NASA Conference Publication 3295

Fourth NASA Goddard
Conference on

Mass Storage Systems
and Technologies

Edited by

Eenjamin Kobler

Goddard Space Flight Center
Greenbelt, Maryland

P.C. Hariharan
Systems Engineering and Security, Inc.
' Greenbelt, Maryland

Proceedings of a conference held at
the University of Maryland

University College Conference Center
College Park, Maryland

March 28 - 30 1995

National Aeronautics and
Space Administration

Scientific and Technlical
Information Branch

1995

Fourth NASA Goddard Conference on Mass
Storage Systems and Technologies

Program Committee

Ben Kobler, NASA Goddard Space Flight Center (Chair)
Jean-Jacques Bedet, Hughes STX Corporation

John Berbert, NASA Goddard Space Flight Center

Jimmy Berry, Department of Defense

William A. Callicott, NOAA/NESDIS (retired)

Sam Coleman, Lawrence Livermore National Laboratory
Raymond Cook, Community Management Staff

Charles Dollar, University of British Columbia

Fynette Eaton, National Archives and Records Admininistration
P.C. Hariharan, Systems Engineering and Security, Inc.
Bernard O'Lear, National Center for Atmospheric Research
Terrence Pratt, Former Director CESDIS/USRA

Sanjay Ranade, Infotech SA, Inc.

Bruce Rosen, National Institute of Standards and Technology
Don Sawyer, NASA Goddard Space Flight Center

Production, Copy Editing, and Layout

Len Blasso

This publication is available from the NASA Center for AeroSpace Information,
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

Preface

This volume is a compilation of those presentations of the Fourth Goddard Conference on
Mass Storage Systems and Technologies for which manuscripts or viewgraphs were
received in time for publication. The Mass Storage community, as in the past, has shown
enthusiasm for the Conference, as witnessed by the large number of excellent papers we
have received. We are planning to bring out, on CD-ROM, the panel discussions and the
after-dinner speech some time after the Conference.

The IEEE Mass Storage Systems Reference Model Version 5, on which the final vote was
taken in July, 1994, will provide the framework for the definition of interfaces and
standards. Itis to be hoped that, as this activity is completed, it will result in the creation
of interoperable software and hardware components from multiple vendors, thus affording
users a truly wide selection of products with which both large and small archives can be
built. 1994 also saw the definition of the architecture of the NASA Earth Observing
System Data and Information System (EOSDIS). It embraces a federated design with
autonomous, cooperating, systems which are distributed, both geographically and
logically, and will be based, to a large extent, on COTS products. Unfortunately, most
such products either do not exist today, or have not reached the required level of maturity.
The standardization activities of the IEEE SSS Working Group should provide the basis
and impetus for the creation of interoperable products for which the markets are emerging.

On a sad note, we regretfully report the passing away of three distinguished colleagues
who had participated in previous mass storage conferences. We extend our condolences
and sympathies to the families of: -

John Corcoran, Ampex
L. Harris Robinson, Datatape
W. Cliff Brown, NASA Goddard Space Flight Center

In keeping with tradition, this year’s Conference provides talks and presentations on:

* New storage technology from IBM, Quantum, Exabyte, Storage Technology and
Primelink Technologies

Stability of recorded media

Performance studies

Storage systems solutions

The national information infrastructure, the Infobahn

The future for storage technology

Lessons learned from various projects

The requirements of various agencies

The editors are grateful to:

Mr Jean-Jacques Bedet, Hughes STX Corporation
Mr John H Berbert, NASA/GSFC

Mr Jimmy F Berry, National Security Agency

Mr William Callicott, recently retired from NOAA

Dr Samuel Coleman, Lawrence Livermore Laboratory
Mr Ray Cook, Community Management Staff

Prof Charles Dollar, University of British Columbia

iii

Ms Fynnette Eaton, National Archives and Records Administration
Mr Bernard O’Lear, National Center for Atmospheric Research

Dr Terry Pratt, former Director of CESDIS/USRA

Dr Sanjay Ranade, Infotech SA

Mr Bruce Rosen, NIST

Mr Don Sawyer, NASA/GSFC

who, as members of the Program Committee, worked diligently to make this Conference a
success.
We also offer our thanks to:
Jorge Scientific Corporation, for logistics support; the staff at the University of
Maryland Conference Center for the excellent conference facilities; and Len Blasso and

Media Specialist Associates for the production and camera-ready preparation of this
publication.

P C Hariharan
Systems Engineering & Security, Inc

Ben Kobler
Code 505, NASA Goddard Space Flight Center

iv

Table of Contents

Applications Drivers For Data "Parking" on the Information Superhighway, Clark E.
Johnson, Massachusetts Institute of Technology, Thomas Foeller, Configured
Health Care, INC.ccoooviviiviiiiiiiiiniiiieiiisieiieiiersenentsssansnsnresssrsrsenenensnnes 1-r

The Design of a Petabyte Archive and Distribution System for the NASA ECS Project,
Parris M. Caulk, LORAL AETOSYSc.ocuvureeeerienrasnrensnrnessinensnsaseeresssesssnsnsnsnns 7 -2

A Distributed Parallel Storage Architecture and its Potential Application Within EOSDIS,
William E. Johnson and Brain Tierney, Lawrence Berkeley Laboratory,; Jay Feuquay
and Tony Butzer, EROS Data Center/Hughes STXcvcveviieiiiirniosieneneernarasniesnses 19 -3

Robotic Tape Library System Level Testing at NSA, Present and Planned, Michael F.
Shields, Department of Defense.c...uuieieeeneiieeririveririeirsisrenenesssnsesrensiines 35-¢

The Architecture of the High Performance Storage System (HPSS), Danny Teqff, IBM
Federal; Dick Watson, Lawrence Livermore National Laboratory; Bob Coyne, IBM

Federaloonviiiuininiiiiiiiiiiiiiiiii ettt ettt e r e e e aas 45-5
A 500 MegaByte/Second Disk Array, Thomas M. Ruwart and Matthew T. O’Keefe,

University Of MINNESOIAccceviiiiiiiiiiiiinisiieiresisesetnreieesentnriesesassracsnenens 75 ~6
New Architectural Paradigms for Multi-PetaByte Distributed Storage Systems,

Richard R. Lee, Data Storage Technologies, INC.c..coveenriinniiniiiniininennenns 91- 7
Optimizing Raid Performance with Cache, Alex Bouzari, Mega Drive Systems, Inc. 99 - 7

Document Image Archive Transfer from DOS to UNIX, Susan E. Hauser,
Michael J. Gill, and George R. Thoma, National Library of Medicine 105 "9

High Data Rate Recorder Development at MIT Haystack Observatory, o
H.F.Hinteregger, MIT Haystack ODSErVAIOTY.ccucviveieiviiiireeiiiireneesenrnsennns 115~ /

Petabyte Mass Memory System Using the Newell Opticel*, Chester W. Newell,
Primelink Technologies, INC.ccveviviiiiiniriiiieiiiiriiesasaiserseiacensissassssencnses 123 ~//

Integrating UniTree with the Data Migration API, David G. Schrodel, Convex
Computer COTpOTationcocevevrvirenvinnens et er e e e ettt ea e e aeans 137 ~/ 2~

Constraint Based Scheduling for the Goddard Space Flight Center Distributed Active

Archive Center’s Data Archive and Distribution System, Nick Short, Jr., NASA/Goddard

Space Flight Center, Jean-Jacques Bedet and Lee Bodden, Hughes-STX, and Mark

Boddy, Jim White, and John Beane, Honeywell Technology Center.......................... 157 - /3

v

A Comparison of Rotary- and Stationary-Head Tape Recorders, John R. Watkinson,

Run Length Limitedcccovevueereeeeeenannniiininieeieeesessinainnsnsnisssessneeneeseess 177 -/ 5(
Client/Server Data Serving for High Performance Computing, Chris Wood, Maximum 5
R 17T R £ P P TR TR TRTEE 185

A Kinetic Study of Hydrolysis of Polyester Elastomer in Magnetic Tape, K. Yamamoto

and H. Watanabe, Sony COrPOTALIONcoveiveieiiinineiieieniiiiisiesisiciiinse 203~/ e
Digital Linear Tape (DLT) Technology and Product Family Overview, Demetrios

Lignos, Quantum COTPOTALIONovereirernseieiieiisininosneruermiseseittisiieississirse 211 <[7

The MAMMOUTH Project, Tim Gerchar, EXABYTE, COIP. ...vvveveveverererasesnnenens 233 -1 B

Influence of Technology on Magnetic Tape Storage Device Characteristics, John J.
Gniewek and Stephen M. Vogel, IBM COTPOTQLIONccocvviviveriirerneniisniniiniiinne. 237~ q

Approaches to 100 Gbit/Inch Square Recording Density, Mark H. Kryder, Carnegie
Mellon URIVEISILY ..o.ovviininninieniniiiiiiiiiiniieitiniiensinraeseiosietiestastisisestosmsnmsins 253 ‘}20

Reproducible Direct Exposure Env1ronmental Testing of Metal-Based Magnetic Media, I
Paul J. Sides, Carnegie Mellon Universitycoeviiiveiiiniiieiiiiiiisnis. 255 <.

Optical Storage Media Data Integrity Studies, Fernando L. Podio, National Institute of
Standards and TechnolOZYooovveieniiiiieniiiiiiineiiiiiie i 265 <1 y»

Optimizing Tertiary Storage Organization and Access for Spatio-Temporal Datasets,
Ling Tony Chen, Doran Rotem, and Arie Shoshani, Lawrence Berkeley Laboratory; Bob
Drach, Steve Lewis, and Meridith Keating, Lawrence Livermore National Laboratory 271 -2

Building a COTS Archive for Satellite Data, Ken Singer and Dave Terril, Federal
Data Corporation, Jack Kelly, L.A. Systems; and Cathy Nichols, NOAA/NESDIS/IPD ... 303 "cllf

ASF Archive Issues: Current Status, Past History, and Questions for the Future, g
Crystal A. Goula and Carl Wales, Alaska SAR Facilityc.ccooevuiiininnninnnnninnnn. 311~ A

Architecture & Evolution of Goddard Space Flight Center Distributed Active Archive
Center, Jean-Jacques Bedet, Lee Bodden, Wayne Rosen, and Mark Sherman, Hughes)
STX: Phil Pease, NASA/Goddard Space Flight Center.......................coocevvvvnvnennnnn. 323 ¥

The Growth of the UniTree Mass Storage System at the NASA Center for

Computational Sciences: Some Lessons Learned, Adina Tarshish and Ellen Salmon, 1
NASA/Goddard Space Flight Centerccociiiuniiiiininiinneeniinnnininn, 345 ";L‘

vi

NSSDC Provides Network Access to Key Data via NDADS, Jeanne Behnke and Joseph

King, NASA/Goddard Space Flight Centercvoveveiiiiieieirirsioseneiesreenensnensans 359 —"19
Analysis of the Request Patterns to the NSSDC On-line Archive, Theodore Johnson,
URIVTsity Of FIOTIAQ.couvviiiiieeiiiresiesisereeeeeeseeseseeesesesseesssssseesssssssnes 367- A7

Evaluating the Effect of On-line Data Compression on the Disk Cache of a Mass Storage
System, Odysseas 1. Pentakalos and Yelena Yesha, University of Maryland Baltimore
County and NASA/Goddard Space Flight Center............cccvveuveuveeinernenieninensoniecenens 383 ~20

A Terabyte Linear Tape Recorder, John C. Webber,
TNIETfErOMALICS, INC.cvvvninieiiiiiiie ittt e s steesassescnensnrnsnsnnnns 393

N95- 24109

Applications Drivers For Data "Parking" On The Information
Superhighway ,
s) 8
Clark E. Johnson, Jr. -
Research Program on Communications Policy
Massachusetts Institute of Technology T39S
P.O. Box 50116 f 5
Minneapolis, MN 55405 -
clark@famsworth.mit.edu :

Tel: 612-922-8541
Fax: 612-922-8820

Thomas Foeller
Managing Director
Configured Health Care, Inc.
RR1, Box 111
Balsam lake, WI 54180
71732.243 @compuserv.com

Abstract

As the cost of data storage continues to decline (currently about one-millionth of its cost four
decades ago) entirely new application areas become economically feasible. Many of these
new areas involve the extraordinarily high data rates and universal connectivity soon to be
provided by the National Information Infrastructure (NII).

The commonly held belief is that the main driver for the NII will be entertainment
applications. We believe that entertainment applications as currently touted--multi-media, 500
video channels, video-on-demand, etc.--will play an important but far from dominant role in
the development of the NII and its data storage components. The most pervasively effective
drivers will be medical applications such as telemedicine and remote diagnosis, education and
environmental monitoring. These applications have a significant funding base and offer a
clearly perceived opportunity to improve the nation's standard of living.

The NII's wideband connectivity both nationwide and worldwide requires a broad spectrum
of data storage devices with a wide-range of performance capabilities. These storage centers
will be dispersed throughout the system. Magnetic recording devices will fill the vast majority
of these new data storage requirements for at least the rest of this century.

The storage needs of various application areas and their respective market sizes will be
explored. The comparative performance of various magnetic technologies and competitive
alternative storage systems will be discussed.

OVERVIEW
Evolving local and wide-area networks are opening and supporting increasingly wider

interoperation and data sharing. A number of these architectures also support real-time inter-
operable applications. Examples include on-line interactive games played over the Internet.

New commercial ventures are subjecting Internet facilities to increasing numbers of users with
a wide variety of knowledge and skill levels. In addition, certain forthcoming Internet-based
offerings (e.g. Delphi) will routinely use "agents" to traverse the Internet. These "agents" will
be able to call up remote resources that can be aggregated to produce and deliver the desired
result transparently as a "single" transaction.

Often times, valuable data artifacts resulting from or derived during these "aggregated" agent-
driven operations are left at remote nodes for periods of time transcending the life of the
transaction itself. These may create problems for both data owners and site operators where
the data resides. Site operators will need to flush out such data from their storage devices
from time to time, causing potential losses, without recourse, to the data owners.

To some degree, this same problem is already occurring at an increasing rate on smaller, local
domains. Enterprise-wide networking that supports interoperable desktop computing often
exhibits a potential soft underbelly of potential data loss. This is because there is no
consistent nor convenient way to back-up widely dispersed data.

While there are currently a number of initiatives to develop and refine data-compacting
interoperability models, there are none that we are aware of that are addressing back-up of
widely dispersed data often typified by incompatible formats and inconsistent access
mechanisms.

As much higher data rate networks such as the Global Information Infrastructure (GII) are
developed that operate at speeds that are expected to approach a gigabit/second, the problems
outlined above become intractable with current storage technology and system architecture. In
order for such networks to become consistently useful and fulfill the promise of universal
access to all, requires that dispersed data, located at nodes anywhere in the world be
seamlessly available.

