numerical error. We have applied this technique to examples in quantum mechanics
and to quantum field theories in two and four space-time dimensions. In particular, recent work
has concentrated on Abelian and non-Abelian gauge theories [2, 3, 4].

Because it is the equations of motion that are discretized, a lattice Lagrangian does not exist
in Minkowski space. This is because the equations of motion are in general nonlocal, involving
fields at all previous (but not later) times. Similarly, a lattice Hamiltonian does not exist, in the
sense of an operator from which the equations of motion can be derived.

However, because the formulation is unitary, a unitary time-evolution operator must exist
which carries fields from one lattice time to the next. For linear finite elements this operator in
quantum mechanics has been explicitly constructed [5]. Construction of this operator requires
solving the equations of motion, which are implicit. Therefore, it is most useful, and perhaps
surprising, that when matrix elements of the time evolution operator are constructed in a harmonic
oscillator basis, they do not require the solution of the equations of motion [6]. Although these
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general formulas were derived some years ago, it seems they have not been exploited. My purpose
here is to study, in a simple context, the matrix elements of the evolution -operator, and see
how accurately spectral information may be extracted. My goal, of course, is to apply similar
techniques in gauge theories, for example, to study chiral symmetry breaking in QCD.

2 Review of the Finite-Element Method

Let us consider a quantum mechanical system with one degree of freedom governed by the con-
tinuum Hamiltonian

H=2 4v(), )

from which follow the Heisenberg equations
p= _V’(q)! q=7p. (2)

These equations are to be solved subject to the initial condition

[q(0), p(0)] = 2. (3)

It immediately follows from (2) that the same relation holds at any later time

lg(t), p(8)] = ¢. (4)

Now suppose we introduce a time lattice by subdividing the interval (0,7') into N subintervals
each of length h. On each subinterval (“finite element”) we express the dynamical variables as

rth degree polynomials

r

p(t) = S axlt/h), a(t) = Z bu(t/R)*, (5)

k=0
where t is a local variable ranging from 0 to k. We determine the 2(r + 1) operator coefficients

ag, by, as follows:

1. On the first finite element let

a0 = po = p(0), bo = g0 = q(0). (6)
2. Impose the equations of motion (2) at r points within the finite element, at o;h, ¢ =
1,2,...,7,where 0 < oy < ap < -~ < a, <1 This then gives
plh)mpi=3ar, qk)=a =2 b (7)
k=0 =0

3. Proceed to the next finite element by requiring continuity (but not continuity of derivatives)
at the lattice sites, that is, on the second finite element, set

ap = P, bO = q1, (8)

and again impose the equations of motion at «;h, and so on.
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How are the a;’s determined? By requiring preservation of the canonical commutation relations

at each lattice site,

[thl] = [(IO»PO] =1, (9)
one finds
1
r =1 (linear finite elements) a=g (10)
1 l
=2 dratic finite el t = -+ —= 11
r (quadratic finite elements) as = g 33 (11)
1 V3 1
=3 bic finite el t = - F ——= , = — 12
r (cubic finite elements) s =5 F W ar = 5 (12)

These points are exactly the Gaussian knots, that is, the roots of the rth Legendre polynomial,
P(2a—1)=0. (13)

Amazingly, these are precisely the points at which the numerical error is minimized. It is known
for classical equations that if one uses N rth degree finite elements the relative error goes like
N~?" while imposing the equations at any other points would give errors like N77.

Let us consider a simple example. The quartic anharmonic oscillator has continuuin Hamilto-

nian ) 1
H = —p2 + -A¢? 14

for which the equations of motion are
g=p p=—X" (15)

If we use the linear (r = 1) finite-element prescription given above, the corresponding discrete

lattice equations are .

q1 h‘]o :Pl-;Po, 4 hPo :—g(fh‘“{u)d- (16)
(Notice the easily remembered mnemonic for linear finite elements: Derivatives are replacea vy
forward differences, while undifferentiated operators are replaced by forward averages.) By com-
muting the first of these equations with p; + ps and the second with ¢; + go the unitarity condition
(9) follows immediately. These equations are implicit, in the sense that we must solve a nonlinear
equation to find ¢q; and p; in terms of go and pg. Although such a solution can be given, let use
make a simple approximation, by expanding the dynamical operators at time 1 in powers of A,
with operator coefficients at time 0. Those coefficients are determined by (16), and a very simple

calculation yields

A
O =qo+hpo—§h2q3+~~,

3
D1 = Po — /\hqg — E)\h2q0pqu 4+ ..., (17)

We can define Fock space creation and annihilation operators in terms of the initial-time operators

(a+af) _ (a — at)

_lefae) o lezae) 1
go =7 5 Po Vo (18)
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which satisfy
[a,a'] = 1. (19)

Here we have introduced an arbitrary variational parameter 4. The Fock-space states (harmonic
oscillator states) are created and destroyed by these operators:

at)™
In) = (w% 0),

which states are not energy eigenstates of the anharmonic oscillator. We can now take matrix
elements in these states of the dynamical operators at lattice site 1, using (17):

(20)

3 3
(1p1]0) ~ (Upol0)(1 +iZhAy* — ZR*M" +..)

)

1
~ (1|po|0)(1 + 1wh — §w2h2+...), (21)
and

b3
(Llq1]0) = (1lgol0)(1 + i M)

, 1
~ (1]go|0)(1 + twh — §th2 +...) (22)
where we have assumed approximately exponential dependence on the energy difference w. Equat-

ing the coefficients of the terms through order h? constitutes four equations in two unknowns.
These equations are consistent and yield

3., 1
w = 5/\"/ = 72', (23)
so the energy difference between the ground state and the first excited state is approximately
1/3
w = (gx) ~ 1.145)1/3 (24)

which is only 5% higher than the exact result Eo; = 1.08845X1/3. A similar calculation using
" quadratic finite elements (r = 2) reduces the error to 0.5%.

3 The Time-Evolution Operator

Because the canonical commutation relations are preserved at each lattice site, we know that there
is a unitary time evolution operator that carries dynamical variable forward in time:

In41 = anU*, Pn+1 = UanT, (25)

For the system described by the continuum Hamiltonian (1) in the linear finite-element scheme,
we have found [5] the following formula for U:

U = eihrh/dgihAlan) gihod/4 (26)
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where

A(w) = le — g7 (/BN + V(g™ (42 /h)), (27)
o(z) = 7o+ V'(z). (28)

The implicit nature of the finite-element prescription is evident in the appearance of the inverse
of the function g.

Given the time evolution operator, a lattice Hamiltonian may be defined by U = exp(thH).
For linear finite elements H differs from the continuum Hamiltonian by terms of order A%. For

example,

r ,, 2 1 [ mh [1 5 1 22]
= — : = —14t — — —
%4 g™mq H — tan 2 5P +2mq , (29)
A 1 1 A
V:§q3: H:§p2+§Aq3+h2 [qup+p3}+, (30)
Ay 1, 1 A2 A
= g% == A+ R | =g = S
V=10 H 5P+ A [ 519 ~ g q}+ (31)

If one uses quadratic finite elements H differs from the continuum Hamiltonian by terms of order
h?, etc.

4 Matrix Elements of Dynamical Variables

Remarkably, it is not necessary to solve the equations of motion to compute matrix elements of
the dynamical variable. Introduce creation and annihilation operators as in (18). Then, in terms
of harmonic oscillator states (20) the following formula is easily derived [6] for a general matrix
element of ¢:

(mlgiIn) = —%(ﬁan,m_l + Vbnt)

e—i&(m—n)

+
RV r2rtmplml

where g is given by (28), H,.(z) is the nth Hermite polynomial, and we have introduced the
abbreviations

/_: dz ze=" Vg (2) H, (g(2) [2R) H (9(2) /2R), (32)

ha T h2~2’ © T Rz Rh~’
For the example of the harmonic oscillator, this formula gives for the ground state—first excited
state energy difference w = (2/h)tan~'(h/2), consistent with (29), while for the anharmonic
oscillator if we expand in h we obtain precisely the expansion (22).

19?1 . 2 '
R = -] e B (33)
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5 Matrix Elements of the Time Evolution Operator

A similar formula can be derived for the harmonic oscillator matrix elements of the time evolution
operator. (There is an error in the formula printed in [6].)

1 1 :
o —i(n+m+1)8
(mIU!n> - 2R / 2n+mn‘_m'|e
[ g () o) 20 g2 RV P PSR, (3

which again is expressed in terms of g not g!
For the harmonic oscillator, where V = q‘/‘Z (34) gives for the ground-state energy

: 1 /
(0|U10) = ewoh Ly = 7 tan™! é,
which follows from (29). For the anharmonic oscillator, V = \g'/4, again, for a first look, we
expand in powers of h, with the result, for the harmonic oscillator ground state,

3 . 3 9. .
(OiU|0)=1+h(——+——A>+h2( P ) o

(35)

4~2 i6 3294 64 512
%1+iw0h—§w§h2+..., (36)

which is also derivable from (31). Equating powers of h gives us two equations, which are to be
solved first for the dimensionless number Ay® = a. Once the number a 1s determined, the value
of wp is expressed as

1/3 L 3
wo = M f(a), fla)= PNV (1 + 1(1/) . (37)

For a first estimate, we use the “principle of minimuimn sensitivity”, that is, use the stationary
value of o,
. 2
fle)=0=a= 3 = f(o) = 0.4293, (38}

which is about 2% higher than the exact value of 0.42081 [7]. In fact, when we solve (36) for a
we find a complex value

Lt
27 23
The imaginary part is small, and the real part is only 0.7% low. The failure of (39) to be real does

not indicate any breakdown of unitarity, but only that the one state approximation is not exact.
We do much better by making a two-state approximation, where we must diagonalize the 2 x 2

= f(a) = 0.4178 F 0.0077i. (39)

o =

matrix
Uoo Uo2
(Uzo Uzz) ' (40)
We then find the following relation between wq; and o = Ay®:
/\1/3
woz = "1—6‘0"1/3[12 +2la F 2v3(8 + 16a + 3302)1/2), (41)

which, for the — sign, is plotted in Fig. 1:
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FIG. 1. Ground-state energy for the anharmonic oscillator as a function of a = Av8,
in the second approximation. Here wo = A3 f(«), f(a) given by (41).

This graph shows that the ground-state energy is very insensitive to the value of «. The
principle of minimum sensitivity give spectacular agreement with the exact result,

wo = 0.421235)1/3 (42)

being only 0.1% high, while it gives a good value for the third state, w, = 2.992\1/3, Solving for
o from the eigenvalues of (40) gives even better results:

wo = AV3(0.42054 + 2 x 107%),  w, = A1/%(2.94328 — .0220294), (43)

where the ground state energy is now low by 0.06%, the imaginary part being negligible.
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6 Conclusions

The simple calculations given here for the quantum-mechanical anharmonic oscillator are the be-
ginning of a program to develop use of lattice Hamiltonian techniques to explore gauge theories
in the finite-element context. The astute reader will note that the numerical results presented in
Sec. 5 also hold in the continuum, by virtue of (31). It is in two or more space-time dimensions
that the essential nature of the lattice in such calculations comes into play [3, 4, 8]. The high
accuracy contrasted with the simplicity of the approach leads us to expect that we can extract spec-
tral information, anomalies, and symmetry breaking from an examination of the time-evolution

operator.
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Abstract

The g-analogue coherent states |z >, are used to identify physical signatures for the
presence of a q-analogue quantized radiation field in the |2 > classical limit where |2} is large.
In this quantum-optics-like limit, the fractional uncertainties of most physical quantities
(momentum, position, amplitude, phase) which characterize the quantum field are O(1).
They only vanish as O(1/|z|) when ¢ = 1. However,for the number operator, N, and the
N-Hamiltonian for a free g-boson gas, Hy = hw(N + 1/2) , the fractional uncertainties do
still approach zero . A signature for g-boson counting statistics is that (AN)2/ < N >— 0
as |z| — oo . Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian
phase operator of Pegg and Barnett, éq, still exhibits normal classical behavior. The standard
number-phase uncertaitty—re]ation, AN Aq;q = 1/2 , and the approximate commutation
relation, [N ,$q] = i, still hold for the single-mode g-analogue quantized field. $o, N and
q.?:q are almost canonically conjugate operators in the |z >, classical limit. The [z >, CS’s
minimize this uncertainty relation for moderate |z|? .

1 Motivation and Introduction

In considering the potential importance of quantum algebras to quantum field theory and to
physics[l], | am reminded of the twenty year development of Yang-Mills theory and the strong
interactions (now called QCD or quantum chromodynamics):

e 1954: YM theory was proposed to generalize U(1) QED to an SU(2)14spin theory for the
strong interactions with the p meson as the analague of the photon.

e 1966: Nambu suggested that YM theory may be relevant to the color degree of freedom of
constituent quarks.

ICNELSON@BINGVMB.BITNET cnelson@bingvmb.cc.binghamton.edu
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e 1968: Experiments at SLAC discovered scaling of the strong interactions at short-distances.

e 1972-3: Asymptotic freedom was discovered for SU(3)color YM theory (i.e. the weak cou-
pling of the strong interactions at short distances).

i

In 1954, both the ultra-violet and infra-red(if the p were taken massless) properties of YM
theory were regarded as complicated. But inspite of the theory’s mathematical beauty, it took 20
years for theorists to discover its important physical property of asymptotic freedom; and, in fact,
this occurred only after the hint provided by a Nobel prize winning experiment!

For comparison, the recent history of quantum algebras is

e 1979-87: q-algebra symmetries investigated in quantum and statistical mechanical models
[1].
e 1989: g-oscillators introduced to realize the new symmetries of g-algebras [2].

e 7777: 777

If this historical parallel is of significance, we need to know the physical implications of these
novel symmetry structures. If there are g-oscillators in nature which realize these new algebras, it
seems reasonable to expect that there will also exist a q-analogue quantum field which has such g-
oscillators as its normal mogdes[4]. We need to know its canonical physical properties—what are its
number and phase signatures? Since the usual quasi-classical coherent states (CS) approximately
characterize many types of cooperative behavior in the q=1 case, it is natural to use the ¢-CS’s to
investigate and identify empirical signatures[4,6] of a generic g-field for cooperative phenomena,
whether in quantum optics, many body physics, particle physics .. ..

The q-analogue coherent states |z >, satisfy a|z >,= z|z >, where the g-oscillator algebra is
( ¢ — 1, usual bosons)

aal — qﬂ/zata = ¢g¥N/? (1)

with [N, a"] = at, [N,a] = —a, and the physically important bosonic [a,a] = 0. We take q real,
and 0 < ¢g< 1.
In the | >4 basis, < m|n >= épy and’

din>=yin+tiin+1>  an>=ylnlln-1>  a0>=0 (2)

where [z], = [z] = (¢°/* — ¢7*/?)/(¢"/* — q71/?) is the “g-deformation” of z. More simply
[x] = sinh(sz/2)/sinh(s/2) where ¢ = exps. Note that :

alan >=[N)ln>=[n]ln> Np>=nln>  al0>=0 (3)

It follows that with € z|z >=1 the q-CS’s are

|z >¢= N(z) é ﬁ

2From now on the sub-g’s are usually implicit!

n >, N(z) = eg(]2|*)7'1* (4)
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in terms of the “g-exponential function”
= z"
eg(2) = 2 Tl [Pt =[nlln—1]---[1], [O)'=1 (5)

which is an order zero entire function [5], and |e,(2)] < ey(|z]) < exp(|2]). For z > 0, it’s positive,
but for z < 0 and ¢ < (g;* ~ 0.14) there are an infinite number of increasing amplitude oscillations
of decreasing frequency as ¢ — (—o0). The infinite number of real zeros are approximately at
fin = —q=/2/(1 — q) ; n = 1,2,.... As q increases, these zeros collide in pairs and move off the
real axis as a complex conjugate pair. In this manner, e,(z) — ezp(z) as ¢ — 1.

In analyzing the g-boson field in the |z >, classical limit, we use the Heisenberg representation,

consider a specific mode, and suppress the % mode and ¢ polarization indices for the generic
electric and magnetic fields, etc. . Notice that the g-analogue coherent states |z >, are good
candidates for studying the classical limit of the q-analogue quantized radiation field because they
are minimum uncertaintv states. They minimize the fundamental commutation relation

U oo 2AQAP | <[Q,P>]
op = <@, P> | =

(6)
with U|j;> = 0, but Uljps 10> = W Also, the n** order correlation function factorizes, i.e.

Tr(pE~(2)E*(y)) = £~ (2)E* (¥, - (7)

In addition, there exists a resolution of unity[3-5] for the q-CS’s
/lz >< 2| dpu(z) + / |5 >< 3|dj = I (8)

with, respectively, a continuous (g-integration) measure

1
dp(z) = Q;fiq(l‘4’|2)6q(—|2|2)ﬂ‘q|2|2 df (9)
and a discrete measure :
i = =ea(g" |50l )eq(—154[2)d6. (10)

Note that |Z|2 = ¢*/2¢; with k = 0,1,... and {; = minus the i** zero of e,(z). The q-discrete
auxiliary states,[4], |2z >, satisfy

arlZk >o= (g"*5)12 >, (11)

The aj, obey the g-commutation relations, (1).

Consequently the q-CS’s are non-orthogogonal and overcomplete. There are g-analogue gen-
eralizations[4,6] of the P-, Q-, and W-phase space representations of quantum optics. However,
as we next discuss, there also are important differences in the |2 >, basis for other coherence and
uncertainty properties of the q-analogue quantized field® .

3For more details see [6].
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2 Fractional Uncertainties in the |z >, Classical Limit

With the usual defmltlons P = —i(hw/2)Y?(a — aT) = (h/2w)?*(a + an), the fractional
uncertainties I?QQ;I_ and 2~ |<P>' are of O(1) for |z| — oo and
< 2|[Q, P|z > = ik < 2|[a,al]lz > = it < 2]A|z >= ih)(2) > ik (12)

This defines the resolution operator A = [a,at]. The g-boson "resolution function” ( ¢ = exps ,

and N(z) is the CS norm.)

l Mz) = N(2)* |z| "F:]illfs(}?(vz;)l)/4) ‘

n=0

(13)

goes as (¢71/? — 1)]z|> + 1 as |z| — oo. This follows because
Mz) =< 2N +1]lz > = < 2|[N]lz > = ((¢7/ = DIz + (e (a"|2) feo (7)) (14)

Note that A(2) is bounded from above and below.

For the generic g-electromagnetic field, the fractional uncertainties in amp E ,in amp B, and
in the "Hermitian” Pegg-Barnett phase operator, ¢,, are also of O(1) [7,4,6].

Note?* that the quadratic P,Q single-mode hamiltonian, which has an O(1) fractional uncer-
tainty,

Hp g = (1/2)hw(ala + aal) = (1/2)(P? + 20?). (15)
is proportional to the anti-commutator. Hence for ¢ # 1, H p,g 18 not mathematically independent

of the basic commutator A = [a, af] because of the fundamental operator identity
i
(—(i/B)@, ] cosh(s/4))* — ((2/huw)Hp g sinh(s/4))? = 1. (16)

In striking contrast to these O(1) fractional uncertainties, both the usual N operator and the
elementary N-Hamiltonian operator

Hy = hw(N +1/2) (17)

possess zero fractional uncertainties as |z| — oco. Also, Hy does indeed possess the conventional
field-theoretic properties of the classic ¢ = 1 Hamiltonian operator.

1For H 0 the energy is not additive for two widely separated systems, vnolatmg the usual cluster decomposition
“axiom” in quantum field theory. For g-quanta this is not so surprising since the fractional uncertainty in the
energy based on Hp 4 is O(1) in the |2 > basis and the quanta by (1) are compelled to be always interacting,i.e.
by exclusxon—prmcnpl&llke q-forces! So it is doubtful that Hp Q permits the usual physical interpretation based on

a smooth limit to a conventional, free quantized field.
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3 g-Boson Counting Statistics

The physically important [a, a] = 0 implies that the usual Bose-Einstein energy distribution still
follows for a free g-boson gas . Note that (9) above does imply a non-degenerate equally-spaced
spectrum. On the other hand, the g-CS’s do not give a Poisson number distribution for ¢ # 1
since [2,8]
P = <nle> [ = L (18
i " [alle (=)

Note that for ¢ # 1, |2|* is the eigenvalue of the deformed number operator, [N], in the |z >, basis.
The mean value of usual number operator N goes as < N >= 2a,log|z|+ 3, for 1 < |z|* < few100,
where a,andf, are q-dependent constants. For fixed |z|?, as q decreases the peak of P,%(z) narrows
and shifts to smaller n. Therefore, the behavior of the fractional uncertainty (AN)/ < N > is not
very g-dependent.

However, since AN — 5, as |z| — oo, where 7, is a q-dependent constant for ¢ # 1, there is
the very important signature for g-boson counting statistics that

(AN)?/ < N>—0 (19)

as |z| — oo . This is in contrast to a thermal source where the "rhs” of (19) equals < N + 1 >
for all |z|, and for laser light (and q=1 CS’s) where the ”rhs” equals "one” as |z] — oo. So in
principle it is possible b?' q-boson counting experiments to very simply identify a q-boson gas in
this limit in spite of the'ordinary Bose-Einstein frequency distribution.

4 The g-Analogue of the Pegg-Barnett Phase Operator,d;q

Recall z = |z|exp(if) . While mathematically a hermitian phase operator conjugate to N, or
to [N] = ala does not exist [9], g-generalizations of the phase operators of Susskind-Glogower
[9,10] and of Pegg-Barnett [7] have been constructed [4,6]. The q-generalization of the Pegg and
Barnett operator® is obtained by introducing a complete, orthonormal basis of (s + 1) phase states
10 >q= (s +1)"V252 _exp (indy)[n >4, 0 = 0p+ 2mn /(s + 1) , with m = 0,1,...,s, . These
are eigenstates of the respectively hermitian and unitary

S = Y 0|0 >< O (20)
m=0
exp(id,) = [0>< 1+ +|s—1>< s| +exp(i(s+ 1))|s >< 0] (21)

which is manifestly g-independent and unitary. In the analysis of SU(2), Chaichian and Ellinas[11]
introduce a polar decomposition operator that is the same as exp(iqAS)q when the reference phase
is chosen to be ¢p = (s + 1)6p.

For arbitrary q, it still follows that

{cos&,, sinéﬁq] =0 cos® a)q +sin? ¢, = 1 (22)

5The number-phase properties of the q-generalized SG operators are treated in [6]. For research prior to PB on
phase operators in spaces of finite dimension see T.S. Santhanam (tkis conference) and see the two recent general
reviews of phase operators [12].
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and that < nl|cos? ¢ |n >=< n|sin? ¢on >= 1/2 for n = 1,2,.... In particular, the g-boson
vacuum state |0 >, has a random phase.
The mean-value of ¢, in the |z > basis is

<, >= % /0 Y 0P (O) dB = 8 = Arg(z)(23)
in terms of the g-boson phase distribution(the conjugate distribution to P,%(z) )
P,(0,) = 8l_i’rcr)xo(:i +1)| < Onfz >, | (24)
with the normalization & [o" P,(0,) df,, = 1. The variance of the phase operator

(A‘?’q )2 - 1/(277q)2 (25)

as |2| — oo, where 7, is the same g-dependent constant found for AN as |z| — oo.

5 Approximate [N,¢] =i in |z >, Classical Limit

Thus, from the reciprocal-dependencies on 7, of AN and Aq%, it follows that there are the ususal
(though approximate) number-phase and energy-phase uncertainty relations

ANA$, > 1/2  AHnA¢, > hw/2 (26)

In the |z >, basis, the g-boson phase distribution P,(6,) function also appears in Dirac’s
approximate number-phase commutation relation

< 2|[N, §qllz > = i — i Py(6o) @
where 8 is the Pegg-Barnett indicial angle used above in (20). So for large |z|, for ¢ # 1,

lim < IV, dlle > = i — 12760~ 00) 29

for ¢, eigenvalues from the indicial 8y to (§p+27) . This extra é, termis a "bell-shaped” function.
This term serves a physical role analogous to that of a smeared “magnetic monopole” string in
that it appears in the classical limit to uniquely specify the classical phyase angle. For ¢ = 1, the
_ smearing is absent and &, is replace by a Dirac-delta-function distribution. This smearing is in
agreement with the greater fractional uncertainty of <2>q for ¢ # 1.

So, neglecting the indicial-referencing term, we conclude that the |z >, coherent states both
give and minimize Dirac’s commutation relation, i.e. in |2 >, basis for |z| large

[N, o) =i (29)

Hence, for the g-boson quantum field the operators N and :2;,, are almost canonically conjugate
in the |z >, classical limit. This is in contrast to the extra A(z) “resolution factor” in the
commutation relation for the position and momentum operators. Given the physical importance
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of Dirac’s commutation relation to cooperative phenomena in many different fields of physics, it
is very encouraging that for arbitrary q values Eq.(29) still holds for the g-boson quantum field

[13].

This is based on work with M. Fields. We thank (. Zachos for discussions; R. Lynch and

D.T. Pegq for correspondence; the Argonne, Cornell, and Fermilab thcory groups for intellectual

sttmulation; and U.S. Dept. of Energy Coniract No. DE-FG (02-86ER {0291 for support.
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Abstract

The Finite Fourier Transformation matrix (F.F.T.) plays a central
role in the formulation of quantum mechanics in a finite dimensional
Space studied by the author over the past couple of decades. An out-
standing problem which still remains open is to find a complete basis
for F.F.T. 1In this bpaper we suggest a simple algorithm to find the
eigenvectors of F.F.T.

Talk presented in the Second International Workshop on Harmonic Oscillators

held in Cocoyoc, Mexico during 23-25 March, 1994, to appear in the
Proceedings.
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1. INTRODUCTION

The {inite Fourier transform matrix (F.F.T.) plays a fundamental
role in many contexts and has been studied extensively [1-3]. It is
central in the discussions on finite dimensional quantum mechanics based
on Weyl's commutation relations [4] studied by the author in a series of
publications {5}. The eigenvalues of this matrix were determined by
Schur [1] and a simple argument to recover this result has been given
earlier [6]. The calculation of the eigenvectors is not straight-
forward and many methods have been given in particular, by Mehta [71.

