A TIME-ACCURATE FINITE VOLUME METHOD VALID AT

 ALL FLOW VELOCITIESS.-W. Kim
Resident Research Associate CFD for Space Branch, NASA Lewis Research Center, MS 5-11, Cleveland, Ohio 44135

A finite volume method to solve the Navier-Stokes equations at all flow velocities (e.g., incompressible, subsonic, transonic, supersonic and hypersonic flows) is presented. The numerical method is based on a finite volume method that incorporates a pressure-staggered mesh and an incremental pressure equation for the conservation of mass. Comparison of three generally accepted time-advancing schemes, ie., Simplified Marker-and-Cell (SMAC), Pressure-Implicit-Splitting of Operators (PISO), and Iterative-Time-Advancing (ITA) scheme, are made by solving a lid-driven polar cavity flow and self-sustained oscillatory flows over circular and square cylinders. Calculated results show that the ITA is the most stable numerically and yields the most accurate results. The SMAC is the most efficient computationally and is as stable as the ITA. It is shown that the PISO is the most weakly convergent and it exhibits an undesirable strong dependence on the time-step size. The degenerated numerical results obtained using the PISO is attributed to its second corrector step that cause the numerical results to deviate further from a divergence free velocity field. The accurate numerical results obtained using the ITA is attributed to its capability to resolve the nonlinearity of the Navier-Stokes equations.

The present numerical method that incorporates the ITA is used to solve an unsteady transitional flow over an oscillating airfoil and a chemically reacting flow of hydrogen in a vitiated supersonic airstream. The turbulence fields in these flow cases are described using multiple-time-scale turbulence equations.

For the unsteady transitional over an oscillating airfoil, the fluid flow is described using ensemble-averaged Navier-Stokes equations defined on the Lagrangian-Eulerian coordinates. It is shown that the numerical method successfully predicts the large dynamic stall vortex (DSV) and the trailing edge vortex (TEV) that are periodically generated by the oscillating airfoil. The calculated streaklines are in very good comparison with the experimentally obtained smoke picture. The calculated turbulent viscosity contours show that the transition from laminar to turbulent state and the relaminarization occur widely in space as well as in time. The ensemble-averaged velocity profiles are also in good agreement with the measured data and the good comparison indicates that the numerical method as well as the multiple-time-scale turbulence equations successfully predict the unsteady transitional turbulence field.

The chemical reactions for the hydrogen in the vitiated supersonic airstream are described using 9 chemical species and 48 reaction-steps. Consider that a fast chemistry can not be used to describe the fine details (such as the instability) of chemically reacting flows while a reduced chemical kinetics can not be used confidently due to the uncertainty contained in the reaction mechanisms. However, the use of a detailed finite rate chemistry may make it difficult to obtain a fully converged solution due to the coupling between the large number of flow, turbulence, and chemical equations. The numerical results obtained in the present study are in good agreement with the measured data. The good comparison is attributed to the numerical method that can yield strongly converged results for the reacting flow and to the use of the multiple-time-scale turbulence equations that can accurately describe the mixing of the fuel and the oxidant.

CONTENTS
I. Introduction.
II. Comparison of Unsteady Flow Solution Techniques.
Iterative Time-Advancing Scheme (ITA).
Simplified Marker and Cell (SMAC).
Pressure-Implicit Splitting of Operators (PISO).
Example Flows
Lid-driven polar cavity flow starting from rest.
Flow over a circular cylinder.
Flow over a square cylinder.
宅 Application of the Iterative Time-Advancing Scheme
Unsteady Transitional Flow over Oscillaing Airfoil,
Combustion of H_{2} in Vitiated Supersonic Airstream.
VI. Conclusions and Discussion.
INTRODUCTION
Fluid flow inside Space Propulsion Systems includes all flow velocities, i.e.,
Incompressible Flows ($\mathrm{M}<\varepsilon$),
Low Mach Number Flows,
Transonic Flows,
Supersonic Flows,
Hypersonic Flows.
A number of numerical methods to solve flows (mostly steady flows) at all
flow velocities have been proposed in recent years.
Establish a numerical method that will yield accurate numerical results for flows at
all velocities that include:

i.
ii.
ii.
in.
*
*
(amiand,
chemically reacting flows*

Need to identify a best time-integration scheme among many available methods.

* Need to identify a best time-integration scheme among many available methods.
** Multiple-time-scale turbulence equations are used in the present unsteady
transitional flow and the chemically reacting flow calculations.
Comparison of Unsteady Flow Solution Techniques* Iterative Time-Advancing Scheme (ITA).

* Kim \& Benson, Computers and Fluids, vol. 21, pp. 435-454, 1992

$$
\mathrm{p}^{* *}=\mathrm{p}^{*}+\mathrm{p}^{\prime}
$$

Solve eqs. (1-5) iteratively until all flow variables converge for each time-level.
The ITA can account for the nonlinearity in each component of the momentum
equations and the nonlinear coupling of u - and v-velocity.