Traditional Model

Traditional Model Information Systems Bodies

Telco Bodies

A.M.Rutkowski
copyright 1994

Figure 1. The Standards-Making Universe

This paper is a "first step" toward defining and formalizing a "universal" storage and retention
model. We hope that this will encourage dialogue regarding the broad issues of the
requirements of a truly user-friendly network, and to encourage the appropriate standards-
setting groups to become actively involved. International standards setting is a convoluted
process as Figure 1 shows.

SOME RELEVANT DRIVERS

Considerable effort is being made on a number of fronts to deal with the entire area of
interoperability across dissimilar networks, user interfaces and underlying protocols. As
these developments become commercialized, they will have a profound effect on the nature
and structure of storage. Examples of the development efforts follow.

Most network management systems protocols and descriptive semantics, e.g. NMS (Novell),
Openview (HP), Netmanager (SUN), Landesk (INTEL), Netview (IBM) do not currently
interoperate across public network facilities such as the Internet, but they do operate across a
number of commercial local and wide-area networks. Work is going on to provide upgrades
that will soon enable certain user-specific backup and maintenance functions across
heterogeneous networks.

Developments such as Microsoft "Windows '95" are expected to provide universal user
interfaces including X-Windows along with the simultaneous support of multiple network
transport mechanisms (e.g. TCP/IP, NetBIOS, netBEUIL,...).

There are a number of applications program initiatives that will vie to become a "standard,"
and will enable application program modules written in one language to interoperate to some
degree with programs written using one or more modules written in as many languages.
These could, for example, share run-time resources in a single memory image; they could be
segmented--running in separate memory images on different machines; or they might be
distributed system components implemented by a number of programs on many machines. All
of these implementations would appear seamless to the user; in fact, users may not know
which were implemented and stored locally or at a remote node. As a consequence, slow or
unreliable network transport mechanisms, inadequate long-term storage facilities located at
network nodes, or missing software/data modules removed because of conflicting space
requirements will increase and exacerbate real and perceived problems. Of course, increasing
the number of interoperable components or modules expected by the user to be immediately
available, will further increase the demand for high-performance storage.

BACKUP ISSUES

The above considerations lead to a number of data backup issues. As an example, consider
the implementation of a flexible communication network backup facility that supports large
block transfers of variable size and that functions without impacting the network's perceived
performance by its on-line users. This is particularly important for digital video applications
where even short time delays are intolerable.

In summary, because of this and myriad other issues, the overall storage architecture requires
logical data space management so that it appears physically unbounded--regardless of the
nature of the storage devices or their network topology. That is, object boundaries span
storage hierarchies and media groupings. Consistent appearing data output formats are
required so that the presentations are independent of origin data base, operational software and
transport and are fully controllable by the user.

In addition, "agent" specifications and qualifications must be codified as there are compelling
reasons to believe that these agents will be used to handle event log monitoring. billing (for
example when the network is used to distribute intellectual property), reporting and internal
data migration pathway control.

THE HIGH-SPEED NETWORK

Called the National Information Infrastructure in the United States, and the GII elsewhere, the
vision is to have a "fat pipe" with Terabits/second bandwidth connecting major world centers
by the next millennium. Currently, single-mode fiber-optic cables span the Atlantic and
Pacific and operate at hundreds of megabits/second speeds. Terabytes of data per day will be
traveling on this network and will require store-and-forward and destination node storage.
Storage periods required will range from milliseconds to days.

Currently, Broadband Integrated Services Digital Network (BISDN), using the Synchronous
Optical Network (SONET) physical layer protocol (SONET OC-3 operates at 155Mb/sec.)
appears closest to commercialization, but requires three technological advances: in access,
switching and storage.

In the area of storage, teleconferencing and multimedia applications such as MOSAIC can be
accommodated on ISDN using commercialized bandwidth compression schemes. The storage
requirements for applications such as medical image record transfer, where compression may
not be acceptable to the profession, and for high-definition television are almost
overwhelming.

For example, using the Qualcomm HDTV compression algorithm that provides 48:1 intra-
frame compression, a full-length movie requires about 50 megabytes of storage. The average
video store may have 10,000 titles in stock. To duplicate this on the server requires about 500
Terabytes of storage. These titles while not being required to be on one server, must be
accessible under the same naming conventions, using consistent accessing and transfer
methods, as if they were co-resident. Conventions and software required to meet these types
of requirements are not yet available.

Missing or ill-defined technologies are not the only problems that must be faced. The
economics of "video-on-demand" (VOD) is not comforting. The top one percent of
Blockbuster customers spend $350/year. The average is about $50/year. Historically,
citizens have spent a relatively fixed percentage of their income on entertainment--about 5% of
their net after taxes; and this includes travel, restaurant meals and the like. It is questionable
if, with currently available technology, there is a profitable business in downloading movies.
The future availability of advanced, lower cost, faster storage means may well determine the
fate of video on demand.

Medical image transmission and other telemedicine components are not yet inhibited by the
same cost constraints as VOD. The pictures, which range from X-rays to magnetic-resonance
images and sonograms, are sent without compression at relatively high cost because the
medical profession (not to mention its regulators and the legal profession) are not yet willing
to accept images reconstructed from image data that had been compressed using "lossy"
compression algorithms--even though it can be shown that trained observers can rarely
distinguish between the original images and those that have been compressed. Regardless of
absolute cost, the value of using this technology to provide expert diagnosis to remote and
rural areas cannot be overstated. Additionly, telemedicine using actual, high-resolution video

images provides the opportunity to perform almost real-time consultation and cooperative
surgical procedures across the network.

America's schools are slowly becoming connected to each other and to world-wide data
bases. While each institution's network usage, even if in multimedia format, will not put a
significant demand on the network; the contemporaneous demand by many thousands of users
will. A significant increase in response time when surfing the network for information using,
for example Mosaic, will tend to discourage the students from using of the network's vast
resources.

THE FUTURE OF STORAGE FOR THE HIGH-SPEED NETWORK

Certainly for the rest of this century, magnetic storage will dominate. The storage density
continues to increase at the four decade-long historic rate of doubling every 2.5 years. In
fact, this rate-of-change has recently increased. The per-bit cost of magnetic storage has
gone down by a factor of over a million during the same time period. The retail price of
disk storage is now roughly 40 cents/megabyte.

The always-increasing I/O problem (the mismatch between computational speed and
memory access) is constantly being addressed by memory suppliers. The development of
RAID (redundant array of inexpensive drives) disk technology and stripe-based tape
storage provide performance and reliability improvements. Massive RAID systems now
being developed are currently limited by the speed of silicon technology.

The usual hierarchy of storage will continue to prevail with the ultra-high speed cache
requirements being fulfilled by solid-state memory. Massive caching isan economic issue
because the cost of such memory is prohibitive for high data rate network applications.
Thus, extensive effort is being devoted to refining and improving holographic storage
technologies. Many researchers expect these to be commercialized by the end of the
century and will combine the speed performance of RAM storage with the low-cost and
capacity of magnetic-based systems. A particular attractiveness is the lack of moving parts
and storage densities in the range of terabytes/cc.

S2-82-

Y39y b
N95- 24110

The Design of a Petabyte Archive and Distribution System for the
NASA ECS Project

Parris M. Caulk
LORAL Aerosys
1616A McCormick Drive
Landover, MD 20785
pcaulk@eos.hitc.com
Tel: 301-925-0610
Fax: 301-925-0327

Introduction

The NASA EOS Data and Information System (EOSDIS) Core System (ECS) will
contain one of the largest data management systems ever built - the ECS Science and
Data Processing System (SDPS). SDPS is designed to support long term Global Change
Research by acquiring, producing, and storing earth science data, and by providing
efficient means for accessing and manipulating that data. The first two releases of SDPS,
Release A and Release B, will be operational in 1997 and 1998, respectively. Release B
will be deployed at eight Distributed Active Archiving Centers (DAACs). Individual
DAACs will archive different collections of earth science data, and will vary in archive
capacity. The storage and management of these data collections is the responsibility of
the SDPS Data Server subsystem. It is anticipated that by the year 2001, the Data Server
subsystem at the Goddard DA AC must support a near-line data storage capacity of one
petabyte.

The development of SDPS is a system integration effort in which COTS products will be
used in favor of custom components in every possible way. Some software and hardware
capabilities required to meet ECS data volume and storage management requirements
beyond 1999 are not yet supported by available COTS products. The ECS project will
not undertake major custom development efforts to provide these capabilities. Instead,
SDPS and its Data Server subsystem are designed to support initial implementations with
current products, and provide an evolutionary framework that facilitates the introduction
of advanced COTS products as they become available.

This paper provides a high-level description of the Data Server subsystem design from a
COTS integration standpoint, and discusses some of the major issues driving the design.
The paper focuses on features of the design that will make the system scalable and
adaptable to changing technologies. '

PRECEDING PASE SLawx wor FILMED
7 o)
PAGE_\0____ INTENTIONALLY BLANK

SDPS Overview

SDPS [1] will support the services required to ingest, process, archive, manage, and
access science data and related information from the entire EOSDIS. A typical DAAC
will consist of the following SDPS components :

An Ingest subsystem for acquiring all data from EOS instruments, NASA Probe
flight missions, and other remotely-sensed data.

A Data Processing subsystem for the generation of science data products from
ingested instrument data, and from previously stored data products. The Data Processing
subsystem executes hundreds of science algorithms which generate hundreds of gigabytes
of science data on a daily basis. The subsystem generates the bulk of the data stored into
the archive, and accounts for a large portion of the retrieval demand for archived data.

A Plahning subsystem for plénning the execution of data processing tasks.

A Data Management subsystem that provides functions for locating and accessing
data distributed among ECS DA ACs and other data systems with which ECS
interoperates.

A Data Server subsystem with a capacity (at the largest DAACs) to archive, retrieve,
and distribute hundreds of gigabytes per day.

An Interoperability subsystem that advertises ECS data and services to ECS clients.

A Service-Oriented System

The design of SDPS is based on a service-oriented approach to data search and access.
Predecessor systems have employed a "product-ordering" approach that derived from the
file-oriented retrieval mechanisms provided by conventional hierarchical storage systems.
- The contemporary science user requires sophisticated search and access methods which
can locate and manipulate required data using a variety of search and processing criteria.
Normally, the science user will only be interested in a fragment of a data product.
Subsetting and subsampling operations will be applied to ECS data after it is retrieved
and before it is distributed to the user. Ideally, all of the data would be stored inside of a
data base system that could provide advanced search, access, and data manipulation
capabilities on a petabyte of data in tertiary storage.

The service-based approach adopted by SDPS is intended to support the eventual
introduction of advanced mass-storage data base technologies when they become
available. The approach has the following features:

It provides the science user a set of services on earth science data, instead of
providing copies of canned data products. The user issues service requests which
typically involve the retrieval of stored data followed by one or more processing steps on
that data. In effect, the user accesses data "objects" instead of data products.

It associates data and services according to science "views" of the data; usually a
given view corresponds to a science discipline (e,g. Atmospheric Dynamics).

It provides a logical "Data Server" to provide each discipline-oriented view of the
data. Each data server logically associates related data even though the data may be
stored on a variety of physical devices and managed by different data management
software. The science user accesses and manipulates the data as if it were stored and
managed in the same manner.

It supports the experimental development and introduction of advanced user
interfaces and advanced data management methods by providing application program
interfaces to supported services.

The Data Server Subsystem

The SDPS Data Server subsystem provides the resources and services required for the
storage, management, and access of the ECS science data collections. Figure 1 illustrates
the subsystem and its relationship to the other parts of SDPS. The Data Server
subsystem services data storage requests from the Ingest and Data Processing
subsystems, and provides data search and retrieval services to ECS users and to the Data
Processing subsystem. The subsystem manages the distribution of requested data to both
hard media and to network clients.

Science users access the data and services provided by the Data Server subsystem by
issuing service requests, either to the subsystem directly, or through the distributed access
facilities of the Data Management subsystem. Users can request that processing (e.g.
subsetting and subsampling) be performed on archived data products and have the result,
or "result set”, distributed to them. Additionally, the users can request processing on the
result sets produced by previous service requests. The source data products for these
operations can be many gigabytes in size. The capability to provide users the capability
to perform processing at the archive site is essential because the size of the input data
products is so large and the bandwidth of the distribution network is limited.

Physically, the Data Server subsystem is composed of the following major components:

[~§ PLANNING
SUBSYSTEM

3
N

% Z

; 4 \ Z

2 INGEST 7

7 7

. SUBSYSTEM g'

7 2

- it 1

T) 7

f « Data Server instantiations DATA SERVER SUBSYSTEM ';

INTER- 2 . 1 2

OPERABILITYH % , .

H Vi ? Data Server Instantiation f e s,
a Hengerene
Access Control & Momt

é it | 7

j Access/Process PP j;..

g w| | Coordinators } Repository 2

? Ju (APCs) administrator 4

2 7

ﬂ A

2 %

% %

Z Z

. 4

%

%

LN X J

SN
eos

%
7 = . Wlllg
&II/- = %
é PushIPutl g
858 - /
¢ + z
2 [7
5 e mRe .
é | Archive roboics | y
g i 8 SO 22
7 .
?) 7
Z \

* Hardware and component
resources may be shared
across Data Server
Instantiations

* Performance requiremants

may necessitate the need

for dedicated Internal

subnetworks (CSMS/SDPS sizin

*Anciilary data +*Digital terrain maps
*Correlative data sinstrument
*Backup data calibration data
*Browse data sels «L0-L4 products

* Documentation

LEGEND

i Processing / Servers

. Gateway/Router/Hub un
il

Y% High Bandwidth Subnetwork(s)

m Peripherals / Media Gen

Low Bandwidth Subnetwork(s) pEmEIERy [Temporary Media
Intersite / Remote y
m Disk / RAID Disk é OPS Workstations / X-Terms

.

Figure 1 SDPS and the Data Server Subsystem

10

Access components - These support user/client access to data and services; they
manage client sessions and manage the execution of service requests; and they advertise
the services performed by the subsystem.

Data Repository - This component provides storage servers for the storage,
searching, and retrieving of data. A storage server can be any software/hardware
subsystem that stores and retrieves data on demand.

Distribution - This component supports the distribution of ECS data to users via
networks and through the generation of hard media..

Working Storage - This component manages the resources required for the temporary
storage and buffering of ECS data.

The Access Component

The Access component supports client access to ECS data and services. The client may
be an interactive application system that is controlled directly by the user, an intermediary
process provided by the SDPS Data Management subsystem, or a client belonging to the
Data Processing subsystem. The client issues service requests for data and services on
behalf of the user; the Access component manages the execution of the requests and
directs them to appropriate Data Server or Data Processing subsystem components.
Storage and retrieval requests are directed to storage servers (see Figure 2). Processing
requests are executed directly by the Access component, or are directed to the Data
Processing subsystem.

From the client perspective, the client is not interacting with the Access component or the
storage servers, but is accessing a Data Server dedicated to a set of data and services that
apply to a particular science discipline. The Access component can implement the logical
functionality and services of multiple Data Servers. Data logically associated with a
single Data Server may be physically stored across multiple storage servers.