In Section IV, we present a nevw algorithm to find the eigenvectors.

1I. EIGENVALUES OF §

The F.F.T. matrix 5, which is unitary, is defined by

] = L oex [Zﬂi
aB /0 P tn

aB]a

a, B = 0,1,2,...n-1 (2.1

and has many interesting properties

2 z

D (s )aB 1 aB = 6& + B, 0 (2.2)
(mod n)
Since 32 £f = ¢ for a vector f withn components, 82 is
a -o mod n, o

called the parity operator

4
2) (s )GB = GaB (2.3)
like the usual Fourier transform.

3) The matrix S, which is by definition a symmetric matrix will

diagonalize any circulant matrix.
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From Equation (?-3), it is clear that the eigenvalues of S are simply
41 and +i. There is then a degeneracy of the eigenvalues. The first
problem will be to determine this. Luckily, Equations (2.1)-(2.3) can be

k k,and k, denote the multi-

repeatedly used to fix this [6]. If k 00 Kq 4

1!

plicity of the eigenvalues taken in the order (1, -1, i, -i), Equation

(2.1) implies that
n

1 1
/ooy

Tr 8§ =

[ exp 221 ]£

X
=0

]

%-(1 + i) [ 1 + exp ( -i:n )1, (2.4)

and hence

Tr S (k, - k) + i(k3 - k,)

1 2

1 for n

4k + 1,

0 for n 4k + 2,

i for n 4k + 3,

(1 + i) for n = &4k,

=
[}

0,1,2,... (2.5)

From Equation (2) we infer that

2— -
Tr §° = (k1 + k2) (k3 + kA)
= 1 for n odd,
= 2 for n even.
We also have
4

Tr § =n = k1-+ k2 + k3 + k4°

Equations (2.5), (2.6) and (2.7) can be used to solve for kl’ kz, k3 and

k4 and one finds that
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k1 k+1 k+1 k +1 k+1
k2 k k+1 k +1 k
k3 k k k+1 k
k4 k k k k -1

ITI. EIGENVECTORS OF S

Let us decompose S into its primitive idempotents as

4 3
S =z i’ B(j),

j=1
where
= 1 1 -
B(1) = 58+ 3 (r - 1")
- .1 1 :
B(2) = ,c + 4(1+1),
1 1 ,
B(3) = -8t 7 (r-1"),
B(4) = o4 l(I+I') (3.2)
2 4 ’
I 2m
CaB = E cos ( o of )
R S 2m
S.g = = sin ( — B )y
a,B = 0,1,2,...n-1 (3.3)
It is easily verified that
s B(j) = il B(p), (3.4)

thus the nonzero columnus of B(j) yield the eigenvectors of S with eigen-

1. Also, ih analogy with the standard case, Mehta [7] hag been

value i
able to express these eigenvectors in terms of Hermite functions with
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discrete arguments.

IV. EIGENVECTORS OF S; AN ALTERNATE METHOD
Since the F.F.T. matrix S satisfies Equation (2.1) we construct

the matrix [10]

_ 3 2 2 3
T = S +§ 54 * S8y + 5y
2
= '
I' (s + sd) + (S + sd) Sy » (4.1)
where
Sd = diagonal S. (4.2)
We find that
_ 3 2 2 3
ST = S (8 + 8 sd+ssd+sd)
_ 3 2 2 3
= (I + S S4 * S 8, + ssd)
_ 3 3 2 2
= (sd + §° + s sd + S sd) sd
= TSd. (4.3)
If T is nonsingular,
T+ ST = § (4.4)

Therefore, the columns of T automatically provide the eigenvectors of
S. The degenerate eigenvectors of S corresponding to the repeated eigen-
values can be mhde orthonormal by using Gram-Schmidt process. This will
render T unitary. While the process is quite general, we shall illustrate

this for some special cases

case ofln = 2
s - é(i ) ;) : 4.5)
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and

_ {1 o
Sq = (; _ 1) s (4.6)

Since 32 = g7 =1, (4.7)

We get from Equation (4.1)

T

2 (s + sd),

= 2/1+ 1 1
2 2
1 -1-1 (4.8)
V2 V2

We unitarized matrix of the eigenvectors of S is therefore

Y2 +1 1
U, = 1 (4.9)
Y
2/2 (V2 + 1)
1 - (2 + 1)
case of n = 3
1 1 1
S = ;%— 1 £ €2
3
1 52 € s
e = exp 2%l ] (4.10)

From Equation (2.%) we see that

1 0 o
s, = 0 -1 0
0 0 i (4.11)

one finds from Equation (4.1) that the unitarized matrix of the eigen-

vectors of S is
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case of n = 4

In this case we have

1 1
¢ - .% 1 i
1 -1
1 -i
and
1 0
0 1
Yo T 0 0
0 0

It is easily calcylated that

3 1

1 1
T =

1 -1

1 1

The first two column vectors

one to -1 and the last to -i.

1

1
1 1
-1 -i
1 -i
-1 i
0 0
0 0
-1 0
0 i
1 0
-1 21
-1 0
-1 -2i

0
i’3 + /3
i3 + /3
(4.12)
(4.13)
(4.14)
(4.15)

correspond to the eigenvalue = +1, the third
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By a simple use of Gram-Schmidt orthogonalization procedure one

can find the unitarized matrix corresponding to the eigenvectors of §

as
3 0 3 0
1 V2 %) i/6
Uy = = _ _
V2V (V& + 1) 1 -2/2 -3 0
1 V2 -3 -ive (4.16)
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I. INTRODUCTION

The conventional fourier transformation has been at the root of quantum

~

mechanics. If q, p represent the position and momentum self adjoint opera-

tors of quantum mechancis, they satisfy the commutation relation *[1]

(e, pl = ap - pa =i . W
It is also well known that this relation implies that

p? wp? > 7, (2)
where

a? = abH - ol (3)
Equation (1) is known to imply that

P> = = cfgexp(ipq)|q>dq

2r o

i.e. the basis |q> in which the operator a is diagonal is related to the

basis in which the operator ﬁ is diagonal through the Fourier Transform

~

operator S

: h .
*We use the unit where units I 1, where he is the plank constant
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It is also known [2] that the classical fourier transform operator S can be

represented as,

S o= explil{’ + D6 - Ly, (5)

-~

where S is defined as
~ 1 A
{q|s¥> = —=— exp(iqq')<q'|¥>dq" (6)
| o ;L p(iqq')<q'|¥>dq'
where ¥ is the wave function which satisfies the Schraedinger wave euqation

[1].

In this paper we show that the conventional fourier transform operator
é when rotated by an angle 6 through the non compact generator R4 of the
Lorentz group SO(2,1) yields the Angular Fourier Transformation (AFT). We
also analyze the properties of the AFT from this perspective and relate it to

the recent work of L. B. Almeida [23] who has derived the AFT from a differ-

ent point of view.

In Section 2 we summarize the properties of the group S0(2,1). 1In
section 3, we study some properties of the AFT from this perspective and
relate this to the work of Almeida. In the last section we offer some conclu-

sions on the discretization of the transform.

II. THE LORENTZ GROUP S0(2,1)

We define the three operators by F4, FO, T as

(1/4) x {p% + q%)

—
n

0
r, = 18 x (B2 -q’ ),
T o= U8 x {ap + pa) = (1D x (pq + 1.
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It is easily verified that Ta, Fo, T satisfy the following commutation rela-

tions.

[ro, r4] = iT |, (8)
[T , rO] = ir4 . (9)
[T , F4] = iy » 10)

and the Lie algebra so obtained is that of the Lorentz group S0(2,1) in (2+1)
dimensions [4]. It is recognized that the classical Fourier Transform oper-

ator in Equation (5) can be rewritten as
s = exp{in(r, - -l)} . (11)
0 4

The generator l"4 is called the non compact generator of the Lorentz group
§0(2,1), reflecting the fact that it is not bounded in support. From the

commutation relations we can verify using Equations (8, 9, 10) that

Ke(p, q) = exp(iGFa).(S).exp(iera) s (12)

~o " n L A2+ q> .~

Ke(p, q) = exp(-iz).exp(zsinh 9).exp(i1r{{-p-—z—Sl cosh8-{p q}sinh6}).
(13)

It may also be verified that
A ot 2+ l2
<q|KeW> = Nef exp(i{{g——;—g-—}sinhe-{qq'}coshB})(q'|?>dq's(14)

Where Ne is a normalization constant that is dependent on 0.

1f we now set sinh® = cota and coshb = coseca then we obtain the kernel
of L. B. Almeida where the variables are (t,u) instead of (q,q'). Thus the
ker;el of the AFT gets a meaning as a rotatiom in the (t,w) plane. The

variables (q,q') are the canonical variables and can be substituted with any

pair of variables that satisfy equation (1).
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ITI. PROPERTIES OF THE ANGULAR FOURIER TRANSFORM

It becomes clear after substituting sinh® = cota and coshd = coseca

that
6 = Kn(cot(%)) , (15)

which implies that as 6 »=, a+2nll and 8>-», a>(2n + 1)7I. With the above
identifications our kernel in Equation (13) is identical to that of Almeida

who has shown that the kernel exhibits the following properties

(1) Ko(t,u) = Ko(u,t) , (16)
(2) ?Ka(t,u)K*a(t,u')dt = §(u-u') , (17)
(3) Ko(t,w) = -1 expl-itw} . (18)
V2
For further properties use reference [3]. As envisaged in reference [3] the

AFT can be applied to the study of frequency swept filters.

IV. CONCLUSIONS
In this paper we have used the properties of the group SO(2,1) to define
the AFT as a rotation of the fourier transform operator é by an angle 0
through the non compact generator F4 of the group, which will reduce to the
conventional Fourier Transform as 6 >,

The study of a discrete version of this transform and fast algorithms

for it's computation is of great interest and has been carried out [5].
P g

253



REFERENCES

(1]

(2]

(4]

[5]

P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford
University Press, London (1930).

See for example,

J. M. Jauch, Foundations of Quantum Mechanics, Addison-Wesley,
Reading, MA. See also,

K. B. Wolf, Integral Transforms in Science and Engineering,
Plenum Press, NY, (1972).

L. B. Almeida, An Introduction to the Angular Fourier Transform,
1EEE III, (1993), p. 253-260.

See for example,

A. O. Barut and R. Raczka, Theory of Group Representations and
Applications, Plan-Polish Scientific Publishers, Warszawa, 1977.
Balu. Santhanam and J. H. McClellan, preprint, Georgia Institute

of Technology, 1994.

254



1

Recent advances in nonlinear dynamics) chaos and fractals have been of great benefit not only in
Physics and Mathematics but as well as in the study of the dynamic activity of the brain. These
tools allow to characterize neural phenomena that are usually described by means of graphical
methods as it is the case of electroencephalography (EEG) and some other similar recordings.

A topic that has pervaded neurophysiology along decades of this century has been the ob-
servation of oscillations in external (scalp) EEG. Likewise, oscillations of neuronal activity have
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Abstract

Oscillation of electrical activity has been found in many nervous systems, from inver-
tebrates to vertebrates including man. There exists experimental evidence of very simple
circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found
and also neural circuits where oscillation is a property of the network. These two types of os-
cillations coexist in many instances. It is nowadays hypothesized that behind synchronization
and oscillation there is a system of coupled oscillators responsible for activities that range
from locomotion and feature binding in vision to control of sleep and circadian thythms.

The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh
has made the simulation of neural oscillators a very active endeavor. This has been enhanced
with more recent physiological findings about small neural circuits by means of intracellular
and extracellular recordings as well as imaging methods. The future of this interdisciplinary
field looks very promising; some researchers are going into quantum mechanics with the idea
of trying to provide a quantum description of the brain.

In this work we describe some simulations using neuron models by means of which we form
simple neural networks that have the capability of oscillation. We analyze the oscillatory
activity with root locus method, cross- correlation histograms, and phase planes. In the more
complicated neural network models there is the possibility of chaotic oscillatory activity and
we study that by means of Lyapunov exponents. The companion paper shows an example
of that kind.

Introduction
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been found in extracellular and intracellular electrical recordings in cortical and subcortical areas
of the brain of man and animals. These observations of oscillating electrical activity have been
described since the works of Mayer, Carlson, and Sherrington in 1906, as well as in the studies of
Gray and Lissman in 1950 and in the work of Wilson in 1961 [1]. From then to the eighties there
exist many other descriptions in the literature about oscillatory behavior. The common feature of
these observations is the lack of a theoretical framework where to place them and the ignorance
about the mechanisms and function of oscillatory activity.

In recent years the study of neural oscillation has been renewed applying analytical and com-
putational tools. Among them the more notorious are nonlinear dynamics, spectral analysis,
signal processing methods, chaos, and artificial neural networks. On the one hand, these tools
allow to characterize neural oscillation in a manner not possible before and, on the other hand,
they also allow to model and simulate oscillating phenomena in such a way that it is possible to
make inferences about the mechanisms that at the level of neuronal circuits could be responsible
of producing, modulating and using the oscillatory capabilities of neurons, neural networks, and
neural systems.

It has been said that we do not know what could be the use of oscillations and chaos in the
brain [2], but we have the tools to detect and quantify them in such a way that could lead us
towards new knowledge and new tools.

2 Biological Oscillation

It is well known that oscillatory activity can be detected in the EEG. According to the brain
state different oscillatory bands can be defined, namely: delta(1-4 Hz), theta(5-8 Hz), alpha(10
Hz), beta(20-30 Hz) and gamma(30-50 Iz). Beta and gamma bands are related to very active
states. 1 at the samc titne the activily of neurons is recorded, it is possible {o find rhythmic firing
that is coherent with the beta or gamma oscillations. The most prominent example of this fact
is the discovery by Singer, Gray and others [3] of oscillations of 40 Hz in the cat visual cortex.
They recorded the EEG in two different places and found strong coherence between them. At the
same time. the firing of neurons recorded in the same locations 1s rhythmically synchronized with
the EEG. Since there is evidence that the features of an object are processed in parallel channels
along the visual pathway they think that response synchronization of cortical neurons is a possible
mechanism for feature binding in the visual system. This is probably the most important role
that has been given to neural oscillation. However, it has to be realized that feature binding is
not equivalent to perception. '

The bippocampus is another example of oscillation where three different components can be
discriminated in the hippocampal EEG: A rhythmic slow activity (RSA) or theta rhythm (with
harmonics), an irregular slow activity (ISA) that may be high-amplitude (large irregular activity,
LIA) or small-amplitude (small irregular activity, SIA), and fast waves or beta rhythms. It is not
known what role, if any, these components play in the hippocampal functioning.

One important question is what neuronal circuits underlie both the generation of rthythmic fir-
ing and the oscillations in the EEG. There are single neurons that have the machinery for rhythmic
firing and others fire thythmically due to the properties of the network which they belong to. Ac-
cording to Getting [4] some simple biological circuits employ one of the following arrangements:
mutual excitation, recurrent inhibition, reciprocal inhibition, and feedback inhibition. It has been
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shown that in biological neural systems both ways of producing rhythmic firing are used, even in
combination.

3 Models of Oscillation

Modeling is an important tool for understanding biolsgical phenomena. There are several ap-
proaches to simulate oscillatory activity. Here we show several examples. In one of them oscillation
is produced b *he futrinsic properties of a dynamic linear system and in the other two examples
the firing pattern depends on the connectivity properties of a simple neural network where single
neurons have increasing complexity in their mathematical modeling.

Root Locus Complex Plane
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FIG. 1. Model of linear oscillator with complex dynamics. The behavior is depen-
dent on the gain.

For the model in FIG. 1, the upper plot shows the root locus for a fifth order linear model of a
dynamic system which in open loop practically behaves as a linear harmonic oscillator due to the
dominance of the imaginary poles. Due to its intrinsic characteristics, the open loop response of
the model produces a periodic oscillation as shown in the middle plot in FIG. 1. When negative
feedback is added to the model, new properties appear, for one. the possibility of iwo different

257



types of oscillation. One transient oscillation (continuous curve in lower plot of FIG. 1) when
a given gain produces complex poles in the left-hand side of the complex plane, and periodic
oscillation (dotted curve in lower plot of FIG. 1) when another gain produces imaginary poles.
Notice that the frequency of periodic oscillation is different between the open loop and the closed
loop responses. The complexity of responses of a simple model like this can be enriched by adding
a nonlinear element in the forward path and a delay in the feedback path. A system like this has
been proposed to model the fast rhythm generation in the hippocampus (5]

For the first case of the second example, Net 1, Net 2, and Net 3 shown in FIG. 2 are simple
neural networks in which we study the conditions to achieve periodic firing patterns. The neuron
models (circles) are not endogenous units: to initiate their activity it is necessary one activating
element (fiber).

FIG. 2. Neural networks with periodic firing patterns.

The firing patterns shown in FIG. 3 were obtained by varying the synaptic intensity (weight)
in each connection of the network and keeping unaltered other biological parameters. The cross-
correlation histograms are useful for inferring functional connectivity and for assessing temporal
relations between the firing patterns. In the histograms shown we see an increasing degree of
synchronous activity in the firing patterns from Net 1 to Net 3. Actually, in Net 3 we observe a
rhythmic oscillation.

For the second case of the second example, the electrical properties of individual neurons are
described with Hodgkin- Huxley type voltage and time-dependent ionic currents. Neurotransmit-
ter fluxes are additional state variables in such networks and the action of chemical synapses is
modeled by additional kinetic equations. In FIG. 4 and FIG. 5 we show in the left column the
firing activity of the neurons and in the right column the phase planes. A single neuron model
can fire rhythmically, as exhibited by type 1 neuron in the upper part of FIG. 4, or it can display
the apparently chaotic activity seen at the bottom of the figure. The difference between the two
models is simply the value of a time-dependent sodium current variable.

We formed a network with recurrent inhibition like the one in Net 3 (see FIG. 2). In FIG. 5 we
show the activity of the neyrons in the ring-network. When type 1 neurons are used, the individual
activities remain rhythmic, By contrast, when type 2 neurons are used in the network the activity
becomes rhythmic in all three neurons, which is made more evident in the corrtsponding phase
plane plots. The overall behavior of the second network is different from the behavior of the single
components.
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FIG. 3. Firing patterns and cross-correlation histograms for nets of Fjg.2. From
left to right, the histograms show the cross-correlation between neurons 1- , 2-3, and
3-1, respectively. The weights between neurons 1-2, 2-3, and 3-1 are: 10, 4, 5 for Net
1;5/-6, 12/-6, 5/-6 for Net 2; and -12, -16, -24 for Net 3. Negative weights indicate

inhibitory connections.
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4 Concluding Remarks

As it happens in High-Energy Physics where powerful colliders allow to look for new elementary
patticles, in Neuroscience, instruments like Magnetic Resonance Imaging (MRI) and Positron-
Emitted Tomography (PET), allow to look for unknown mechanisms involved in normal brain
functioning. However, unlike Physics, Neuroscience does not possess theoretical frameworks with
the power of Quantum Theory and Classical Mechanics, that is, there is not a brain theory which
could embrace ti:: cvidence provided by experiments at the molecular level as well as at the system
level.

Many neuroscientists think that understanding of the mechanisms underlying perception, mem-
ory, learning and consciousness will require a quantum theory framework which would include
nonlinear dynamics and chaos [6].

For example, brain waves and neuromuscular systems have attracted the use of harmonic
analysis and feedback control theory since the times of Wiener [7] and Ashby [8]. In the same
line but in a different ficld was Hebb with his reberveratory cir nits [9]. They were using these
tools as a mathenintical characterization of macro-events in phyvsioligical systems. More recently,
in trying to understand special mechanisms in the organization «f I ~logical neural networks, the
theory of feedback has been brought v isht again, namely by Hhuiphrey [10] and by Edelman
(11] with his idea of reentrant loops. In including negative or positive feedback in a system the
conditions for oscillation are highly likely.

On the other hand, Penrose [12] has argumented that conscionsiess will not be understood on
a computational basis, but it will require a fuller understanding »f quantum mechanics, specifically
the application of micro quantum mechanics to macro events (i3], Uowever, Crick remarks that
Penrose considers physics incomplete because there is as vet no theory of quantum gravity and
hopes that an adeqnate theory of it might explain consciousness bui he is very vague as to how it
might do so [14]. On the side of perception, Pribram describes works which propose a quantum
neurodynamics based on the Schréedinger equation and also a niural wave equation akin to
Schroedinger’s. He also mentions that Heisenberg matrices have been identitied as instruments for
the evolution of group structures, a process shown capable of ac-ounting for the fneural processes
entailed in the perception of objects [6]. It is agreed at this tune that all the hypotheses on
consciousness are very vague as to exactly what is crucial for it and the same can be said about
perception.

It is important to notice that a single neuron has a great molecuiar complexity [15]. However,
it is in neural nets and systems of nets where higher brain functions are supposed to take place [14]).
Moreover, advances in molecular neurobiology point to the place where two neurons communicate
-called the synapse- as very important for higher brain functions, mainly the events that occur at
the dendritic tree and the dendritic spines which are the sites that have the molecular machinery
(receptors and channels) for receiving the molecules of neurotransmitter coming from the sending
neuron. These phenomena could be studied by means of coupled harmonic oscillators as it has
been done for finding soluble models in molecular physics [16]. After all, it was the great quantum
theorist Schréedinger whose lectures in Dublin, when published in 1944 with the title “What
Is Life?”, had a major influence on the development of molecular biology [13]. In that book
Schroedinger had one question and one answer: “How can the events in space and time which
take place within the spatial boundary of a living organism be accounted for by physics and
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chemistry? The obvious inability of present-day physics and chemistry to account for such events
is no reason at all for doubting that they can be accounted for by those sciences.” [17].

Acknowledgments

This project is being supported by DGAPA IN-100593 UNAM.

References

[1) T. H. Bullock, History of Neuroscience Lecture, Society for Neuroscience 23th. Annual Meet-
ing, Washington, D. C. (1993).

[2) W. J. Freeman, Int. J. Bifurcation and Chaos 2, 451 (1992).

[3] W. Singer, Ann. Rev. Physiol. 55, 349 (1993).

[4] P. Getting, Neural Control of Rhythmic Movements in Vertebrates (Wiley, 1988).
[5] L. S. Leung, J. Neurophysiol. 47, 845 (1982).

[6] K. Pribram, IBRO News 21, 10 (1993).

[7] N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine (MIT
Press, 1948).

(8] W. R. Ashby, Design|f0r a Brain (Chapman and Hall Ltd, 1952).
[9] D. O. Hebb, Organization of Behavior (Wiley, 1949).

[10] N. Humphrey, A History of the Mind: Evolution and the Birth of Consciousness (Simon &
Schuster, 1992).

[11] G. M. Edelman, The Remembered Present: A Biological Theory of Consciousness (Basic
Books, 1989).

[12] R. Penrose, The Emperor’s New Mind (Oxford University Press, 1989).
[13] L. O’Neill, M..Murphy, and R. B. Gallagher, Science 263, 181 (1994).
(14] F. Crick, The Astonishing Hypothesis (Charles Scribner’s Sons, 1994).

[15] 1. B. Levitan, L. K. Kaczmarek, The Neuron: Cell and Molecular Biology (Oxford University
Press, 1991).

[16] D. Han, Y. S. Kim, M. E. Noz, and L. Yeh, J. Math. Phys. 34, 5493 (1993).
[17) E. Schroedinger, What Is Life? (Cambridge Univ. Press, 1944).

262



N95- 22988

“\

/1y

LYAPUNOV EXPONENTS FROM CHUA'’S CIRCUIT TIME
SERIES USING ARTIFICIAL NEURAL NETWORKS

J.Jests Gonzélez F., Ismael Espinosa E., and
Lab. de Cibernética, Depto. de Fisica, Fac. de Ciencias
Universidad Nacional Auténoma de Mézxico

Alberto Fuentes M.
Instituto de Ciencias Nucleares
Universidad Nacional Auténoma de Mézico

Abstract

In this paper we present the general problem of identifying if a nonlinear dynamic sys-
tem has a chaotic be}Lavior. If the answer is positive the system will be sensitive to small
perturbations in the ipitial conditions which will imply that there is a chaotic attractor in
its state space. A particular problem would be that of identifying a chaotic osc¢illator. We
present an example of three well known different chaotic oscillators where we have knowledge
of the equations that govern the dynamical systems and from there we can obtain the corre-
sponding time series. In a similar example we assume that we only know the time series and,
finally, in another example we have to take measurements in the Chua’s circuit to obtain
sample points of the time series. With the knowledge about the time series the phase plane
portraits are plotted and from them, by visual inspection, it is concluded whether or not
the system is chaotic. This method has the problem of uncertainty and subjectivity and for
that reason a different approach is needed. A quantitative approach is the computation of
the Lyapunov exponents. We describe several methods for obtaining them and apply a little
known method of artificial neural networks to the different examples mentioned above. We
end the paper discussing the importance of the Lyapunov exponents in the interpretation of
the dynamic behavior of biological neurons and biological neural networks.

1 Introduction

In the companion paper [1] we described some findings about biological oscillators that have been
presented in the recent literature. We also showed some examples of oscillator models. Here we
want to review some models of chaotic oscillators with the goal of extending the analysis to time
series (trains of action potentials) coming from biological oscillators where there are some hints
that they are chaotic.

There are many experimental situations where there is no idea of what the mathematical
model of a system could be or where the form of the equations is known but the parameters are
unknown. There is an extensive literature about methods for systems identification but they are
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usually limited to linear models. Since the conditions for chaotic behavior arise from the presence
of nonlinear elements, the use of linear methods is limited.

In recent years there have been many advances in the understanding of nonlinear dynamic
systems and that has produced many methods for identifying whether or not a given system
is chaotic. For testing these methods various simple chaotic systems have been discovered or
invented. In some of them the equations that govern the system are well known but in others
only some sort of approximation is known. In the former case, it is possible to generate the
corresponding time series with very high approximation, in the latter case, the measurements
yield a sampled version of the corresponding time series. Having at hand the equations and
the time series, or at least the time series, it is possible, in very different ways, to compute the
asymptotic properties of the system. Two measures are used for this: the Lyapunov exponents
in which a positive one indicates chaotic dynamics, and the attractor’s topological dirmension
which indicates topological characteristics and is directly related to the number of non-negative
Lyapunov exponents [2].

