Axisymmetric Computational Fluid Dynamics Analysis of Saturn V/S1-C/F1 Nozzle and Plume

Joseph H. Ruf
NASA/Marshall Space Flight Center Huntsville, AL.

Abstract

$p-21$
An axisymmetric single engine Computational Fluid Dynamics calculation of the Saturn V/S1-C vehicle base region and F1 engine plume is described. There were two objectives of this work, the first was to calculated an axisymmetric approximation of the nozzle, plume and base region flow fields of S1-C/F1, relate/scale this to flight data and apply this scaling factor to a NLS/STME axisymmetric calculations from a parallel effort. The second was to assess the differences in F1 and STME plume shear layer development and concentration of combustible gases. This second piece of information was to be input/supporting data for assumptions made in NLS2 base temperature scaling methodology from which the vehicle base thermal environments were being generated. The F1 calculations started at the main combustion chamber faceplate and incorporated the turbine exhaust dump/nozzle film coolant. The plume and base region calculations were made for ten thousand feet and 57 thousand feet altitude at vehicle flight velocity and in stagnant freestream. FDNS was implemented with a 14 species, 28 reaction finite rate chemistry model plus a soot burning model for the RP-1/LOX chemistry. Nozzle and plume flow fields are shown, the plume shear layer constituents are compared to a STME plume. Conclusions are made about the validity and status of the analysis and NLS2 vehicle base thermal environment definition methodology.

George C. Marshall Space Flight Center
Structures and Dynamics Laboratory
Computational Fluid Dynamics Branc
Axisymmetric CFD Analysis of Saturn V/S1-C/F1
Nozzle and Plume Joseph H. Ruf
Marshall Space Flight Center
George C. Marshall Space Flight Center
Structures and Dynamics Labora
Computational Fluid Dynamics Branch
-BACKGROUND

- OBJECTIVE
- APPROACH
- RESULTS
-CONCLUSIONS
George C. Marshall Space Flight Center Structures and Dynamics Laboratory
Computational Fluid Dynamics Branch
- STME design had hydrogen rich turbine exhaust ejected
near the nozzle lip - potential recirculation to vehicle
base.
- Initial NLS base heating thermal design environment
severely impacted vehicle base thermal design.
- An in house CFD effort to qualitatively assess NLS/STME
base heating rates was begun.
- this included similar axisymmetric analysis of
Saturn V/S1-C/F1 and NLS/STME configurations

BACKGROUND

OBJECTIVES

George C. Marshall Space Flight Center
Structures and Dynamics Laboraiory

APPROACH

-

F1 MCC und Nuzzie lirio
Hucyrul. . . in m

1442
George C. Marshall Space Flight Center
Structures and Dynamics Laboratory
APPROACH, cont.

10kft Plume Grid
白
pluns2.1.iny
George C. Marshall Space Flight Center
Structures and Dynamics Laboratory
Computational Fluid Dynamics Branch

- Nozzle
- effect of turbine exhaust seen well into the main flow field
- compared to RAMP(MOC) calculation for smooth wall
nozzle w/o turbine exhaust. Significant differences
exist.
- calculated thrust and Isp
frozen flow $+.5 \%$
finite rate $+12 \%$
RESULTS

c.1'siuqu LEVELS

George C. Marshall Space Flight Center
Structures and Dynamics Laboratory
RESULTS, cont.

nozzle radii downstream
1.8 to 1
F1
STME
ratio

Bomiunh levtls

OH Mass Fractior
STKft Plume

tort.1.ing

eorge C. Marshall Space Flight Center
Structures and Dynamics Laboratory Computational Fluid Dynamics Branch

to match thrust levels.

- Need to reconcile differences between FDNS and the RAMP calculations. Soot burning model is too vigorous at low altitude, appears qualitative correct at high altitude.

Recirculation to the base region was not representative
of the S1-C/F1 base region flow field (1st objective).

combustible
Base

Gas Temperature Scaling Methodology may be non conservative.
Appears to be a significant
development between F1

- Indicates that plume she
and STME (2nd objective).
yer development and
C|
ar
gas concentrations are