A major function of the Access component is to insulate the client from the mechanisms
used to store and retrieve data. In retrieval operations, the user specifies the data he
wants and generates a service request containing a unique ECS Universal Reference (UR)
to the data. The format of the UR is independent of the storage server and its underlying
storage technology. The Access component uses the UR to determine which storage
server contains the required data. The Access component then obtains the required data
by directing the request, in a standard format, to the storage server.

Data Repository
The Data Repository component provides the storage servers for the storage, searching,
and retrieving of data. A storage server provides permanent data storage and retrieval

services. Itis composed of a hardware storage system and a COTS storage management
software system. The storage management software manages the hardware and data, and

11

e ACCESS
USER - COMPONENT
INTERFACE_ INTERFACE ,
STORAGE STORAGE
SERVER | SERVER _

Figure 2. Access to Storage Servers

processes service requests. Examples of storage servers include DBMS servers and
tertiary storage systems managed by COTS File Storage Management products.

The vast majority of ECS data will be stored using technologies which support high
storage densities at the lowest cost. At this writing the ECS project has not selected the
storage systems for any of its releases. However, this paper assumes that one or more
robotic tape libraries will be employed in the storage servers that store the bulk of ECS
data.

The COTS software packages available for managing storage servers use different
mechanisms for identifying and accessing data. Each storage server will have a custom
software "wrapper" to translate standard service requests, from the Access component,
into service requests that are compatible with the underlying COTS storage management
software. Part of the translation process will necessitate the translation of the ECS UR
into a product-dependent data set (or file) identifier. A storage server could be replaced
with another one based on different COTS products without affecting the ECS data
identification scheme, provided a translation interface is built for the new server.

The Access and Data Repository components support the use of multiple and
heterogeneous storage servers. This design reduces dependence on a single storage
technology. The design allows the use of a mix of storage technologies tailored to the
variety of data that must be stored. It supports system evolution by permitting new
technologies to be introduced and old ones replaced, in a gradual manner. Finally, it
supports the expansion of the storage system through the addition of storage servers.

Working Storage

The Working Storage component provides high-performance disk storage, i.e. "working
storage," for the temporary storage of ECS data. Specifically, it (1) stores files retrieved
from Storage servers, (2) stores the result sets generated by the Access component and
the Data Processing subsystem, and (3) buffers data to be inserted into the storage
servers. Working storage roughly corresponds to the secondary storage component in a
conventional hierarchical storage system.

One of the uses of working storage is to support interactive sessions with users. During
these sessions, result sets are generated by the execution of service requests and are
placed in working storage. The result sets may be browsed, processed further, or
distributed as directed by a subsequent service request. The Access component must be
able to retain result sets in working storage until the session with the user is terminated.

The Data Processing subsystem requires a large portion of working storage in order to
support the execution of hundreds of science algorithms daily. The amount of working
storage required to support the Data Processing subsystem is a major cost driver for the
development of SDPS. The execution of a single science algorithm may process multiple
gigabytes of input data contained in multiple files, and may generate many gigabytes of
output data.

13

To a significant degree, the output of one algorithm is used as input for the execution of
another algorithm within a few minutes or hours. Ultimately, most of the algorithm
output will be archived. The retrieval load on the archive can be significantly reduced if
algorithm output can be retained in working storage long enough to be used as input by
algorithms that require that output. The amount of working storage required to support
processing depends on the required retention intervals for algorithm outputs. Algorithms
are scheduled in order to minimize these intervals. The efficient management of working
storage requires that the Data Processing subsystem control working storage file retention
in coordination with algorithm scheduling.

Mass-Storage I/O Management

The greatest design challenge for the Data Server subsystem is the management of the
massive [/O (multiple terabytes per day) between the mass-storage library and the Data
Processing subsystem. The Data Server design approaches this problem by supporting
the scaling of I/O capacity and the intelligent management of working storage.

The conventional approach to managing multi-terabyte mass storage is to use a COTS
File Storage Management System (FSMS) hosted on a single supercomputer. All /O
must pass through the FSMS host. Scalability is achieved under this approach in a
"vertical" fashion by expanding the power of the host computer. This approach will not
meet Jong-term ECS requirements for multi-terabyte daily 1/0 throughput rates. Ideally,
/0 to and from the media drives in the mass-storage archive would be conducted from
and to working storage, along parallel 1/0 paths which bypass the FSMS host. Current
FSMS products do not support all of the capabilities required to implement this [/O
architecture, nor do they meet ECS requirements for the application control of working
storage. The ECS project is anticipating the development of FSMS products that will
meet these requirements.

The ideal FSMS product would have the following major features:

A volume management capability for controlling a variety of storage devices,
including robotics.

A file management capability that formats and organizes files on tertiary media.

A capability to automatically monitor the integrity of the data in tertiary storage and
monitor condition of the media.

The capability to direct I/O between (1) the media drives and working storage and (2)
between the media drives and a specified computer, without traversing the FSMS host.

An application interface to working storage that allows the application to control the
staging and retention of files in working storage.

14

The ECS near-term approach to scalability is to increase volume and throughput capacity
"horizontally" by replicating storage servers supported by processors of moderate size.
The current COTS-based design is intended to support the initial Releases of ECS and to
support the introduction of high-performance /O technologies later on.

Figure 3 illustrates a model for the initial implementation of a mass-storage storage server
that (1) could be implemented with available COTS products, (2) could be evolved to
support advanced 1/0 and storage management capabilities, and (3) provides for
application control of working storage. In the model, a COTS FSMS is used to manage
the files in the mass-storage archive, control the archive hardware, and move files
between a mass-storage archive and working storage. Working storage is implemented
by a disk array managed by a COTS network-accessible file system.

The FSMS and the network-accessible file system are separate products that interact
across a standard UNIX file system interface. The separation of these capabilities is
necessary in order to provide ECS flexibility in the selection and replacement of
corresponding COTS technologies.

An essential feature of the model is that the management of files in working storage can
be controlled by components external to the FSMS. This allows the Access component
and the Data Processing subsystem to control the retention of files in working storage and
allows the Data Processing subsystem to direct the staging of files prior to the execution
of science algorithms. External components exercise this control through an "ECS file
manager". The ECS file manager does the following:

Accepts external requests for staging files, for retaining and releasing files from
working storage, and for storing files in the archive.

Keeps track of which files are in working storage and assigns a retention interval to
each file.

Directs the FSMS to migrate files between the archive and working storage, in
response to external requests.

Conclusion

The Data Server subsystem design is constrained by the availability of applicable COTS
technologies and the requirement to evolve to accommodate increasing system loads and
advances in mass-storage technology. The efficient management of its storage resources
require that the application have control over file caching mechanisms and over the
movement of data between storage resources. Required support for multi-terabyte daily
I/O rates necessitate the ultimate use of advanced I/O architectures. Currently no product
(or family of products) provides a comprehensive approach to these issues. The current

15

MASS-STORAGE ARCHIVE

>

WORKING
STORAGE |

CONTROL
FILE STORAGE DIRECTIVES ECS
MANAGER FILE
MANAGER
UNIX FILE SYSTEM
INTERFACE
A
NETWORK-ACCESSIBLE
FILE SYSTEM
STORAGE
CONTROL
REQUESTS
ALGORITHM ALGORITHM ACCESS
PROCESSOR SCHEDULER | | COMPONENT

Figure 3. Initial I/O Management Approach

16

COTS-based design is intended to support the initial releases of ECS with a combination
of COTS products, and will support the introduction of high-performance /O
technologies in later phases of the project.

Acknowledgments

This paper is based on the design efforts and helpful comments of Mark Huber, Tom
Smith, and Alla Lake of LORAL Aerosys, and Eric Dodge and Evelyn Nakamura of
Hughes Applied Information Systems.

References

1. EOSDIS Core System Project, "System Design Specification for the ECS Project”
(194-207-SE1-001)

17

N95- 24111

A Distributed Parallel Storage Architecture and its Potential
Application Within EOSDIS 2 3-&2-

734Y7

William E. Johnston and Brian Tierney

Lawrence Berkeley Laboratory /ﬂ -/ 5/
University of California
Berkeley, CA, 94720

Jay Feuquay and Tony Butzer
EROS Data Center / Hughes STX
Mundt Federal Building, Sioux Falls, SD, 57198

Abstract

We describe the architecture, implementation, use, and potential use of a scalable,
high-performance, distributed-parallel data storage system developed in the ARPA funded

MAGIC gigabit testbed!. A collection of wide area distributed disk servers operate in par-
allel to provide logical block level access to large data sets. Operated primarily as a net-
work-based cache, the architecture supports cooperation among independently owned
resources to provide fast, large-scale, on-demand storage to support data handling, simula-
tion, and computation.

1.0 Introduction

We have designed and implemented a wide area network-based, distributed-parallel stor-
age system (“DPSS”) as part of an ARPA funded collaboration known as the MAGIC
gigabit testbed [1], and as part of DOE’s high speed distributed computing program. This
technology has been quite successful in the MAGIC environment, and it has the potential
for enhancing data rich environments like EOSDIS (see [2] and Figure 7). The DPSS pro-
vides an economical, high performance, widely distributed, and highly scalable architec-
ture for caching large amounts of data that can potentially be used by many different users
and processes within EOSDIS. Our current implementation of the DPSS technology is
called the Image Server System (“ISS”), and is optimized for providing access to large,
image-like, read-mostly data sets such as those found in the environment of the EROS

1. The work described in this paper is supported by ARPA, Computer Systems Technology Office
(http://ftp.arpa.mil/ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of
Scientific Computing (http://wwwosc.er.doe.gov/), under contract DE-AC03-76SF00098 with the Univer-
sity of California. Reference herein to any specific commercial product, etc., does not imply its endorsement
by the United States Government or the University of California. Likewise the views and opinions of
authors expressed herein. Authors: wejohnston@Ibl.gov (Lawrence Berkeley Laboratory, mail stop:
B50B-2239, Berkeley, CA, 94720, ph: 510-486-5014, fax: 510-486-6363, http://www-itg.Ibl.gov), tier-
ney @ george.Ibl.gov, feuquay @sunh.cr.usgs.gov. Report no. LBL-36680.

. 19 ; v
PRECEDING PAGS BLANE MO8 FILMED pAGE | | INTENTIONALLY BLANK

Data Center (EDC) as the Land Processes DAAC. In the MAGIC testbed the ISS is dis-
tributed across several sites separated by more than 1000 Km of high speed IP over ATM
network and stores very high resolution images of several geographic areas. The “TerraVi-
sion” terrain visualization application uses the ISS to let a user to explore / navigate a
“real” landscape represented in 3D by ortho-corrected, one meter images and digital ele-
vation models (see [3]). TerraVision requests from the ISS, in real-time, the sub-images
(“tiles”) needed to produce a view of the landscape. Typical use requires aggregated data
streams of from 100 Mbits/sec to 400 Mbits/sec that are supplied from several servers on
the network. Even in the current prototype system the ISS is easily able to supply these
data rates.

The ISS architecture is that of multiple network disk servers that are based on Unix work-
stations. The system coordinates multiple servers to aggregate high-bandwidth data
~ streams to network-based client application (e.g. TerraVision). Alternatively, many lower
data rate streams can be supplied to many applications simultaneously (in a *“video server”
style of operation). The DPSS implementation uses an open systems, platform-indepen-
dent, software approach. High performance is achieved in two ways: First, the functional-
ity of the disk servers has been kept very simple - they are essentially “block™ servers (a
block being a fixed size unit of data like an image tile). Second, image data sets are easily
partitioned over network distributed servers in such a way that ensures parallel operation
of many independent servers in order to supply a high bandwidth data stream to an appli-
cation.

The DPSS technology potentially fits into the EOSDIS environment in various ways.
First, there are several uses that supplement EOSDIS, and that do not require direct inte-
gration into existing EOSDIS systems: For example, the DPSS might be used for buffer-
ing data coming into DAACs (data archive sites) prior to archiving, and it might be used
as a large scale query results cache to support SCFs (data analysis sites). Second, DPSS
technology also has potential use within the EOSDIS system itself: It could provide a
mechanism at several points in the EOSDIS architecture for rapid reorganization of large
volumes of data, and it might be used as a cache for high speed in-line processing opera-
tions.

We will describe the implementation, performance, and uses of the current prototype
DPSS, including the operation of the ISS in the MAGIC testbed and its use in a regional
medical imaging experiment.

2.0 Background

Current workstation disk technology delivers about four Mbytes/s (32 Mbits/s) per drive,
a rate that has improved at about 7% each year since 1980 [4], and there is reason to
believe that it will be some time before a single disk is capable of delivering streams at the
rates needed for the applications mentioned. While RAID [4] and other parallel disk array
technologies can deliver higher throughput, they are still relatively expensive, and do not
scale well economically, especially in an environment of multiple network based users

20

where we assume that the sources of data, as well as the multiple users, will be widely dis-
tributed. Asynchronous Transfer Mode (ATM) networking technology, due to the architec-
ture of the SONET infrastructure that underlies large-scale, wide area ATM networks, will
provide the bandwidth that will enable the approach of using network-based distributed,
parallel data servers to provide high-speed, scalable storage systems. Data transport is pro-
vided by IP datagram services (UDP and RTP) and high performance versions of TCP (see

[5D.

The approach described here differs in many ways from RAID, and should not be con-
fused with it. RAID is a particular data strategy used to secure reliable data storage and
parallel disk operation. Our approach, while using parallel disks and servers, deliberately
imposes no particular layout strategy (which is free to be optimized on an application or
data structure basis), and is implemented entirely in software (though the data redundancy
idea of RAID might be usefully applied across servers to provide reliability in the face of
network problems).

3.0 System Architecture Overview

The Image Server System (ISS) is an implementation of a distributed-parallel data storage
architecture. It is essentially a “block” server that is distributed across a wide area network
and used to supply data to applications located anywhere in the network. Figure 1 illus-
trates the architecture. There is no inherent organization to the blocks; however, layout
strategies that maximize parallelism are clearly desirable. The data organization is deter-
mined by the application as a function of data structures and access patterns, and is imple-
mented during a data load process. When data structures and access patterns are well
understood then specific placement algorithms can be designed to optimize data place-
ment for maximum parallelism (e.g. see [6]). In other cases blocks can be scattered ran-
domly across the disks and servers (a strategy that can work surprisingly well). The usual
goal of the data organization is that data is declustered (dispersed in such a way that as
many system elements as possible can operate simultaneously to satisfy a given request)
across both disks and servers. This strategy allows a large collection of disks to seek in
parallel, and all servers to send the resulting data to the application in parallel, enabling
the ISS to perform as a high-speed image server.

