CFD Analysis of Turbopump Volutes

Edward, P. Ascoli, Daniel C. Chan, Armen Darian, Wayne W. Hsu, and Ken Tran
Rockwell International, Rocketdyne Division

Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion

April 20-22, 1993
NASA Marshall Space Flight Center

Abstract

An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.

CFD ANALYSIS OF TURBOPUMP VOLUTES Rockwell International, Rocketdyne Division Workshop for Computational Fluid Dynamic
Applications in Rocket Propulsion April 20-22, 1993
NASA Marshall Space Flight Center Edward P. Ascoli
Daniel C. Chan
Armen Darian
Wayne W. Hsu
Ken Tran
TASK OBJECTIVES

DEVELOP CFD ANALYSIS PROCEDURE FOR REGULAR USE IN
ENGINEERING DESIGN

- PERFORM CFD ANALYSIS IN SUPPORT OF VOLUTE DESIGNS FOR
ROCKET ENGINE TURBINES
- EMPHASIS ON GAS GENERATOR OXIDIZER TURBINE (GGOT)
DESIGN OF TURBINE TECHNOLOGY TEAM
- DESIGN AND OFF-DESIGN CONDITIONS
Rockwell International
Rocketdyne Division
INITIAL FOCUS ON DEVELOPMENT OF PROCEDURE - AUTOMATE PREPROCESSING
- GEOMETRY CREATION AND TRANSLATION
- GRID GENERATION
- MODIFY/UPGRADE REACT CFD CODE AS NEEDED
- DEMONSTRATE PROCEDURE ON TURBINE INLET AND
DISCHARGE VOLUTES

Rockwell International Rocketdyne Division

ELECTRONIC DESIGN \& GRID GENERATION TOOLS
CAD/CAM

- UNIGRAPHICS (UG) USED AT P\&W
- CATIA USED AT ROCKETDYNE

IGES TRANSLATOR

- GRAPHICS EXCHANGE STANDARD FORMAT
- COMMON TO MOST ADVANCED GEOMETRY AND GRID
GENERATION SYSTEMS
ROCKWELL AUTOMATED GRID GENERATION SYSTEM (RAGGS)
- FAMILY OF CODES FOR SURFACE DEFINITION, GRID GENERATION,
AND POSTPROCESSING
- INTERACTIVE USER INTERFACE
- ACCEPTS IGES GEOMETRY FILES
Rockwell International
Rocketdyne Division

VARIETY OF TRANSLATION ISSUES ENCOUNTERED

ISSUE	SOLUTION
7249 IGES PATCHES	
• EXCESSIVE MEMORY REQUIREMENTS	- INCREASED RAGGS MEMORY •SLOW SYSTEM RESPONSE
	- REDLOCATION
	VIA CATIA UTILITY

Rockwell International Rocketdyne Division

THREE ZONE GRID DEVELOPED

REGION	ZONE	COLOR	GRID POINTS
INLET	1	RED	$50 \times 31 \times 31=48,050$
TAPERED MANIFOLD	2	YELLOW	$95 \times 31 \times 31=91,295$
ANNULAR DISCHARGE	3	MAGENTA	$100 \times 31 \times 31=155,000$

SPACING AT WALL < 0.02" TO MAINTAIN Y + $\leq 1,000$
Rockwell International

ㄴ 픈
ZONE 2 - TAPERED MANIFOLD

ZONE	COLOR	REGION	GRID POINTS
1	RED	ANNULAR INLET	$49 \times 31 \times 99=150,381$
2	GREEN	MANIFOLD	$31 \times 31 \times 95=91,295$
3	MAGENTA	DISCHARGE	$31 \times 31 \times 49=47,089$
			TOTAL $=288,765$

Rockwell International
EXIT VOLUTE ZONE 1

Rockwell International
Rocketdyne Dvision
DESIGN PROCEDURE MUST MEET ENGINEERING CCURACY, CYCLE TIME REQUIREMENTS
GEOMETRIC APPROXIMATIONS

- MAINTAIN ACCURACY IN CRITICAL AREAS
- SIMPLIFY GRID GENERATION REQUIREMENTS GRID TOPOLOGIES
- SATISFY CODE REQUIREMENTS
: ASPECT RATIO
- ORTHOGONALITY
- SIMPLE CONNECTIVITY
- GRID COINCID GENERATION
OF INTEREST
CODE WITH SURFACES AND REGIONS
OVERALL PRECEDENTS AS NEEDED TO IMPROVE A

GEOMETRIC APPROXIMATIONS
- START WITH COMPLETE DESCRIPTION AS TRANSLATED
FROM CAD SYSTEM
- TONGUE AREA CONSIDERED CRITICAL
- INITIAL APPROXIMATIONS CONSIDERED INADEQUATE
• ZERO THICKNESS
• ALTERED MANIFOLD GEOMETRY
- RESTORE ORIGINAL GEOMETRY
- MANIFOLD-ANNULUS ACCURACY LESS CRITICAL
- GRID. "SMEARING" POSSIBLE WITH SOME TOPOLOGIES

GRID TOPOLOGY / CODE MODIFICATION

-
- SIGNIFICANT AUTOMATION OF PREPROCESSING
CAD GEOMETRY USED DIRECTLY
SUMMARY
- PROCEDURE BEING DEFINED TO ALLOW FOR PRODUCTIVE BEST COMPROMISE OF: - GEOMETRIC APPROXIMATION
- GRID TOPOLOGY
- CODE ENHANCEMENTS