Solve eqs. (1-4) for each time-level.The velocity field strongly satisfy the
conservation of mass.
Conservation of momentum is achieved by obtaining a consistent pressure field.

$$
\begin{aligned}
& \quad \mathrm{u}_{\mathrm{i}}^{* *}=\mathrm{u}_{\mathrm{i}}^{*}+\mathrm{u}_{\mathrm{i}}^{\prime} \\
& \mathrm{p}^{* *}=\mathrm{p}^{*}+\mathrm{p}^{\prime} \\
& \text { Second Corrector Step: Correct velocity and pressure for momentum imbalance }
\end{aligned}
$$

where
(7)

Solve eqs. (1-9) for each time-level.
In the 2 nd corrector step, the velocity and pressure are driven by the momentum
imbalance.
The velocity field may not satisfy the conservation of mass accurately.

[^0]
(b) evolution of u_{Θ} at $\left(r_{y}, \Theta\right)=(0.246,0$.
Polar cavity flow starting from rest

${ }^{W D}|\partial|^{0 I}$ DOT

(c) u_{Θ} velocity profiles
\circ
(d) mass imbalance
Polar cavity flow starting from rest

Strouhal Numbers（ $\mathrm{S}_{\mathrm{t}}=2 \mathrm{fr} / \mathrm{U}_{\mathrm{o}}$ ）for Flow over a Circular Cylinder

$9{ }^{\circ} \cdot 0$	くヶt 0	$9{ }^{\circ} 0$	$09 \tau^{\circ} 0$	カ9T•0	Lst．0	sst．0	$85 \mathrm{~T}^{\circ} \mathrm{O}$	${ }^{2}$
		10．0	to 0	50.0	10．0	$50^{\circ} 0$	50.0	
7，dxa	［ヵธ］эəข	［z］эәษ		SId		wws	viI	

Ref．［2］： $\begin{aligned} & \text { Braza，Chassing，Ha Minh，JFM 1986，} \\ & \text { Ref．［14］：Eaton，JFM } 1987 .\end{aligned}$
Calculation of Unsteady Transitional Flow
over Oscillating Airfoil*

[^1]U_{o}
\rightarrow
\rightarrow

Conservation of mass equation

Convection-diffusion equation for scalar variables (i.e., $\phi=\left\{\mathrm{k}_{\mathrm{p}}, \varepsilon_{\mathrm{p}}, \mathrm{k}_{\mathrm{t}}, \varepsilon_{\mathrm{t}}\right.$, etc. $\}$

Ensemble average

Aside: Time average

(b) $\alpha=\mathbf{2 5} \mathbf{5}, \mathbf{t} / \mathrm{T}=\pi / 2$
Oscillating airfoil and moving mesh

Ensenble-averaged velocity profiles at $x / c=1.0$
 ,
(ii) The interaction between the DSV and the TEV occurs in a relatively coarse

The deteriorated comparison at $\alpha \approx 19^{\circ} \mathrm{d}$

Comparison of calculated streaklines with smoke picture.

Turbulent viscosity contour ($\Delta \mu / \mu_{\mathrm{t}}=10$)

Chemical species concentration equation

Chemical reactions for the combustion of H_{2} in a vitiated supersonic airstream are
described using 9 chemical species $\left(\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}, \mathrm{O}, \mathrm{H}, \mathrm{HO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}\right.$, and $\left.\mathrm{N}_{2}\right)$
and 48 reaction-steps (Burks and Oran, 1981; Kumar, 1989).
A fast chemistry can not be used to describe the fine details (such as the instability)
of chemically reacting flows.
A reduced chemical kinetics can not be used confidently due to the uncertainty
contained in the reaction mechanisms.
The use of a detailed finite rate chemistry may make it difficult to obtain a fully
converged solution due to the coupling between the large number of flow,
turbulence, and chemical equations. The numerical method needs to be strongly
convergent. Accuracy also depends on the capability of turbulence equations used.

mach number contour ($\mathrm{dM}=\mathbf{0 . 2}$)

127×124 mesh

Combustion of H_{2} in vitiated supersonic airstream
CONCLUSIONS AND DISCUSSION
On comparison of SMAC, PISO, and ITA
On comparison of SMAC, PISO, and ITA

1. The SMAC is the most efficient computationally and yields accurate numerical
results.
Calculation of steady flows using an unsteady flow solver.

* No unsteady flow solver is more efficient than steady flow solvers to solve
steady flows (Jang et al., Numer. Heat Transfer, 1986.)

[^2]CONCLUSIONS AND DISCUSSION

[^0]: Consequently, the conservation of momentum can not be satisfied accurately if a
 large mass imbalance occur.

[^1]: $\alpha=\alpha_{0}+\alpha_{A} \sin (\omega t)$

[^2]: Only the SMAC can compete with steady flow solvers (ITA with $\Delta \tau=\infty$) to solve steady flows.
 2. The 2nd corrector step of PISO.
 Velocity and pressure are driven by momentum imbalance.
 Thus the velocity field is not divergence free.
 Large amount of mass imbalance can cause divergence.
 3. The ITA can best resolve the nonlinearity of the Navier-Stokes Equations.
 *