The functional design strategy is to provide a high-speed “block™ server, where a block is
a unit of data request and storage. The ISS essentially provides only one function - it
responds to requests for blocks. However, for greater efficiency and increased usability,
we have attempted to identify a limited set of functions that extend the core ISS function-
ality while allowing support for a range of applications. First, the blocks are “named.” In
other words, the view from an application is that of a logical block server. Second, block
requests are in the form of lists that are taken by the ISS to be in priority order. Therefore
the ISS attempts (but does not guarantee) to return the higher priority blocks first. Third,
the application interface to the ISS provides the ability to ascertain certain configuration
parameters (e.g., disk server names, performance, disk configuration, etc.) in order to per-
mit parameterization of block placement strategy algorithms (for example, see [6]). Addi-

21

ISS disk server 1SS disk server 1SS disk server
workstation

workstation

image segments image segments image segments
\t/ \t/ \t/
ATM

ATM ATM
network network
interface interface single

1SS server

ATM switch high
bandwidth
ATM network sink (or
(interleaved ccll streams source)

P 14 P
virtual circuits)

[J—-

5 \
4
2 3
E
I data ;
logical data requests _ 8
name structure] (o]
translation server

block requests

ISS Master

Figure 1 Distributed-Parallel Server System Architecture

tionally, the ISS is instrumented to permit monitoring of almost every aspect of its
functioning during operation. This monitoring functionality is designed to facilitate per-
formance tuning and network performance research. However, the information about indi-
vidual server performance characteristics provided as part of this monitoring can be used
by a client’s data layout algorithm. Such performance information can facilitate a distribu-
tion of the data that better accounts for the differences between individual servers’ demon-
strated capabilities regardless of the cause: disk hardware, OS, location in the network,
etc. Asymmetric server performance is accounted for in the image-tile placement algo-
rithm used to support the TerraVision application in MAGIC.

At the present state of development and experience, the ISS that we describe here is used
primarily as a large, fast, wide area network distributed “cache”. Reliability with respect
to data corruption is provided only by the usual OS and disk mechanisms, and data deliv-
ery reliability of the overall system is a function of user-level strategies of data replication
and/or re-request and retransmission.

The data of interest (tens to hundreds of GBytes) is typically loaded onto the ISS from
archival tertiary storage, or written into the system from live data sources. Data layout
strategy is used when the organization of the data and the application use patterns are well

understood (as with images). In the case of writing from live data sources some variation
of a “round-robin” scheme optimizes the speed of writing to the ISS.

Client Use

The client-side (application) use of the ISS is provided through a library-based API that
handles initialization (for example, an “open” of a data set requires discovering all of the
disk servers with which the application will have to communicate), and the basic block
request / receive interface. It is the responsibility of the client (or, more typically, its agent)
to maintain information about any higher-level organization of the data blocks, to main-
tain sufficient local buffering so that “smooth playout” requirements may be met locally,
and to run predictor algorithms that will pre-request blocks so that application response
time requirements can be met. The prediction algorithm enables pipelining the operation
of the disk servers, with the goal of overcoming the inherent latency of the disks. (See [7]
and [8]). None of this has to be explicitly visible to the user-level application, but some
agent in the client environment must deal with these issues because the ISS always oper-
ates on a best-effort basis: if it did not deliver a requested block in the expected time or
order, it was because it was not possible to do so. In fact, a typical mode of operation is
that pending block requests are flushed from the server read queues when they age more
than a few hundred milliseconds. The application routinely re-requests some fraction of
the data. This deliberate “overloading” of the disk servers ensures that they will be kept
busy looking for relevant blocks. This behavior is one aspect of the pipelining strategy on
the servers.

Name Server Functions

The primary function of the name server is to translate the logical block names used by the
applications into physical block names. Typical operation involves the application making
an initial request of the name server for a particular data set and getting back a list of serv-
ers that will be supplying data. After the “open” operation, priority ordered logical block
request lists are sent to the name server, which translates requests to physical block loca-
tions (disk server address, disk number, and disk block). The data is returned via the cli-
ent’s direct connections to individual servers. The name server (“ISS Master”) also does
housekeeping and monitoring functions, and these are described in [8]. One of the design
decisions was that the name server only do logical block name translation. All other
higher level information about the structure of the data (e.g., what list of blocks comprise
a file) are relegated to a “structure server” mechanism that can maintain as complex a view
of the data as is needed by the application (or even different views of the same data). We
have not attempted to standardize the structure server (different applications can have very
different ways of viewing their data), but several functions are provided by the name sev-
ers to assist the structure server.

Use of the DPSS approach for management of large data archives will be facilitated by the
ability to rapidly reconfigure the scope and organization of the storage. The extent of a
“unit of storage” (a logically associated collection of DPSS disk blocks) is only a function
of the name server. Multiple name servers of storage will, in the future, share, request, or

relinquish servers via cooperation among the name servers operated by different organiza-
tions. No reorganization of the disk servers (internally or externally) is necessary. This
ability will facilitate “just-in-time” configuration of cache storage for a large data set
resulting from a query that, for example, extends across several DAACs, or in buffering
large incoming data sets resulting from, for example, several sources turning on at the
same time.

Implementation

In our prototype implementations, the typical ISS consists of several (four - five) UNIX
workstations (e.g. Sun SPARCStation, DEC Alpha, SGI Indigo, etc.), each with several
(four - six) fast-SCSI disks on multiple (two - three) SCSI host adaptors. Each workstation
is also equipped with an ATM network interface. An ISS configuration such as this can
deliver an aggregated data stream to an application at about 400 Mbits/s (50 Mbytes/s)
using these relatively low-cost, “off the shelf” components by exploiting the parallelism
provided by approximately five servers, twenty disks, ten SCSI host adaptors, and five
network interfaces.

The software implementation is based on Unix interprocess communication mechanisms
and a POSIX threads programming paradigm (see [9] and [10]). The three primary operat-
ing systems (Sun’s Solaris, DEC’s OSF, and SGI's IRIX) all have slightly different imple-
mentations of threads, but they are close enough that maintaining a single source is not too
difficult.

The implementation supports a number of transport strategies, including TCP/IP and
UDP/IP. UDP does not guarantee reliable data delivery, and never retransmits. Lost data
are handled at the application level. This approach is appropriate when data has an age
determined value. That is, data not received by a certain time is no longer useful, and
therefore should not be retransmitted, as is true in certain visualization scenarios.

Prototypes of the ISS have been built and operated in the MAGIC network testbed. Other
papers on the ISS are [11], which focus on the major implementation issues, [7], which
focuses on the architecture and approach, as well as optimization strategies, and [12],
which focuses on ISS applications and ISS performance issues.

Performance

Scalability of capacity and performance are inherent in the architecture: the individual
servers are effectively completely independent of each other. The time spent locating
blocks is minimal, and in principle (and frequently in fact), many servers can be sending
blocks simultaneously to the application. In other words, the performance limits are typi-
cally at the client application. This architecture means that capacity and performance scale
by simply adding more disk servers anywhere in the network. (Obviously some limits
exist: network bandwidth will limit the aggregate throughput, if the number of servers
exceeds the number of blocks in a file then adding servers will not increase the through-

put, etc.). The strategy of a centralized name server seems to add very little overhead com-
pared to the time required to request and deliver blocks.

The current implementation of the servers is memory bandwidth limited, a situation com-
mon to almost all current workstation hardware architectures. Our implementation does no
user-space copies of the data, which means a total of three memory copies for most OS’s:
disk to memory, and two copies to get to the network. The performance of the server then
is typically the memory copy speed divided by three (a metric that has held for all of the
six or eight platforms that we have tested. Table 1 shows performance measurements for

TABLE 1. ISS Disk Server Performance

Max ATM LAN
System ttcp ttcp w/ disk read | Max ISS speed
Sun SS10-51 70 Mbits/sec 60 Mbits/sec 55 Mbits/sec
Sun SS1000 (2 proc) 75 Mbits/sec 65 Mbits/sec 60 Mbits/sec
SGI Challenge L 82 Mbits/sec 72 Mbits/sec 65 Mbits/sec
Dec Alpha 3000/600 127 Mbits/sec 95 Mbits/sec 88 Mbits/sec

several platforms. “ttcp” is effectively a memory-to-network copy, and the ISS numbers
include the overhead for locating blocks and moving them from disk to network.

For more specific performance analysis of the current system, see [12].

4.0 Related Work

There are other research groups working on solving problems related to distributed stor-
age and fast multimedia data retrieval. For example, Ghandeharizadeh, Ramos, et al., at
USC are working on declustering methods for multimedia data [13], and Rowe, et al., at
UCB are working on a continuous media player based on the MPEG standard [14]. Simi-
lar problems are also being solved by the Massively-parallel And Real-time Storage
(MARS) project [15], which is similar to the ISS, but uses special purpose hardware such
as RAID disks and a custom ATM Port Interconnect Controller (APIC).

In some respects, the ISS resembles the Zebra network file system, developed by John H.
Hartman and John K. Ousterhout at the University of California, Berkeley [16]. However,
the ISS and the Zebra network file system differ in the fundamental nature of the tasks
they perform. Zebra is intended to provide traditional file system functionality, ensuring
the consistency and correctness of a file system whose contents are changing from
moment to moment. The ISS, on the other hand, tries to provide very high-speed,
high-throughput access to a relatively static set of data.

25

5.0 Applications

There are several target applications for the initial implementation of the ISS. These appli-
cations fall into two categories: image servers and multimedia / video file servers.

Image Server

The initial use of the ISS is to provide data to a terrain visualization application in the
MAGIC testbed. This application, known as TerraVision [17], allows a user to navigate
through and over a high resolution landscape represented by digital aerial images and ele-
vation models. TerraVision is of interest to the U.S. Army because of its ability to let a
commander “see” a battlefield environment. TerraVision is very different from a typical
“flight simulator”-like program in that it uses high-resolution aerial imagery for the visual-
ization instead of simulated terrain. TerraVision requires large amounts of data, transferred
at both bursty and steady rates. The ISS is used to supply image data at hundreds of
Mbits/s rates to TerraVision. No data compression is used with this application because
the bandwidth requirements are such that real-time decompression is not possible without
using special purpose hardware.

In the case of a large-image browsing application like TerraVision, the strategy for using
the ISS is straightforward: the image is tiled (broken into smaller, equal-sized pieces), and
the tiles are scattered across the disks and servers of the ISS. The order of tiles delivered to
the application is determined by the application predicting a “path” through the image
(landscape), and requesting the tiles needed to supply a view along the path. The actual

Tiled ortho /"—_\"'> Tiles intersected by the path of travel:

images of VAV AV ETATY - TATAP, 74,64, 63,53, 52,42,32,33

Data placement algorithm results in mapping tiles
along path to several disks and servers.

tile server and disk
74 » SIDI

1
travel. 64 = S1D2

63 — S$2D]

53 —— §1D]

- 5 —— 12

SS server 1 TerraVision 3 —» 51D2

32 — S52DI

D1
> 2] ISS server 2
| > b2
- ATM network @
ATM

e

Servers and disks operate in parallel to supply tiles to the application.

Figure 2 1SS Parallel Data Access Strategy as Illustrated by the TerraVision
Application

delivery order is a function of how quickly a given server can read the tiles from disk and

26

send them over the network. Tiles will be delivered in roughly the requested order, but
small variations from the requested order will occur. These variations must be accommo-
dated by buffering, or other strategies, in the client application.

Figure 2 shows how image tiles needed by the TerraVision application are declustered
across several disks and servers. More detail on this declustering is provided below.

Each ISS server is independently connected to the network, and each supplies an indepen-
dent data stream into and through the network. These streams are formed into a single net-
work flow by using ATM switches to combine the streams from multiple medium-speed
links onto a single high-speed link. This high-speed link is ultimately connected to a
high-speed interface on the visualization platform (client). On the client, data is gathered
from buffers and processed into the form needed to produce the user view of the land-
scape.

This approach could supply data to any sort of large-image browsing application, includ-
ing applications for displaying large aerial-photo landscapes, satellite images, X-ray
images, scanning microscope images, and so forth.

Figure 3 shows how the network is used to aggregate several medium-speed streams into
one high-speed stream for the image browsing application. For the MAGIC TerraVision

Large Image Browsing Scenario (MAGIC TerraVision application)

188 server \
ATM

ISS server —P»1 switch

ATM MAGIC
switch application

ISS server _/“-' ATM

switch
P /

Figure 3 Use of the ISS for Single High-Bandwidth Application

application, the application host (an SGI Onyx) is using multiple OC-3 (155 Mbit/s) inter-
faces to achieve the bandwidth requirements necessary. These multiple interfaces will be
replaced by a single OC-12 (622 Mbit/s) interface when it becomes available.

In the MAGIC testbed (see Figure 4), the ISS has been run in several ATM WAN configu-
rations to drive several different applications, including TerraVision. The configurations
include placing ISS servers in Sioux Falls, South Dakota (EROS Data Center), Kansas
City, Kansas (Sprint), and Lawrence, Kansas (University of Kansas), and running the Ter-
raVision client at Fort Leavenworth, Kansas (U. S. Army’s Battle Command Battle Lab).

27

Center, (lmp;:tr:ems .- =] | disk server Minnesota
Crtt. storage
USGS placement) |~ « ary storag /7 TN Supercomputer Center
-~ 7 HIPPI
“x uNIH —Eth
: l’ ISS Galeway
. LI disk server
R
i ATM
to other ISS servers ATM switch
Ft. Leavenworth . U.S West, Compass Lab
US Army M-m“ea?o“s’ i
m——— ATM backbone ISS disk server
. (Sprint, OC-48 Sio 5 . ATM
(e.g- TerraVision) SONET network) ux HS, SD =
JATM] Ft. Leaven ’ .
185 PR Katgas City, ks
disk server ONT A
%o
[Sprint, Technology Integration
P gy ¢4
f‘p Center, Kansas City
1SS —
disk server UNI application
ATM application
UNI 1SS application
application disk server
U. of Kansas, Lawrence ATM

Figure 4 MAGIC Testbed Application and Storage System Architecture

The ISS disk server and the TerraVision application are separated by several hundred kilo-
meters, the longest single link being about 700 kilometers.

Video Server

Examples of video server applications include video players, video editors, and multime-
dia document browsers. A video server might contain several types of stream-like data,
including conventional video, compressed video, variable time base video, multimedia
hypertext, interactive video, and others. Several users would typically be accessing the
same video data at the same time, but would be viewing different streams, and different
frames in the same stream. In this case the ISS and the network are effectively being used
to “reorder” segments (see Figure 5). This reordering affects many factors in an image
server system, including the layout of the data on disks. Commercial concerns such as
Time Warner and U.S. West are building large-scale commercial video servers such as the
Time Warner / Silicon Graphics video server [17]. Because of the relatively low cost and
ease of scalability of our approach, it may address a wider scale, as well as a greater diver-
sity, of data organization strategies so as to serve the needs of schools, research institu-

Video File Server Scenario

Receiver

ISS server [t ATM

switch

Receiver

ISS server [i—— ATM

switch

ISS server [P —=mu ATM

switch

Receiver

Receiver

-K ATM
ISS server

switch

Figure 5 Use of the ISS to Supply Many Low-Bandwidth Streams

tions, and hospitals for video-image servers in support of various educational and
research-oriented digital libraries.