It is usual to ascertain|the existence of chaotic dynamic by means of visual inspection of the
phase plane portrait. However, such method presents a considerable amount of uncertainty and
subjectiveness. Taking that into account, it is important to have a quantitative method like the
one provided by the computation of the Lyapunov exponents.

2 Lyapunov Exponents

To determine if a system possess chaotic dynamics it is necessary to know if it is sensitive to
small perturbations on the initial conditions. When this occurs it is then impossible to predict the
final state of the system after a finite time. To be able of characterizing a chaotic attractor it is
necessary to establish quantitative measures concerning the sensitivity to initial conditions. The
spectrum of Lyapunov exponents gives a method of quantifying the dynamics. The Lyapunov
exponents describe the average rate of growing or shrinking of small perturbations in different
directions in the state space. When the attractor has at least one positive exponent then it has
the property of being sensitive to the initial conditions and it is called a chaotic attractor.

There are several methods for computing the Lyapunov exponents. Wolf ‘et al. [3] were the
first in suggesting a method to compute them directly from the time series, without knowing the
equations that govern the system’s dynamics. Kurths and Herzel [4] proposed another algorithm.
However, in these algorithms the estimations are sensitive to the number of observations, to the
sampling frequency and to the noise in the observations [3]. Trying to avoid these problems,
Gencay and Dechert [5] designed an algorithm that computes the m Lyapunov exponents from
an unknown m-dimensional dynamic system directly from a few observations on the attractor,
in such a way that the estimation is robust even for certain amount of noise. This algorithin is
based on a result by Hornik et al. [6] in which they show that the m Lyapunov exponents of a
diffeomorphism that is' topologically conjugate to the process that generates the data, are also
the m Lyapunov exponents of that process. To obtain a robust estimation considering both few
observations on the attractor and the presence of noise, Gencay and Dechert [5] applied artificial
neural networks with a cascade architecture. Such procedure is a non-parametric estimation that
Hornik et al. [6] [7) have shown to be universal approximators, that is, they can asymptotically
approximate a function and its derivatives.
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3 Computation of the Lyapunov Exponents

The Lyapunov exponents are constants, except for a zero-measure set, and describe the direction
of nearby paths that converge or diverge in the state space of a dynamic system. The Lyapunov
exponents A; are defined as the logarithm of the eigenvalues y; Vi = 1,2,-- -, m of the symmetric
positive matrix

A, = lim [V(x0)7Y (x;0)] 7™, (1)

where the matrix Y is dependent on the differential equation that characterizes the dynamical
system. A direct applicat{iion of the above definition is not practical since the Y matrix grows
exponentially due to the fast convergence of the columns in the direction of gheater expansion.
Using topological properties and an appropriate ) R decomposition, the Lyapunov exponents are
found by computing

1 . 1 n—1 _
No=— lim = 3" In (RY), (2)
j=0

where R;; are the diagonal elements of the triangular matrix R.

An alternative to the aforementioned algorithm is the use of neural networks which are capable
of recovering a nonlinear map from a time series of iterates [8]. Here an unknown function is
estimated and then it is possible to compute the Lyapunov exponents using the properties of the
dynamic system [5].

FIG. 1. Phase Plane Portraits for the Logistic Map, the Hénon Map, and the
Lorenz System.
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4 Examples of chaotic oscillators

To be able of testing the effectiveness of the Lyapunov exponents one has to have at hand dy-
namical systems with proved chaotic behavior. Many mathematical model systems are known,
for instance: Hénon, Rossler-chaos, Lorenz, Rossler- hyperchaos, Mackey-Glass, and others [3].
Physical model systems arg more difficult to produce, however we have the Belousov-Zhabotinsky
chemical reaction [9] and Chua’s nonlinear circuit family [10]. Obviously, there lare real physical
chaotic systems but they are extremely complex as it is the case of atmospheric turbulence.

TABLE I. True Lyapunov Exponents, equations representing the chaotic systems,

initial conditions and parameters.

True Lyapunov Exponents

Logistic map

Hénon map

Lorenz system

0.673 0.440 1.51
-1.620 0.00
-22.5

T =pz(l —xz) |2, =1— az? + y, r =a(z —y)

y, = bz, y=z(b—2)—y
Z=zy—cz
2o =03,p=4.0 |20=01,y0=0.0 | 2o =0.0,y0 = 1.1,z = 0.0
a=14,b=03 [a=16.0,b=4592,c=4.0

TABLE II. Estimated Lyapunov Exponents. Logistic Map (¢ = 5, T = 100).
Hénon Map (¢ = 10, T = 200). Lorenz System (¢ =15, T = 1000). The error is less

than 1x10~3. The non-spurious Lyapunov exponents are shown in boldface.

}

' Estimated Lyapunov Exponents
p | Logistic map | Hénon map | Lorenz system
1 0.6794
2 0.6401 0.3670
-6.7823 -1.5673

3 0.6350 0.4502 1.7285
-2.4378 -1.7331 0.0411
-2.4930 -2.8164 -23.72

4 0.6434 0.4119 1.5910
-1.61106 -1.4803 -0.0710
-1.7342 -3.3658 -20.973
-5.0200 -5.2263 -80.325

5 0.6790 0.4385 1.4799
-0.9073 -1.5473 0.0067
-1.3544 -1.4859 -20.977
-1.8468 -1.7651 -60.702
-3.2313 -2.5605 -92.584
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We divided this section of examples in three parts. In the first part the ordinary differential
equations for the Lorenz :Lodel were integrated using the SDRIV2 subroutines Lorm Kahaner et
al. [12]. For the QR decomposition use used the subroutines in [13]. In the second and third parts
we computed the Lyapunov exponents by means of the neural networks approach [5].

For the first part of the section we show the results of computing the Lyapunov exponents
for mathematical model systems with well known chaotic dynamics (3] [5] [8]. We computed the
Lyapunov exponents for the Logistic Map, for the Hénon map and for the Lorenz system [3] [5].
The corresponding phase plane portraits are shown in FIG. 1, and the equations, parameters and
computed true values of the Lyapunov exponents are shown in TABLE I above.

For the second part of the section we show the results when we assume that for the same
chaotic systems than above, the equations are not known, only the time series. In TABLE II we
show the computed Lyapunov exponents where the presence of one positive exponent indicates
that the system is chaotic.

According to the established notation for neural network architectures [11], p represents the
number of nodes in the input layer and ¢ represents the number of nodes in the hidden layer.
The output layer has one node. The error is the quadratic average summation of the differences
between the real and the estimated values for the time series, being T the total number of sample
points in the sequence.

For the third part of the section we show the results obtained when we used a nonlinear circuit
of the Chua’s family with the parameters, components and initial conditions shown in FIC. 2. The
temporal series was acquired by means of a digital storage scope, the x-coordinate is the voltage
in the linear capacitor C1 and the y-coordinate is the voltage in the linear capacitor C2. A part
of the phase plane portrait is also shown in FIG. 2, from it the temporal series was obtained using
a sampling frequency of 500 Hz.

Chua's Map

CHUA'S CIRCUIT

=10

FIG. 2. Nonlinear Circuit of the Chua’s Family and a part of its phase plane
portrait that was plotted using as state variables the voltages in the capacitors C1 and
C2. The phase plane portrait changes when the parameters in the circuit are varied
between the limits denoted in the diagram.

The estimated Lyapunov exponents for the Chua’s circuit are shown in TABLE I1I, when using

the estimation for ¢ = 15 and T' = 2500. The error was less than 5x10~2. Notice that Al is a
positive exponent which means that the dynamic behavior of the circuit is chaotic, as expected.
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TABLE I1I. Estimated Lyapunov Exponents for the Chua’s Circuit.

Estimated Lyapunov Exponents

P Chua’s Circuit

3 A =+4.07216
A=-0.32160
A3=-3.58462

5 Concluding Remarks

We have shown well known examples of mathematical models of chaotic attractors: Logistic,
Hénon, and Lorenz. We also showed an electronic model of a chaotic attractor: a circuit of
the Chua’s family. In a'll these examples we computed the Lyapunov exponents as a measure of
the system’s sensitivity to small perturbations in the initial conditions. For the example where
we know the equations we used the standard method: for the other two examples, we used the
method of Gencay and Dechert [5] that applies a neuronal network algorithm. We went from the
easier examples to the difficult one, that is, the Chua’s circuit where the time series is obtained
from direct measurements in the circuit. In the former examples the true values of the Lyapunov
exponents are known whereas in the Chua’s circuit the Lyapunov exponents are estimated and
to this has to be added the differences or variations, for any reason, in the parameters for the
circuit’s components. The justification for such trouble is that in a real chaotic system there is a
complexity even worse that in the electronic model. Therefore, the circuit provides a very valuable
experience that afterwards can benefit the understanding of the real chaotic attractor.

Recent experimental evidence points to biological neurons and biological neural networks as
very likely sources of chaotic attractors. As in the case of chaotic chemical reactions the biological
significance given to such behavior is speculative [9] [14]. Nevertheless, the application of the tech-
niques described in this paper might be very useful for interpreting data from neurophysiological
experiments where the electrical activity from many neurons is recorded simultaneously.

Similar to Chua’s circuit situation, due to the usual difficult conditions of neurophysiological
experimentation, in a biological neural network we can only obtain a short duration record of the
compound time series (train of action potentials). The individual time series have to be separated
and that procedure produces and additional source of uncertainty and every tool available for
interpreting the results is welcomed {15].

As a very simple example (for details see companion paper [1]) let us consider the rhythmic
firing single neuron (1) shown in the upper plot in FIG. 3. This time series was obtained from the
simulation of a mathematical model for a single neuron and two of its phase plane portraits for
two different physiological parameters (V — f, V — h) chosen as state variables show very clearly
the possibility of chaotic behavior. In the lower plot in FIG. 3 we show another simulation of
the rhythmic firing of a neuron (2) that belongs to a recurrent-ring network composed of single
neurons like the ones given in (7). From the two phase plane portraits we cannot conclude that
the neuron (2) in the network is chaotic and the conclusion about neuron (I) required of an
expert. This ambiguity can be surmounted if the Lyapunov exponents are computed for these
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time series and from there the importance of making such calculations and having experimental
testing circuits for improving the confidence in the results.

I -nTmEvu LI rt i nAﬁ‘.n_F‘hﬁ TR TToe 0N W n.o'u.u [ CR o

FIG. 3. (1) Rhytmically firing single neuron. (2) Rhytmically firing neuron be-
longing to a network formed with type (1) neurons.

On the other hand, in biological experiments there are problems similar to the ones present
when making measurements in the Chua’s circuit. When doing an extracellular recording, the
duration of it is limited to a few minutes and afterwards a considerable amount of preprocessing is
required to get to the individual contribution of each neuron recorded [16] [17]. The calculation of
the Lyapunov exponents for these individual contributjons could be added to help understanding
the functional role of oscillatory neurons and oscillatory networks. That is the work that we are
about to pursue.
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Abstract

A usual step in solving totally Schrodinger equation is to try first the case when di-
mensionless position independent variable w is large. In this case the Harmonic Oscillator
equation takes the form (d?/dw? —w?)F = 0, and following W.K.B. method, it gives the in-
termediate corresponding solution F' = exp(—w?/2), which actually satisfies exactly another
equation, (d?/dw? + 1 — w?)F = 0.

We apply a different method, useful in anharmonic oscillator equations, similar to that of
Rampal and Datta [1], and although it is slightly more complicated however it is also more
general and systematic.

After some arrangements Schrodinger equation for a simple harmonic oscillator is set as in (1):

(d*]du? + co — cu®)N(u) =0 (1)

hco = 2mE hic, = (mwp)? (2)

where ¢y and ¢, are the parameters of the differential equation, v = z — @ is the distance from
the particle to the point where potential energy is a minimum, wy is the classical angular frequency
of the movement, F is the total energy and N is the probability amplitude for the particle to be
found at « . In a very common proco(!ure, (1) 1s first transformed to equation (3), in which w is
a dimensionless independent variable, obtained by the mathematical manipulation (4):

(d*/dw* 4+ b — w?) f(w) =0 (3)

w?h = mwou?® hwob = 2F (4)

Some authors [2] get the solution of (3) for large w as a decaying exponential function of w/2,
by means of the W.K.B. method, which is a factor in the total wave function.
But others [3] simply propose the change of dependent variable (5) without mentioning the

W.K.B. method:
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f = exp(—w?[2)P(w) (5)

And a few ones [4] consider that the dominant term, when w is large, is w? and they write (6)
7

with b = 0 as an approximation of (3); and assert that (7) are its solutions:

(d?/dw? — w})F =0 (6)

F = exp(£w?/2) (7)

But after choosing the negative sign in (7), for the good behaviour of F' it is easy to demon-
strate that (7) does not satisfy (6), and rather satisfies (3) when b= 1. We will use a method
whose intermediate steps at all stages are correct.

Starting with (1), the Ansatz (8) is composed of two factors: P that gives information of the
zeros of N, and (-

N = exp(—G)P (8)

Non linear equation (9) is obtained from (8) and (1), with unknowns £ and G-

[P* = 2P'G') + [(G")? — G"}P = [co + cpu’] P (9)

(G = G7] = —co(0) + cat® (10)

( * means derivative with respect to u ).

If P is an n degree polynomial F,, then for n = 0, Py is a constant, and (10) is a non-linear
equation with only one unknown. By watching (10) it is noticed that (11) is the solution of (10)
if constraints (12) hold:

G = pu? (11)

432 =¢; 28 = co(0) (12)

The first eigenvalue E(0) can be obtained from (2) and (12). Consequently, (13) is the solution
of the Schrodinger equation for n = 0; Su? as the argument of the exponential function must be
dimensionless:

N = fo = Pyexp(—pBu?) (13)

Therefore w becomes a dimensionless variable and (1) is transformed into (7), and taking into
account (12):

w? = afpu’ (14)

[d?/dw?® + co(n)/aB — 4w?[a®]fu(w) =0 (15)
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(15) is precisely (3), with b(n) = co(n)/ap, and b(0) = co(0)/afd = 2/a.(16) is the correct
solution of (15) and (17) is the differential equation of the polynomial P,:

N, = P, exp(—w?/2) (16)

[d*/dw? — (4w]/a)d]dw + 2(b — 1)/a]P, =0 (17)

For a = 2 and b(n) = 2n + 1, (17) is the equation of Hermite, and P, = H, are Hermite’s
polynomials. The energy eigenvalues can easily be obtained.

The Simple Harmonic Oscillator Schrédinger equation is perhaps the known differential equa-
tion with the most accurate solution. It would not be worthy to obtain that solution again, 1if
methodological aspects are not taken into account. If a physicist plans to work in problems related
to differential equations, it is useful to give her ( him ) general and powerful methods. As the
Simple Harmonic Oscillator is the first approximation to many physical models, and one of the
first problems with which the students are put into contact, it is good to take advantage of meth-
ods that can be used in better approximations to more complex physical models, and more exact
formulations, as relativistic ones for instance. The author has made a review of the relativistic and
non- relativistic isotropic harmonic oscillators, and uniform magnetic fields [5], using this method.
With polar coordinates and centrifugal potentials, other polynomials depending on two quantum
numbers, and one extra factor are the solutions of the radial equations. First the author had
used the method in solving anharmonic rectilinear oscillators, and anharmonic 1sotropic oscillator
equations [6], and continues working further these topics.In all those cases mentioned, and here,
we consider that writing equations (9) and (10), is the most important step that permits to find
the solution for large w, and the independent dimensionless variable.
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Abstract

The harmonic oscillator with dissipation is studied within the framework of the Lindblad
theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck
equation, obtained from the master equation for the density operator, is solved for the Wigner
distribution function, subject to either the Gaussian type or the é-function type of initial
conditions. The obtained Wigner functions are two-dimensional Gaussians with different
widths. Then a closed expression for the density operator is extracted. The entropy of
the system is subsequently calculated and its temporal behaviour shows that this quantity
relaxes to its equilibrium value.

1 Introduction

In the last two decades, the problem of dissipation in quantum mechanics, i.e. the consistent
description of open quantum systems, was investigated by various authors [I, 2, 3, 1, 5]. Because
dissipative processes imply irreversibility and, therefore, a preferred direction in time, it ie gen-
erally thought that quantum dynamical semigroups are the basic tools to introduce dissipation
in quantum mechanics. In the Markov approximation the most general forni of the generators
of such semigroups was given by Lindblad [6]. This formalism has been studied for the case of
damped harmonic oscillators [7, 8, 9] and applied to various physical phenomena, for instance, the
damping of collective mddes in deep inelastic collisions in nuclear physics [10] and the interaction
of a two-level atom with the electromagnetic field [11].

In the present work, also dealing with the damping of the harmonic oscillator within the Lind-
blad theory for open quantum systems, we will explore the physical aspects of the Fokker-Planck
equation which is the c-number equivalent equation to the master equation for the density opera-
tor. Generally the master equation gains considerably in clarity if it is represented in terms of the
Wigner distribution function which satisfies the Fokker-Planck equation. It is worth mentioning
that these master and Fokker-Planck equations agree in form with the corresponding equations
formulated in quantum optics [12, 13, 14, 15, 16].
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The content of the paper is arranged as follows. In Sec. 2 we review the derivation of the
master equation of the harmonic oscillator. In Sec. 3 we transform the master equation into the
Fokker-Planck equation by means of the well-known methods (17, 18, 19]. Then the Fokker-Planck
equation for the Wigner distribution, subject to either the Gaussian type or the é-function type
of initial conditions, is solved by the Wang-Uhlenbeck method. Sec. 4 derives an explicit form of
the density operator involved in the Lindblad master equation, formulates the entropy using the
explicit form of the density operator and discusses its temporal behaviour. Finally, concluding
remarks are given in Sec. 5.

2 Master equation for the damped harmonic oscillator

The rigorous formulation for introducing the dissipation into a quantum mechanical system is that
of quantum dynamical semigroups [2, 3, 6]. According to the axiomatic theory of Lindblad [6],
the usual von Neumann-Liouville equation ruling the time evolution of closed quantum systems
is replaced in the case of open systems by the following equation for the density operator p:

B2 _ @up). )
Here, ®, denotes the dynamical semigroup describing the irreversible time evolution of the open
system in the Schrodinger representation and L the infinitesimal generator of the dynamical semi-
group ®;. Using the structural theorem of Lindblad [6] which gives the most general form of the
bounded, completely dissipative Liouville operator L, we obtain the explicit form of the most
general time-homogeneous quantum mechanical Markovian master equation:

d—'égﬁ = L(p(t)) = —%[H, o)+ 55 _(Vip(®), Vi1 + V3 p0V'D): @)

Here H is the Hamiltonian of the system and the operators V; and VJ-+ are bounded operators on
the Hilbert space of the Hamiltonian.

We should like to mention that the Markovian master equations found in the literature are
of this form after some rearrangement of terms, even for unbounded Liouville op.\erators. In this
connection we assume that the general form of the master equation given by (2) is also valid for
unbounded Liouville operators.

In this paper we impose a simple condition to the operators H,V;, Vj+ that they are functions
of the basic observables § and p of the one-dimensional quantum mechanical system (with [¢,p] =
ih) of such kind that the obtained model is exactly solvable. A precise version for this last
condition is that linear spaces spanned by first degree (respectively second degree) noncommutative
polynomials in § and p are invariant to the action of the completely dissipative mapping L. This
condition implies [7] that V; are at most first degree polynomials in § and p and H is at most a
second degree polynomial in § and p. Then the harmonic oscillator Hamiltonian H is chosen of
the form

B an 1 . mw? |
H = Ho + 5(4 + $9), Ho=2—T;p2+ 5 g*. (3)
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With these choices the Markovian master equation can be written [8]:

j’t’ [Ho, Pl - (A +)lg,pp + Pol + o 2h (A = w)lp, £ + dpl
—%—w, ol 20005, 5, ol) + 5214, 5,1l + 5. [, 1), (9

where Dy, Dyy and Dy, are the diffusion coefficients and A the friction constant. They satisfy the
following fundamental constraints [8]:

A%h?
i) Dpp > 0, ii) Dyq >0, iii) DypDyy — qu > Vs (5)
In the particular case when the asymptotic state is a Gibbs state
po(00) = e [Tre™7#, (6)
these coeflicients reduce to
A+ p hw A—u h hw
Dpp = -—2——hmw coth m, qu = TE coth m, qu - 0, (7)

where T is the temperature of the thermal bath.

3 Wigner distribution function

One useful way to study the consequences of the master equation (4) for the density operator
of the one-dimensional damped harmonic oscillator is to transform it into more familiar forms,
such as the equations for| the c-number quasiprobability distributions Glauber P, antmormal
ordering () and Wigner W associated with the density operator [20]. In this cise the resulting
differential equations of the Fokker-Planck type for the distribution functions can be solved by
standard methods [17, 19, 21] employed in quantum optics and observables directly calculated as
correlations of these distribution functions. ‘

The Fokker-Planck equation, obtained from the master equation and satisfied by the Wigner
distribution function Wz, z2,t) of real variables ,,z, corresponding to the operators §,p

mw 1 (8)
Ty = ‘/— , Ty = ——p,
1 2h(1 2 ’——2hmwp

has the form [20]:

oW W 0
—67 - Z 136 (xJW) + Z Qt] a axj W (9)
1,7=1,2 1]:1 2
where
S A-p  —w w_ 1 (mwDy Dy,
A_< w )‘+/‘)’ ¢ —h( Dy’ Dyp/mw ) (10)
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Since the drift coefficients are linear in the variables z; and z, and the diffusion coeflicients are
constant with respect to z; and z2, Eq. (9) describes an Ornstein-Uhlenbeck process [22, 23].
Following the method developed by Wang and Uhlenbeck [23], we shall solve this Fokker-Planck
equation, subject to either the wave-packet type or the é-function type of initial conditions.

1) When the Fokker-Planck equation is subject to a Gaussian (wave-packet) type of the initial
condition (710 and zyo are the initial values of z, and z, at t = 0, respectively)

Walar,23,0) = == exp{~2(a1 — 20)" + (a2 — )]}, ()

the solution is found to be

Q 1 B _ _ _
Wo(z1,22,t) = mexp{—ﬁ‘;[%(ml —51)2 4 Yu(T2 — 22)* + xw(T1 — T1)(22 — 22)]},(12)
where
1 a d d
By =gig2 — ~¢%, g1 =g; = =M 4 UM 1), ga=20e M+ (1 -, (13)
4 w A A
by = 910‘2 + 9202 — g3, Yuw=01+92— 93, Xw= 2(gra” + g2a) — gs(a+a”). (14)

We have put a = (g — iQ)/w,A = =X — iQ and d; = (a’mwDyy + 2aDp, + Dy, /mw)/h, dy =
(mwDgq + 2uDpq/w + Dyp/mw)/h and 0?2 = w? — p?. The functions Z; and Z,, which are also
oscillating functions, are given by

7, = e Mayo(cos Ot + %sin 0) + :1:20% sin 2], (15)
= At [ w .
Ty = e "xqo(cos 2t — g sin 0t) — Ziog Sin Q). (16)

2) If the Fokker-Planck equation (9) is subject to the é-function type of initial condition, the
Wigner distribution function is given by

Wian o t) = E%—\/rzﬂ%{—}glm = 8!+ ula - 22)" + xalar = )z — &2l (17)
where
2 * dl 2At dy —2At
B=fifa— f35, f1=f2=x(€ - 1), f3=7(1—e ), (18)
ba = fra"2 + f2a® —2fs, Ya=fi+ f2—2fs, xa=2[ha" + fra — fsla+a")]. (19)

So, the Wigner functions are 2-dimensional Gaussian distributions with the average values z; and
Z, and different widths. '
When time ¢t — oo, #; and Z; vanish and we obtain the steady state solution:

1 1
W(zy,22) = exp|—= o) (o0)ziz;). 20
( 1 2) QW\/m p[ 2 wz::‘,z( ):] ( ):L' J] ( )
The stationary covariance matrix 0¥ (o0o) can be determined from the algebraic equation
Ac% (00) + 0% (00)AT = QY. (21)
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4 Entropy and effective temperature

Entropy is a quantity which may be visualized physically as a measure of the lack of knowledge
of the system. When we denote by p(t) the density operator in the Schrédinger picture for the
harmonic oscillator, the entropy S(t) is given by

S(t) = —kTr(pln p). (22)

For calculating the entropy we shall compute straightway the expectation value of the logarithmic
operator < Inp >= Tr(plnp). Accordingly, the problem amounts to derive the explicit form of
the density operator for the damped harmonic oscillator.

