N95-23433

ABSTRACT:

521-34 1995 112013

CFD Flowfield Simulation of Delta Launch Vehicles in a Power-on Configuration

Workshop for Computational Fluid Dynamic (CFD) Applications in Rocket Propulsion, George C. Marshall Space Flight Center, April 20-22, 1993

By: D. L. Pavish+, T. P. Gielda^{*}, B. K. Soni ^{**}, J. E. Deese++, and R. K. Agarwal++

This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multiengine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELVs to correct estimates from semi-empirical engineering models or scale model tests.

Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missile's Divison (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocabon chemical kinetics and a k- ε turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-I solid motors burning and a Delta-II with an RS-27 main engine (LOX/RP-1) and 9 GEMs attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hyrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.

+ McDonnell Douglas Aerospace-Space Transportation Division, Huntingon Beach, Ca.

++ McDonnell Douglas Aerospace-New Aircraft Missile Products Division, St. Louis, Mo.

- * Presently at Ford Motor Co., Detroit, Mi.
- ** Mississippi State Univ. NSF/Eng. Research Center, Strarkville, Miss.

SERVICE PAGE SLANK NOT FILMED

MDA – Space Transportation

CFD FLOWFIELD SIMULATION OF DELTA LAUNCH VEHICLES IN A POWER-ON CONFIGURATION

By: D. L. Pavish ^{*} T. P. Gielda B. K. Soni J. E. Deese R. K. Agarwal McDonnell Douglas Aerospace - Space Transportation Division 5301 Bolsa Avenue - M.S. 12/2 Huntington Beach, California 92647 (714) 896-4383 11th Workshop for Computational Fluid Dynamic (CFD) Applications in Rocket Propulsion

A-2 392 5 1

1.540

PROBLEM

CFD internal/external reacting gas (power-on) flowfield predictions are needed for engineering design of expendable launch vehicles (ELVs)

[1] base pressure (base drag) [2] base heating rate (insulation)

- ELV cold/hot air or reacting gas wind tunnel tests require long lead times and are very expensive
- ELV base region environments often determined during initial flights

OBJECTIVE

- Utilize state of the art CFD methods to predict power-on multibody ELV flowfields
- Reduce or minimize wind tunnel testing and flight measurements of base region pressures and heating
- Reduce ELV design cycle costs and aerodynamic uncertainties

APPROACH MDA - Space Transportation
 Apply, modify, improve existing and developing CFD techniques to predict power-on flowfields for multibody and multi-engine Delta ELVs
 Cooperative, multi-year research effort by MDA-STD, MDA-NAMPD, and Miss. State NSF/ERC
 Grid Generation Employ advanced GENIE⁺⁺, zonal, structured, grid generation code
 Navier-Stokes Flow Solver
Time dependent, Reynolds averaged, 3D Navier-Stokes code
Explicit Runge-Kutta integration procedure
K-epsilon turbulence model (Jones & Launder, high Re. no. form)
TVD dissipation scheme (Yoon and Kwak)
Zonal, contiguous grid capability
Finite rate combustion chemistry routines (explicit) hydrocarbon (RJ-1 or RP-1) and aluminum based solid motor fuel
Robust, well validated CFD code for ELV power-off flowfields (see AIAA-91-1727 and AIAA-92-2681)

. . .

=

APPROACH (Continued)	ATION	rform a series of increasingly complex power-on simulations	 Single body Delta DSV-2A with MB-3 main engine burning (LOX/RJ-1) with finite rate chemistry (0° and 3° angle of attack) 	 Delta DSV-2C with MB-3 main engine plus 3 Castor-I solids burning Hot air, single phase, finite rate reacting gas (0° angle of attack) 	 Delta-II with RS-27 LOX/RP-1 main engine plus 9 GEMs (or Castor-IVAs) attached/6 burning 	0° angle of attack to minimize grid size and computer time	Perform cold air (constant gamma) solutions before reacting gas simulations to remove grid errors	Assume single phase gas reactions w/o surface combustion	Utilize Delta launch vehicle flight measurements of base surface pressures, temperatures, heating rates	
	ALIC	ď	\checkmark	\checkmark	~					
					1515					

DLP-4/03

MDA – Space Transportation

(1) AXISYMMETRIC DELTA DSV-2A POWER-ON SIMULATION (AIAA-91-3338)

Two zone overlapping viscous grid (internal and external)

Thin-layer Navier Stokes flowfield simulations

MB-3 main engine (LOX/RJ-1) with finite rate hydrocarbon combustion chemistry

Chamber temperature, pressure, mass ratios are known

Nozzle exit momentum and mass flow matched at nozzle exit

Four Mach number-trajectory points simulated (axisymmetric, 0° angle of attack)

Predicted base pressures and temperatures well validated

Demonstrated angle of attack effects on nozzle and base surface pressures

DELTA DSV FLIGHT 419 RECONSTRUCTED TRAJECTORY

VED2955 M20DE

RLAPPING) VED2949 M20DE	Forebody Grid	Downstream and Base Region Grid
DELTA DSV-2A TWO-ZONE OVE AXISYMMETRIC GRII		

-

DSV FLOWFIELD MACH NUMBER CONTOURS

VED2951 M20DE

DSV EXPANDED FLOWFIELD MACH NUMBER CONTOURS

111111

A DOUBLE 1 1

VED2954 M20DE

PREDICTED DELTA DSV BASE REGION SURFACE PRESSURE COEFFICIENTS

MDA-Space Transportation Division

VED2956 M20DE

Mach Number = 1.2

. .

Mach Number =2.2

GRESS & RESULTS (Continued)	/-2C POWER-ON SIMULATIONS (in progress)	l, 8 zones (60° circumferential arc region)	le simulations	18038 fuel) plus MB-3 liquid main (LOX/RJ-1)	at Mach No. = 1.4 (completed)	ting gas simulations at 0° angle of attack	I finite rate combustion chemistry	
PROGRES: (Con	(2) THREE DIMENSIONAL DSV-2C PO	160-105-40 I-J-K global grid, 8 zone	Full Navier Stokes flow code simula	Three Castor-1 solids (TP-H8038 fu	Hot gas, 0° angle of attack at Mach	Perform single phase, reacting gas (in progress)	Employ aluminum solid fuel finite r	

. . . .

C-7.

1528

•

:

÷

DLP-4/83