A Numerical Procedure for Analysis of Finite Rate Reacting Flows

H.M. Shang and Y.S. Chen

Engineering Sciences, Inc., Huntsville, AL
Z.J. Chen and C.P. Chen

University of Alabama in Huntsville, AL

T.S. Wang
NASA MSFC, Huntsville, AL

Abstract

Combustion processes in rocket propulsion systems are characterized by the existence of multiple, vastly differing time and length scales, as well as flow-speeds at wide variation of Mach numbers. The chemical kinetics processes in the highly active reaction zone are characterized by much more smaller scales compared to fluid convective and diffusive time scales. An operator splitting procedure for transient finite rate chemistry problems has been developed using a pressure based method, which can be applied to all speed flows without difficulties. The splitting of chemical kinetics terms formed the fluid-mechanical terms of the species equation ameliorated the difficulties associated with the disparate time scales and stiffness in the set of equations which describes highly exothermic combustion. A combined efficient ordinary differential equations (O.D.E.) solver was used to integrate the effective chemical source terms over the residence time at each grid cell. One and two dimensional reacting flow situations were carried out to demonstrate and verify the current procedure. Different chemical kinetics with different degrees of nonlinearity have also been incorporated to test the robustness and generality of the proposed method.

A NUMERICAL PROCEDURE FOR ANALYSIS
OF FINITE RATE REACTING FLOWS

'HAILNGPGO

- DEVELOP AN EFFICIENT ALGORITHM FOR FINITE RATE

BACKGROUND
- ENGINE COMBUSTOR IGNITION PROCESSES
- SHOCK-INDUCED COMBUSTION AND DETONATION
- IGNITION DELAY AND COMBUSTION EFFICIENCY
- SSME AND HYPERSONIC VEHICLE PROPULSION, etc.

ESI $_{\text {Engineering Sciences, Inc. }}$
NUMERICAL ISSUES
TO COMPARE 돛

- VERY SMALL CHEMICAL TIME
FLUID DYNAMICS TIME SCALE
- FAST CHEMISTRY OF H2-02 SYSTEM
- A SET OF STIFF NON-LINEAR PARTIAL DIFFERENTIAL

- EXPENSIVE CPU TIME EVEN FOR TWO-DIMENSIONAL STUDY

NUMERICAL APPROACH

- GENERAL SYSTEM OF CHEMICAL REACTION IN TERMS
OF MASS FRACTION:

$$
\sum_{i} v_{i j} M_{i}=\sum_{i} v_{i j}^{\prime} M_{i}^{\prime}
$$

$\dot{\omega}_{i}=M_{w i} \sum_{j}\left(v_{i j}^{\prime}-v_{i j}\right)\left[K_{j j} \prod_{i}\left(\frac{\rho \alpha_{i}}{M_{w i}}\right)^{v_{j}}-K_{b j} \prod_{i}\left(\frac{\rho \alpha_{i}}{\left.M_{w i}\right)^{j_{i j}}}\right]\right.$

- SPECIES CONTINUITY EQUATION:
$\frac{\partial\left(\rho \alpha_{i}\right)}{\partial t}+\frac{\partial\left(\rho u_{j} \alpha_{i}\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\frac{\mu_{e f}}{\sigma_{\alpha}} \frac{\partial \alpha_{i}}{\partial x_{j}}\right)+\dot{\omega}_{i}$
- DEFINE FLUID PARTICLE RESIDENCE TIME

- INTEGRATE CHEMICAL KINETICS OVER $\Delta t_{c}=\min \left(\Delta_{f}, \Delta t\right)$ WITH
"DEBDF" ODE SOLVER ? 0 - 0
STIFF PDE
OF NONLINEAR
A SET
AVOID TO SOLVE
EQUATIONS
-
- CALCULATE CHEMICAL

F:S $I_{\text {Engineering Sciences, Inc. }}$

('Ұuos) HOVOYddV TVOIYHINAN

- TIME STEP LIMITER FOR SPECIES EQUATIONS: $\Delta t_{s}=\left[\rho\left(\Delta \alpha_{i}\right)_{\text {assigned }} / \dot{\omega}_{i}\right]_{\min }$
- ELEMENT BALANCE CONSTRAINTS:

$\sum_{i} \alpha_{i}=1.0 \quad$ and
$0.0 \leq \alpha_{i} \leq 1.0$
- DEVISE A PENALTY FUNCTION

$P_{i}=\frac{1.0-\alpha_{i}^{k}}{\alpha_{i}^{*}-\alpha^{k}}$

- ADJUST MASS FRACTION:
ONLY FOR STEADY STATE
-

ES I Engineering Sciences, Inc.

NUMERICAL APPROACH (cont.)

COMPRESSIBILITY CORRECTIONS
CONJUGATE GRADIENT SQUARE (CGS) AND ADI SOLVER

[^0]VALIDATION
4. BURROWS AND KURKOV DIFFUSION FLAME
VALIDATION (cont.)

1. IGNITION DELAY

- TO CHECK OUT THE CHEMICAL KINETICS MODELS, ODE SOLVER AND IMPLEMENTATION OF OPERATOR-
SPLITTING SCHEME
- TEST CONDITIONS:
STOICHIOMETRIC MIXTURE OF H2+AIR
N2 IS CHEMICALLY INERT
$\mathbf{P}_{\infty}=101,325$ Pa; $U_{\infty}=2,689 \mathrm{~m} / \mathrm{s}$;
CHEMICAL KINETICS MODELS:
2-STEP REACTION MUDEL
9-STEP REACTION MODEL OF ANON
-

(${ }^{7}$ uos) NOILVGITVA

1. IGNITION DELAY (cont.)

- ODE SOLVER IN TIME DOMAIN:

BOTH G

(a) 2 -step reaction, 51 grids
Fig. 1 Temperature profiles in one-dimensional ignition delay calculation.
VALIDATION (cont.)

2. ONE-DIMENSIONAL DETONATION

DATA
2,819
1.80
3,583
DT $=1 \mu \mathrm{~s}$
$\mathbf{3 , 0 0 0}$
1.335
3,592

* DETONATION WAVE SPEED

[^1]

Fig. 4 Mass fraction profiles for SSME nozzle flow along the center line.

VALIDATION (cont.)

Fig. 5 Mole fraction profiles at $\mathbf{x = 3 5 . 6 c m}$ for Burrows and Kurkov's non- reacting case.

Fig. 7a Mole fraction profiles at $x=35.6 \mathrm{~cm}$ for Burrows and Kurkov's
reacting case.

[^2]CONCLUSION

ODE
 - SUCCESSFUL IMPLEMENTATION OF "DEBDF"

- PENALTY FUNCTION -- EFFICIENT; BUT MASS FRACTION IN SOME CASES
CAN BE APPLIED TO TRANSIENT CALCULATIONS OSCILLATION
- ODE SOLVER SOLVER AND CHEMICAL KINETICS

[^0]: ESI Engineering Sciences, Inc.

[^1]:

[^2]: Fig. 7b Mole fraction profiles at $\mathbf{x}=\mathbf{3 5 . 6} \mathbf{c m}$ for Burrows and Kurkov's
 reacting case.