To get the explicit expression for the density operator, we use the relation p =2rhIN{W,(q,p)},
where W, is the Wigner distribution function in the form of standard rule of association and N
is the normal ordering operator [17, 24] which acting on the function W,(q,p) moves all p to
the right of the ¢. By the standard rule of association is meant the correspondence prqt —
q"p™ between functions of two classical variables (¢, p) and functions of two quantum mechanical
canonical operators (¢, p). The calculation of the density operator is then reduced to a problem of
transformation of the Wigrer distribution function by the N operator, provided that W, is known.
A special care is necessary for the N operation when the Wigner function is in the exponential form
of a second order polynomial of ¢ and p. The Wigner distribution function previously obtained
corresponds however to the form of the, Weyl rule of association [25]. The solution (12) of the
Fokker-Planck equation (9), subject to the wave-packet type of initial condition (11) can be written
in terms of the coordinate and momentum as:

, b N YN S SO .
W(q,p,t)—zm/gexp{ 26[@((1 <g>) +Plp—<p>) =2x(9— < ¢ >)p- < p>)]}, (23)

where

[ 2h . ST
<g>=\/—ur. <p>=V2hmer,, (24)
mw

hw? "1
22 ~ 2
= = - e T 2
PETpESE > <> 4Q? mwd (25)
A2 A2 w?
V=04 =<p" >~ < p>°‘= ——megbw. (26)
L., . . huw?
\fza,,q(t)z§<qp+pq>—<q><p>=@>(w, b=y —x* (27)

and < A >= Tr(pxi) denotes the expectation value of an operator A. The Wigner distribution
function (23) can be transformed into the form of standard rule of association [26] by

2

1,
W,(q,p) = exp(5ih

3 0p8q)W(q,p)- (28)
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Upon performing the operation on the right-hand side, we get the Wigner distribution function
W,, which has the same form as the original W multiplied by & but with x — ¢2/2 in place of x.
The normal ordering operation of the Wigner function W, in Gaussian form can be carried out by
applying McCoy theorem (24, 27, 28]. The explicit form of the density operator is the following:

p= —h—exp[l ln 6 - — ! cosh™'(1 + -———Ez—,—-)
\/E 2 6 - th Qh\/f _ 2hx' + %hZ 2(6 - zhx )
h
x{$(§— < ¢ > +v(p—<p>) -+ ii)p(é— < §>)(p— < p>)—hl}], (29)
where
2 h
E=¢b—x" x =x—15 (30)

The density operator (29) is in a Gaussian form, as was expected from the initial form of the
Wigner distribution function. While the density operator is expressed in terms of operators § and
p, the Wigner distribution is a function of real variables ¢ and p. When time t goes to infinity, the
density operator approaches to

_h 1 2o +h .2 , N
p(oo0) = ————\/:—%—3 expl—gp=ing = +[03p(00)” + 34(00)p" — 0pq(00)(dP + PA)]; (31)

where 0 = 0,,(00)7g(00) — 02 (00) and [8]:

1
I + w? — 2

((mw)?w?® Dgg + (2M(A = 1) + w*) Dy — 2mw’(A — p)Dy),  (32)

opp(00) =

1
T0q(00) = 2(mw)2A(A? + w? — pu?)

((mw)2(2AA + 1) + w?) Dyq + w* Dy + 2maw’® (A + 1) D), (33)

_ 1
Tpe(00) = 2mA(A? + w? — p?)

(=(A+ 1)(mw)* Dy + (A = 1) Dy +2m(X* = ) D). (34)
In the particular case (7)

h hw hmw hw
Tgq(00) = Y coth SET 0pp(00) = —— coth ——, dp(00) =0 (35)

and the asymptotic state is a Gibbs state (6):

oy hw 1,1, mwt,
po(oo) = 2sinh e expl— (55" + o) (36)
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Because of the presence of the exponential form in the density operator, the construction of the
logarithmic density is straightforward. In view of the relations (25-27), the expectation value of
the logarithmic density becomes

1 K Ve, 2o+ k -
<lnp>—1nﬁ—§ln(6—7)—Tlln2—\/7_—h. (37)
By putting kv = /8 — 1/2, we finally get the entropy in a closed form:
S(t)=k[(v+1)In(v +1) —vinv]. (38)

It is worth noting that the entropy depends only upon the variance of the Wigner distribution.
When time t — oo, the function v goes to s = w(d3/A? — |dq|?/(A? + Q2))V/2/2Q — 1/2 and the
entropy relaxes to its equilibrium value S(c0) = k(s +1)In(s +1) — sIn s]. It should also be noted
that the expression (38) has the same form as the entropy of a system of harmonic oscillators
in thermal equilibrium. In the later case v represents, of course, the average of the number
operator [29]. While the formal expression (38) for the entropy has a well-known appearance, the
form of the function v displays clearly a specific feature of the present entropy. We see that the
time dependence of the entropy is represented by the damping factor exp(~2At) and also by the
oscillating function sin?(Q¢). The entropy relaxes to its equilibrium value S(oo).

5 Concluding remarks

Recently we assist to a revival of interest in quantum Brownian motion as a paradigm of quantum
open systems. There are many motivations. The possibility of preparing systems in macroscopic
quantum states led to the problems of dissipation in tunneling and of loss of quantum coher-
ence (decoherence). These problems are intimately related to the issue of quantum-to-classical
transition. All of them point the necessity of a better understanding of open quantum systems
and all requires the extension of the model of quantum Brownian motion. The Lindblad the-
ory provides a selfconsistent treatment of damping as a possible extension of quantum mechanics
to open systems. In the present paper we have studied the one-dimensional harmonic oscillator
with dissipation within the framework of this theory. From the master equation of the damped
quantum oscillator we have derived the corresponding Fokker-Planck equation in the Wigner W
representation. The obtained equation describes an Ornstein-Uhlenbeck process. By using the
Wang-Uhlenbeck method we have solved this equation for the Wigner function, subject to either
the Gaussian type or the §-function type of initial conditions and showed that the Wigner func-
tions are two-dimensional Gaussians with different widths. Then we have obtained the density
operator. The density operator in a Gaussian form is a function of ¢,p in addition to several
time dependent factors. The explicit form of the density operator has been subsequently used to
calculate the entropy. It relaxes to its equilibrium value.
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Abstract

We start with the total energy E for a system of three scalar relativistic
particles that, because of Einstein’s relation, will have square roots of functions
of the momenta. By taking powers of this relation, we finally get a fourth degree
polynomial in E?2, where the square roots have disappeared, and which we can
convert into a type of Schroedinger equation. To be in the center of mass frame
we pass to Jacobi momenta and then replace them by creation and annihilation
operators. We thus get an equation in terms of the generators of a U(2) group,
which, in principle, we can solve in an elementary way. Finally we rewrite our

equation in a Poincaré invariant form.

1 Introduction

In the II Harmonic Oscillator Conference I presented a paper dealing with systems
of relativistic particles interacting through Dirac oscillators. The results were later

applied to the mass spectra of baryons and mesons [1,2,3].

As all the results presented had already been published I prefer to deal in this paper
with a new approach, restricted here to scalar particles, that seems to me a systematic

way to attack many body problems with oscillator interactions.

*Member of El Colegio Nacional
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I will start by considering a non relativistic problem of n free particles and indicate
the steps by which later it can be reduced to a system with oscillator interactions,

which will serve as a model for the relativistic problem we wish to analyze.

2 The non-relativistic problem

Let us first start with a system of n free non-relativistic particles of the same mass m,
and take units

h=m=c=1, (2.1),
where the velocity of light will appear only in the next section, but we want to start

from the beginning with units in which everything is dimensionless.

The classical total energy is then
E= (1/2)Zps'pa (22)
=1
where p, are the three dimensional classical momentum vectors of particle s.

From the beginning we would like to work in the center of mass frame, because
our interest will be the internal energy of the system and not the contribution from its
center of mass motion. The best way to achieve this is to pass to Jacobi coordinates [4]

defined by the orthogonal transformation

1 L]
P, =[s(s+ 1)]‘5[Zpt - sp,+l],s =1,2,...n—1, (2.30)
t=1
1 s
Pn=n"2) P, (2.3b)
t=1

Clearly p/, is proportional to the total momentum and in the center of mass system

it will vanish, so Eq. (2.2) reduces to
E=3)_pP. P, (24)

The Schroedinger equations corresponding to (2.4) is obtained when we replace p),

by the operator

g (2.5)
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with x; being the corresponding Jacobi coordinate vector. As the p’ are hermitian

operators we can also write Schroedinger equation as
n—1
LY (P pt)w = By (26)
s=1
We can easily transform this into an hermitian oscillator operator equation if we
make the replacement
P, — P, — iwX,, (2.7a)
pt = pl +iwx!, (2.7b)

where the second equation follows from the first as both p!,x! are hermitian operators.

Thus we now get a Schroedinger equation of the form
5 o2 + a2 = /20t - )] = B, (28)
s=1
whose eigenvalue for the energy E will be
E =wN\, (2.9)

with N being the total number of quanta i.e.
n—1

N=> v, (2.10)
s=1

The previous analysis is standard except for the fact that we start from a system
of n free particles. Furthermore our notation in terms of three vectors and Jacobi
coordinates, avoids the worry about the Galilean invariance of the whole procedure.

We will now consider a similar set of steps for a relativistic problem.

3 The system of three relativistic particles

Rather than discuss the system of n relativistic particles, we shall restrict ourselves to
n = 3, as we will see that the case is general enough, with only the algebraic steps

becoming more complicated as n increases.

In our units the total energy for a system of three free relativistic particles can be

written as

E= :’:Hl :i:ng:tna, (31)
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where I1,,s = 1,2,3 is defined as

I, = (52 + 1)7. (3.2)

It is very important to note that, in our units, Einstein relation is E? =p*+1, and

when reduced to the E itself gives both the square root in (3.2) and the + signs in
(3.1).

Obviously we can not get a Schroedinger equation from the relation (3.1), but we
can take +II5 to the right hand side and square both sides. Then we can square again
and again appropriately, and we easily arrive at the fact that (3.1) becomes an eight

degree equation in E (actually of fourth degree in E?) of the form
®(E:L11?) =

E® — 4AE® + (4A* + 2B)E* — (4C? +4AB)E* + B> =0 (3.3)

where A, B, C are functions of I12,s = 1,2,3 given by

A=TE+115+ 113, (3.4a)
B =I1% + 113 4 I — 2112112 — 212112 — 2112113, (3.4b)
C? = 16112112113, (3.4¢)

Now we can write an equation that does not have E as an eigenvalue, but in which
it appears as a parameter, if we replace p, by —19/0x, as in (2.5), so that TI2 become

the operators

I = (-Vi+1), (3.5)

and we get

®(E*, T2y =0 (3.6)

Thus far we have obtained nothing useful because p1, p2, ps considered as operators
of the form (2.5), commute with the operator ® and so are integrals of motion, so that
1 can be written as

% = expli(pi - X1 + P2 - X2 + P3 - X3)], (3.7)
where now ps, pz, ps are ordinary numbers and we are returned to equation (3.3) whose
eight roots for the energy E are obviously given by (3.1) with all the possible combi-

nation of the signs +.
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Before proceeding further, along the lines of the previous section, we again remark
that we would like to work in the center of mass frame, as our interest is restricted to
the internal energy of the system. Thus we go, as in section 2, to the Jacobi momenta

Py, s = 1,2,3 which from (2.3) are given now by the matrix relation

P ﬁ % P1

=% % —f P2 | (3.8)
' 1 1

P VI A

As the matrix is orthogonal, transposing it we get p, in terms of p., and as we want

to be in the center of mass frame p} = 0, so we get finally

1 I 1 / l; 1 / 1 / 2 !
P1= 7P T EPn Py = 5P~ ePh Pa = —y[3Ph (3.9)

As Eq. (3.6) contains only powers of flf,s = 1,2,3, we can write the latter using

the hermitian property of p’, now considered as operators of the type (2.6), as

. 1 1 1

M= -pl-p,+-pf pL+ —=(p} - pl+p} - p!) + 1, 3.10
1= 5P1 Pit P p2+2\/§(p1 P2+ P2 Py + (3.10a)
1 = 2p - pf + pY By~ (b P+ pJ -p}) 4 1 (3.108)
2 2 1 1 6 2 2 \/‘ 1 2 2 1 ’

‘2_2 1t ’

2= Zpf.pl+1 (3.10c)

3

The interesting point is to introduce the oscillator interaction, exactly as in the
replacement we made in (2.7) in the non-relativistic problem. For notational purposes

we introduce the creation and annihilation operators

1 1 1
n, = ﬁ(w2x;—iw'2p;),s= 1,2, (3.11a)
£, = L (wix +iwip) s =12 (3.116)
s \/i s s/r0 T Lyey .
so that the relations (2.7) can be written as
1
P, — —iwIV2E,, (3.124)
1
p! — w2 \/2_17,, (3.12b)

Under this replacement the ﬂf operators become then

R 1 1
112 = = —_ 1 Bl
1 =w[Cy + 3022 + \/5(012 + Cn)] + (3.13a)
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1 1
5022 - —ﬁ
~, 4

I = §wC22 +1, (3.13¢c)

112 = w[Ci + (Cr12 4+ Ca)l +1 (3.13b)

where the operator Cyt,s,t = 1,2 are defined by

Ca=1n,& (3.14)
From the fact that
[€it, 5s) = 66t 5 1,5 = 1,2,35 8 =1,2, (3.15)
we have the commutation relations
[Caty Corr] = Coprbyrr — Cyrtsrr, (3.16)

and thus they are generators [5] of a U(2) group. Therefore the operators 112, 112, 112,

appearing in the equation (3.6), are linear functions of the generators of this group.

To obtain from Eq.(3.6) the eigenvalues of the energy for this relativistic oscillator
problem we can proceed as follows: First we note that the first order Casimir operator
of U(2) group is

N = Ci1 + Ca, (3.17)

and that it has an SU(2) subgroup whose generators are

F+ = CIZ’ (318&)
F,=(3)(Cn - Cn), (3.18b)
F_ = Cgl, (3186)

with a corresponding Casimir operator of the form

Fr=F F, + F(F,+1). (3.19)

The N, £ by definition commute with all C,; and among themselves, so from (3.13),
they will be integrals of motion of the operator ®(E?,11%). Thus the eigenstates of the
Eq. (3.6) can be characterized by the eigenvalues of N, FZ which we denote respectively
by

N, f(f+1) (3.20)
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with f taking the values (N/2,(N/2) — 1, down to 1/2 or 0 depending on whether N

is odd or even.

Another operator that commutes with N, F?is obviously F, and we shall designate

its eigenvalue by
v=ff-1,...,-f, (3.21)

so the eigenstates associated with N,ﬁ'z, F, could be represented by the ket
|INfv >, (3.22)

and the solution ¥ of Eq. (3.6) is necessarily a linear combination of these kets i.e.

/
=3 a|Nfv>, (3.23)
v=—7f

as N, F? are integrals of motion.

To obtain the eigenvalues of the internal energy E as function of N, f we need first

to consider the matrix elements of the operator ® of (3.6) in the basis (3.22) i.e.
< NfV|O(E* TN fv >, (3.24)

which from (3.13), (3.17), (3.18) is a straightforward, but laborious, calculation of the

type familiar in angular momentum theory, as the group there is also SU(2).

To get the internal energy
E(Naf,a), (325)
with o indicating the rest of the indices, we need to evaluate the determinant of the
(2f +1) x (2f + 1) matrix whose elements are (3.24) and equate it to zero. This gives
us a numerical equation of degree 4(2f + 1) in the variable E? and its solution provides

us with values indicated symbolically in (3.25).

As our purpose is to provide the method of solution for the internal energy of rel-
ativistic three body oscillator problem, we will only carry the calculation of (3.24) for

the single case when

N=f=v=0 (3.26)

which implies that
< 000|1T2000 >=1, s = 1,2,3 (3.27)

and so A, B,C? in (3.4) become respectively

A=3, B = -3, C? =16, (3.28)
289



and the equation for the energy is given by
E® — 12E® + 30E* — 28E%? + 9 =0, (3.29)

whose four roots for E? are E? = 1, repeated three times, and E? = 9, with £ = 43

and +1 as we expect from (3.1).

So far we have discussed, and given a method for solving, the equation related with
a three body relativistic problem with an oscillator interaction. In the next section we

proceed to show that we can formulate it in a Poincaré invariant form.

4 Poincaré invariance of the three body relativis-

tic equation with oscillator interactions

To express Eq. (3.6) in a Poincaré invariant form we start with definition of the total

four momentum for the three particle problem i.e.

P, = pu1 + pu2 + Pus, (4.1)

where ¢ = 0,1,2,3 with p,s,s = 1,2,3, being the time like component while p;;,7 =

1,2, 3, are the space like components of the vector p, of the previous section.

We shall require also a unit time like four vector u, which we shall define as

1
u,=P,(—9g"" P, P) 2, (4.2)

n

where repeated indices 0,7 are summed over 0,1,2,3 and our metric tensor is taken as
g’ =0 if CFT, 11 =92=933= —Goo = 1 (4.3)

Clearly in the center of mass frame where P, = 0,2 = 1,2, 3, u, takes the value

(uu) = (1a050’0) (4.4)

The operators n,,€,,s = 1,2, defined in (3.11) are space like three component
vectors which could be denoted by 7;,,&,,¢ = 1,2,3. A time like component could be
added through the definition (3.11) just by putting p._, 2/ instead of p!,, z}, and thus

we would get 7,5, &5 Which, together with 5, &5, form the four vectors

Muss §uss 1 =0,1,2,3; s = 1,2. (4.5)
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We do not want, to use these operators directly in the definition of the C,, of (3.14),

but rather utilize their transversal parts defined by

Moo = Mus + (87 Nostr )y, (4.6a)
£y = Eus + (977 &outir Ju,. (4.6b)

These transverse operators have the property that in the center of mass frame where

(w,) = (1000) we have, because of the matrix (4.3), that

Mm =0, £5=0, 08 =n,, &L =6, (4.7)

Thus now the generator Cy,s,t = 1,2, appearing in the definitions (3.13) of

ﬂf, fl%, f1§ can be expressed in a Lorentz invariant way by
Co = 9”7753 1+t’ (4'8)

as in the center of mass frame it takes the form (3.14) i.e. C,, = 9, - §,.

As for the energy E? appearing in Eq. (3.6) it can be substituted by the operator
E* - (—¢° P, P,), (4.9)

because in the center of mass frame P, = 0,7 = 1,2, 3, and from the metric tensor (4.3),
we see that the parenthesis in (4.9) reduces to P?, which is the time like component
of the four momentum vector squared and thus corresponds to the square of the total

energy of the system.

With the deﬁnitiogs (4.8) of C,; and (4.9) of E? substituted in Eq.(3.6) we get a
Poincaré invariant equgtion for our problem, as Cy;, given in terms of Jacobi cqordinates
and momenta, is also invariant under translation in space time, and thus commutes with
P,.

We have then arrived at a procedure for deriving a Poincaré invariant equation for a
three particle system with oscillator interactions which, in the center of mass reference
frame, can be solved by a simple group theoretical procedure, which leads eventually
to algebraic equations of degree 4(2f + 1) for E?, that can be solved numerically to

give the spectrum of the problem.
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Abstract

It is shown that the system of two coupled harmonic oscillators shares the basic sym-
metry properties with the covariant harmonic oscillator formalism which provides a concise
description of the basic features of relativistic hadronic features observed in high-energy lab-
oratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in
classical mechanics, while the present formulation of quantum mechanics can accommodate
only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r] symmetry
in quantum mechanics is discussed.

1 Introduction

The covariant harmonic oscillator formalism developed by the present authors has been shown
to be effective in explaining the basic phenomenological features of relativistic extended hadrons
observed in high-energy laboratories. In particular, the formalism shows that the quark model and
Feynman’s parton picture are two different manifestations of one relativistic entity. In addition,
the formalism constitutes a representation of Wigner's little group for a massive particle with
internal space-time structure [1].

Since the classical mechanics of two coupled harmonic oscillators is discussed in Goldstein’s
text book [2], there is a tendency to believe that this oscillator problem is completely understood
and that nothing new can be learned from it. We disagree. In this paper, we show that this
coupled oscillator system can serve as an analog computer for the above-mentioned covariant
oscillator formalism.

From the mathematical point of view, the standard approach is to construct a suitable repre-
sentation of the symmetry group after writing down its generators. The first symmetry group in
the present case is Sp(4,r) with ten generators [3, 4, 5]. The second symmetry group is SL(4,r)
which contains a number of Sp(4)-like subgroups. In constructing these groups, we shall note that
each oscillator has its own Sp(2) symmetry, and that the coupling of the two oscillator also has a
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Sp(2)-like symmetry. It was pointed out that these three Sp(2) groups can be combined into one
Sp(4) group.

Since Sp(4) is locally isomorphic to the deSitter group O(3,2), it can explain the Lorentz
transformation properties, particularly that of the covariant harmonic oscillator formalism. In
this paper, we concentrate on the issue of a lack of information on one oscillator affecting the
uncertainty and the entropy of the other oscillator.

2 Covariant Harmonic Oscillators

The covariant harmonic oscillator formalism has been discussed exhaustively in the literature, and
it is not necessary to give another full-fledged treatment in the present paper. Instead, we shall
concentrate on the issue of entropy in this paper. The entropy is a measure of our ignorance and
is computed from the density matrix [6, 7]. The density matrix is needed when the experimental
procedure does not analyze all relevant variables to the maximum extent consistent with quantum
mechanics. The purpose of the present note is to discuss a concrete example of the entropy arising
from our ignorance in relativistic quantum mechanics. ‘

Let us consider a bound state of two particles. For convenience, we shall call the bound state
the hadron, and call its constituents quarks. Then there is a Bohr-like radius measuring the space-
like separation between theé quarks. There is also a time-like separation between fhe quarks, and
this variable becomes mixed with the longitudinal spatial separation as the hadron moves with a
relativistic speed.

However, there are at present no quantum measurement theories to deal with the above-
mentioned time-like separation. We shall study in the present paper how this ignorance is trans-
lated into the entropy. Within the framework of the covariant harmonic oscillator formalism [1],
it will be shown that the entropy increases as the hadron gains its speed. The entropy defined in
this way is a more fundamental quantity than the hadronic temperature [4]. It is independent of
the question of whether the temperature can be defined (8].

Let us consider a hadron consisting of two quarks. If the space-time positions of two quarks
are specified by z, and z, respectively, the system can be described by the variables [9]

X = (xq + 7)/2, z = (2, — 23)/2V2. (1)

The four-vector X specifies where the hadron is located in space and time, while the variable z
measures the space-time separation between the quarks. In the convention of Feynman et al [9],
the internal motion of the quarks bound by a harmonic oscillator potential of unit strength can
be described by the Lorentz-invariant equation

[, & B
3 {2 - gz ¥l = 20t 2)

We use here the space-favored metric: z* = (z,y, z,1).
It is possible to construct a representation of the Poincaré group from the solutions of the
above differential equation [1]. If the hadron is at rest, the solution should take the form

1/4
¥(z,y,2,t) = ¥(z,y,2) (%) exp (—t2/2) , (3)
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where v(z,y, z) is the wave function for the three-dimensional oscillator with appropriate angular
momentum quantum numbers. There are no excitations along the ¢ direction. Indeed, the above
wave function constitutes a representation of Wigner’s O(3)-like little group for a massive particle
[1].

Since the three-dimensional oscillator differential equation is separable in both spherical and
Cartesian coordinate systems, %(z,y, z) consists of Hermite polynomials of z,y, and z. If the
Lorentz boost is made along the z direction, the z and y coordinates are not affected, and can be
dropped from the wave function. The wave function of interest can be written as

¥ (z,1) = (2) exp (—2/2) ¥a(z), (4)

with
1/2
()= (=) Hale)expl(=22/2) (5)

where ¥"(z) is for the n-th excited oscillator state. The full wave function Y"(z, 1) is

w300 = () Bew {1 (24 1)) ©)
z,t) = W(2)expq—= (= .
0 2" P12

The subscript 0 means that the wave function is for the hadron at rest. The above expression is
not Lorentz-invariant, and its localization undergoes a Lorentz squeeze as the hadron moves along

the z direction [1].
It is convenient to use the light-cone variables to describe Lorentz boosts. The light-cone

coordinate variables are

u=(z+0/VE  v=(:-)/V2 (7)

In terms of these variables, the Lorentz boost along the z direction,
(z’)_(coshn sinhn)(z) (8)
t")  \sinhn coshn/\t/)’

u' = e"u, v = e M, (9)

takes the simple form

where 7 is the boost parameter and is tanh™'(v/c). The wave function of Eq.(6) can be written
as

63020 = () B (e 0V exp [ ~hat 401} (10)

Tni2n

If the system is boosted, the wave function becomes

mn!2r

Yo(z,t) = ( ! )1/2 H, ((e""u + e"v)/\/i) exp {—% (6'2"u2 + 62"02)} . (11)

As was discussed in the literature for several different purposes, this wave function can be expanded
as [1]

n 1/2
i = (0 cosh™ 5 () tanh st (12)
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In both Egs. (10) and (11), the localization property of the wave function in the uv plane
is determined by the Gaussian factor, and it is sufficient to study the ground state only for the
essential feature of the boundary condition. Eq.(10) and Eq.(11) then respectively become

Yo (z,t) = (%)1/2 exp {—%(u2 + vz)} . (13)

If the system is boosted, the wave function becomes

- 1 12 1 —-2n, .2 21,.2
Wy(2,t) = (;) exp{—§ (e u® + e )} [ (14)
We note here that the transition from Eq.(13) to Eq.(14) is a squeeze trasnformation. The wave
function of Eq.(13) is distributed within a circular region in the uv plane, and thus in the 2t plane.
On the other hand, the wave function of Eq.(14) is distributed in an elliptic region. This ellipse
is a “squeezed” circle with the same area as the circle. This Lorentz-squeezed wave function can
be expaned as

Y " (tanh n) i (2)x(t). (15)

coshn 4

1/),,(z,t) =

From this wave function, we can construct the pure-state density matrix

po(z, 42, t) = ¢n(z’t)¢ﬂ(z,a t'), (16)
which satisfies the condition p? = p:
po(z, 82", t") = /p,,(z,t; 2t py (2", 2 1) d2"dt". (17)

However, there are at present no measurement theories which accommodate the time-separation
variable t. Thus, we can take the trace of the p matrix with respect to the ¢ variable. Then the
resulting density matrix is

pulz?) = [Valzt) (gl 0)) (18)
= () DtamhnPunice).

coshn/

The trace of this density matrix is one, but the trace of p? is less than one, as

Tr (pz) = /p,,(z,z')p,,(z',z)dz'dz (19)
1 \° .
= (coshn) Zk:(ta.nhn) 5

which is less than one. This is due to the fact that we do not know how to deal with the time-like
separation in the present formulation of quantum mechanics. Our knowledge is less than complete.
The standard way to measure this ignorance is to calculate the entropy defined as [6, 7]

S = —=Tr(pln(p)).
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If we pretend to know the distribution along the time-like direction and use the pure-state density
matrix given in Eq.(16), then the entropy is zero. However, if we do not know how to deal with
the distribution along ¢, then we should use the density matrix of Eq.(18) to calculate the entropy,

and the result is
S+2 {(cosh 7)? In(cosh ) — (sinh 5)? In(sinh n)} . (20)

In terms of the velocity v of the hadron,

S = —In[l - (v/c)?] - (”{ cf (125'3;)2. (21)

We can also calculate the density matrix using the Gaussian form of the wave function given
in Eq.(17), and the result is

1

1/2
— _l "2 Y }
~oosh 2,7) eXP{ 11(z +2)°/ cosh2n + (z — 2)* cosh 2] ;. , (22)

p(z, z’) = (
This expression also leads to the entropy given in Eq.(20)
The diagonal elements of the above density matrix is

1

1/2
_ .2
— 2”) exp ( z*[ cosh 21)) : (23)

pler2) = (
The width of the distribution becomes (cosh 5)!/2, and becomes wide-spread as the hadronic speed
increases. Likewise, the momentum distribution becomes wide-spread. This simultaneous increase
in the momentum and position distribution widths is called the parton phenomenon in high-energy
physics. The position-momentum uncertainty becomes coshn. This increase in uncertainty is due
to our ignorance about the physical but unmeasurable time-separation variable.