Health Care Application2

An example of a medical application where we will be using this technology is the collec-
tion and playback of angiography images. Procedures used to restore coronary blood flow,
though clinically effective, are expensive and have contributed significantly to the rising
cost of medical care. To minimize the cost of such procedures, medical care providers are
beginning to concentrate these services in a few high-volume tertiary care centers. Patients
are usually referred to these centers by cardiologists at their home facilities; the centers
then must communicate the results back to the local cardiologists as soon as possible after
the procedure.

The advantages of providing specialized services at distant tertiary centers are signifi-
cantly reduced if the medical information obtained during the procedure is not delivered
rapidly and accurately to the treating physician in the patient's home facility. The delivery
systems currently used to transfer patient information between facilities include interoffice
mail, U.S. Mail, fax machine, telephone, and courier. Often these systems are inadequate
and potentially could introduce delays in patient care.

With an ATM network and a high-speed image file server, still image and video sequences
can be collected from the imaging systems. These images are sent through an ATM net-
work to storage and analysis systems, as well as directly to the clinic sites. Thus, data can
be collected and stored for later use, data can be delivered live from the imaging device to

2. This work is being done in conjunction with Dr. Joseph Terdiman, Kaiser Permanente Division of
Research, and Dr. Robert Lundstrum, San Francisco Kaiser Hospital Cardiac Catheterization Laboratory.
The implementation is being done with the support of a Pacific Bell CalREN grant (ATM network access),
and in collaboration with Sun Microsystems and Phillips Palo Alto Research Laboratory. See
http://www-itg.Ibl.gov/Kaiser/home-page.html

29

remote clinics in real-time, or these data flows can all be done simultaneously. Whether
the ISS servers are local or distributed around the network is entirely a function of the
optimal logistics. There are arguments in regional healthcare information systems for cen-
tralized storage facilities, even though the architecture is that of a distributed system. See,
for example, [18].

EOS-DIS

There are several possible uses of the DPSS technology within the EOSDIS architecture

DPSS Name

Server provides a
common view of | Data
the data \ organization -,

SCF</Y\>SCF

collaboratlve use of a large
| non-| rephcated data set

query whose
rgspon§e requires DPDS DPDS DPDS DPDSs e}cting asa
aggregating data sets servers servers cervers multi-user,
from several DAACs multi-source cache

DBMS / EOSDIS IMS

\\\\ Loglcal view of all data

DPSSs used for

DPDS DPDS DPDS inter-DAAC
Servers SErvers servers transfers

- Figure 6 Possible Uses of DPSS Within the EOSDIS Architecture

as a new element providing a shared, high speed cache (see Figure 5).

One use provides for a “community” cache supporting a single instance of a large data set
being used independently or collaboratively by several sites. This use is largely indepen-
dent of the existing EOSDIS system, but would require an application to coordinate the
data transfer from one or more DAACs to the DPSS. This application could also provide

30

the data structure definition and resource allocation by communication with the DPSS
name server. One possible origin of large data sets that need to be available on-line as a
unit are those that result from queries to multiple databases (e.g. data from multiple
DAACS).

A second potential use is as a buffer for high speed data sources. As a data source turns on
and off, it could write data to the DPSS. Once on the DPSS servers, the data can be read
off at rates suitable to an application loading a database. During the read process the data
can easily be reorganized since the DPSS provides very fast random access to data bocks.
(The whole DPSS is optimized as a random-access block server.) Similarly, the DPSS
could provide a high-speed, random-access cache for reorganizing and moving data
among DAACs.

6.0 Glossary
EOSDIS: Earth Observing System, Data and Information System

TDRSS
relay satellites
(relay) QC SCFs
(data quality
control)
EDOS User SCFs

EOS Instruments (processing and (research and
backup) \ / analysis)

EOS Satellites EOS DAACs
‘ (data
management)

White Sands
Complex
(ground station)

Figure 7 EOS DIS Architecture (from [2])

DAAC: Distributed Active Archive Center (of EOSDIS)

EDOS: EOS Data and Operations System

SCF: Science Computing Facility (of EOSDIS - both NASA and user facility)
TDRSS: Tracking and Data Relay System

31

0N R

7.0 References

[1] MAGIC (Multidimensional Applications and Gigabit Internetwork Consortium) is
a gigabit network testbed that was established in June 1992 by the U. S. Govern-
ment’s Advanced Research Projects Agency (ARPA)[19]. The testbed is a collabora-
tion between Mitre, LBL, Minnesota Supercomputer Center, SRI, Univ. of Kansas,
Lawrence, KS, USGS - EROS Data Center, Sprint, Northern Telecom, U. S. West,
Southwest Bell, and Splitrock Telecom. More information about MAGIC may be
found on the WWW home page at: http://www.magic.net/ .

[2] See any of several NASA documents on EOSDIS. For example: EOS Data and
Information System (EOSDIS), NASA, May, 1992, available from ESSO Document
Resource Facility via NASA Headquarters, Earth Science and Applications Division
(Code SE), Washington, D. C. 20546. Also see
http://harp.gsfc.nasa.gov:1729/eosdis_documents/eosdis_home.html .

[3] Leclerc. Y. G. and S. Q. Lau, “TerraVision: A Terrain Visualization System,” Tech-
nical Note 540, SRI International, Menlo Park, CA, Mar. 1994. Available from
http://www.ai.sri.com/~magic/terravision.html .

[4] Patterson, D., Gibson, R., and Katz, R., “The Case for RAID: Redundant Arrays of
Inexpensive Disks”, Proceedings ACM SIGMOD Conference, Chicago, IL, May,
1988 (pp. 106-113) (See http://cs-tr.cs.berkeley.edu/TR/Search/ .)

[5] V. Jacobson, V., R. Braden, D. Borman, “TCP Extensions for High Performance,”
Internet Engineering Task Force, Request for Comments (RFC) 1323, May, 1992.
(Available from http://ds.internic.net/ds/dspglintdoc.html .)

[6] Chen L. T. and Rotem D., “Declustering Objects for Visualization”, Proc. of the
19th VLDB (Very Large Database) Conference, 1993.

[7] Tierney, B., Johnston, W., Chen, L.T,, Herzog, H., Hoo, G., Jin, G, Lee, J., and
Rotem, D., “Distributed Parallel Data Storage Systems: A Scalable Approach to

High Speed Image Servers”, Proceedings of ACM Multimedia ‘94, Oct. 1994,
LBL-35408. Also see http://george.lbl.gov/ISS/papers.html .

[8] The most current (and evolving) description of the DPSS / ISS technology is in the
report LBL-36002 at http://www-itg.1bl.gov/ISS/papers.html .

[9] Open Software Foundation, OSF DCE Applications Development Guide, Prentice
Hall, Englewood Cliffs, New Jersey, 1993. (Also see http://www.osf.org:8001/ .)

[10] Shirley, J., W. Hu, and D. Magid, Guide to Writing DCE Applications, 2ed.,
O’Reilly & Associates, Sebastopol, CA, 1994. (Also see http://www.ora.com/ .)

[11] Tierney, B., Johnston, W., Herzog, H., Hoo, G., Jin, G,, and Lee, 1., “System Issues
in Implementing High Speed Distributed Parallel Storage Systems”, Proceedings of
the USENIX Symposium on High Speed Networking, Aug. 1994, LBL-35775. Also
see http://george.1bl.gov/ISS/papers.html .)

32

[12] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo, G., Jin, G., Lee, J., “Using
High Speed Networks to Enable Distributed Parallel Image Server Systems”, Pro-
ceedings of Supercomputing ‘94, Nov. 1994, LBL-35437. Available from
http://george.lbl.gov/ISS/papers.html .) '

[13] Ghandeharizadeh, S. and Ramos, L, “Continuous Retrieval of Multimedia Data
Using Parallelism”, IEEE Transactions on Knowledge and Data Engineering, Vol 5,
No 4, August 1993.

[14] Rowe, L. and Smith, B.C., “A Continuous Media Player”, Proc. 3rd International
Workshop on Network and Operating System Support for Digital Audio and Video,
San Diego, CA, Nov. 1992. (See http://cs-tr.cs.berkeley.edu/TR/Search/ .)

[15] Buddhikot, M. M., Parulkar, G., and Cox, J., “Design of a Large Scale Multimedia
Storage Server”, Proceedings of INET '94 / JENCS, 1994.

[16] Hartman, J. H. and Ousterhout, J. K., “Zebra: A Striped Network File System”,
Proceedings of the USENIX Workshop on File Systems, May 1992. (See
http://cs-tr.cs.berkeley.edu/TR/Search/ .)

[17] Langberg, M., “Silicon Graphics Lands Cable Deal with Time Warner Inc.”, San
Jose Mercury News, June 8, 1993.

[18] Johnston, W., and Allen, A., M.D., “Regional Health Care Information Systems:
Motivation, Architecture, and Implementation”, LBL report no. 34770, Lawrence
Berkeley Laboratory, Berkeley, CA, 94720.

[19] Richer, I. and Fuller, B.B., “An Overview of the MAGIC Project,” M93B0000173,
The MITRE Corp., Bedford, MA, 1 Dec. 1993. (Available from
http://www.magic.net/MAGIC_Summary.ps .)

33

N95- 24112

Robotic Tape Library System Level Testing at NSA,
Present and Planned

Sy-8e
Michael F. Shields
Department of Defense A3y g
9800 Savage Road
Fort Meade, Maryland 20755 £- 10

Tel: 301-688-9509
Fax: 301-688-9454

In the present era of declining Defense budgets, increased pressure has been placed on our
Agency to utilize Commercial Off The Shelf (COTS) solutions to incrementally solve a
wide variety of our computer processing requirements. With the rapid growth in processing
power, significant expansion of high performance networking, and the increased
complexity of applications data sets, the requirement for high performance, large capacity,
reliable and secure, and most of all affordable robotic tape storage libraries has greatly
increased. Additionally, the migration to a heterogeneous, distributed computing
environment has further complicated the problem. With today's open system compute
servers approaching yesterday's supercomputer capabilities, the need for affordable,
reliable secure Mass Storage Systems (MSS) has taken on an ever increasing importance to
our processing centers' ability to satisfy operational mission requirements. To that end,
NSA has established an in-house capability to acquire, test, and evaluate COTS products.
Its goal is to qualify a set of COTS MSS libraries, thereby achieving a modicum of
standardization for robotic tape libraries which can satisfy our low, medium, and high
performance file and volume serving requirements. In addition, NSA has established
relations with other Government Agencies to complement this in-house effort and to
maximize our research, testing, and evaluation work. While the preponderance of the effort
is focused at the high end of the storage ladder, considerable effort will be extended this
year and next at the server class or mid range storage systems.

Over the past year, we have performed extensive testing of several high performance, high
capacity Mass Storage Systems. In the open systems arena, we have evaluated the Convex
based EMASS FileServ hierarchical storage management (HSM) product, see figure 1.
Initially, the system was tested for use in one of our processing areas as the deep
storage/archive for multiple server class UNIX based systems. These client systems were
networked using FDDI to the HSM which managed the multiple clients' stored files.
Classes were created, disk and tape capacity were dedicated to each client, and policies
were established to tune the system for each client's storage and retrieval needs. A
dedicated client system under the control of the test team was also included in the
configuration under test, so as to baseline the load and to control feeds and flows as the test
progressed. This element (a dedicated client system) is a recommended must for any
system level test. To establish a consistent approach to testing this and other Mass Storage
Systems, a standard test approach was developed. The first phase of this standard test was

| 35
PRECEDING PAGE BLANK NOT FILMED __PAQEﬂ__INTENTIONALLY BLANK

i ci cli Ch

| i |

SH A1 SSVINHA Pased XHANOD - | 2m3ig

MABS I oIS B SSYINA

1Mo v
00TISSVINA I3[[onU0)) QEE/y Ung

g

w9 _._ww

g1dl Pwewd LS

g
’

L--—--_---‘

SWIASAS U1

[PuueynI3dAH
1SNEDI
Idd'H
1aad

I0SS001J [01U0))
0£TED XaAUu0)

-
S U W NI MR WS SR .

S

=]
g
3
72

JOM

Iaqd/enin/1euueyyYadAH

36

to qualify all of the vendor's commands and extensions and to verify that they operated as
advertised. Once this was completed, we used the dedicated Test Client System to generate
files of varying sizes and frequencies. This was essential to establish the baseline load. We
then would vary the feeds and flows and measure the change as multiples of our baseline
load, (e.g. 2X, ... 10X, etc.). Since almost every HSM's performance is highly
dependent upon file size, we established three sizes of files (small: 1.5 MB, medium: 10-15
MB, and large 150 MB) in order to adequately categorize the system's end-end
performance. Over the duration of our testing we carefully controlled the file size parameter
by phase so as to measure the optimal disk and tape allocations for each client system. Our
goal was not to break the system, but to establish the optimal range in which to have it
operate most efficiently.

In the early phases of our testing, we spent significant time comparing the file sent to the
HSM with the data stored. By performing check sums on each file stored for about a two
week period, we discovered a flaw in the Convex D2 tape driver microcode, which was
quickly fixed by the vendor. After two weeks of verifying that all of the data in each file
was successfully written to tape and could be retrieved, this testing was suspended. At our
Agency, data integrity is paramount and must always perform at 100%. Suffice it to say
that, although we were about the 20th customer for this commercial product, no other
customer had experienced the data integrity problem in their facility. We believe that this
was due to their testing approach. Although we do NOT normally perform this degree of
data integrity testing for most commercial products, it is strongly recommended that it be
done for any new tape drive that is introduced. Since we were using the EMASS ER90
Helical Scan D2 drives, we felt it necessary to verify data integrity at a high confidence
level; as our tests indicated, this was a wise step. We will also do this for IBM's NTP and
STK's REDWOOD drives before they are placed into production.

The next phase of our testing was aimed at sustainability and reliability. Since our storage
paradigm is to have all Mass Storage Systems located in unmanned spaces and to be
remotely monitored by a geographically separated command center, production storage
systems must be highly reliable and be capable of degraded mode operations. They must
operate for long periods of time without operator/maintenance intervention to justify their
existence. Our current standard for reliability is the STK silo which is our main line Mass
Storage System for today's production, see figure 2. Over the past year, all of the
drives/controllers have been upgraded to 36 track, and we are about 35% completed with
the infusion of 800 MB tapes. Over the past five years, we have had only a small level of
problems with these systems as they only require preventative maintenance at 6 month
intervals. With self contained cleaning cartridges, they have proven to be highly reliable
and satisfy our personnel staffing limitations.

Our Convex/EMASS HSM was initially tested with 4 ER90 D2 Helical Scan drives which
were housed in an Odetics Data Tower. Its capacity was about 5.7 TBs. During the
reliability/sustainability testing phase, we experienced significant difficulty with the

37

uonoNpolyJ 10§ WNASAS 98eI0)S SSEJA PIRPUR)S JUILITY) - 7 M1

T

.

