
DTS: Building Custom, Intelligent Schedulers

N95- 23744

Othar Hansson and Andrew Mayer

Heuristicrats Research, Inc.

1678 Shattuck Avenue, Suite 310

Berkeley, CA 94709-1631

(510) 845-5810, Fax: (510) 845-4405

{othar, mayer }@heuristicrat.com

KEY WORDS AND PHRASES

Decision theory, heuristic search, optimi-

zation, scheduling, user interface.

ABSTRACT

DTS is a decision-theoretic scheduler, built

on top of a flexible toolkit--this paper focuses

on how the toolkit might be reused in future
NASA mission schedulers. The toolkit in-

cludes a user-customizable scheduling inter-

face, and a "Just-For-You" optimization en-

gine.
The customizable interface is built on two

metaphors: objects and dynamic graphs. Ob-

jects help to structure problem specifications

and related data, while dynamic graphs sim-

plify the specification of graphical schedule
editors (such as Gantt charts). The interface

can be used with any "back-end" scheduler,

through dynamically-loaded code, interprocess
communication, or a shared database.

The "Just-For-You" optimization engine

includes user-specific utility functions, auto-

matically compiled heuristic evaluations, and a

postprocessing facility for enforcing schedul-

ing policies. The optimization engine is based

on BPS, the Bayesian Problem-Solver [1,2],
which introduced a similar approach to solving

single-agent and adversarial graph search

problems.

DTS SYSTEM OVERVIEW

The Decision-Theoretic Scheduler, DTS, is

designed to support scheduling of over-sub-

scribed, long-running projects. DTS is literally

implemented as a program in a specialized lan-

guage for the design of scheduling and optimi-

zation systems. This DTS Customization Lan-

guage (DCL) is implemented on top of the

public-domain TCL/Tk system [3].
DTS has been designed for science-plan-

ning on NASA missions. We are preparing to

deploy the system as one component of a cost-
reduction program within the Extreme Ultravi-

olet Explorer mission of the Center for Ex-
treme Ultraviolet Astrophysics at the Univer-

sity of California, Berkeley [4].

We have explicitly designed DTS to be
customizable by users, and thus transferrable

to other missions. An easily customized sched-

uling system can reduce costs by eliminating

the mission-specific paperwork and
"workarounds" that result when a system does

not address a scheduling scenario completely.
To reduce mission costs further, we have

designed DTS so that such extensions can be

made quickly and without corrupting existing

code or functionality. For example, the current

DTS interface provides much of the function-

ality of commercial project scheduling tools,

but is implemented in under 7000 lines of DCL

code. User modifications--such as an import

"filter" for a pre-existing file format, or a spe-

cialized report writer--typically require only a
few dozen lines of DCL code. Because DCL

code is interpreted, programming errors are

safely trapped.
Behind the scenes, the DTS "back-end"

contains a sophisticated constraint-satisfaction

search engine for use in automated scheduling.

The use of decision theory permits user prefer-

ences and requirements to be modeled in a

_", _ _4" 357
,- ._-'_....!71 _ ./"_,_,*.PRECEDg"C :: ' ,v" ,'t";* ;_._T F,L,,I_



mathematicallycoherentway.Theresultis
that DTScantypically findnear-optimalsolu-
tions to theuser'sactualproblem,with opti-
mality measuredin theuser'sterms.Manyex-
isting schedulingtechniquesrestrictboth the
definition of optimalityandtherepresentation
of theproblem:theuseris forcedto useasys-
tem thatprovidesaquasi-optimalsolutionto
anapproximationof theproblem.

Our researchgoal in theDTSback-endhas
beento providearich representationfor prob-
lemsandpreferences,andstill findnear-opti-
mal solutionsthroughtheuseof compilation,
learninganddecision-theoreticsearch.

In thispaper,wedescribecustomizationin
both thefront-endandback-end,andthencon-
cludewith adescriptionof futureplansfor ap-
plying DTSto NASA missions.