The use of an unmeésurable variable as a “shadow” coordinate is not new in physics and is of
current interest [10, 11, 12, 13]. Feynman’s book on statistical mechanics contains the following
paragraph [14].

When we solve a quantum-mechanical problem, what we really do is divide the universe into
two parts - the system in which we are interested and the rest of the universe. We then usually
act as if the system in which we are interested comprised the entire universe. To motivate the use
of density matrices, let us see what happens when we include the part of the universe outside the
system.

In the present paper, we have identified Feynman’s rest of the universe as the time-separation
coordinate in a relativistic two-body problem. Our ignorance about this coordinate leads to a
density matrix for a non-pure state, and consequently to an increase of entropy. It is interesting
to note that the density matrix of Eq.(22) becomes that of the harmonic oscillator in a thermal
equilibrium state if (tanh7)? is identified as the Boltzmann factor [15).

We have thus far studied the properties of covariant harmonic oscillators where the longitudinal
and time-like coordinates undergo squeeze transformations. The word “squeeze” is relatively new
in physics. However, squeeze transformations are almost everywhere in physics. In the rest of this
paper, we shall discuss the role of squeeze transformations in the system of two coupled harmonic
oscillators. We shall see that the problem of covariant harmonic oscillators with two variables is
the same as that of two coupled harmonic oscillators.
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3 Linear Canolnical and Non-Canonical Transformations
in Classical Mechanics

For a dynamical system consisting of two pairs of canonical variables z,,p; and z,p;, we can
introduce the four-dimensional coordinate system:

(myn2,M3,M4) = (T1, %2, P1,P2) - (24)

Then the transformation of the variables from n; to §; is canonical if

MJM =], (25)
h
wihere M - _B_E

t7 87]J 1y
and

0 0 10

0 0 01

T=1_1 0 00
0 -1 0 0

For linear canonical transformations, we can work with the group of four-by-four real matrices
satisfying the condition of Eq.(25). This group is called the four-dimensional symplectic group
or Sp(4). While there are many physical applications of this group, we are interested here in
constructing the representations relevant to the study of two coupled harmonic oscillators.

It is more convenient to discuss this group in terms of its generators G, defined as

M = exp (—iaG), (26)

where G represents a set of purely imaginary four-by-four matrices The symplectic condition of
Eq.(25) dictates that G be symmetric and anticommute with J or be antisymmetric and commute
with J.

In terms of the Pauli spin matrices and the two-by-two identity matrix, we can construct the
following four antisymmetric matrices which commute with J of Eq.(25).

-3(a ) 2T )
J“z(—a, o) "=3\0 &)

_i 0 J3 ___i 0 1
1=5( B) =30 o) @

The following six symmetric generators anticommute with J.

__1 0 0’3) __7'_<I 0) __i(O 01)
1(1_2(0'3 0/’ K2_2 0 -1/’ Ks = 2\oy 0/’

(5 o) e=s(io) @=3(5 L) @

and

Q1=

298



These generators satisfy the commutation relations:
[Ji, J;] = teijidy, [Ji, Kj] = i€ K, [Ki, K;] = (@i, Q;] = —ieijuJi,
[Ji’JO] = 07 [1‘,1'7Qj] = Z.(Sij‘]oa
[Ji, Q] = t€ijxQx, (K Jo) = iQ, (@i, J,] = —iK. (29)
The group of homogeneous linear transformations with this closed set of generators is called the
symplectic group Sp(4). The J matrices are known to generate rotations while the K and Q
matrices generate squeezes [4].

It is often more convenient to study the physics of four-dimensional phase space using the
coordinate system '

(51,52,53,54) = ($17P1,$2aP2)- (30)
The transformation frorh (1y,7,, 73, 74) is
& 1 0 0 0 m
62 _ 0 O 1 0 72
&0 1o of|m] (31)
64 0 0 0 1 4
and the J matrix becomes
0 1 0 0
-1 0 0 0
J = 0 0 0 1 (32)
0 0 -1 0

In this new coordinate system, the rotation generators take the form
_ -1 0 g9 _ ? 0 -1
h=F (a0 0) =301 7).
_ -1 09 0 _ -1 T 0
J3_2(0 —02>’ JO*Q (0 0’2)' (33)
The squeeze generators become

,_i aJ 0) _i(ag 0) ,___z'_(O 0'1)
1\1—-2(0 —oy y 1(2—2 0 o s 1‘3— 5 o 0 y

_i —03 0) _1(0’1 0) _1(0 0'3)
Ql - 2 ( O o3 ’ QZ - 2 0 o, ) QS - 2 O3 O . (34)
In addition to the ten generators given in Eq.(33) and also in Eq.(34), we can consider the scale
transformation in" which both the position and momentum of the first coordinate are expanded

and those of the second coordinate contracted. The Hamiltonian given in Eq.(46) suggests such a
transformation, and the transformation can be generated by

s=5(0 %) (35)
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This matrix generates scale transformations in phase space. The transformation leads to a radial
expansion of the phase space of the first coordinate [16] and contracts the phase space of the
second coordinate. What is the physical significance of this operation? As we discussed in Sec.
7, the expansion of phase space Jeads to an increase in uncertainty and entropy. Mathematically
speaking, the contraction of the second coordinate should cause a decrease in uncertainty and
entropy. Can this happen? The answer is clearly No, because it will violate the uncertainty
principle. This question, will be addressed in future publications. '

In the meantime, let us study what happens when the matrix S, is introduced into the set of
matrices given in Eq.(33) and Eq.(34). It commutes with Jo, J3, K1, K2, @1, and Q2. However, its
commutators with the rest of the matrices produce four more generators:

___l 0 — 03 __1 0 I
soad=5 (s o) s=5(7 o),

skl =2 (2 7). Baed=5(, o) (36)

o g3

If we take into account the above five generators in addition to the ten generators of Sp(4),
there are fifteen generators. They form the closed set of commutation relations for the the group
SL(4,r). This SL(4,r) symmetry of the coupled oscillator system may have interesting physical
implications.

4 SL(4,r) Formulation of Two Coupled Oscillators

Let us consider a system of two coupled harmonic oscillators. The Hamiltonian for this system is

1(1 1 ,
H= 5{;;11)%-{—;2p§+A’x3+Ba:§+C'x1x2}. (37)
where
A'>0, B >0, 4AB-C">0. (38)

By making scale changes of z; and 3 to (m;/ my)Y4z; and (maf m, )4z, respectively, it is possible
to make a canonical transformation of the above Hamiltonian to the form (17, 18]

H= 517; {+pi}+ %{Ax? + Bak + Cmyza ), (39)
with m = (m, my)'/2. We can decouple this Hamiltonian by making the coordinate transformation:
(yl) _ (095(0/2) —sin(a/2)) (1?1) _ (40)
Y2 sin(a/2) cos(a/2) 2
Under this rotation, the kinetic energy portion of the Hamiltonian in Eq.(39) remains invariant.

Thus we can achieve the decoupling by diagonalizing the potential energy. Indeed, the system
becomes diagonal if the angle a becomes

C
B-A

tana =

(41)
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This diagonalization procedure is well known
We now introduce the new parameters K and n defined as

- A+ B+ \J(A-DB)+ (7
K =/AB - (C?/4, expi-—-2n) = ' , 42)
/ pi 77) Vm ( ,
in addition to the rotation angle . In terms of this new set of variable.. A, 8 uud O take the

form

- « -2mn «
A = K (62” cos? 5 + e ¥ sint -;;) .

,
B = 1\"(2’ 2—4— 7’cosz-\,
sin 5 e 5 )

A=K (e"z"’ - 62") sina. (43)
the Hamiltonian can be written as
1 [ 3 { 1 “ -2n 2 ‘ 3
= g-fa Haif+ o {e i e (14)
where y; and y; are defined in Eq (40), and
@i\ _ [cos(a/2) — sin(u,"Z)) (pl )
(q2> - ( sin(a/2)  cos(a/2) P2/ (45)
This form will be our starting point. The above rotation together with that of Eq.(407 is zenerated

by Jo.
If we measure the coordinate variable in units of (m K }Y/4, and use (m &}~/ for the momentum
variables, the Hamiltonian takes the form

w 5 | W
H = el (e77¢ + e"yi) + 2¢ " (g3 +e7™3), (46)
where w = /K /m. If = 0, the system becomes decoupled, and the Hamiltonian becomes

H=§(pf+wf)+§(p§+r§)- (47)

In Sec. 8, we will be dealing with the problem of what happens when no observations are made
on the second coordinate. If the system is decoupled, as the above Hamiltonian indicates, the
physics in the first coordinate is solely dictated by the Hamiltonian

Hy =2 (o} +43). (48)

It is important to note that the Hamiltonian of Eq.(47) cannot be obtained froni Eq.(46) by
canonical transformation. For this reason, the Hamiltonian of the form

H' = % (e7gf + emy?) + % ("% + e7"2) (49)

may play a useful role in our discussion. This Hamiltonian can be transformed into ihe decoupled
form of Eq.(47) through a canonical transformation.
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5 Quantum Mechanics of Coupled Oscillators

It is remarkable that both the Hamiltonian H of Eq.(46) and H’ of Eq.(49) lead to the same
Schrédinger wave function. If y; and y; are measured in units of (mK)Y/4, the ground-state wave
function for this oscillator system is

1 1
Yoz, 22) = —ﬁexp {—i(e"yf + e ys } (50)

The wave function is separable in the y, and y, variables. However, for the variables z; and zj,
the story is quite different. If we write this wave function in terms of z; and z,, then

«

1 1 a .
P(xy,T7) = —\7—; exp {——5 [e"(ml cos 5 — T, sin —2—)2

+e~"(zy sin —; +2y008 5 )2]} . (51)
If » = 0, this wave function becomes
ol ) 1 { 1( : $2)} (52)
T2) = ex —(z7 + .
olT1, 2 NLi Platim e

For other values of n, the wave function of Eq.(51) can be obtained from the above expression by
a unitary transformation.
Z Am1m2(av Tl)ff)m,(dfl)tpmz(%), (53)
mim2
where ¢, () is the m*! excited state wave function. The coefficients Ay, m,(n) satisfy the unitarity
condition

> [Ammg ()| = 1. (54)
mims
It is possible to carry out a similar expansion in the case of excited states [1].

As for unitary transformations applicable to wave functions, let us go back the generators of
canonical transformations in classical mechanics. As was stated before, they are also applicable
to the Wigner phase-space distribution function. The canonical transformation of the Wigner
function is translated into a unitary transformation of the Schrodinger wave function. There are
therefore ten generators of unitary transformations applicable to Schrodinger wave functions (4, 3].

The Wigner phase-space picture is often more convenient for studying the problems of coupled
harmonic oscillators. Unitary transformations in the Schrédinger picture can be achieved through
canonical transformations in phase space. It has been known that canonical transformations are
uncertainty-preserving transformations. They are also entropy-preserving transformations [5]. Are
there then non-canonical transformations in quantum mechanics?

In the present case of coupled harmonic oscillators, we assume that we are not able to measure
the x; coordinate. It is often more convenient to use the Wigner phase-space distribution function
to study the density matrix, especially when we want to study the uncertainty products in detail
(18, 14].
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For two coordinate variables, the Wigner function is defined as [18]

1\2 .
W(zy,z2;p1,p2) = (;) /eXP{—2Z(P1y1 + p2y2)}

X Y*(zy + y1, 72 + y2)¥(z1 — y1, T2 — Y2)dy1dy,. (55)

The Wigner function corresponding to the oscillator wave function of Eq.(51) is

1 2
Wz, x5 p1,p2) = (;) exp {—e”(ml cos% — x2sin %)2
—e Mz, sin g + x5 cos %)2 — e (p1 cos % — posin 3)2
—e"(py sin% + p, cos %)2}. (56)

If we do not make observations in the z,p, coordinates, the Wigner function becomes
Wi(zy,p1) = / W (z1, 225 p1, p2)dz2dp,. (57)

The evaluation of the integral leads to

) 1/2
Wiz, p1) =
(21, p1) {ﬂ(] + sinh? 5 sin? a)}

X exp{ — 2 + G . (58)
coshn —sinncosa ~ coshn + sinycos a

This Wigner function gives an elliptic distribution in the phase space of z; and p1- This distribution
gives the uncertainty product of

(Ax)*(Ap)? = i(l + sinh? g sin’ ). (59)

This expression becomes 1/4 if the oscillator system becomes uncoupled with a = 0. Because z;
is coupled with z,, our ignorance about the z, coordinate, which in this case acts as Feynman’s
rest of the universe, increases the uncertainty in the z; world Wh]Ch in Feynman’s words, is the
system in which we are interested.

In the Wigner phase-space picture, the uncertainty is measured in terms of the area in phase
space where the Wigner function is sufficiently different from zero. According to the Wigner
function for a thermally excited oscillator state, the temperature and entropy are also determined
by the degree of the spread of the Wigner function phase space.

References

[1] Y.S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht,
1986).

303



[2] H. Goldstein, Classical Mechanics, Second Edition (Addison-Wesley, Reading, MA, 1980).
(3] P. A. M. Dirac. J. Math. P'hys. 4, 901 (1963).

[4] D. Han, Y. 5. Kim, and M. E. Noz, Phys. Rev. A 41, 6233 (1990).

[5] D. Han, Y. S. Kim, M. E. Noz, and L. Yeh, J. Math. Phys. 34 5193 (1993).

[6] J. von Neurnann, Mathematical Foundation of Quantum Mechanics (Princeton Univ. Press,
Princeton, 1955).

(7] E. P. Wigner and M. M. Yanase, Proc. National Academy of Sciences (U.S.A.) 49, 910 (1963).
[8] Y. S. Kim and F. P. Wigner, Phys. Lett. A 147, 343 (1990).
[9] R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. I 3, 2706 (1971).

[10] A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill,
New York, 1971); M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, Florida,
1975).

(11} H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States
(North-Holland, Amsterdam, 1982).

[12] B. Yurke and M. Potasek, Phys. Rev. A 36, 3464 (1987).

(13] A. K. Ekert and P. L. Knight, Am. J. Phys. 57, 692 (1989). For an earlier paper, see 5. M.
Barnett and P. L. Knight, J. Opt. Soc. of Amer. B 2 467 (1955).

[14] R. P. Feynman, Statistical Mechanics (Benjamin/Cummings, Reading, MA, 1972).
[15] D. Han, Y. S. Kim, and M. E. Noz, Phys. Lett. A 144, 111 (1990).

[16] Y. S. Kim and M. Li, Phys. Lett. A 139 445 (1989).

[17] P. K. Aravind, Am. J. Phys. 57, 309 (1989).

[18] Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific,
Singapore, 1991).

304



pgs /70 Nes-22088 )/

COHERENT STATES FOR THE RELATIVISTIC
HARMONIC OSCILLATOR v

V. Aldaya
Instituto de Fisica Tedérice y Computacional Carlos 1, Facultad de Ciencias, Universidad dr
Granada,Cempus de Fuentenueva,Granada 15002, Spain

[FIC, Centro Mizto 'nivcrsided de Valencia-CSIC, Burjasot {6100-Valencia,Spain.

J. Guerrero
Departamento de Fisica Tedrica y del Cosmos and
Instituto de Fisica Teérica y Computacional Carlos I, Facultad de Ciencias, Universidad de
Granada,Campus de Fuentenueva,Granada 18002, Spain

Abstract

Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-
Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann
transform relating Fock wave functions < z|n > and a set of relativistic Hermite polynomials
HN(z), (N = mc?/hw). Nevertheless, the relativistic creation and annihilation operators
satisfy typical relativistic com mutation relations [Z, ét] ~ Energy (an SL(2,R) algebra).
Here we find higher-order polarization operators on the SL(2, R) group, providing canonical
creation and annihilation operators satisfying [a, &J‘] = 1, the eigenstates of which are “true”
coherent states.

1 Group Quantization and the Relativistic Harmonic Os-
cillator (RHO) in the Bargmann-Fock-like realization.

The quantization of relativistic systems in a manifestly covariant way requires the use of com-

mutation relation of the form [Z,p] ~ Energy, which means a deviation from the canonical rules.

If the Hamiltonian, # and p close a Lie algebra, it is possible to resort to some kind of group

quantization method, i.e. some technique of obtaining unitary irreducible representations of a

group the Lie algebra of which coincides with the Poisson algebra of the physical system. In the

present case there is a Lie algebra, a central extension of SL(2, R) (SO(3,2) in 3+1 dimensions):
| h

. X S|
[8,8) = —i—, (£, 5] = imw*hi,  [8,0] = ib(i + —3

mc?

By, (1)

which reproduces the Poincaré algebra under the w — 0 limit and the Newton (non-relativistic
harmonic oscillator) algebra when ¢ — 00 and that, therefore, earns to be considered as the
algebra of a relativistic harmonic oscillator.
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Then, our starting point will be a central pseudo-extension of the group SL(2, R), denoted by
SL(2, R)®U (1) [1], whose coboundary is generated by a function which is an integer power of the
parameter of the Cartan subgroup. The precise techniques of the group-quantization procedure
[2] will be explained on the way.

The G = SL(2, R)®U(1) group law is:

zu — Zrn—2+znl+_]v(1_':__nj(zn-zln—2+znzn2)
zaull — Z’*T]2+Z*IC'+ N(12+ K)(zzl*n2+zlztn—2)

2 14+« /1 4k 2 2 z'z* 2z .
" — ! ! x ! 2
1 \/1+n"[\/ 2 \/ 2 nn+\/1+n'\/l+fc(2NT’n+2Nn T’)} @)
C" - C'C(W"'I'_ITI_I)_W
where

22z*

N
1
K" = K'K+N(Z*Z'TI_2 +thz772) :

K

1+

and z € C, n € U(1) C SL(2,R),¢ € U(1) and N = me’ It must be noted that N is quantized
(N =1,3/2,2,5/2, ...) on SL(2, R) but a positive number on the Universal covering group.
The coboundary

— nmoi—1. -1\ "N . .
A= (n"p''p7Y) 7 L SL2,R) x SL(2,R) — U(1), (3)

which is generated by
77N SL(2,R) - U(1), (4)

realizes a pseudo-extension. We say that A is a pseudo-cocycle and realizes a pseudo-extension
rather than a trivial cocycle (coboundary) realizing a trivial extension because in the ¢ — oo limit,
(n"n"’q‘l)—zN goes to a true cocycle on the non-relativistic harmonic oscillator (Newton) group
(see [3] for a general studylof the contraction process under which a true cocycle is generated by
a coboundary). ‘

Group quantization uses the (exponential of the) right-invariant vector fields, which act on
U(1)-equivariant complex functions on G as ordinary derivatives, to define a group representa-
tion (Bohr-Sommerfeld quantization). This representation is reducible, as can be stated by the
existence of non-trivial operators (all the left-invariant vector fields) commuting with the repre-
sentation.

The full quantization is achieved by reducing this representation in a way compatible with the
action of right vector fields. The reduced Hilbert space is made of complex functions ¥ on G such
that

Y((*xg) = (-¥(g), (€U(l),geq
X' = 0, VXLep

306



where a Polarizarion P is a maximal left subalgebra containing the generators in the kernel of A

and excluding the central generator = = X(L of U(1).
The left- and right-invariant vector fields are:

Xt = nﬁ+L(in—a—)— 2 =
i dz  2N(1+«)\ "0y 1+«
X = Kaz* N ) (m%> e
Xk = in%—%z%-{—?iz*az*
X{ = i((%EE,
XF = z‘n%
Xg = z(%EE

The operators are

wt
2 )

|#1,2] = -3, [ﬁ,sf] =3t [é,é"] =1+

where 7 = €' and 0 = with the commutation relations

. |
N
A polarization is given by P =< X% XL > with solutions

p g n z

Vo= (e ()

N(, = 1 2N+n—-1)! [2N—1/14+&\" N _,
Beln) = w\/ﬂ\'&N—l)!(?N)”V 2N ( 2 > ¢

which constitute the Fock-Bargmann-like space with the group invariant measure
The relativistic Fock space is given by:

(210 >

< 0‘0 >=1, ITL >= = )
\/n‘ H::l (1 + ﬁ)

In reality the measure on the whole group is gidi'i but the time variable (or #) can be factorized out.
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Zn> = \/n(l + EZ——N—l—Hn -1>
2”n> = \/(n+1)(l+-2-nﬁ)ln+l > (11)
Hn> = njn>

2 Relativistic coherent states (RCS).

In the group-quantization scheme, the coherent states (generalizing the standard non-relativistic
coherent states [4]), as well as the wave functions given above, are defined by mean of infinitesimal
relations (differential polarization equations), rather than a finite group action on the vacuum
associated with a previously given representation of the group [5,6] (see [7,8,9] for a more general
study of overcomplete families of satates non-necessarily associated with groups). They are defined
simply as:

|z >= ZfbnN'(z,z")ln > o Nz 2) =< zn > (12)

n

The associated (time-independent) wave functions < 2’|z >= ®,(2') correspond to the choice
Cn = cn(2) = ®N(2,27) in V(2').

The RCS are identified with the generalized coherent states on the unit complex disk [5] once
the change of variables zp = \/I——z— € D (z € C), has been made, where D is the unit complex

N1+k
disk.
The expectation valugs of Z and 3t in the coherent states are < 5 >= <—<Z£—TZ-E>Z = z and

<3t >= z*, making the variables z,z* € C specially suitable to describe the [Bargmann-Fock-
like representation. Defining the operators £ and p in the usual way, i.e.

. . mwh .
(z+zt> , b= 5 (zl‘ —z) (13)
we get < # >= z, < p >= p, where z and p are defined in the same way, constituting the
phase-space coordinates for Anti-deSitter space-time.
Repeating the group quantization in the new variables we obtain the x-representation in terms
of the relativistic Hermite Polynomials {10]. Both representations are related through the Rela-

tivistic Bargmann transform [11], the kernel of which is nothing other than the configuration-space
wave function of the coherent states |z > defined above:

T =
2mw

. 1+&\"N 217V
<z|lz>=C" (T) oV [1.+ No] ; (14)
where
mw 2za w?z?
S = T.’E — 1 T x , a= 1 + cz

Ay 1 (mw\T [2N —1 T(N)
oY = \/_7?(h7r) 2N \j\/ﬁF(N—%) (15)
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In the non-relativistic limit we regain the usual coherent states in configuration space:

1
< .’E'Z >N.R.= __l__ (mw>z6—22/2-{'\/2mu/hxze—1}(%1:2+|z|2) (16)

VT \hr

The uncertainty relations for the operators & and p are:

h 1 , 1 1

SAD = =1 k2 4 ——[4]2]18 — (22 4 2*2)] > “hx = — w

AtAp 2\/~ + o Al = )] 2 e = 5| <[] > | (17)
The equality holds for z = |z|e'™™", i.e. z € R, defining the so-called “intelligent states”, but only
for z = 0 (the vacuum) we reach the absolute minimum (see [12] for the calculations in the unit

Disk).

3 Canonical (higher-order) creation and annihilation op-
erators: canonical, relativistic coherent states.

The definition of polarization in group quantization can be generalized so as to admit operators
in the left enveloping algebra. This generalization has been already exploited in fipding a position
operator for the free relativistic particle [13] (as well as in solving anomalous problems [2]). In the
present case it also makes sense to look for basic operators satisfying canonical (versus manifestly
covariant) commutation relations. Let us then seek a power series in X and XL,

RLHO = XL+ SRIRIRL+
XLHo = X,I;_u‘)”(f)”(f_%f(ff(f)?ff(f-l—, (18)

such that PHO =< XLHO XLHO -, contains XL and excludes XZ. The coefficients of the power
n z n ¢ p

series are determined by the requirement that P#© is a polarization and the corresponding right

operators define a unitary action on the wave functions ¥ which fortunately are the same as before.
More concretely,

[XLHO XLHO] _ _9oXLHo
n y X2 z"
[kRHO gRHO| _ i (19)

The resulting higher-order (canonical) creation and annihilation operator are:

1 3 7 2
“HO _ A _ A At oaa At At ann _ ”
2 = a=%-— (m—— 32N2)2Tzz+32N2zszzzz+...: TTR? (20)
stro =t gt [ 2
1+k&
and the energy operator is:
AHo = N(& —1)=ala (21)
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where & = /1 + 2 (:212) and the operator ,/H_Lk must be considered as functions of the single

operator (étz“).
The commutation relations,

[a,af = 1
[7°,4] = -a (22)
{ﬁ”o,af = af,

have the non-relativistic (canonical) form. Their action on the Fock space is:

ian> = Vnln-1>
afln> = Vn+Dn+1> (23)
H%n > = njn >,

which reproduces the non-relativistic harmonic oscillator representation, although it must be
stressed that the estates |n > are the same relativistic energy eigenstates as before.