77

[ouuRy))
ONd

[ouuRy)

JNd

“u
o
[euuey)
0ge/y ung . JNd
STSOV [suuey’)
NG

uLpy ——

38

robotics. Problems encountered included several instances of "stuck tapes”, several
dropped tapes, excessive mechanical wear on the cassettes themselves, and repeated failure
of the robotic hub itself. Over a nine month period, five hub failures were experienced. The
lack of reliability of the hub in large measure caused the Government to fail the system
acceptance test. While the contractor went to yeoman efforts to attempt to correct these
deficiencies, the problem persisted. A side effect of the robotics failures made endurance
testing of the drives impossible; even still, we experienced a fair level of problems which
made the drive questionable for “lights out" use. The principal problems encountered with
the drives were head related. We determined that in order to have a margin of safety, we
needed to have operators clean the heads shortly after 50 head/tape contact hours of use. In
order to accurately monitor remotely when this event occurred, software had to be written
which accessed firmware counters in the drives/controllers. In addition, operators had to
monitor the error correction code counters in the drives. Again, software had to be written
to enable this activity. We discovered that as soon as a drive had to employ the second level
ECC, it was prudent to vary the drive off line to preclude a permanent write error.
Employing this technique, we never encountered a hard write error. However, the degree
of monitoring by our test team and operations personnel was deemed excessive. Another
significant problem encountered was in the quality of the replacement heads. While some
heads greatly exceeded their warranty hour limit., others failed prematurely. We concluded
that this resulted from poor quality control in the manufacturing process. However, we
noted that once a set of heads got past the 70-100 hour mark, they tended to be reliable for
their design life, and often exceeded it. But once again, the degree of monitoring and
maintenance intervention made this library unsuitable for our lights out processing
scenario.

As a result of the aforementioned problems, the Government acquired an STK
POWDERHORN 36 track/800 MB per tape Silo system with eight 4490 drives. This
system was connected to our Convex/EMASS HSM as the second archive. It underwent its
acceptance testing without a single problem. With the long tape, it provided a capacity of
4.4 TBs. The Government was highly interested in verifying that the EMASS FileServ
software could effectively control two archives with different drive types. Since the client
systems had a preponderance of small files, on the order of 6-10 MBs, the STK robotics
and drives outperformed the Odetics/ER90 configuration. However, when the file sizes
were changed to 100-150 MBs, the ER90s were more efficient. Testing of the mixed mode
archive continued until the Government reached a level of confidence that the system could
perform as advertised. At that time, the Odetics Tower and ER90 drives were dismantled
and returned to the integration contractor. Noting the deficiencies encountered during the
testing, the contractor offered to deliver a Grau ABBA/2 robotic library with IBM NTP
drives as a replacement, see figure 3. This system will be integrated and tested with the
Government's loading scenarios at the contractor's facility prior to shipping the system to
NSA in January 1996.

The Convex/EMASS FileServ System with STK Silo and drives is now in production at
NSA. While the steps cited above are somewhat skewed to our specific clients/networks,

39

$3AL dLN PU® 7/VEEVY NVID PIM WSH ARSI SSYINT Pased XJANOD - € om31g

NVTADNHDY mem—— NODSH mmm=m= OING BV TIdl ————
[qgd =59 (amuny) [ddIH ©= = 3 MATISOS ~— — - punppg ——

AVIO

WNSAS 2AYIIY (0SE/t ung) oS MLS

10859001 [0RU0D)
XX8¢D XaAUOH

SWIASAS JUSTD)

4 dda

suonels
oM

we believe that our test approach is sound and generally applicable to any robotic tape
HSM. In early 1994, we applied the same testing approach to a Sun/AMASS/Metrum
RS48 robotic tape system. Once again, the theme was to verify the command set and
functionality, verify the data integrity, evaluate the reliability and sustainability of the
drives/robotics, and to categorize the sustained throughput of the system. We found this to
be a stable product for low performance Mass Storage requirements.

NSA will evaluate the following server class systems during CY95. For the medium
performance solution we have acquired an SGI Challenge series computer running the
AMASS software. Three different robotic/drive configurations will be tested, see figure 4.
They are IBM 3494/NTP for high performance/high capacity, Quantum DLT/Odetics 2640
for medium performance/capacity, and Exabyte 480/Mammoth for low/medium
performance/capacity. Once again we will use the same approach as outlined above to
evaluate/categorize these configurations.

For the high end high performance/high capacity robotic tape requirements of the Scientific
Processing Complex, we have acquired two different volume servers. The first is an IBM
3495 L.20 with 8 NTP drives which is being qualified by Cray Research Inc (CRI), see
figure 5. Once this qualification is completed, the system will be fielded at NSA and will
undergo in-house testing in late CY95. The second high performance/high capacity system
to be tested is a Grau ABBA/2 robotics with NTP drives. It also will be qualified by a
cooperative effort by E-Systems and CRI. Once the system is qualified, it will be shipped
to NSA and will undergo in-house testing in early CY96. Both of these systems will have
ESCON connectivity to the drives, which will facilitate sharing of the system by any of our
Crays.

We feel that the Mass Storage community should establish performance benchmarks for
products to aid the customer community in selecting the right Mass Storage products for
their operational requirements. Our experience is that none of the vendors can provide the
right size system configuration for any customer's needs. Today the entire burden for
system sizing and delivered performance rests on the customer. Vendors need to perform
and disseminate more evaluation information. They need to cover as broad a range as
possible, either with their own testing or teamed with another, larger vendor who has the
resources needed to perform the tests. Given a broad enough range of tests, customers
should be able to take the results and extrapolate the expected performance characteristics
for their environment. Solutions should be predictable and must include control processor
network bandwidth, memory and disk needs, channels and I/O bandwidth, numbers of
drives, and controllers, and robotics speeds. All that really matters for a Mass Storage
System is the end-to-end sustainable bandwidth for stores and retrieves between the clients
and the HSM. The industry must address some form of performance benchmark standards
which will be the first step in aiding the customer in selecting the right system configuration
for their unique problem. We have SpecMarks for processors, TP benchmarks for Data
Base machines, but have nothing for storage systems. This area must be addressed soonest

41

UONBN[BAT UOTINOS IJURULIONAJ WMIPIJA - {7 9mB1

ISUISRY PUBIO) === /1 [EDUSIDNIC SPIM PUR 1584 Z-ISOS
CISOS —— 4/11ddIHAAAA
wasAsqng AIvy g9 o -
o9S/gN € * arpung siq g0 91 +
(1201 gL 9°1) D 0T ¢ ¥s1q washg gD T ¢
sadey g - VA N IS
(wrug) saAuq HLOWWVIW ¥ 00¥Vvd ZHIW 0ST X ¥ »
087 214qexy TX 98us[rey) INS
o3/gIN ST'T »
(120 gL $9°7) D 01
sadey 97
SoALI I'IA €
0¥9C TOV $913P0
AVIIV
MSIA AV
WJS/FIN G
(Mo gL17) gD 01 - Iddd 1ddIH
sodel 01T -
(dLN) SeAUQ T
1LV ¥6¥€ WAl

42

RS/6000 Control
Path Server

Ethernet

IBM 3495
with NTP Drives

ESCON
DATA PATH

ESCON
Director

Client Systems

43

£
A
g
a
= — 1 o

Figure 5 - High Performance / High Capacity Soution Evaluation

by the storage vendors. NSA has invested significant in-house resources in evaluating just
afew of the systems available on the commercial marketplace. Scalability of the number of
files that the HSM can manage is another key area of uncertainty. NSA has discovered the
. EMASS FileServ HSM has scalability limits largely caused by their use of Ingres RDBMS
software in their commercial product. While this is a temporal limit, scalability testing of
the product by vendors in-house, prior to first customer ship is a must for companies to
survive. Competition dictates that this must be done and done quickly.

In summary, our approach should be clear as we have standardized on three different
robotic tape systems for our high end processors across our various computer complexes.
These are IBM 3494/5, Grau ABBA/2, and STK 4400 silos. The drives used with these
robotics include: IBM/STK 36 track, NTP, and D3. For our server class systems we have
a similar approach envisioned, as outlined above. The principal common entity for the
server class problem is the AMASS HSM product. The specific drive/robotics and platform
will be selected based on the required performance and capacity. Regarding high
performance file servers, we will evaluate the scalability of the EMASS FileServ product
during early 1996 and make our decision regarding its suitability for 150+ TB libraries.
Our ultimate goal for the future would be to have one logical shared robotic tape library,
accessible by any of our computer complexes.

N95- 24113

The Architecture of the High Performance Storage System
(HPSS)

Danny Teaff -
IBM Federal Sy -82~

3700 Bay Area Blvd.

Houston, TX 77058 L3494 ?
(713) 282-8137

Fax (713) 282-8074 - a9

teaff @vnet.ibm.com

Dick Watson
Lawrence Livermore National Laboratory
PO Box 808, L-560
Livermore, CA 94550
(510) 422-9216
Fax (510) 423-7997
dwatson@llnl.gov

Bob Coyne
IBM Federal
3700 Bay Area Blvd., 5th Floor
Houston, TX 77058
(713) 282-8039
Fax (713) 282-8074
coyne@vnet.ibm.com

Abstract

The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage
system performance and functionality relative to application requirements and the
capabilities of other system components. The High Performance Storage System (HPSS)
is a scalable, next-generation storage system that will meet the functionality and
performance requirements of large-scale scientific and commercial computing
environments.

Our goal is to improve the performance and capacity of storage systems by two orders of
magnitude or more over what is available in the general or mass marketplace today. We are
also providing corresponding improvements in architecture and functionality. This paper
describes the architecture and functionality of HPSS.

Introduction

The rapid improvement in computational science, processing capability, main memory
sizes, data collection devices, multimedia capabilities, and integration of enterprise data are
producing very large datasets. These datasets range from tens to hundreds of gigabytes up
to terabytes. In the near future, storage systems must manage total capacities, both
distributed and at single sites, scalable into the petabyte range. We expect these large
datasets and capacities to be common in high-performance and large-scale national
information infrastructure scientific and commercial environments. The result of this rapid
growth of data is a serious imbalance in I/O and storage system performance and

45

functionality relative to application requirements and the capabilities of other system
components.

To deal with these issues, the performance and capacity of large-scale storage systems must
be improved by two orders of magnitude or more over what is available in the general or
mass marketplace today, with corresponding improvements in architecture and
functionality. The goal of the HPSS collaboration is to provide such improvements. HPSS
is the major development project within the National Storage Laboratory (NSL). The NSL
was established to investigate, demonstrate, and commercialize new mass storage system
architecture to meet the needs above [5,7,21]. The NSL and closely related projects involve
more than 20 participating organization from industry, Department of Energy (DOE) and
other federal laboratories, universities, and National Science Foundation (NSF)
supercomputer centers. The current HPSS development team consists of IBM U.S.
Federal, four DOE laboratories (Lawrence Livermore, Los Alamos, Oak Ridge, and
Sandia), Cornell University, and NASA Langley and Lewis Research Centers. Ampex,
IBM, Maximum Strategy Inc., Network Systems Corp., PsiTech, Sony Precision
Graphics, Storage Technology, and Zitel have supplied hardware in support of HPSS
development and demonstration. Cray Research, Intel, IBM, and Meiko are cooperating in
the development of high-performance access for supercomputers and MPP clients.

The HPSS commercialization plan includes availability and support by IBM as a high-end
Service offering through IBM U.S. Federal. HPSS source code can also be licensed and
marketed by any US. company.

Architectural Overview

The HPSS architecture is based on the IEEE Mass Storage Reference Model: version 5
[6,9] and is network-centered, including a high speed network for data transfer and a
separate network for control (Figure 1) [4,7,13,16]. The control network uses the Open
Software Foundation's (OSF) Distributed Computing Environment DCE Remote
Procedure Call technology [17]. In actual implementation, the control and data transfer
networks may be physically separate or shared. An important feature of HPSS is its
support for both parallel and sequential input/output (I/O) and standard interfaces for
communication between processors (parallel or otherwise) and storage devices. In typical
use, clients direct a request for data to an HPSS server. The HPSS server directs the
network-attached storage devices or servers to transfer data directly, sequentially or in
parallel to the client node(s) through the high speed data transfer network. TCP/IP sockets
and IPI-3 over High Performance Parallel Interface (HIPPI) are being utilized today; Fibre
Channel Standard (FCS) with IPI-3 or SCSI, or Asynchronous Transfer Mode (ATM) will
also be supported in the future [3,20,22]. Through its parallel storage support by data
striping HPSS will continue to scale upward as additional storage devices and controllers
are added to a site installation.

Control

Control

HIPPVY/
FCS/ATM
Network

Throughput Scalable to
the GB/s Region

Unix W/S

Secondary
Server(s)

" _E-net

Unix W/S

Figure I - Example of the type of configuration HPSS is designed to support
The key objectives of HPSS are now described.

Scalability

A major driver for HPSS is to develop a scalable, distributed, high performance storage
management system. HPSS is designed to scale in several dimensions.

The HPSS 1/O architecture is designed to provide I/O performance scaling by supporting

parallel I/O through software striping [1]. The system will support application data
transfers from megabytes to gigabytes per second with total system throughput of many

47

gigabytes per second. Data object number and size must scale to support billions of data
objects, each potentially terabytes or larger in size, for total storage capacities in petabytes.
This is accomplished through 64-bit metadata fields and scalable organization of system
metadata. The system also is required to scale geographically to support distributed systems
with hierarchies of hierarchical storage systems. Multiple storage systems located in
different areas must integrate into a single logical system accessible by personal computers,
workstations, and supercomputers. These requirements are accomplished using a
client/server architecture, the use of OSF's DCE as its distributed infrastructure, support
for distributed file system interfaces and multiple servers. HPSS also supports a scalable
storage object name service capable of managing millions of directories and the ability to
support hundreds to thousands of simultaneous clients. The latter is achieved through the
ability to multitask, multiprocess and replicate the HPSS servers.

Modularity and APIs

The HPSS architecture is highly modular. Each replicable software component is
responsible for a set of storage objects, and acts as a service provider for those objects. The
IEEE Reference Model, on which the HPSS design is based, provides the modular layered
functionality (see Figure 2) [6,9]. The HPSS software components are loosely coupled,
with open application program interfaces (APIs) defined at each component level. Most
users will access HPSS at its high level interfaces—currently client API, FTP (both parallel
and sequential), NFS, Parallel File System (PFS), with AFS/DFS, Unix Virtual File
System (VFS), and Data Management Interface Group (DMIG) interfaces in the future)
[11,15,18,19]. However, APIs are available to the underlying software components for
applications, such as large scale data management, digital library or video-on-demand
requiring high performance or special services. This layered architecture affords the
following advantages:

* Replacement of selected software components—As new and better
commercial software and hardware components became available, an installation
can add or replace existing components. For example, an installation might add or
replace Physical Volume Repositories, Movers or the HPSS Physical Volume
Library with other commercially available products.

» Support of applications direct access to lower level services-The
layered architecture is designed to accommodate efficient integration of different
applications such as digital library, object store, multimedia, and data management
systems. Its modularity will enable HPSS to be embedded transparently into the
large distributed information management systems that will form the information
services in the emerging national information infrastructure. Support for different
name spaces or data organizations is enabled through introduction of new Name
Servers and data management applications.