USER INTERFACE CUSTOMIZATION

The DTS interface uses objects and dy-
namic graphs to support customization.

All data in the system is represented within

an object hierarchy. The hierarchy includes

Task objects, Constraint objects, etc., as you

would expect. These basic objects can be sub-

classed, or specialized, for the needs of an in-

dividual application: in the NASA version of

DTS, an Observation object represents each
Task that is an astronomical observation.

The system also includes "management"
information objects such as (astronomical)

Targets, (scientific) Proposals, and Principal
Investigators. This information is linked to

"problem" information such as tasks by the use

of cross-reference attributes. For example,
each Observation has an attribute named Tar-

get that is a cross-reference.

The DTS interface is centered on an object

browser (Figure 2). Customization begins by

defining a new object class, or redefining an

existing object class. Each object class has an
associated form, used to display and edit ob-

ject instances in the browser. A simple default

form is inferred from the "type" of each at-

tribute (String, Date, etc.).

More complex forms require the use of
DCL code. Figure 2 shows the form for aTem-

poralConstraint instance. This is the most

complicated form in the system, but it requires

only 40 lines to produce a specialized display

Other
Applications -,t--

File System

User

DIS

Scheduler(s) Preprocessor(s)

Internal Problem

File I/O (import/export)

Browsing & Editing

Dispatch-Rule Scheduling

Manual Scheduling

Report Generation

Figure 1. Overview of DTS System Architecture.

358



DT$

tell10

tclPrEedu11

tdPIr_13

tbclProcedosl 4

j tclrrecedesZ
! tclPrecodes3

tclProcedosG

tclPmcedos7

tch_ndow12

TemporalConstraint
"Window" of

time

lag between
tasks

axis is
task2.start - taskl.start

Y axis is utility
attribute value.

are parameters

of utility function

Figure 2. Example Customized Form in the Object Browser.

for a number of interrelated attributes. Like

most binary constraints, the temporal con-

straint has two task parameters. In addition, for

constraints of type "window," a utility function

is defined by the parameters at the bottom of

the form. These parameters are "animated" in

a utility graph. Finally, each type of constraint

has an associated graphical mnemonic (the

upper left of the form), which reminds the user

of the nature of the constraining relationship.

The second major mechanism in the DTS

user interface is the dynamic graph. Dynamic

graphs are editable "views" of a number of ob-

jects, built using an X-Y graphing metaphor.

For example, a typical Gantt chart is an X-Y

plot of tasks (Y), using their start time and du-

ration (X). The DTS dynamic graph permits
views such as Gantt charts, PERT charts, con-

straint matrices and resource histograms to be

specified easily. These graphs are dynamic in
that callbacks can be associated with user ac-

tions (e.g., mouse events), and defined to mod-

ify the underlying data appropriately.

Each of the basic views implemented thus

far has required approximately 250 lines of

DCL code for layout and callbacks. Applica-

tion-specific views (such as augmented Gantt
charts, statistical summaries, etc.) should be

implementable with similar effort.

OPTIMIZER CUSTOMIZATION

The DTS back-end includes C++ routines,

callable through DCL, that perform basic pre-

processing and scheduling tasks. This optimi-

zation engine uses decision-theoretic search

mechanisms developed by the authors in previ-

ous and ongoing work with the Bayesian Prob-

lem-Solver [ 1,2,5].

The use of decision theory [6,7,8] enables

the engine to guide its search by user-specific

utility functions, in addition to heuristic evalu-
ation functions. Many existing schedulers use
heuristic functions alone, but heuristic func-

tions can confuse the role of schedule evalua-

tion (utility) and search control (heuristics).
DTS collects statistics that relate heuristic

evaluations to attributes of the utility function.