3.1 Canonical coherent states.

It seems quite natural to define canonical coherent states |a > as the eigenstates of the canonical
annihilation operator, éla >= a|e >, with solutions:

la >= e lI'2 Y \;—_'|n >, (24)

n n:

and define a non-relativistic Bargmann-Fock space in the usual way:

< aln >=< nla >"= e—|a|2/2f’/_7? = yN-R(g) (25)

The connection to the relativistic Bargmann-Fock space is given by

U,(z) =<zle> = Z<z|n><n|a> E\I' (2)UY-R(q)*

1 2N -1 _ . 14+&\" (2N)n 2az*\"

1 a2z (L%

Y 2N °© ( 2 ) Z 2N)» (1+rc) (26)
1
™

e~ lal’/2—21"/2 gaz" {1 - & [1 - = (|z|2 —az ) (3|z|2 - az*)] + }

The expectation value < a|Z|la > defines a classical function z = z(a) relating the variables
a,a* and z,z* as follows:

o~
~

<atla>=aY ¢, <al (aTa) la > (27)
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where c, are the coefficients of the power series of f(u) = ,/1 + =~. Then we define:
N

z(a)z\/l-}—%a (28)

Note that although < a| (&Ta)n la >#< aI&T"&"Ia >= |a|*®, any operator of the form F =
Oa™ (or G = &“’OA), where ﬁHO,O] = 0, defines a classical function F(a) (or G(a)) by the

formula: f

ﬁ(a) =a™ > o.lal*, G(a) = a*?> o,lal*™, | (29)

where < a|Ola >= ¥, 0, < a| (f[”o)n la >

The functions
) 2 | [2 . 30
w2) =1 =% @ z) = T x? (30)

turn out to be the Darboux coordinates taking the symplectic form ) = };dz A dz* to canonical
form Q = da A da*.
Finally, we define

. h (o ot
qg = —(a+a
2mw
h
o= m{w af —4 (31)
2
satisfying
and their corresponding classical functions. For these operators we obviously obtain
N
AgAT = 5 (33)

on the |a > states.

4 Final Remarks

The construction of the canonical (higher-order) creation and annihilation operators &t and @ in
the 1+1-D relativistic harmonic oscillator is a matter of convenience rather than a necessity since
a first-order polarization, the manifestly covariant one, P =< X,,L,X L'> exists. However, the
situation become quite different for the relativistic harmonic oscillator with spin, at least from
a geometrical point of view. The reason is that the doubly pseudo-extended 50(3,2) (anti-de
Sitter) Lie algebra, containing the commutators

. . s I .
(&, ;] = ihé;;(1 + WE) (34)
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accounting for the mass, and the comruutator
[j+7j—]:2(j3+ji) (35)

accounting for the spin, does not admit a consistent way (i.e. compatible with the rest of the
symmetry) of defining two sets of first-order conjugated creation-annihilation (}101' co-ordinate-
momentum) operators. In other words, the system does not admit a (first-order) polarization
and therefore the Hilbert space of U(1)-equivariant complex functions on the group can be only
partially reduced [14]. The full reduction then requires the introduction of higher-order operators
in the polarization, generalizing those introduced here and accounting for proper intrinsic spin
operators.
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Abstract

Specific oscillators - hereafter called pseudosupersymmetric oscillators - appear as interesting
nonrelativistic concepts in connection with the study of relativistic vector mesons interacting with an external
constant magnetic field when the real character of the energy eigenvalues is required as expected. A new
pseudosupersymmetric quantum mechanics can then be developed and the corresponding pseudosuper-

symmetries can be pointed out.

1. Introduction

There are two old problems which appear when we study the interaction of
relativistic vector mesons (spin one particles with nonzero rest mass) with external
constant magnetic fields chosen, in particular, as directed along the z-axis, i.e.
B = (0,0,B). The first one which will be of special interest here is mainly connected to the
energy eigenvalue problem subtended by the inclusion of an anomalous moment
coupling inside the relativistic equation of motion ensuring that the spin 1-boson has a
gyromagnetic ratio value of g = 2. A survey of such a question has recently been
presented in the Daicic-Frankel study!!! where further references can aiso be found. We
will refer to that paper in order to save place here. The second problem is concerned with
the fulfilment of the causality principle through the corresponding wave equation

1 E-mail : Beckers at BLIULG11.
2 Chercheur, Institut Interuniversitaire des Sciences Nucléaires, Bruxelles.
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describing such an interaction. Its discussion can be referred to another contribution
where the so-called method of characteristics[®! plays the prominent role. Let us only
comment on the fact that our final equation will satisfy all the requirements needed by the
causality principle but it will not be discussed here, so that we can polarize our attention
mainly on the first problem. ‘

After a short remark pointing out the first difficulty (§2), we want to insist on our
understanding of the so-called parasupersymmetric quantum mechanics (PSSQM)[4.5]
for motivating our way of eliminating the above problem (§3) and for studying the new
(nonrelativistic) formulation and Hamiltonian that we get in that way (§4). Besides the
usual bosons, we are led to the introduction of a new kind of fermions that we call
"pseudofermions” (§5) and to new symmetries that we call "pseudosupersymmetries” as
it will be clear in the following by comparison with well known supersymmetries!®! and
parasupersymmetries!4-5],

2. On the reality of (relativistic) energy eigenvalues

By exploiting the remarkable Johnson-Lippmann contribution”! developed for spin
; -particles, it is easyl'l to decompose the spin 1-formalism in a z-part associated with the

so-called H,, and, in a (x,y)-part, associated with the so-called H, , the latter being
readily studied through 1-dimensional harmonic oscillator characteristics. Then, the
energy eigenvalue problem for vector mesons leads to information such that

E? = 1+eB(n+-)-2eBs (2.1)

N

where e is the charge of the vector meson, n the Landau-level quantum number
(n = 0,1,2,.) and s the eigenvalues of the third component of the spin operator
(s = 0,+1), when we have chosen i =1, m =1, ¢ =1 and defined the angular
frequency ® = e B of the resulting harmonic oscillator. In eq.(2.1), the first term in the
righthand side corresponds to the relativistic rest mass term, the second one to the
original discussion of H, and the third one to the presence of an anomalous magnetic
moment coupling!'l. Such an equation evidently permits

E2<0 (2.2)
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when eB > 1, n =0, s = 1, so that we are dealing with the problem of possible
complex energy eigenvalues for intense magnetic fields of critical magnitudes.

3. Some observations from PSSQM

PSSQM has been proposed by Rubakov and Spiridonov!l and slightly modified by
usl®l. Both approaches consider the superposition of bosons and parafermions!® of order
2 and lead to 3-fold degeneracies in the energy spectrum. But, if, in the Rubakov-
Spiridonov context!l, the groundstate is characterized by a negative energy eigenvalue,
our groundstate has a null energy eigenvaluel®l. We have thus pointed out that the
relativistic result (2.2) could have a direct connection with the nonrelativistic Rubakov-
Spiridonov approach and that, consequently, we could handle the problem by exploiting
our approach and its relativistic counterpart excluding results such as those given by
egs.(2.1) and (2.2).

In fact, such a method has recently been developed by one of us!'% by following
strictly our PSSQM-contextl®l. Here, we want, in a certain complementary way, to center
our attention on new harmonic oscillatorlike characteristics ensuring the reality ot the
energy eigenvalues.

4. To a new nonrelativistic Hamiltonian

We have modified the relativistic formulation of vector mesons interacting with our

é—magnetic field in such a way that we get a six-component Klein-Gordon type equation
of the form

P2X(X) = (1+n;+ma+pa+eB-2eBXz)x (X (4.1)
where ni=pi-eA;, i=12, (4.2)
A, = -1y, A2=%Bx, (4.3)
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1 0 0
53 = %3_23), S3=( 0 0 0 ) (4.4)
0o 0 -1

This 6 by 6 formulation leads to a bounded energy spectrum (Eo 2 0) with 3-fold
degeneracies and admits a ponrelativistic (NR) limit characterized by the Hamiltonian

HNR=;(n$+n§)+3§3(1-2s3). (4.5)

Such developments solve our (relativistic) problem connected with egs.(2.1) and (2.2).
They also point out a new Hamiltonien (4.5) which, now, has to be visited.

5. From this new relativistic Hamiltonian : the appearance of
"pseudofermions”

From supersymmetricl® as well as parasupersymmetricl*%l considerations, we
immediately observe that the Hamiltonian (4.5) is made of two contributions : the first term
is a purely bosonic part constructed in terms of gven bosonic operators ny and nx while
the second term looks like a purely "fermionic" part constructed in terms of odd
“fermionic” operators called hereafter A and B. In fact, we propose to construct new

charges

Qi =Any+Bmny, Qo = -Bry+Amy, (5.1)
where
1 0 0 1414 ) 1 (0 0 1-i)
A=——| o 0 -1+i}|, B=——=| 0 0 14+i}. (5.2)
2V2\ y.i .1-i o 272 1,i1-i o

The matrices A and B are Hermitean (so that the charges also are) and have a
manifestly odd character. It is straightforward to show that, with i,j = 1,2, we have

Q} = QiHna, [Qi,Hnr] =0, (5.3a)
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inQ,'=QjQ'?=-QinQi=Q,‘HNR, P #j. (5.3b)

Such a structure is neither a Lie superalgebral''l | nor a Lie parasuperalgebral'? _ |t is
more clearly characterized when we refer to the two charges

Q=c(Q-iQx), Q' =¢c(Qy+iQ2), ce R. (5.4)

Indeed they lead to the structure relations

Q? =0, Q% =0, [Hw.Q]=[Hw,Q'] =0,
(5.5)
QQ'Q = 4c?2QHnr, Q'QQ" = 4¢2Qt Hpg,

already obtained by Semenov and Chumakov!'3l as possible ones associated with the
discussion of 3-level systems. By searching for the charges (5.4) in terms of annihilation
and creation (oscillatorlike) operators, we define

Q=;(A+ie)(n1-in2)=v/&{ba*, Q' = Vob'a, (5.6)

with a= ' (m+ing) (5.7)

V2 o
as usual. We then get information on our "fermionic" operators b and b! such that
b2=b =0, bb'b=b, b'bb' = b'. (5.8)

These relations mean that the corresponding particles are bosons (see eq.(5.7)) and "a
new kind of fermions” (see eq.(5.8)) that we call "pseudofermions”. The first equalities in
eqs.(5.8) corresponding to nilpotencies show that they are not far to satisfy the Pauili
principle but the last equalities say that they are not at all usual fermions. Moreover, we
can prove that they are neither parafermions!8l, nor quons!'4, nor orthofermions!'5].

Forc =1 gr ;— egs.(5.4) and (5.5) appear to be compatible with those of PSSQM

developed by Rubakov-Spiridonovl4 or by us®l, respectively. Moreover, the
corresponding structure relations of supersymmetric developments(® imply the egs.(5.5).
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These properties suggest that our symmetries (evidently called "pseudosuper-
symmetries”) are, in a certain sense, "between" super- and parasupersymmetries. We
have thus the basic ingredients of a new tool that we call "pseudosupersymmetric
quantum mechanics” which could be developed in terms of two. "pseudopotentials” W
and Ws.

References

[1]
(2]
(3]

4]
[51
(6]
(7]
(8]

9]

[10]
[11]

[12]

(13]
[14]

[15]

J. Daicic and N.E. Frankel, J.Phys. A26,1397 (1993).

B. Vijayalakshmi, M. Seetharaman and P.M. Mathews, J.Phys. A12,665 (1979).
R. Courant and D. Hilbert, Methods of Mathematical Physics (J.Wiley & Sons,N.Y.,
1962).

V.A. Rubakov and V.P. Spiridonov, Mod.Phys.Lett. A3,1337 (1988).

J. Beckers and N. Debergh, Nucl.Phys. B340,767 (1990).

E. Witten, Nucl.Phys. B188,513 (1981).

M.H.Johnson and B.A. Lippmann, Phys.Rev. 76,828 (1949).

Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics (University
of Tokyo Press,Tokyo,1982).

J. Beckers and N. Debergh, Parasupersymmetries and Lie superalgebras, in
Proceedings of the 18th International Colloquium on Group Theoretical methods in
Physics, MOSKOW 1990, Eds. V.V. Dodonov and V.l. Manko, Lecture Notes in
Physics 382, Springer Verlag, Berlin,414 (1991).

N. Debergh, to be published in J.Phys. A (Letter) (1994).

V.G. Kac, Adv.Math. 26,8 (1977) ;

V. Rittenberg, Lecture Notes in Physics, vol.79,3 (1978).

J. Beckers and N. Debergh, J.Phys. A23,L751S,L1073 (1990).

V.V. Semenov and S.M. Chumakov, Phys.Lett. B262,451 (1991).

O.W. Greenberg, Quons, an Interpolation between Bose and Fermi Oscillators, in
Proceedings of Workshop on Harmonic Oscillators, NASA Conference
Publications 3197 (1993).

A. Khare, A.K. Mishra and G. Rajasekaran, Int.J.Mod.Phys. A8, 1245 (1993).

318



N95-22995 .-

199571165773
¢
ON PARASUPERSYMMETRIC OSCILLATORS
AND RELATIVISTIC VECTOR MESONS
IN CONSTANT MAGNETIC FIELDS

N. DEBERGH and J. BECKERS

Theoretical and Mathematical Physics,
Institute of Physics, B.5, University of Liége, B-4000-LIEGE 1 (Belgium)

Abstract

Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling
schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in
interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric
oscillatorlike system, is characterized by real energies as opposed to previously pointed out relativistic

equations corresponding to this interacting context.

1. Relativistic descriptions of free vector mesons
Free vector mesons can be described through many (well known) equations, f.i.

- the KEMMER equation!'!

(B*pu-1)w =0

where the (10 x 10) matrices B, generate the Kemmer algebra

1 Chercheur, Institut Interuniversitaire des Sciences Nucléaires, Bruxelles.
2 E-mail : BECKERS at BLIULG11.
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BuByPBr+BaBvBy = QuvBr+0avBy-

- the SAKATA-TAKETANI equation!?

i%<p= (I ® o2)+

2

Hsto

2
E—I ® (02+i01)-i5;S|pjp ® o1 | @

where the (6 x 6) matrices are direct products of D! and Pauli matrices. Notice that,
in the two above equations, we take as units the rest mass, the velocity of light and the

Dirac constant. Our choice is also to use the metric tensor

G

={g"g°% =-g" = 1}.

The Kemmer equation reduces to the Sakata-Taketani one when one considers the
(six) physical components, only. Namely, the Hamiltonian form of the equation (1.1)
together with the initial condition write

ot

iy =(Po.Bilp+Bo)w = Hew,

(HeBo-1)w = 0.

(1.3a)

(1.3b)

One can then shows that, through the action of the transformation S = 1+ B ﬁg pj. the

above system becomes

(83-1)w =0,
i -y = Hst ¥
Ry
e Sy =
posee;
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(1.4b)
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2. Relativistic descriptions for vector mesons interacting with
constant magnetic fields

The corresponding equations hold for vector mesons jnteracting with constant
netic fi ir lon X,-aXis, i.e.

- in the KEMMER case @

(B*my-1+(1-B2)eBSs)y =0 (2.1)
where Ty = Pu-€A,, (2.2)
Ag =0, A1=-EX2, A2=§—X1, Az = 0, (2.3)
2 2
B5=i£pvaBquBpﬁov €123 =1, (2.4)
Sa =i[B1,B2); (2.5)

- in the SAKATA-TAKETANI case

—

i%(p = (I ® 02)+E2£I ® (02+i0'1)-iSjS|7tht| ® 61+eBS3 ® o5 9 (2.6)

The eigenvalues E corresponding to the physical components write 3.4 in 'both cases
E2=1+eB(n+;~)+2eBS, S=0,+1, n=0,1,2, -, 2.7)

it we limit ourselves to the so-called perpendicular part (i.e. in the plane (xy,x2)) . So,
for the particular values n = 0 and S = - 1, we obtain

E2=1-eB (2.8)

which could, for sufficiently large magnetic fields, lead to complex energies. This is an old
problem [51 and we propose to solve it by investigating a very recent tool : the so-called
"parasupersymmetric oscillators"”
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3. Parasupersymmetry and the corresponding new Sakata-
Taketani equation

The nonrelativistic limit corresponding to the interacting Sakata-Taketani or
Kemmer Hamiltonians (2.1) and (2.6) is

HNR=\;%~(R$+RE)+GBS3. (3.1)
Taking
w=eB, (3.2a)
1 .
a= _! —(mq+im) 3.2b
6B 2 (3.2b)
at = - 1 _(my-ima), (3.2¢)
Y2eB
we get
, 1 0 0
Har = @{a,at}+wS;3 = 2{a,a'}+ol 0 0 O (3.3)
2 2 |
0 o -1
1 0 0
and ENR=m(n+%)+m o 0 0 (3.4)
0 o -1

These are the RUBAKOV-SPIRIDONOV parasupersymmetric Hamiltonian and spectrum
for an oscillatorlike interaction®®. A specific feature of this parasupersymmetric model is
the existence of negative eigenvalues. This evidently leads to complex relativistic
energies for sufficiently large magnetic fields and confirms the Tsai results!S].

We propose here to eliminate this defect by using another parasupersymmetric
mode! : the BECKERS-DEBERGH parasupersymmetric oscillator (7l characterized by
positive energies, only. More precisely, the BECKERS-DEBERGH spectrym corresponds
to
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1 0 o0
Exn=o(n+1)+20 0 1 o |
0 0 -1

(3.5)

Thus, the remaining point is to construct a Sakata-Taketani Hamiltonian whose

nonrelativistic limit would lead to such a spectrum. We take 18l

H 1t$+1t§ , i 2 2 2
sT=(I® 0'2)+—~é*—1 ® (O’2-I0‘1)+§(ﬂ31+n2)33 ® o4

S(nf+mB) A+ (M5 + ) A - £ (i My -2 112) (87 -85) @ o
'é(mﬂz-nzm){smsz}@G1+93n,
where A, n are undetermined and
Il = pa+eA;, a=1,2,
In order to solve our problem, we have to impose different conditions like |
{1,(5%-53)® o1 = {%,{51,S2} ® o1} = 0,
- N(5%-88) ® 01,m)+2((S1.52) ® o1)1- ] {S1,82} ® o5

-, 181,82} ® o1,m)-2((53-53) ® o1 )a+ 1 (5%-53) ® o -

in order to the eliminate terms like (n?+n2)?,.-- .
We then obtain
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ay 0 0 -1 a3 0
( 1 4 3
0 a 0 -a Lo
1 3 "4
0o 0 O 0 0 a2
A= ,
i a3 0 -a; 0 O
4 3 1
a3 L 0 0 -a; O
3 4 1
o o0 o0 o o0 O
o -2ia4 0] o4 as
2iay o4 0 - 03 oy
0 , 0 Os 0 0
n= I
4iaz-o04 o3 -0 2ia
\ - 03 4iaz-ay 0 -2iay -0y
0 0 g 0 0
together with constraints like
a%-a§=-116, az 3 = aq oy,
Taking now
a1 = 0 1 a2 =" ' y a3 = 1 ’
2 4
= ~i— ' = = = - ! ' = —l—
aq m\/_3_, ap =i, ag =0, o4 m+2' s P
we finally have
1 0 O
' B.D
Enp = ©(N +;—)+@( 0o -1 0 )EENR
o O 1
with n'=ng+n2.
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Of course, in these developments, we have exploited Johnson-Lippmann
considerations(®] relating the motion in a constant magnetic field with oscillatorlike

interactions and implying in particular that the eigenvalues of the operators ;—(nf + né)

and ;—(Hf + n%) are w(ny +;—) and w(n2 +;—) , respectively. As a result, a Sakata-

Taketani type Hamiltonian avoiding the complexity of the energies is
HsT = (1 ® 02)+i(I ® 03)+i(V3-1)S3 ® o3

+2L1 ® (orioz)%sg ® (01 +i0y)

+1_(n$+n§)(-is3 ® 61+i1S3® 01 +1 ® (02-i0y ))

+ 174 m3) (i85 © 01+i83 © o1 +1 @ (c2-icy))

-y (T o212 ) (87-88) ® o1 -] (n1 M2+ 72 111) {S1,S2} @ o

+eB(%I®(o1+icz)+%s§®oz). (3.10)
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Abstract

In this paper we discuss the Dirac Oscillator wave equation in terms of a pseudoclas-
sical language, using Grassmann variables to describe the internal degrees of freedom of
the oscillator. Regarding the original wave equation as a classical constraint, we use the
theory of constrained systems, to develop a reparametrization invariant lagrangian, which
is the pseudoclassical equivalent of the quantum case. The consistency of the Hamiltoman

formalism and the quantization procedure are also analized.

1. Introduction

As is well known, in the second decade of this century Dirac developed the square
root method, to analyze the internal spin degrees of freedom in quantum mechanics. Dirac
accomplished his task by means of a Clifford algebra for these degrees. Altought at that
time the Grassmann algebras were already known, there existed no classical counterpart
available for his approach. In present day point of view, however, we know that this
old problem can be formulated using anticommuting, fermionic variables, to reproduce
the behavior of the spin degrees of freedom at the classical level. Since the Grassmann

variables have no direct physical meaning, the theories formulated with them are usually
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called pseudoclassical.

One important point of the approach formulated above is that, associated with the
anticommuting variables and involving also the rest of the non-Grassmann dynamical vari-
ables of the theory, (called bosonic variables), there exist a supersymmetric gauge invari-
ance in the formulation. One of the reasons for this supersymmetry is the fact that any
quantum wave equation present in the theory is translated at the classical level as a first
class constraint. According to Dirac conjecture, all first class constraints generate gauge
transformations, but since in this case the Grassmann and the bosonic variables are mixed
up by the gauge transformation they become, in fact, supersymmetric.

This way of reasoning has been analyzed by several authors [1,2,3,4] as a pevious step
to quantization. The idea is in some sense based in Dirac’s point of view that we should
first try to fully understand a problem at a classical level, and only then try to quantize it
[5]. One consequence of this procedure is that we can apply it to systems which we don’t
fully understand, for instance in the case of two body, or more, relativistic wave equations
[1]. The interesting point here is that the time evolution of the dynamical variables are just
the Euler Lagrange equations, which in principle are known, thus solving the dynamics of

the problem, at least at the classical level.

2. The Dirac Oscillator

Let us begin with a simple introduction to the Dirac Oscillator. Some years ago,
Moshinsky and Szczepaniak introduced a relativistic wave equation linear in momentum
and in position which has an harmonic oscillator spectrum plus a strong spin-orbit coupling
term [6]. This equation is obtained by the replacement of the momentum of the particle

in the Dirac equatiom by

p — p—itmwrf, 1)

where p is the momentum, m the mass of the particle and r is its position, w is the
frequency of the oscillator, and B the Dirac v* matrix. Taking advantage of the frame

dependence vector u¥, it is easy to show that the Dirac oscillator equation can be put in
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the manifestly covariant form

(6-P+mbs)yp =0, 2)
where
P* = p* — 2imwz’ (4 - 6)8s, 3.0)
and
g =¥ + (4 - z)a” 3.6)

The operators # and 65, are expressed in terms of the Dirac matrices in the following way

a* 571—5757#’ p=0123

3.0
i
05 =“\/—§75,
where 75 = 19°y'42y3. We use natural units in which & = ¢ = 1 and our metric is
v

given by (n,,) = diag.(—1,1,1,1). We recover the original Dirac Oscillator in the frame in
which @* = (1,0,0,0). The solution, spectrum degeneracy, hidden supersymetry and other

important properties are discussed in [8,9], (and references therein).

3. Pseudoclassical description

Now, the idea is to reformulate the problem in a pseudoclassical language. This is

done in a natural way by translating Eq. 2) into a first class constraint
J=6-P+mbs =0, 4)

where &~ means weak equality and the dynamical variables become pseudoclassical ones
{6",6°} =in*”,

{65,605} =1

5.a)

Of course we know that

{z*,p"} = n*". 5.b)

The Poisson braket of the first class constraint J with itself, is the classical equivalent

of the square of the Dirac Oscillator. In this way, thus, we generate another constraint
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which could be called the pseudoclassical analogue of the Klein Gordon equation. This
new constraint is constructed in such a way to be again a first class, altought secondary,
constraint. Of course, if there is any second class constraint we should replace the Poisson
braket for the Dirac one, in order to get rid of them.
In our case the superalgebra obeyed by the constraints is given by
{T,T} =tH = i(P? + m® — 4imw)) = 0,
{7,H} =0, 6)
{H,H} =0.

In this equation, A is given by
A=(0 -z )u-(mf—65P). 7)

Notice that the first of this constraints is precisely the plseudoclassical Klein Gordon equa-
tion. Is in this sense that we say that we translate the square root method into a classical
language. We also note from Eq. 7) that J and H are first class.

Following the procedure described in Ref. [7], we can construct the Lagrangian of
the problem. Since the whole dynamics of the theory is contained in the constraints, the

Hamiltonian of the system is a linear combination of them
H=NH+:MJ =0, 8)

where N and M are gauge fixing parameters. This in turn means that the Hamiltonian is
weakly zero, implying a reparametrization invariant Lagrangian as a consequence. Accor-

ding to Ref. [7] the whole action is given by

S = / dr{—mv/—22[1 — 2iw(8 -z )(% - 0)] + 1/2[6"6, + 0585

- ;imw(e c 21 )05(1 - 2) + 2imw(z - 1 )(6)85 9)
—2mwM (0 -z, )(0-0)0s —imM6s.
Where 2# = z#* — i MO*.
It 1s not hard to prove that this action is the correct answer to our problem. From
the Hamiltonian formalism, we know that the time evolution of any dynamical variable F'
is given by

F={F H)}. 10)
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Hence, for the dynamical variables in our case we obtain that
o* = iM0" + 2NP* + 4imwN (0 -z ) O5u
9% = am*wN [z (a-0) — (8 -z ) i*] + MP* 11)
s = mM — 2imMw(6 -z, )(ii - 0) — 4mwN (z) - P)(@i-8) + 4mwN(8 -z )i - P),
which are precisely the Euler-Lagrange equations of the action 9) provided

Var:

2m

N(r) = [1+ 2iw(8 - 2.1)(@ - 0)) 12)

This result proves the complete agreement between the Hamiltonian and Lagrangian for-
malisms, and as a result we are confident that action 9) is the corect answer. What Eq. 12)
tells us is that we can specify the gauge by giving a value to V=22, usually V=22 = —1. In
the same way we can construct the supergauge transformations for each dynamical variable

F by means of the equations
8F = {F,e*(7)¢a}, a =12 13)

where ¢, represent our two constraints, and €*(7) are two time dependent infinitesimal
parameters. The result is too long to be given here, (see reference [7]), the only point we
want to remark here is that, as we already mentioned, they express the full dynamics of

the theory, as is suggested by the comparisson of Eqs. 10) and 13).