Portability and Standards

Another important design goal is portability to many vendor's platforms to enable OEM and
multivendor support of HPSS. HPSS has been designed to run under Unix requiring no
kernel modifications, and to use standards based protocols, interfaces, and services where
applicable. HPSS is written in ANSI C, and uses POSIX functions to enhance software
portability. Use of existing commercial products for many of the infrastructure services

48

supported on multiple-vendor platforms enables portability, while also providing market
proven dependability. Open Software Foundation (OSF) Distributed Computing
Environment (DCE), Transarc's Encina transaction manager [8], Kinesix SAMMI and
X-windows are being used by HPSS because of their support across multiple vendor
platforms, in addition to the rich set of functionality provided. The HPSS component APIs
have been turned over to the IEEE Storage System Standards Working Group as a basis for
its standards activities.

Reliability and Recovery

Reliable and recoverable storage of data is mandatory for any storage system. HPSS
supports several mechanisms to facilitate this goal. The client-server interactions between
HPSS software components have been designed to be based on atomic transactions in
order to maintain system state consistency [14]. Within the scope of a given request, a
transaction may be established so that an abort (or commit) in one component will cause the
other participating components to abort (or commit). The HPSS Metadata Manager is fully
integrated with its Transaction Manager. Following an abort, the non-volatile file and name
space metadata changes within the scope of the transactions will automatically be rolled
back. For recovery purposes, mirroring of the storage object and name space metadata is
supported. The HPSS architecture will also support data mirroring if desired in a future
release.

Support is also provided to recover from failed devices and bad media. An administrator
interface is provided to place a device off line. Once the device has been repaired, it may
then be placed back on line. For bad media, an application interface is provided to move
storage segments from a virtual volume to a new virtual volume.

The HPSS software components execute in a distributed manner. Should a processor fail,
any of the HPSS software components may be moved to another platform. Component
services are registered with the DCE Cell Directory Service (CDS) so that components may
locate the services. Each component has also been designed to perform reconnect logic
when a connection to a peer component fails. Connection context is maintained by selected
components. When a connection context is established, a keep-alive activity is started to
detect broken connections. A server may use the context information associated with a
broken connection to perform any necessary clean up.

Security and Privacy

HPSS uses DCE and POSIX security and privacy mechanisms for authentication, access
control lists, permissions and security labels. Security policy is handled by a separate
policy module. Audit trails are also supported. Further, HPSS design and implementation
use a rigorous software engineering methodology which support its reliability and
maintainability.

Storage System Management
HPSS has a rich set of storage system management services for operators and system

administrators based on managed object definitions. The application programming interface
supports monitoring, reporting and controlling operations (see Appendix A).

49

Software Components

The HPSS software components are shown Figure 2. The shaded boxes are defined in the
IEEE Mass Storage Reference Model: version 5 [9].

u il

HPSS Software Architecture

Common Infrastructure

Communications Transaction Manager Logging 64-bit Math
Security Metadata Manager Iinfrastructure Services Libraries
Client(s) —
Storage
+ Client API System
. PFS Management
. VFSI/F* M
(all components) a
Applications n
Data Management — Physical a
Systom Dacmons: Physical | @8 Volume g
- FTP — Volume Repository(s) | e
: gfiglAFS‘ Storage 1" Library(s) m
. DMIG* Server(s) | e
Black components ?
. are defined in the
ik IEEE Mass Storage
A Reference Model.
L Mover(s) |
Name
Server(s)
 — Other Modules
Location } Migration/ Repack { Installation
Server(s) Purge INSL UniTree Migratior

Figure 2 - Software Model Diagram

This section outlines the function of each component.

Infrastructure

HPSS design is based upon a well-formed industry standard infrastructure. The key
infrastructure components are now outlined.

Distributed Computing Environment

HPSS uses OSF's DCE as the base infrastructure for its distributed architecture [17]. This
standards-based framework will enable the creation of distributed storage systems for a
national information infrastructure capable of handling gigabyte-terabyte-class files at
gigabyte per second data transfer rates.

| HPSS |\
L -
D \
Cc M
E a
s A
: 9
y DCE DCE e
¢ || Distributed Directory |{™
i ||Time Service Service |9
t = t
y e —— — N
DCE Remote Procedure Call \
—
| DCE Threads
el

| Operating System and Transport Services

Figure 3 - HPSS DCE Architecture Infrastructure

DCE was selected because of its wide adoption among vendors and its near industry-
standard status. HPSS uses the DCE Remote Procedure Call (RPC) mechanism for control
messages and DCE Threads for multitasking. The DCE threads package is vital for HPSS
to serve large numbers of concurrent users and to enable multiprocessing of its servers.
HPSS also uses the DCE Security, Cell Directory, and Time services. A library of DCE
convenience functions was developed for use in HPSS.

Transaction Management

Requests to HPSS to perform actions such as creating bitfiles or accessing file data results
in client/server interactions between software components. Transaction integrity is required
to guarantee consistency of server state and metadata in case a particular component should
fail. As a result, a transaction manager was required by HPSS. Encina, from Transarc, was
selected by the HPSS project as its transaction manager [8]. This selection was based on
functionality, its use of DCE, and multi-platform vendor support.

51

Encina provides begin-commit-abort semantics, distributed two-phase commit, and nested
transactions. In addition, Transaction RPCs (TRPCs), which extend DCE RPCs with
transaction semantics, are provided. For recovery purposes, Encina uses a write-ahead log
for storing transaction outcomes and updates to recoverable metadata. Mirroring of data is
also provided.

infunction();
transaction
/ . {
Encina Toolkit Server Core }
Encina Toolkit Executive o'l?'Commlt
OSF DCE onAbort
code structure

Figure 4 - Encina Components

Metadata Management

Each HPSS software component has system metadata associated with the objects it
manages. Each server with non-volatile metadata requires the ability to reliably store its
metadata. It is also required that metadata management performance be scalable as the
number of object instances grow. In addition, access to metadata by primary and secondary
keys is required. The Structured File Server (SFS), an Encina optional product, was
selected by the HPSS project as its metadata manager. SFS provides B-tree clustered file
records, record and field level access, primary and secondary keys, and automatic byte
ordering between machines. SFS is also fully integrated with the Encina transaction
manager. As a result, SFS provides transaction consistency and data recovery from
transaction aborts. For reliability purposes, HPSS metadata stored in SFS is mirrored. A
library of metadata manager convenience functions for retrieving, adding, updating, and
deleting metadata for each of the HPSS components was developed.

P

Encina SFS
Encina Toolkit Server Core

Encina Toolkit Executive
OSF DCE

Figure 5 - Structured File Server (SFS)

Security

The security components of HPSS provide authentication, authorization, enforcement, and
audit capabilities for the HPSS components. Authentication is responsible for guaranteeing
that a principal is the entity that is claimed, and that information received from an entity is
from that entity. Authorization is responsible for enabling an authenticated entity access to
an allowed set of resources and objects. Authorization enables end user access to HPSS
directories and bitfiles. Enforcement is responsible for guaranteeing that operations are

52

restricted to the authorized set of operations. Enforcement applies to end user access to
bitfiles. Audit is responsible for generating a log of security relevant activity. HPSS
security libraries utilize DCE and DCE security. The authentication service, which is part of
DCE, is based on Kerberos v5. The following figure depicts how HPSS security fits with
DCE and Kerberos.

A E umentcaion Sovis |\

ol LN \

?1 g R y%l §\\ Privilege Service\\
Supplied by DCE Kerberos Authentication Service

The control path communications between HPSS components is through DCE RPCs or
Encina transaction RPCs. For data path communication, the HPSS Mover(s) currently
utilize either Sockets or IPI-3 (over HIPPI) libraries. Future support is planned for IPI-3
and SCSI over Fibre Channel Standard and TCP/IP over ATM. A special parallel data
transfer library has been developed. This library allows data to be transferred across many
parallel data connections. The library transfers data headers that identify the data that
follows. This allows data to be sent and arrive in any order on the parallel paths.

Logging

The HPSS logger is used to record alarms, events, requests, security audit records,
accounting records, and trace information from the HPSS components. A central log is
maintained which contains records from all HPSS components. A local log of activity from
components on each HPSS node is also supported. When the central log fills, it will switch
to a secondary log file. A configuration option allows the filled log to be automatically
archived to HPSS. A delog function is provided to extract and format log records. Delog
options support filtering by time interval, record type, server, and user.

53

64 Bit Arithmetic Libraries

HPSS supports file sizes up to 2*¥*64 bytes. Many vendor platforms support only 32 bit
integer arithmetic. In order to support large file sizes and large numbers of objects on 32 bit
platforms, a library of 64 bit arithmetic functions has been developed. The functions
support both big endian and little endian I/O architectures.

Interfaces

HPSS supports several high-level interfaces: currently Client API, FTP (both standard and
parallel), and NFS, with DFS/AFS, DMIG, and VFS planned for future releases.

Client API

The HPSS Client file server API mirrors the POSIX file system interface specification
where possible. The Client API also supports extensions to allow the programmer to take
advantage of the specific features provided by HPSS (e.g., class-of-service, storage/access
hints passed at file creation and support for parallel data transfers).

FTP (standard and parallel)

HPSS provides a standard FTP server interface to transfer files from HPSS to a local file
system. Parallel FTP, an extension and superset of standard FTP, has been implemented to
provide high performance data transfers to client systems. The standard FTP protocol
supports third-party data transfer through separation of the data transfer and control paths,
but it does not offer parallel data paths [11]. HPSS modified and augmented the standard
client FTP file retrieval and storage functions to offer parallel data paths for HPSS data
transfers. This approach provides high performance FTP transfers to the client while still
supporting the FTP command set. Additional commands have been added to support
parallel transfer. This work will be submitted to the Internet Engineering Task Force for
standardization.

NFS

The NFS V2 Server interface for HPSS provides transparent access to HPSS name space
objects and bitfile data for client systems from both the native HPSS and the Network File
System V2 service. The NFS V2 Server translates standard NFS calls into HPSS control
calls and provides data transfers for NFS read and write requests. The NFS V2 Server
handles optimization of data movement requests by the caching of data and control
information. If the server machine crashes, the NFS V2 Server is in charge of recovery of
all cached data at the time of the crash. The NFS V2 Server will also recover when HPSS
crashes. Before NFS clients can request NFS services, they must mount an exported
HPSS directory by calling the Mount daemon mount API. Support for NFS V3 is planned
for a future release.

Parallel File System

HPSS provides the capability to act as an external hierarchical file system to vendor Parallel
File Systems (PFS). The first implementation supports the IBM SPx PIOFS. Early
deployment is also planned for Intel Paragon and Meiko PFS integration with HPSS.

Name Server (NS)

The Name Server maps a file name to an HPSS object. The Name Server provides a
POSIX view of the name space which is a hierarchical structure consisting of directories,
files, and links. File names are human readable ASCII strings. Namable objects are any
object identified by HPSS Storage Object IDs. The commonly named objects are bitfiles,
directories, or links. In addition to mapping names to unique object identifiers, the Name
Server provides access verification to objects. POSIX Access Control Lists (ACLs) are
supported for the name space objects. A key requirement of the Name Server is to be able
to scale to millions of directories and greater than a billion name space entries.

Bitfile Server (BFS)

The Bitfile Server provides the POSIX file abstraction to its clients. A logical bitfile is an
uninterpreted bit string. HPSS supports bitfile sizes up to 2**64 bytes. A bitfile is
identified by a Bitfile Server generated name called a bitfile-id. Mapping of a human
readable name to the bitfile id is provided by a Name Server external to the Bitfile Server.
Clients may reference portions of a bitfile by specifying the bitfile-id and a starting address
and length. The writes and reads to a bitfile are random and the writes may leave holes
where no data has been written. The Bitfile Server supports both sequential and parallel
read and write of data to bitfiles. In conjunction with Storage Servers, the Bitfile Server
maps logical portions of bitfiles onto physical storage devices.

Storage Server (SS)

The Storage Server provides a hierarchy of storage objects: logical storage segments,
virtual volumes and physical volumes. All three layers of the Storage Server can be
accessed by appropriately privileged clients. The server translates references to storage
segments into references to virtual volume and finally into physical volume references. It
also schedules the mounting and dismounting of removable media through the Physical
Volume Library. The Storage Server in conjunction with the Mover have the main
responsibility for orchestration of HPSS's parallel 1/O operations.

The storage segment service is the conventional method for obtaining and accessing HPSS
storage resources. The Storage Server maps an abstract storage space, the storage segment,
onto a virtual volume, resolving segment addresses as required. The client is presented
with a storage segment address space, with addresses from 0 to N-1, where N is the byte
length of the segment. Segments can be opened, created, read, written, closed and deleted.
Characteristics and information about segments can be retrieved and changed.

The virtual volume service is the method provided by the Storage Server to group physical
storage volumes. The virtual volume service supports striped volumes today and mirrored
volume in a future release. Thus, a virtual volume can span multiple physical volumes. The
Storage Server maps the virtual volume address space onto the component physical
volumes in a fashion appropriate to the grouping. The client is presented with a virtual

55

volume that can be addressed from 0 to N-1, where N is the byte length of the virtual
volume. Virtual volumes can be mounted, created, read, written, unmounted and deleted.
Characteristics of the volume can be retrieved and in some cases, changed.

The physical volume service is the method provided by the storage server to access the
physical storage volumes in HPSS. Physical volumes can be mounted, created, read,
written, unmounted and deleted. Characteristics of the volume can be retrieved and in some
cases, changed.

Repack runs as a separate process. It provides defragmentation of physical volumes.
Repack utilizes a Storage Server provided function which moves storage segments to a
different virtual volume.

Mover (Mvr)

The Mover is responsible for transferring data from a source device(s) to a sink device(s).
A device can be a standard 1/O device with geometry (e.g., a tape or disk), or a device
without geometry (e.g., network, memory). The Mover also performs a set of device
control operations. Movers perform the control and transfer of both sequential and parallel
data transfers.

The Mover consists of several major parts: Mover parent task, Mover listen task/request
processing task, Data Movement, Device control, and System Management.

The Mover parent task performs Mover initialization functions, and spawns processes to
handle the Mover's DCE communication, data transfer connections, as well as the Mover's
functional interface. The Mover listen task listens on a well-known TCP port for incoming
connections to the Mover, spawns request processing tasks, and monitors completion of
those tasks. The request processing task performs initialization and return functions
common to all Mover requests. Data movement supports client requests to transfer data to
or from HPSS. Device control supports querying the current device read/write position,
changing the current device read/write position, loading a physical volume into a drive,
unloading a physical volume from a drive, flushing data to the media, writing a tape mark,
loading a message to a device's display area, reading a media label, writing a media label,
and zeroing a portion of disk. System management supports querying and altering device
characteristics and overall Mover state.