Because these statistics relate to inputs rather

than outputs of the utility function, the func-

359



tion itself can be modified without invalidating

the statistics that have been gathered. The use

of statistical estimation and probabilistic infer-

ence in DTS also permits multiple heuristic
evaluations to be combined to focus the search

more effectively. For example, a general-pur-

pose constraint-satisfaction heuristic might be

coupled with a domain-specific heuristic [5].

In an early phase of development, we

found that the costs of state generation and

heuristic evaluation were a significant bottle-

neck to the development of sophisticated

scheduling search control. DTS thus also em-

ploys an experimental compilation mechanism
that derives a specialized data structure for

search tree "states" from a formal specification

of the heuristic function. Hand-coding of such
data structures reduces the overall cost of

search significantly, and we anticipate that the

automation of these data structures will permit

these benefits to be achievable for users rely-

ing on domain-specific heuristics. Hansson [9]

describes the compilation mechanism in more
detail.

Finally, the use of DCL permits a user to
code a secure "audit" or "checker" routine to

validate a finished schedule before execution,

or to enforce certain scheduling policies that

are hard to represent within the system.

Along with other DTS features, these three
mechanisms---decision-theoretic search with

user-specific utility functions, data structure

compilation for fast heuristic evaluation, and

postprocessing for schedule validity--have

been designed to ensure that DTS finds solu-

tions to the user's real problem with a mini-
mum of search cost.

CONCLUSION

We are presently customizing DTS for pos-
sible use within current and future NASA mis-

sions (including EUVE and CASSINI), and

collaborating with NASA researchers to reuse
the DTS interface on top of their schedulers.

We feel that the customizability of DTS

can permit future NASA missions to exploit
"economies of reuse" and "economies of fidel-

ity." Economies of reuse are well-known: they

result when development costs are cut by reus-

ing flexible software.

Economies of fidelity result when a system

can be made to solve a large portion of an ap-

plication task, without a great degree of sim-

plification. Many search and optimization

frameworks require the user to simplify or ab-
stract their problem into a restricted modelling

language. This increases the cost of using such
systems, and reduces the benefits: the solutions

found are not always executable, let alone

near-optimal, solutions to the real problem. On

the other hand, systems like DTS, and Muscet-

tola's HSTS [ 10], attempt to provide a richer

framework for modeling the problem. DTS fo-

cuses on preference modeling, while HSTS fo-
cuses on constraint and state-variable model-

ing. We anticipate that compilation and

learning techniques will permit these rich rep-

resentations to be searched efficiently.

BIBLIOGRAPHY

[1] Hansson, O. and A. Mayer. "Heuristic
Search as Evidential Reasoning." In Proc. of the

Fifth Workshop on Uncertainty in Artificial Intelli-

gence, Windsor, Ontario, August 1989.
[2] Mayer, A. Rational Search. Ph.D. Disserta-

tion, Univ. of Califomia, 1994.

[3] Ousterhout, J. TCL and the Tk Toolkit. Add-

ison-Wesley, Reading, MA, 1994.

[4] Center for EUV Astrophysics. EUVE Guest

Observer Program Handbook. Appendix G of

NASA NRA 92-OSSA-5. Berkeley, Jan. 1992.

[5] Hansson, O. and A. Mayer. "Decision-The-

oretic Control of Artificial Intelligence Scheduling

Systems." HRI Technical Report No. 90-1/06.04/

5810, Berkeley, CA, September 1991.

[6] Pearl, J. Probabilistic Reasoning in Intelli-

gent Systems. Morgan Kaufmann, San Mateo, CA,
1988.

[7] Savage, L. J. The Foundations of Statistics.
Dover, New York, 1972.

[8] yon Neumann, J. and O. Morgenstem. The-

ory of Games and Economic Behavior. Princeton

University Press, 1944.

[9] Hansson, O. Bayesian Problem-Solving ap-
plied to Scheduling. Ph.D. Dissertation, Univ. of

Califomia, 1994.

[10] Muscettola, N. ttSTS-DDL Manual,

NASA Ames Research Center, Code FIA, March
1994.

360