4. Conclusions

We note form Eq. 3.a) that the Dirac Oscillator interaction term is #-dependent. In
cases like this, the quantization procedure should be done carefully, since some properties
of the Grassmann variables changes radically when quantized. For example, the 85 variable
has the property that 852 = 0 at the classical level, but at the quantum level (Eq. 3.c)
652 = —1/2. Thus if we consider for instance, the Taylor expansion of a 65 dependent
function, we obtain different resuits depending wether the quantization is done before or
after the series expansion.

In the case of the system studied here, if we put in Eq. 6) the square of P* given by

3.a) and proceed to quantize by means of definitions (3.c), we obtain a wrong result. The

331



central point here, is that we should regard P* as a basic quantity to quantize. If instead
of developing the square of P#, we first quantize Eq. 6) and regard 3.a) as a quantum
operator identity, we obtain a complete compatibilty with the Klein Gordon wave equation
associated with the Dirac Oscillator. Finally, we would like to remark that our approach
could be useful to problems that are not fully understood at the quantum level, but that
have 8-dependent interaction terms, such as the afforementioned two body relativistic wave

equations and some supergravity theories [7].
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Abstract
The equations for various spin particles with oscillator-like interactions are discussed in
this talk. Contents: 1. Comment on ”The Klein-Gordon Oscillator”; 2. The Dirac oscillator
in quaternion form; 3. The Dirac-Dowker oscillator; 4. The Weinberg oscillator; 5. Note on
the two-body Dirac oscillator.

1 Comment on ”The Klein-Gordon Oscillator”

In connection with the publications of Moshinsky et al., e. g. {1], the interest in the model with
the j = 1/2 Hamiltonian that is linear in both momenta and coordinates has grown recently [2].
Analogous type of interaction has been considered for the case of j = 0 and j = 1 Duffin-Kemmer
field [3] and for the case of j = 0 Klein-Gordon field [4].

In the paper [4] the operators Q coordinate, and P, momentum, have been represented in
n ® n matrix form . .

Q =14, P = qp, (1.1)
with 72 = 1. The interaction in the Klein-Gordon equation has been introduced in the following
way:

P— P-imiQ-Q, (1.2)
where for the sake of completeness {1 is chosen by 3 ® 3 matrix with coefficients Qij = w;b;;. The
4 matrix obeys the following anticommutation relations {%,4} =0, 4% = 1.

The Klein-Gordon equation for ¥(§,t), the wave function which could be expanded in two-
component form, is then

62
\Il(q,t)-(p +m?- 0% ¢+ my trQ+m) ¥(q,t), (1.3)

*The extended version of this talk could be found in the LANL database, HEP-TH/ 9403165.
tOn leave of absence from Saratov State University, Astrakhanskaya str., 83, Saratov R UbSIA
}Email: valeri@bufa.reduaz.mz, dvoeglazov@mainl.jinr.dubna.su

$Email: antonio @sysull.ifisicacu.unam.mz
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what gives the energy spectrum [4]

E(2a)N,' —m? = 2m (wlNl + wo Ny +L«)3N3) ) N{,Ny,N3 =0,1,2...
E}yn, —m? = 2m(wi(N+1) + wp(Ny + 1) + w3(N3 +1)). (1.4)

However, the physical sense of implementing the matrices 7} and 4 in [4] is obscure. In this
Section we try to attach some physical foundations to this procedure. It is well-known some
ways to recast the Klein-Gordon equation in the Hamiltonian form e. g. [5, 6]. First of all, the
Klein-Gordon equation could be re-written to the system of two coupled equations {6,p.98]

o=¢
ore

oy
oz

=
= KZa,

= —xV, (1.5)

where k = mc/h (in the following we use the system where ¢ = h = 1). By means of redefining
the components they are easy to present in the matrix Hamiltonian form (cf. with [7})

¢ 0 p1 p2 p3 1 0 0 0 )
dlxa|_|{lm 0 0 O 0 -1 0 0 X1
‘ot lxe! " |lpe 0 0 0 TMlo 0 -1 0 X2 (1.6)
X3 ps 0 0 O 0 0 0 -1 X3

provided that ¢ = 19, ¥ +m¥, x; = —i; ¥ = p;'¥. Using matrices @ and 3, corresponding to this
case, and introducing interaction analogously [1a] we come to the equation for upper component

(E? = m?)¢ = [ﬁ2 + m2w?r? — Bmw] ) (1.7)

what coincides with Eq. (10a) of ref. [4] in the case w; = wy = w3.

The similar formulation also originated from the Duffin-Kemmer approach. In this case the
wave function & = column(¢,, g2, x;) is five-dimensional and its components are ¢; = (10, ¥ +
m\Il)/\/i ¢ = (10,¥ — m\Il)/\/i, xi = —t7; ¥ = p; V. It satisfies the equation

.09 -,

e = (BF+mBo) @,  Bu=[60,Bl- (1.8)
(our choice of 5®5 dimension 3-matrices corresponds to ref. [3]). As shown there, the substitution
7 — p—imwngi leads to the equation (1.7) for both ¢, and ¢;. Let us remark, in both the approach

based on Eq. (1.6) and the Duffin-Kemmer approach, Eq. (1.8), we have the equation

(B = m®)x; = (pi — imwz')(p; + imwz’)x; (1.9)

]
for down component, which seems to not be reduced to oscillator-like equation.
Then, Sakata-Taketani approach, e. g. [5], is characterized by the equation which we write in
the form: '

.0 T3 +im)p

with 7; being the Pauli matrices. ® = column(4, x) is the two-component wave function with
components which could be written as following: ¢ = (¥ + £8,¥)/v2, x = (¥ — £9,9)/V2.
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From the previous experience we learned that in order to get the oscillator-like equation we need
to do substitution with matrix which anticommutes with matrix structure of the momentum part
of the equation. In our case the matrix which has this property is 7, matrix. Therefore, we do
the substitution p'— § — imwn ¥ and come to

E%* = [p + m2?7? — 3mw+m2] £, (1.11)

where £ = ¢ + x, and to the analogous equation for n = ¢ — x = ;%((15 + Xx)- In the process of
calculations we convinced ourselves that the interaction Hamiltonian

H=— o (p + m22z? —3mw) (13 + i12) + m73 (1.12)

is the same as in 3, formula (3.9)] since 71(73 + i) = —(73 + i7y) and (73 + 177y = 73 + i7y.

2 The Dirac oscillator in quaternion form

The quaternion (and conjugated to it) with real coefficient is defined as q¢ = qo + iq; + jgo + kqs,
g = qo—1q1 —jq2—kqs. The basis vectors satisfy the equations i> = j2 = k? = —landij = —ji = k
with cyclic permutations. Considering a two-component quaternionic spinor (or SL(2, H) spinor)
one could write the free, Dirac equation as following, ref. [8c,d],

[ 0¥ —mry¥k = 0. (2.1)

Antlcommutatlon relations for I are given in [8d,p.222]. In Pauli representation (i — —y/—17,

—V/=171 and k — —\/—1m3) it goes through to usual Dirac equation and its complex
conJugate. As mentioned in (8] it is convenient to diagonalize the matrices entering in Eq. (2.1)
using matrix

=50 )

In such a way we come to biquaternionic formulation (¢; € C):

611)L +imyh =0
{ o0 + imipy, = 0, (23)

where ¥, = ¢¥py, Yr = ¥p-. This decomposition of ¥ into left ideals is carried ou't by means of the

projection operators p;y = (bgtb3)/2. New basisis by = 1,b = /—-1i,by = /=1j4,b3 = /—1k and
bo = bg, b, = —b,. Introducing interaction in the form 9; — 9,4+ 73V;(Z), V is the compensating field

for this type of Sp(1, Q) transformations, and taking into account that the vectors of biquaternionic
basis anticommute b bg + bgb = —2Nug, Nap = diag(—1,1,1,1), we come to the equations for the
left and right spinor-quaternions in the following form:

(B2 —m?)y, = [(7? +K°Z%) - 3k — 2esebuzip;] ¥ (2.4)
(B2 —m?)df, = [(F?+K*2?) + 3k + 2e;ubuzip;] ¥} (2.5)

if we choose Vi(Z) = kz;. Eqgs. (2.4) and (2.5) are the Dirac oscillator equations in the Pauli
rep, by — 7. Analogous equations for ¢z and 1/’}, could be obtained from (2.3) if one choose the
opposite signs at the mass terms.
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3 The Dirac-Dowker oscillator

In this Section we start from the equation for any spin given by Dirac [9] in the form written down
by Corson, ref. [6,p.154], (here we use Corson’s notation)

ABup(k+ L)k + 5,1 - ) —m (2%}‘)”2 ADY(k,1) =0
. (3.1)
8,5 (NY(k,1) +m (ﬁ%)m vp(k + Dk +4,1-1) =0,

where v4 and v are the rectangular spinor-matrices of 2k rows and 2k + 1 columns (see, e. g.,
section 17b of ref. [6] for the details). The wave function ¥(k,!) belongs to the (k,1) representation
of the homogeneous Lorentz group. The choicel =1/2and k = j—1 /2, j is the spin of a particle,
permits one to reduce a number of subsidiary conditions. Moreover, the equations (3.1) are shown
by Dowker [10] to recast to the matrix form which is similar to the well-known Dirac equation for

j = 1/2 particle
a’9,® =m7T
(3.2)

{ a*d, T = —md.

The 4j- component function & could be identified with the wave function in (7,0) ® (j — 1,0)
representation. Then, T, which also has 4j components, is written down ‘

(5 — Y@ vA(L
T = -yt (DO -5 33)

and it belongs to (j — 1/2,1/2) representation. The matrices o and a* = a, obeys all the
algebraic relations of the Pauli matrices ata¥) = g*¥, except for completeness. |

Defining p, = —id, and the analogs of y- matrices as following;:
0 —ia*
Ho—
= (i 0 ) (3.4)

the set of equations (3.2) is written down to the form of the Dirac equation

(o -m) () =0. (33)

However, let us not forget that ® and T are 2-spinors only in the case of j = 1 /2.

In the case of spin j = 1/2 it is well-known the set of - matrices is defined up to the unitary
transformation and Eq. (3.5) could be recast to the Hamiltonian form given by Dirac (with o
and B matrices) by means of the unitary matrix. It is easy to carry out the same procedure
(a* = §7%9%S~1 and f = S7°S~!) for y- matrices, Eq. (3.4), and functions of arbitrary spin
(¥ = S~'®). For our aims it is convenient to chose the unitary matrix as following:

1 [ Najos;  ilajeu;
S = — ( ; 4j®4j 4J®4J) i 3.6
V2 \illsjes;  Lajes; (36)
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After standard substitution ' — p' — imw~°7 we obtain
E¢ = —ila(@p) + imw(a@r)) v+ maoe, (3.7)
Ev = i[ae(@p) — imw(ar)) ¢ — magv. (3.8)
Since it follows from th¢ anticommutation relations that a;a9 = aga; we have the equations which

coincide with Eq. (8) of ref. [la] or Eqs. (3.6) and (3.12) of ref. [1d] except for 7, — a,, i. e.
their explicit forms,

(E? -m?)¢ = [ﬁ2 + mwi? — 3agmw — mwaoalic“zj]rivj] ) (3.9)
(E*+m?v = [ﬁ2 + mwi? + 3agmw + mwaoalidjlrivj] v. (3.10)

Thus, we convinced ourselves that we got the same oscillator-like interaction and the similar
spectrum as for the case of j = 1/2 particles in [1a].

4 The Weinberg oscillator

The principal equation of 2(2j + 1)- component approach [11] in the case of spin j =1 is
(YuwPupy + M?)BU=D(z) = 0, (4.1)

with v,4 being 6 ® 6 covariantly defined matrices. The j = 1 Hamiltonian has been given in refs.
[11b,c]:
2F 2F

! 2
"= 353+ 0 [E - g @], (42)

._(S o (0 113@3)
“‘(0 —s)’ ﬁ'—(ns@3 A

(S; are the spin matrices for a vector particle).

In general, the upper and down components of 6- component wave function do not uncouple
neither under the interaction § — § — imwf7 nor under 7s,,u,r,. However, if we introduce
the Dirac oscillator interaction so that the conditions of the longitudity of ¥ = column(¢;, x;)
respective to 7, i. e. T xJ; = 0, Fx X = 0 are fulfilled, we come to the equations more simple

where

(2E* - M*)¢ = E(Sp)n+ [(Sp) - k(SP)] (Sp)E, (4.3)
E(SpE = [($P)+ k(S (Spm (4.4)
(£ = ¢ — x, 7= ¢+ X), which could be uncoupled to the following form (k = imw)
(SP)(E? - MA)(Sp)E = (3p) [P + mw?7® + 3mw + 4mwS|[7 x 7] (SP)¢ (4.5)
(Sp)(E? - M*)(Sp)n = (5P) [P + mw?7® — 3mw — 4mwS[ x ] (Sp)n —
—imw(2E? — M?)(§7)(Sp)n (4.6)

These equations can be considered as the extension of the equations with Dirac oscillator
interaction to the j = 1 case, for the components (Sp)¢ and (Sp)n. However, remark that one has
the additional spin-orbit term acting as earlier at 7.
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5 Note on the two-body Dirac oscillator
The two-body Dirac Hamiltonian with oscillator-like interaction is given by (see, e. g., ref. [1c])

1 - — — 'l

Hy == ["\/1—5(51 +d) P+ _\/_ﬁ(al —ag)-p— —ﬁ(a] — dg) - "B+ m(B + ﬁ‘z)] Y. (5.1)

In the c.m.s. it is possible to equate P = 0. The matrices are given by the direct products

. (0 51) (112®2 0 ) I (112®2 0 ) (0 52)
& = (a‘, 090 0 1he) 2T\ 0 1.e/)%\5 0) (5-2)
_ _ [ Lage2 0 ) (ﬂ2®2 0 )
B=0Q®p= ( 0 —Tlog . Clggs ) (5.3)
0 1 0 1
5o 5 202 202
Ps=%®7 = (ﬂ2®2 0 ) ® (112®2 0 ) . (5.4)

Now we apply the same procedure like that was used for transformation the Bargmann-Wigner
equation to the Proca equations. The 16- component wave function of the two-body Dirac equation
could be expanded on the complete set of matrices: (y*C), (¢#*C) and C, (¥°C), and (v*+*C).
We consider the system multiplied by C, the matrix of charge conjugation, in order to trace for
the symmetric properties under oscillator-like potentials. The wave function is decomposed in
symmetric and antisymmetric parts using the above-mentioned complete system of matrices:

Viapy = YanCnsAu+ 06, CnsFuy (5.5)
Yap) = Cap®+7onCns® + VoVt CraAy. (5.6)

In such a way we obtain the set of equations:

EAg=0, EAy=-2mé¢, E¢=2iV2(p;—ir')F® (5.7)
E¢ = —2mAg + V2ei (i + i) F7* (5.8)
EA' = —iv2e(p; F i) A* (5.9)
EA' = 4imF% + iv2¢;(p; + iF7) A* (5.10)
EF% = —2imA’ + iV2(p; 4 i7)¢ (5.11)
EFy = %ij(.ﬁi —i)¢ (5.12)

Let us mention that for another type of Dirac oscillator-like interaction ~ (&, — @,)BI's the only
changes are the sign changes at the term i7in Egs. (5.9) and (5.10) of the above system. The two-
body Dirac oscillator equations in the form (5.7)-(5.12) could be uncoupled on the set containing
only functions ¢, ¢ and A and the another one containing only A, and F,,:

1) (E? — 8m2)¢ = 4(F; — i) (5 + i7")¢ — % {(IGmeg"’ﬁﬁ") } A* (5.13)

(E? — 4m?)¢ = 2(p; + ) (7; — iT)$ (5.14)
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EAp = —2m¢ (5.15)
(E? — 8m®)A* = 2(p; i )(p; £ i) AT — 2(5; F iF?)(F; £ i) A" +

1 16me; ;77 Py
()
2) EAy=0 (5.17)
(E? — 8m*)F% = 4(p; + i7)(p; — i79)FY —
—41'%(;7]- + i) (5, F i) AT + 4:’%(5,- + i )5 F i79) A’ (5.18)
E?A' = 2(p; & i )(f; F i) AT — 2(F; £ i7)(p; F i77) A + 4im EFY
(E? — 4m*)F* = e p€1mn( B — 37 )Py + i) F™™, (5.19)

i
This fact proves the Dirac oscillator interaction, like the case of introduction of electrodynamic
interaction in the Proca or the Bargmann-Wigner equations, does not mix $ = 1 and S = 0 states.
Next, the interaction term of the following form:

1 dV(r)/dr

e

(&, — a@3)BT's7 (5.20)
has been deduced [12] from the equation of Relativistic Quantum Constraint Dynamics (RQCR)
or N- particle Barut equation. In [12] it proved to lead to the Dirac oscillator-like interactions
provided that the definite choice of the function V(). In connection with that let us remark the
curious behavior of the another potential V'(r) which has been proposed in ref. [13b,c]:
| coth (rmm) coth (kr)
Vir) = —g2 g 5.21

(r) I 4rr g 4mr ( )
It could be deduced from the one-boson exchange quasipotential V (5, k; E)=—¢*(p- k)% by
means of the transformation into the relativistic configurational representation (RCR) using the

complete set of Shapiro plane-wave functions: £(A,7) = (Ag — Aitjm)~1=irm Ag = VA? + m?,
= /I

In the case of the quasipotential (5.21) the interaction term V, Eq. (5.20), has the different
asymptotic behavior in three regions (g2/(47) = 1). Namely,

tn 1 - - -
V t o~ ;‘(T‘T—l—)(al - QQ)BFE)T o~
(1/r)(@ — @)Bls7, if r>>1 and r>1
~ (5.22)
—(1/r)(@& — @)BIsi, if Ll<<r<l,
in the infrared region (r >> %, large distances); and
: 1
th ot —2&(61 - 52)BF51-“, if r<< ;, (523)

in the ultraviolet region (small distances). In one of the regions one has the Dirac oscillator-like
behavior.
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Abstract

In view of current interest in relativistic spin-one systems and the recent work on the
Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using
an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation
leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the
equation the DKP oscillator. This oscillator is a relativistic generalisation of the quantum
harmonic oscillator for scalar and vector bosons. We show that it conserves total angular
momentum and that it is ezactly solvable. We calculate and discuss the eigenspectrum of
the DKP oscillator in the spin 1 representation.

1 The DKP Oscillator

The focus of attention in this paper is to generalise the concept of the quantum harmonic
oscillator to relativistic vector bosons.
For a free scalar or vector boson of mass m, the relativistic DKP equation [1] is

(eB-p+mct)p ———ihﬂo%;ﬁ (1.1)

where the internal variables 8* (g = 0,1,2,3) satisfy the commutation relation
PEB 1 BB = ¢+ g (12

In the spin 1 representation, the g* are 10 x 10 matrices while the dynamical state 3 is a

ten-component spinor.
For the external potential which we introduce with the non-minimal substitution

p — p — imwn’r, (1.3)

where w is the oscillator frequency and ° = 2[302 — 1, the DKP equation for the system is
9 2 .y 200%
[¢B - (p — imwn't) + mc”|y =zhﬂ05t—. (1.4)

This external potential, which is of Lorentz tensor type, does not conserve the orbital and spin
angular momenta, since

(Bn°-1,L) = —i(8° Ar) and  [87°-r,S| =i(8n" AT), (1.5)



but it does conserve the total angular momentum J = L + S.
In the spin 1 representation of eq.(4), the dynamical state ¢ is chosen as the 10-component

spinor
up A, B C,
P(r) = gg)) with A = (AQJ, B= (Bz), and C = (Cg) (1.6)

C(r) Aj B; Cs

so that, for stationary states, the equation of motion eq.(4) decomposes into

mcp =icp” - B
mc!A = EB - cpt AC

1.7
mc’B = EA +icptop (1.7)
mclC = —cp~ AA
where p* = p + imwr. Since A is the 3-component spinor analogous to the Dirac upper

component, we seek the wave equation for A. It is straightforward to eliminate ¢, B and C in
favor of A so that one gets

. 1
(E*—m?c")A = [*(p* +m*w’r?) —3hwme® — 2hwmc®L-s]A — ﬁp+{p‘-[p+/\(p‘ AA)]} (1.8)

where L is the orbital angular momentum and s the 3 x 3 spin one operator. In the non-
relativistic limit ¢ < mc®, the fourth term in eq.(1.8) becomes negligible, since it is of order
1/m?, so that the wave equation for A can be written

2

1 3
p + —mw?r? — §hw — hwL - s|A (1.9)

which characterises the usual harmonic oscillator in addition to a spin-orbit coupling, absent
for scalar DKP bosons, of strength —hw. Note that the strength of this coupling is half the one
obtained from the Dirac oscillator [2].

Since the spin 1 representation of eq.(1.4) leads to the usual three-dimensional (3D) oscillator,
in the non-relativistic limit, we refer to the system it describes as the Duffin-Kemmer-Petiau
oscillator.

2 Solution to the vector DKP oscillator problem

For the S = 1 central field problem, the general eigenfunction we use takes the form [3]

. id)nJ("')YJMAgQ)
oo
Y Hon(r)Y1,(Q)

Putting ¥ u into eq.(1.4) results in ten coupled radial differential equations which can be
decoupled into two sets associated with (—1)7 and (—1)7*! parities. We call the (—1)” solutions
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natural-parity (or magnetic-like) states while we refer to the (—1)’*! solutions as unnatural-
parity (or electric-like) states. With the notation

RnJJ(r) = Ro ’ RnJJ:I:I(T) = Rﬂ:ls R = Fs GsH (2'2)

the set associated with (—1)7 parity is

EF, = mc*G, (2.3)
d J+1 mwr 1
— - F, ——mc? 2
he (dr " > ) CJmc H, (2.4)
d 1
e Loy ™) p ——mc*H_, (2.5)
dr h ay

_o [ d A men) g (4T mer) :l(m&Fo—EGo). (2.6)
dr T h he

For unnatural parity states, the radial differential equations are coupled in the following

way :
he (d—‘i - % - m;”") H, = —Cij (me*Fy - EG,) (2.7)

he (d—i n ;] - m;”“) H, = —517 (me*F, — EG_,) (2.8)

—¢ (% L7 ;L Ly m;:’r) Fi —ay (;; - ;] + m;‘:T) F,= %1n,c2Ho (2.9)

hc.(d—d; - % - m‘;’") b = ~$ (mc*Gy ~ EF,) (2.10)

he (dii n % - m;’r) ¢ = Cij (me*G_, — EF.,) (2.11)

d J mowr 1 )
—aj(a;+—r—+ 5 )G1+CJ($—;+ 7 )G—I—Emcqs' (2.12)

To obtain the exact solution for the magnetic-like states, we eliminate G,, Hy in favor of F,
in eq.(2.6). This yields the eigenvalues [4]

1
5 (B —m’e’) = (N + Dhw (2.13)
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with the principal quantum number N = 2n + J (n is the radial quantum number). Note that
the oscillator levels are equidistant and degenerate; the zero-point energy differs here from the
one we found for the scalar DKP bosons.

The exact eigenvalues of the radial equations associated with unnatural-parity states can be
shown [4] to be

(E2 —m*c") = (N + §)hw+J(J+1)(h“’)2 A (2.14)
ome?" % N 2 mc? il '
where 1
2\ 2
_ 1 a hw ay [ hw
A= he (J + 2) T+ ag mc? + ag (mc2> (2.15)

with ao = (27 + 1), a1 = 4J(J +1)(2N +3) and az = 4J%(J 4+ 1)* where N, a positive integer,
is the principal quantum number.

As shown in eq.(23), the energy of the DKP oscillator in unnatural parity states involves the
usual 3-dimensional harmonic oscillator energy, a second term proportional to J (J + 1) which
appears as some kind of rotational energy and a third energy contribution A which is a compli-
cated function of the oscillator frequency, J and N with no obvious physical interpretation.

In the limit where the oscillator frequencies are such that hw < mc?, keeping only the
first-order term in w in eqs.(2.14-15) leads to

1

W(Ei — m2c4) = 5:1. ~ (N - J+ l)hw (2.16)
1 2 2.4\ — —

2mcz(E_ —mict) =€, ~(N+J+2)w (2.17)

This is best illustrated in fig.1 which shows, for fixed values of N and J, the variations of the
relativistic and non-relativistic eigen-energies with hw/mc?.

8.0 T
——— E el
—-———— ETnr N =22
e e E:r.l J =1
= 6.0 —_——-——E -
<>
<9
& 2o |
k=)
=
& Lol
O-O - 1 i 1 1
0.0 o.2 0.4 O.6 0.8 1.0

ho/mc”
Figure 1: Variation of the DKP and non-relativistic oscillator energies with W.

This shows that our solutions have the correct non-relativistic limits since the levels in
eqs.(2.16-17) are those of a usual 3D non-relativistic oscillator with a spin-orbit coupling of
strength —hw. In this limit, they conld have also been obtained directly from eq.(1.9). Fur-
thermore, taking this limit suggests the interpretation of the E; and E_ energies as “spin-orbit
partners”, E, being associated with J =L +1 and E_ with J =L — 1.
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The unnatural parity E, levels for N < 9 are presented in fig.2 alongside the ¢/, and the
(N + 2)hw levels for reference. For a given value of N — J, all the non-relativistic energy levels
(N,J™) (with N — J odd and J < N) are infinitely degenerate. This accidental degeneracy is
not present in the exact DKP oscillator £, eigenspectrum whose levels are found to cluster in

several groups of states belonging to the same N — J oscillator shell.

P o> == 10 Mea\/
mcec® =1 Gewv
T Non—Rel. DKP
21/2 M <o " ¢ o - N
-1 (. O >
1/2 M <>
VTI/R M
—y .o
$8:33
g VB2 P >
Ll 1A/ I o>
=
=
= 1T R R —————————— 5o
§ = (g.a>
1T V/2 P
B/2 IT >
T ‘ (T
(2.6 )
T2 P
8/2 7 o>
- 1.0 )
B ] ¢
(.o )

Figure 2: DKP and non-relativistic specira associated with J = L 41 for N < 9. The dotted lines between the DKP

and non-relativistic oscillator levels link states with the same quantum numbers (N, J”)

The E_ eigenspectrum is now presented in fig.3 together with the non-relativistic ¢, . energy
levels for N < 9.

[ICH)
T o> = 10 MewVv

m c® = 1 Qewv
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Cer AN .0 )

BV MY >
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s (a4.3°
........ AN —— (7..0’)

Osclator gy

VTR e

1B/ Y o> !;i}

13/2 1 0>

1IV/2 M o .
{%:373
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Figure 3: DKP and non-relativistic spectra associated with J = L—-1frN<9.

While all the non-relativisitic (N, J™) levels associated with the same N + J oscillator shell
are degenerate, with a finite degeneracy in this case, their relativistic analogues are not. The
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exact DKP oscillator states are found to cluster into bands of states belonging to specific values
of N + J.
For a more quantitative analysis of the E_ bands of the DKP oscillator spectrum, we plotted
in fig.4 the E_ energy levels, belonging to the N + J = 49 band for instance, against J(J + 1)
for different oscillator frequencies.
150.0

0.1 GeV N+ J=49
0

100.0

Oscillator Energy (GeV)

0.0 ) 400.0 600.0
J(J+1)

Figure 4: Energy levels of the N 4+ J = 49 band as a function of J(J + 1) for different oscillator frequencies.

It is indeed remarkable that the DKP oscillator energies constitute nearly perfect rotational
bands. There are deviations from the rotational patterns at low angular momenta. These single
particle rotational bands are of the finite type since for N + J fixed they terminate at some
Jmaz. The effective rotational moments of inertia are sensitive to the oscillator frequencies since
the slopes of the bands are found to vary substantially with increasing w.

60.0 | - ] . ,
I e +J =49 /

o ——eo N
LB -mN+J=41 .
50.0 & «» N+ J=35 |
A A N+J=29
N+ J =23

40.0

30.0

Oscillator Energy ( GeV)

20.0 w =0.2 GeV

0.0 200.0 400.0 600.0
J(J+1)

Figure 9: Energy levels of the N + J = 23,29,35,41,49 band as a function of J(J + 1) for hw = 0.2GeV.
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Fig.5 alternately represents the energies of five different N + J bands for a specific oscillator
frequency as a function of J(J + 1). The DKP oscillator energies now lie on rotational bands
whose slopes hardly change with N + J which implies that the effective rotational moments of
inertia are rigid and insensitive to such variations.

Of course, it should be pointed out that these rotational bands are unlike the usual ones
where the levels are associated with the same intrinsic motion but different angular momenta.
Here the single particle states involve different radial as well as rotational motions. Note that
this behaviour is not particularly tied to this DKP oscillator. Buck [5] also found that, when
solving the Schrédinger equation for deep, bell-shaped potentials, the levels with a fixed value
of N = 2n + £ ( these states are degenerate for a harmonic oscillator ) lie on a straight line when
plotted against £(£41). Geometric arguments in terms of the shapes of the potentials which can
give rise to these rotational-like bands have been put forward to explain this behaviour [5][6].

3 Conclusion

We have introduced a new potential in the DKP equation. Since, in the non-relativistic limit,
the DKP equation of motion leads to the usual harmonic oscillator with a spin-orbit coupling
of the Thomas form. we call the system a DKP oscillator. This oscillator is a relativistic
generalisation of the quantum harmonic oscillator for vector hosons. We have shown that it
conserves the total angular momentum, that it is exactly soluble and we have computed and
discussed its eigen-solutions.

The renewed interest in the Dirac oscillator has generated studies of its group theoretical
- properties [7] and hidden supersymmetry [8][9] among others. Such investigations of the DKP
oscillator would be most useful to gain further insight into the physical meaning of this oscillator.

This study is on the other hand relevant to the work on relativistic equations for two fermions
and particularly to those of Krolikowski’s type [10]. Since they tend to the DKP equation in
the point-like limit of tightly bound-states, exact solutions of the latter may provide useful
information about this class of relativistic two-body equations.
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HARMONIC OSCILLATORS AND RESONANCE SERIES
GENERATED BY A PERIODIC UNSTABLE CLASSICAL ORBIT

A.K.Kazansky and V.N.Ostrovsky
Institute of Physics, The University of St Petersbury, St Petersburg, 198904 Russia

Abstract

The presence of an unstable periodic classical orbit allows one to introduce the decay
time as a purely classical magnitude: inverse of the Lyapunov index which characterizes
the orbit instability. The Uncertainty Relation gives the corresponding resonance width
which is proportional to the Planck constant. The more elaborate analysis is based on the
parabolic equation method where the problem is effectively reduced to the multidimensional
harmonic oscillator with the time'dependent frequency. The resonances form series in the
complex energy plane which is equidistant in the direction perpendicular to the real axis.
The applications of the general approach to various problems in atomic physics are briefly
exposed.

1 Introduction

The quantum quasistationary states may be subdivided into three types (although these types
are not absolutely independent): (i) the shape resonances which decay by penetration through
some potential barrier; (ui) the Feshbach resonances, i.e. the quasibound states of the particle
in the field of the excited core, for instance, the doubly excited states of the helium atom; (i)
the resonances related with the unstable periodic classical orbits. The latter type of resonances
is probably the less known one. The peculiarities of the density of states, corresponding to the
periodic orbit (or cycle), were analyzed by Gutzwiller [1] and by Balian and Bloch [2]. The role
of such orbits is a subject of intensive discussion in the current literature.

The connection between the stable periodic classical orbit and the quantum mechanical eigen-
values is obvious from the physical point of view: such trajectories are similar to the effective
channels in space along which the wavefunction is concentrated. The pioneer study of the prob-
lem by Gutzwiller [1] suffers a number of deficiencies. For instance, the Gutzwiller theory does
not give true value for the total amount of quantum numbers labeling the state (in this case it
should be equal to the dimensionality of the configurational space). This deficiencies were dis-
cussed by Miller [3]. However it seems that the most appropriate method to treat the problem is
the parabolic equation approach developed initially in the theory of radio wave propagation (see
e.g. the monograph by Babich and Buldyrev [4] and the discussion below in Sec.2). This method
provides adequate basis for the description of the eigenfunctions which are localized at the vicinity
of the periodic stable orbit.

The case of the unstable periodic classical orbit was not the subject of such a detailed study.
In particular Voros [5] showed that the expansion of the density of states over the closed orbits due
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to Gutzwiller [1] is not convergent and thus has not rigorous mathematical meaning. We do not
discuss the problem on such a rigorous level and do not analyze the density of states expansion.
Instead of it we consider only the relatively narrow resonances which can be well manifested in
the physical observables. The resonances of this type are shown below to be related with the
short-period long-living unstable orbits.

The natural characteristics of the classical orbit lifetime is the inverse of the Lyapunov index
which is commonly used to describe the orbit instability. Thus in this case the concept of lifetime
is introduced exclusively within the framework of classical mechanics without an appeal to the
quantum tunneling and the channels interaction as in the case of the resonance types (i) and (31).
Namely this circumstance allows us to single out the third type of resonances in the classification
introduced above.

The unstable orbits were discussed by Heller [6] who demonstrated that in the vicinity of the
orbits the wavefunctions are enhanced and the ’scars’ are formed on them. The explanation is
obvious: the classical system stays long in this region. We show that the individual unstable orbit
is naturally related with the whole series of resonances and give the simplified description of the
wavefunctions. The complex eigenenergies representing the series form an equidistant pattern in
the direction of the imaginary energy axis. The basic ideas of the present approach were outlined
by the authors some times ago [7]. Here they are developed further and elucidated. Some recent
applications to the problems of atomic physics are discussed.

2 Parabolic Equation Method

We start our analysis with the trivial comment. In the classical mechanics the particle with the
energy close to the top of the potential barrier stays near the top for a long time. In quantum
mechanics one can associate with the barrier top the series of ’eigenstates’ with the imaginary
energies (see also [8]). Indeed, consider the one- or two-dimensional parabolic barrier. In the first
case the particle coordinate is z, in the second case the cylindrical radial coordinate is denoted as
p. The stationary Schrodinger equation (for the particle with unit mass) is written respectively

as
hd 1
(‘5@‘5“)¢ B M)
and
b2 1 5., (2)
—§A2 +' ﬂLJ— Ea p 2/) = E d), (2)

where A\, is the two-dimensional Laplace operator, Lj is the corresponding angular momentum
operator, a and p are the potential parameters. The substitution of new variables (z', p = (', p)
exp(—:7/4) transforms the equations (1), (2) into these for the harmonic oscillators. Respectively,
the wave functions containing only the outgoing waves in the asymptotes are transformed into
the oscillator eigenstates. Thus if the equations (1), (2) are considered with the outgoing wave
boundary condition, then the imaginary ’eigenvalues’ are obtained:

1 .
EW = —iah (n + 3)s  E®=uhm o iha (20t | m | +1). (3)
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It should be stressed that the corresponding ’eigenstates’ form the natural basis set for the de-
scription of the time-evolution of the wave packet which is localized initially near the barrier top
(e-g., for ¥(z) |i=o= exp(—Bz?)/(1 + yz? ) with some positive parameters 8 and 7). The imag-
inary part of the energy generally describes the short-time evolution of the wave packet and is
not necessarily related with the true ionization process, i.e. escape to infinitely large distances
(this situation is described by the notion Diabatic Quasistaionary State (DQS) introduced by the
authors, see Ref.[7]).

The method of parabolic equation allows one to apply these simple formulae to the more
general problem. Its essence is summarized below.

Consider the vicinity of the unstable orbit. One can introduce the natural local reference
system at this region related with the trajectory. Let the system origin move with the particle
along the unstable periodic orbit. The transversal coordinate axes ¢ (1=1,2,3,... N—1; Nis
the dimensionality of the system configurational space) are directed normally to the orbit. The
longitudinal coordinate s is the distance along the orbit. Let g¢; be chosen so that g; = 0 on the
orbit. Since our subsequent consideration is confined to the orbit vicinity this definition is quite
sufficient to our purposes. In these variables the system Hamiltonian can be written as

2 g2
= oo+ He(pgs), (1
where M is the effective mass (we treat here the transition to the new curvilinear coordinates in
somewhat simplified manner what is unimportant for the subsequent discussion). The transversal
motion Hamiltonian Hy contains momenta p; conjugate to the transversal coordinates gi. It
includes also the periodilc parametric dependence on the coordinate s.

In the framework of the parabolic equation method the motion along the longitudinal coordi-

nate s is treated semiclassically. This implies the following representation of the wave function:

d)(qlv q2," " qn-1, 5) = U;Jolﬂ €exp (ZSEo(t)/h) ¥ (qla q2;," " qn-1, t) . (5)

Here Sg, and vg, are respectively the action (fpdg) and the velocity for the classical motion
along the trajectory for the energy Ey (vg, = M~'dSg,/ds). The new ’time’ variable ¢ is directly
related with the longitudinal coordinate s: vg,dt = ds. Substituting the wave function (5) into
the Schrodinger equation (H — E)i = 0 one obtains (in the lowest order in the Planck constant
k) the following equation for the function ¢:

., 0p

Zha = (Htr(pi,qiat)_Htr(OvO’t) —E+E0) ¥- (6)
The latter equation has the mathematical form of the non-stationary (parabolic) Schrodinger
equation with the mock 'time’ variable { directly related to the coordinate s. Note that our
treatment starts with the stationary Schrodinger equation. Therefore the true time does not
appear here.

The rigorous formulation of the method based on the asymptotic (semiclassical type) techniques
implies that the Hamiltonian of the non-stationary problem should be replaced by its approxi-
mation quadratic in the coordinates ¢;. These statements present the essence of the parabolic
equation method introduced originally by Leontovich and Fock [9] (see also Ref.[10]).
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3 Quantization Conditions

The important point for the further development is that the Hamiltonian H,, is periodic in 'time’ ¢
since the orbit is periodic. The natural way to treat such a problem is to consider the quasienergetic
or Flogquet states (see e.g. the review Ref. [11]). The latter is introduced so that after the period
T the corresponding wave function acquires the phase factor which contains the quasi energy e:

B(t +T) = exp(icT)(t). (7)

Let now choose the function ¢ to be the quasi energy state. After the passage over the periodic
orbit the total wave function 1 (5) should remain unchanged. This gives the following quantization
condition:

E — Ey — €+ Sg,(T)/T =2mnh/T, (8)

where T is the period of the orbit, n is an integer. Note that the parabolic equation method
assumes naturally the semiclassical condition for the motion over s-coordinate: Sg,/h > 1.

Since we assume here the quadratic approximation for the Hamiltonian H;., then the non-
stationary Schrodinger equation (6) describes the (N — 1)-dimensional oscillator with the param-
eters depending on the (time’ ¢.

The quasi energy spectrum for the time-periodic quadratic (in the coordinates and the conju-
gated momenta) system was discussed in the monograph by Malkin and Man’ko [12]. Their study
is based on the mathematically rigorous analysis by Sugiura [13] and Williamson [14]. Here we
give only the list of the statements which seems to be quite appealing.

(i) In the case of quadratic time-dependent Hamiltonian the classical Hamilton equations are
linear and coincide with the quantum Heizenberg equations for the momentum and coordinate
operators p and 4.

(ii) Let the general solution of the classical equations to be known:

(p(1), (1)) = A()(p(0), 4(0)), 9)

where A(t) is the evolution matrix acting on the array of the system coordinates ¢ and canonically
conjugated momenta p. Then the solution of the Heizenberg equations takes the form

(B(1), 4(1)) = A(1)(B(0), 4(0)) (10)

with the same evolution matrix.

(ii7) For an arbitrary fixed ¢o one can find the time-independent quadratic (in the coordinates
and momenta) Hamiltonian Hg?f) which generates the same result for the system evolution at
the time ¢ as the initial time-dependent Hamiltonian. This implies that the exact time-evolution
operator can be presented as exp(z'Hg;"f)to).

(iv) The matrix A(t) which describes the system evolution over its period is called the mon-
odromy matrix. The spectrum of the corresponding operator Hgf) coincides with the quasi energy
spectrum. We should emphasize here that this operator must be considered as a continuous'limit
(t = T') of the operator Hyf)f. For instance, in the one-dimensional case the phase point in prin-

ciple can perform several 27-rotations around the origin which do not influence the monodromy
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matrix. However this rotations should be taken into account in the construction of the operator
HG).

Thus the problem of finding the quasi energies is reduced to the analysis of the spectrum of
the monodromy matrix (we assume further that its eigenvalues are non-degenerate). Moreover,
the eigenvalues of the monodromy matrix are essentially the exponents of the eigenvalues of some
quadratic Hamiltonian. The latter does not necessarily correspond to the real oscillator since the
case of the quadratic potential barrier also can be realized. The spectrum of such a barrier was
discussed above at the beginning of the Section 2. Taking all these possibilities into account one
finds that the following basic types of the eigenvalues sets are feasible (the most general description

is given by Williamson [14]):

exp(wT), (11)
exp(+aT), (12)
exp(xuT + aT). (13)

The first one corres%)onds to the real oscillator with the frequency w in the normal mode of
the Hamiltonian H whereas the second and the third cases are related respectively with the
parabolic barriers (1 ) and (2). Note that in (13) four various eigenvalues are contained according
to various choice of the signs.

The parameter « in (12) and (13) coincides with the Lyapunov index which characterizes the
instability of the classical periodic orbit in the linear approximation for the equations of motion.
Indeed, the Lyapunov index is defined by the relation ¢;(7')/¢:(0) = exp(aT’). According to the
statement (1) it is related with the description of the quantum system.

The eigenstates of the time-evolution operator coincide with those of the operator H( One
has to bear in mind that in the multidimensional system the eigenstates of each type can appear
several tlmes In order to distinguish them we introduce below the lower indexes. The diagonal-
1zation of He” generates the subdivision of the transversal coordinate subspace into the direct
sum of the subspaces each of which corresponds to some set of the eigenvalues discussed above.
The natural coordinate basis in each subspace is given by the normal coordmates Depending on
the type of the eigenvalue (see above) the quadratic Ilamiltonian HT ff in each subspace is of the
oscillatory type (with some frequency wj,, j1 = 1,2,...N;) or corresponds to the quadratic barrier
described by Eq. (1) or (2) with the related parameters aj, (j; = 1,2,...N;) in the case (1) or
the parameters a;, and pj, (j3 = 1,2,...N3) in the case (2). The lower indexes enumerate the
eigenvalues. The total amount of the eigenvalues is Ny + Ny + N3 = N — 1.

Taking into account the relation (7) we obtain the quasi energy spectrum of the system:

({n}, {m}) = 3 tw, (s, + %) —i ¥ hay, (i + %) + (14)
+ 2 A (wjymy, — dag, (2nj,+ | my, | +1))

with some integer n; (n; > 0), m;. The summation is performed over all eigenvalues described
above. The eigenfunctions ¢ are expressed readily as the products of the Hermit functions of the
normal coordinates.
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Let us summarize the meaning of the quantum numbers. The quantum number n quantizes the
motion along the periodic orbit. The quantum numbers nj;, quantize the stable vibrational modes
of the transversal motion whereas n;, and n;, are theirs analogs in the case of unstable transversal
modes. The quantum number m;, are the azimuthal quantum number for the rotations in the
plane locally perpendicular to the cycle.

We should emphasize that the total amount of the quantum numbers (including n, see (8))
coincides with the dimensionality of the configuration space. However, since the resonance series lie
along the imaginary axis in the complex energy plane, this series is manifested in the experimental
observations as one peak, Thus some of the quantum numbers prove to be hidden’ and the amount
of the ’observable’ quan%um numbers is effectively reduced.

4 Discussion

The formulae (8) and (14) contain the essence of the present paper. They are quite transparent
from the physical point of view. Let the orbit energy Eo be chosen to satisfy the semiclassical
quantization condition for the motion along the periodic orbit:

SEO = 27rnh. (15)
Then from (8) we obtain
E=FEo+e. (16)

Thus the quantization problem is separated: first, the motion over the unstable cycle should
be quantized according to Eq.(15) and, second, the motion over the transversal coordinates is
quantized giving the quasi energy spectrum (14). The analogous equations were discussed by
Miller [3] in the case of stable orbit. They reflects effective separation of variables in the vicinity
of the cycle: the quantum number n is large but the other quantum numbers are small being
incorporated into the quasi energy spectrum.

These formulae are also in close relation to the Gutzwiller formula for the density of levels in
the two-dimensional case:

p(E) = 217T1rn§;1 Wexp(inS/h). (17)

This sum can be rearranged similarly to the Miller [3] paper:

p(E) = %Im i [1 — exp(—naT)] ' exp[n(iS/h — aT/2)] = (18)
= 2—77;—Im io [1 — exp (:S/h — ma)] ™" exp [n(:S/h — 3aT/2)].

Thus the density of states has the poles at the complex energies given by the equations (8) and
(14) (since Sg = Sg, + (0S/OE)(E — Ey), 0S/0E = T). However the expression (17) is not

applicable in the complex energy plane. Moreover the expansion of the states density over the

354



periodic trajectories does not converge [5]. Therefore the proper description of the individual
resonance states given in the present paper is essential. :

Our principle qualitative conclusion is as follows. Since the unstable closed classical orbit
can be characterized by some ’decay time’ (namely, the inverse of Lyapunov index), the Uncer-
tainty Relation gives tHe related resonance width which is linear in the Planck constant A (in
contradistinction to the shape resonances where the width is exponentially small). Moreover
whole resonance series correspond to the individual orbit with the resonances lying in the complex
energy plane equidistantly on the line parallel to the imaginary axis (see formula (14)).

The first point to be stressed is that the quadratic approximation demands localization of the
wave function in the vicinity of the orbit whereas the resonance functions constructed above do not
satisfy this requirement since they rise exponentially in the case of the quadratic potential barrier.
This contradiction is removed if one notices that the complex transformation of the transversal
coordinates ¢ = ¢’ exp(in/8) makes the eigenfunctions decreasing. The close analogy is traced here
with the method of thle complex rotation of the coordinates. This method of the resonance states
calculation proves to be very efficient in the analysis of quite complex atomic systems [15]. The
physical meaning of this states follows from theirs role in the description of the initially prepared
wave packet (see discussion in the Sec.2).

The formula (14) implies that the quantum numbers n; are not too large in order to confine
the major part of the probability to the applicability domain of the quadratic approximation for
the Hamiltonian Hy,. Nevertheless it is worth to stress that the resonances of this type generate
series in the complex energy plane (in the quadratic approximation the series are equidistant in
the direction of the imaginary energy axis). This constitutes the principle difference between the
resonances discussed in the present paper and the shape or Feshbach resonances. In particular,
this difference is manifested in the shape of the resonance profiles in the physical observables such
as the cross sections, transition probabilities etc.

In principle the situation is feasible when the quadratic approximation is not applicable even
for the lowest values of n; (n; = 0). This problem is not important for the general construction
of the present theory since in fact its small parameter is the Planck constant (or inverse particle
mass). However it can limit applicability of the theory to the concrete systems. If the quadratic
approximation is dropped, then the theory is reduced to the description of the quasi energy states
of the periodic Hamiltonian with the more general (non-quadratic) dependence on the coordinates.
The practical realozation of this approach (see the next Section) gives good results.

5 Some Applications to Atomic Physics

In this Section some recent applications to the atomic physics are briefly discussed. We emphasize
some modifications of the general scheme which are necessary in the concrete applications. The
states of the atom in the uniform electric field serve in the text books as a typical example of
the shape resonances. These resonances have negative energy and decay by the penetration of
the potential barrier. The resonances exist also for positive energies where they have different
origin being related with the unstable periodic classical trajectory. The electron moves between
the atomic nucleus and the turning point against the force exerted on it by the uniform field. The
calculations [16], [17] within the present approach demonstrate an excellent agreement with the
accurate numerical data both for the resonance positions and widths.
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For the motion of the electron in the field of two Coulomb centers the unstable classical
trajectory also represents an interval of line. The calculations of the resonances were carried in
this case by Du et al [18].

In the cited examples the resonance width corresponds to the true ionization (transitions to
the continuum). An alternative situation appears for the helium atom where Klar [19] have found
classical unstable equilibrium configurations (in which the electron-electron and electron-nucleus
separations do not vary with time but the system rotates as a whole). Within the present approach
these configurations are related [20] with the Rydberg series of broad resonances (doubly excited
states) which are interpreted as DQS. Their widths describe not the transitions to the continuum
(autoionization) but the interaction of the diabatic configurations.

The equilibrium electron configurations in the helium atom give an example of the correlated
motion of the electrons which is not described by the effective central field approximation conven-
tional in the theory of atoms. The description of the electron correlations is one of the fundamental
problems in atomic physics.

The other example of the correlated electron motion appears in the study to the two-electron
continuum states which are the final states in the electron impact ionization ((e, 2e) process) or
double photoionization ({7, 2e) process) of the atom. In the near-threshold domain the theory
of the process was developed by Wannier [21] (see also the review by Read [22]). The physical
idea is that the electrons fly apart from the core (with the charge Z) being at equal distances
from it, i.e. at the so called Wannier ridge ry = 7, (71, T2 are the electron vectors relative to the
atomic nucleus). Otherwise one of the electrons is decelerated and is captured into the high lying
Rydberg state. Hence sliding off the Wannier ridge leads to the population of the one-electron
continuum. For the double escape process this part of the flux is lost. In the framework of the
present approach this is described in terms of the effective width and the whole double escape
process is presented [23] as the system survival on the Wannier ridge.

Due to the Coulomb electron-electron repulsion the emission of the electrons in the opposite
direction has the highest probability, i.e. #12 = 7, where 0, is the angle between T1,7T2).

It is convenient to use collective hyperspherical coordinates: hyperradius R = (r? +r3)'/? and
hyperangle o = tan(r;/r;). The Wannier treatment presumes two basic assumptions:

(i) The vicinity of the Wannier saddle configuration o= —Tq (le. ap = %w), 012 = 7 is
considered with the quadratic approximation in the variables (ay — ;7) and (7 — 612).

(i) The motion over the hyperradius R is treated semiclassically.

The hyperradius R plays the role of the longitudinal coordinate s of the Sections 2, and
(an— 1m) and (7 —f12) are the transversal coordinates ¢;. In the original Wannier theory [21], [22]
the processes in the small- R region (inner zone, R < Ry) are not considered. They are replaced by
some boundary condition on the border Ry and the system evolution in the outer zone to the free
electron motion regime (R — oo) is considered. Thus in contradistinction to the previous examples
we do not have the periodic classical trajectory in this case. The basic trajectory corresponds to
the double electron escape and terminates at R — oo.

The analysis of the total double escape cross sections within the present approach was carried
out in Ref. [23]. Some special treatment is required to account for the electrons deceleration (as
R increases) due to the Coulomb attraction to the residual core. This effect becomes crucial when
the energy excess E above the double ionization threshold is small. The postadiabatic scheme was
developed which allowed us to reproduce not only the Wannier power threshold law but also the
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deviations from it for $émall but finite E.

In addition to the total double escape cross section the final electron distributions over the
angles and energies is of great interest as a direct manifestation of the electron correlations. In
a good approximation the angular coordinate 6, is separated from the hyperangle a;. Then the
general scheme of the Sections 2 and 3 shows that the angular dependent wave function obeys [24],
[25] the non-stationary Schrodinger equation for the harmonic oscillator with the time-dependent
frequency (it is worth reiterating that the mock time is simply related with the longitudinal
coordinate R). The final (R — oo) angular distributions depend crucially on the boundary (or
initial) condition imposed on the border of the reaction zone. Although this point is completely
obvious in the present formulation via the non-stationary harmonic oscillator (see also Ref. [26]),
it was missed by the previous authors [27] who claimed that the Gaussian angular correlation
pattern universally appear.

In the present approach the problem of the angular correlations is formulated in terms of the
wave packet propagation from Ry to R — oco. Some general features of the propagation can be
established in the harmonic approximation for the problem under consideration [24], [25]. The
more accurate scheme of the calculations drops the harmonic approximation. It incorporates the
exact Coulomb interaction between the electrons and also the effective centrifugal potential which
appears for the double continuum states with the non-zero orbital momentum L. The quantitative
agreement with the experimental data is achieved along this way and a number of new qualitative
features of the double escape process are revealed [28] - [30].
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