Physical Volume Library (PVL)

The PVL manages all HPSS physical volumes. Clients can ask the PVL to mount and
dismount sets of physical volumes. Clients can also query the status and characteristics of
physical volumes. The PVL maintains a mapping of physical volume to cartridge and a
mapping of cartridge to PVR. The PVL also controls all allocation of drives. When the
PVL accepts client requests for volume mounts, the PVL allocates resources to satisfy the
request. When all resources are available, the PVL issues commands to the PVR(s) to
mount cartridges in drives. The client is notified when the mount has completed.

The Physical Volume Library consists of two major parts: Volume mount service and
Storage system management service.

The volume mount service is provided to clients such as a Storage Server. Multiple
physical volumes belonging to a virtual volume may be specified as part of a single request.
All of the volumes will be mounted before the request is satisfied. All volume mount
requests from all clients are handled by the PVL. This allows the PVL to prevent multiple
clients from deadlocking when trying to mount intersecting sets of volumes. The standard
mount interface is asynchronous. A notification is provided to the client when the entire set
of volumes has been mounted. A synchronous mount interface is also provided. The
synchronous interface can only be used to mount a single volume, not sets of volumes. The
synchronous interface might be used by a non-HPSS process to mount cartridges which
are in a tape library, but not part of the HPSS system.

The storage system management service is provided to allow a management client control
over HPSS tape repositories. Interfaces are provided to import, export, and move volumes.
When volumes are imported into HPSS, the PVL is responsible for writing a label to the
volume. This label can be used to confirm the identity of the volume every time it is
mounted. Management interfaces are also provided to query and set the status of all
hardware managed by the PVL (volumes, drives, and repositories).

Physical Volume Repository (PVR)

The PVR manages all HPSS supported robotics devices and their media such as cartridges.
Clients can ask the PVR to mount and dismount cartridges. Every cartridge in HPSS must
be managed by exactly one PVR. Clients can also query the status and characteristics of
cartridges.

The Physical Volume Repository consists of these major parts: Generic PVR service, and
support for devices such as Ampex, STK, and 3494/3495 robot services, as well as an
operator mounted device service.

The generic PVR service provides a common set of APIs to the client regardless of the type
of robotic device being managed. Functions to mount, dismount, inject and eject cartridges
are provided. Additional functions to query and set cartridge metadata are provided. The
mount function is asynchronous. The PVR calls a well-known API in the client when the
mount has completed. For certain devices, like operator mounted repositories, the PVR will
not know when the mount has completed. In this case it is up to the client to determine
when the mount has completed. The client may poll the devices or use some other method.
When the client determines a mount has completed, the client should notify the PVR using
one of the PVR's APIs. All other PVR functions are synchronous. The generic PVR
maintains metadata for each cartridge managed by the PVR. The generic PVR interface calls
robotics vendor supplied code to manage specific robotic devices.

The operator mounted device service manages a set of cartridges that are not under the
control of a robotics device. These cartridges are mounted to a set of drives by operators.
The Storage System Manager is used to inform the operators when mount operations are
required.

Storage System Management (SSM)

The HPSS SSM architecture is based on the ISO managed object architecture [10,12). The
Storage System Manager (SSM) monitors and controls the available resources of the HPSS
storage system in ways that conform to the particular management policies of a given site.
Monitoring capabilities include the ability to query the values of important management

57

attributes of storage system resources as well as an ability to receive notifications of alarms
and other significant system events. Controlling capabilities include the ability to set the
values of management attributes of storage system resources and storage system policy
parameters. Additionally, SSM can request that specific operations be performed on
resources within the storage system, such as adding and deleting logical or physical
resources. The operations performed by SSM are usually accomplished through standard
HPSS server APIs.

SSM management roles cover a wide spectrum, including configuration aspects of
installation, creating new volumes, initialization, operations, and termination tasks. SSM
can provide management capabilities to a range of clients, including site administrators,
systems administrators, operations personnel, complex graphical user interface (GUI)
management environments, and independent management applications responsible for tasks
such as purges, migration, and reclamation. Some of the functional areas of SSM include
fault management, configuration management, security management, accounting
management, and performance management.

SSM consists of these major parts: SSM Graphical User Interface (SAMMI GUI
Displays), SAMMI Data Server, and System Manager.

The SSM Graphical User Interface allows operators, administrators, and users to
interactively monitor and control the HPSS storage system. Kinesix's SAMMI product is
used to provide the HPSS GUI services. SAMMI is built on X-windows and OSF's Motif.
It provides mechanisms to simplify screen design and data management services for screen
fields. Standard Motif widgets such as menus, scrollbar lists, and buttons are used. In
addition SAMMI specific widgets such as dials, gauges, and bar charts are used for
informational and statistical data.

The SAMMI Data Server is a client to the System Manager and a server to the SAMMI
Runtime Display Manager. The SAMMI Data Server is the means by which data is acquired
and fed to the SAMMI Displays.

The Storage System Manager is a client to the HPSS servers and a server to the SAMMI

Data Server and other external clients wishing to perform management specific operations.
It interfaces to the managed objects defined by the HPSS servers.

SSM Layers

AMMI Displays
amm Runtime |
\\\\\ ~ Environment
Sstorage \ -
A
Client(s ystem B
- Client API 77 1\
LVFS IF (akl components)

Applications

HPSS Server Components

Figure 7 - Storage System Management

Migration - Purge

The Migration-Purge server provides hierarchical storage management for HPSS through
migration and caching of data between devices. There are two types of migration and
caching: disk migration and caching and tape migration and caching. Multiple storage
hierarchies are supported by HPSS [2]. Data is cached to the highest level (fastest) device
in a given hierarchy when accessed and migrated when inactive and space is required.

The main purpose of disk migration is to free up the disk storage. This type of migration
contains two functions; migration and purge. Migration selects the qualified bitfiles and
copies these bitfiles to the next storage level defined in the hierarchy. Purge later frees the
original bitfiles from the disk storage.

The main purpose of tape migration is to free up tape volumes, and not just migrate bitfiles.
The active bitfiles in the target virtual volumes are moved laterally to the free tape volumes
in the same storage level. The inactive bitfiles in the target virtual volumes are migrated to
the free tape volumes in the next storage level.

The HPSS component client APIs provide the vehicle for the Storage System Manger to
request the server to start migration and purge whenever it is necessary. The migration-
purge server is set up to run migration periodically with the time interval specified in the
migration policy. In addition, the server will start the migration and purge to run
automatically if the free space of a storage class is below the percentage specified in the
migration-purge policy.

Other

Installation

Installation software is provided for system administrators to install/update HPSS, and
perform the initial configuration of HPSS following installation. The full HPSS system is
first installed to an installation node. Selected HPSS software components may then be
installed (using the remote installation feature) from the installation node to the other nodes
where HPSS components will be executed.

NSL-UniTree Migration

HPSS, through its support of parallel storage, provides significant improvements in I/O
rates and storage capacity over existing storage systems software. In transitioning from
existing systems, a migration path is required. The migration path should be transparent to
end users of the storage system. The capability to migrate from NSL UniTree to HPSS is
provided. The migration software handles both file metadata and actual data. Utilities
convert the file metadata (e.g., storage maps, virtual volume data, physical volume data),
and name space metadata from UniTree format to HPSS format. Actual data is not moved.
The HPSS Mover software contains additional read logic to recognize NSL UniTree data
formats when an NSL UniTree file is accessed. Ultilities to support migration from other
legacy storage systems will also be provided as required.

59

[T A Y T A A

Accounting

HPSS provides interfaces to collect accounting information (initially storage space
utilization). These interfaces may be used by site specific programs to charge for data
storage. SSM provides user interfaces to run the accounting collection utility, change
account numbers and change the account code assigned to storage objects.

Summary and Status

We have described the key objectives, features and components of the HPSS architecture.
At the time this paper is being written, December 1994, HPSS Release 1 (R1) is in
integration testing and planning for its early deployment at several sites has begun. R1
contains all the basic HPSS components and services and supports parallel tape. It is
targeted at MPP environments with existing parallel disk services. Much of the coding for
Release 2 (R2) has been completed also. R2 adds support for parallel disks, migration and
caching between levels of the hierarchy and other functionality. R2 will be a complete
stand-alone system and is targeted for third quarter 1995.

We demonstrated, HPSS at Supercomputing 1994 with R1 and early R2 capabilities of
parallel disks, and tape access (Ampex D2, IBM NTP and 3490), to an IBM SP2, IBM RS
6000, PsiTech framebuffer, and Sony high-resolution monitor over a NSC HIPPI switch.
HPSS R1 is on order 95K lines of executable source code and R2 is expected to add on
another 50K lines of executable source code.

Our experience indicates that the architectural choices of basing the system on the IEEE
Reference Model, use of an industry defacto standard infrastructure based on OSF DCE
and Transarc Encina, and use of other industry standards such as POSIX, C, Unix, ISO
managed object model for Storage System Management and standard communication
protocols is sound. This foundation plus the software engineering methodology employed,
we believe, positions HPSS for a long and useful life for both scientific and commercial
high performance environments.

Acknowledgments

We wish to acknowledge the many discussions and shared design, implementation, and
operation experiences with our colleagues in the National Storage Laboratory collaboration,
the IEEE Mass Storage Systems and Technology Technical Committee, the IEEE Storage
System Standards Working Group, and in the storage community. Specifically we wish to
acknowledge the people on the HPSS Technical Committee and Development Teams. At
the risk of leaving out a key colleague in this ever-growing collaboration, the authors wish
to acknowledge Dwight Barrus, Ling-Ling Chen, Ron Christman, Danny Cook, Lynn
Kluegel, Tyce McLarty, Christina Mercier, and Bart Parliman from LANL; Larry Berdahl,
Jim Daveler, Dave Fisher, Mark Gary, Steve Louis, Donna Mecozzi, Jim Minton, and
Norm Samuelson from LLNL; Marty Barnaby, Rena Haynes, Hilary Jones, Sue Kelly,
and Bill Rahe from SNL; Randy Burris, Dan Million, Daryl Steinert, Vicky White, and
John Wingenbach from ORNL; Donald Creig Humes, Juliet Pao, Travis Priest and Tim
Starrin from NASA LaRC; Andy Hanushevsky, Lenny Silver, and Andrew Wyatt from
Cornell; and Paul Chang, Jeff Deutsch, Kurt Everson, Rich Ruef, Tracy Tran, Terry Tyler,
and Benny Wilbanks from IBM U.S. Federal and its contractors.

This work was, in part, performed by the Lawrence Livermore National Laboratory, Los
Alamos National Laboratory, Oak Ridge National Laboratory, and Sandia National
Laboratories, under auspices of the U.S. Department of Energy Cooperative Research and
Development Agreements, by Cornell, Lewis Research Center and Langley Research
Center under auspices of the National Aeronautics and Space Agency and by IBM U.S.
Federal under Independent Research and Development and other internal funding.

References

1. Berdahl, L., ed., "Parallel Transport Protocol," draft proposal, available from
Lawrence Livermore National Laboratory, Dec. 1994,

2. Buck, A. L., and R. A. Coyne, Jr., “Dynamic Hierarchies and Optimization in
Distributed Storage System,” Digest of Papers, Eleventh IEEE Symposium on Mass
Storage Systems, Oct. 7-10, 1991, IEEE Computer Society Press, pp. 85-91.

3. Christensen, G. S., W. R. Franta, and W. A. Petersen, “Future Directions of High-
speed Networks for Distributed Storage Environments,” Digest of Papers, Eleventh
IEEE Symposium on Mass Storage Systems, Oct. 7-10, 1991, IEEE Computer
Society Press, pp. 145-148.

4. Collins, B, et al,, “Los Alamos HPDS: High-Speed Data Transfer,” Proc. Twelfth
[EEE Symposium on Mass Storage Systems, Monterey, April 1993,

5. Coyne,R. A, H. Hulen, and R. W. Watson, "The High Performance Storage System,"
Proc. Supercomputing 93, Portland, IEEE Computer Society Press, Nov. 1993,

6. Coyne,R. A. and H. Hulen, “An Introduction to the Mass Storage System Reference
Model, Version 5,” Proc. Twelfth IEEE Symposium on Mass Storage Systems,
Monterey, April 1993.

7. Coyne, R. A, H. Hulen, and R. W. Watson, “Storage Systems for National
Information Assets,” Proc. Supercomputing 92, Minneapolis, Nov. 1992, pp. 626-
633.

8. Dietzen, Scott, Transarc Corporation, "Distributed Transaction Processing with Encina
and the OSF/DCE", Sept. 1992, 22 pages.

9. IEEE Storage System Standards Working Group (SSSWG) (Project 1244), "Reference

Model for Open Storage Systems Interconnection, Mass Storage Reference Model Version

53," Sept. 1994. Available from the IEEE SSSWG Technical Editor Richard Garrison,
Martin Marietta (215) 532-6746

10. "Information Technology - Open Systems Interconnection - Structure of Management

Information - Part 4: Guidelines for the Definition of Management Objects,” ISO/IEC
10165-4, 1991.

61

I dd 1T

T L S S R F |

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Internet Standards. The official Internet standards are defined by RFC's (TCP
protocol suite). RFC 783; TCP standard defined. RFC 959; FTP protocol standard.
RFC 1068; FTP use in third-party transfers. RFC 1094; NFS standard defined. RFC
1057; RPC standard defined.

ISO/TEC DIS 10040 Information Processing Systems - Open Systems Interconnection
- Systems Management Overview, 1991.

Katz, R. H., “High Performance Network and Channel-Based Storage,” Proceedings
of the IEEE, Vol. 80, No. 8, pp. 1238-1262, August 1992.

Lampson, B. W., M. Paul, and H. J. Siegert (eds.), “Distributed Systems -
Architecture and Implementation,” Berlin and New York: Springer-Verlag, 1981.

Morris, J. H., et al., “Andrew: A Distributed Personal Computing Environment,”
Comm. of the ACM, Vol. 29, No. 3, March 1986.

Nelson, M., et al., “The National Center for Atmospheric Research Mass Storage
System,” Digest of Papers, Eighth IEEE Symposium on Mass Storage Systems, May
1987, pp. 12-20.

Open Software Foundation, Distributed Computing Environment Version 1.0
Documentation Set. Open Software Foundation, Cambridge, Mass. 1992.

OSF, File Systems in a Distributed Computing Environment, White Paper, Open
Software Foundation, Cambridge, MA, July 1991.

Sandberg, R., et al., “Design and Implementation of the SUN Network Filesystem,”
Proc. USENIX Summer Conf., June 1989, pp. 119-130.

Tolmie, D. E., “Local Area Gigabit Networking,” Digest of Papers, Eleventh IEEE
Symposium on Mass Storage Systems, Oct. 7-10, 1991, IEEE Computer Society
Press, pp. 11-16.

Watson, R. W., R. A. Coyne, "The National Storage Laboratory: Overview and
Status," Proc. Thirteenth IEEE Symposium on Mass Storage Systems, Annecy
France, June 12-15, 1994, pp. 39-43.

Witte, L. D., “Computer Networks and Distributed Systems,” IEEE Computer, Vol.
24, No. 9, Sept. 1991, pp. 67-77.

APPENDIX A

Application Programming Interfaces (APIs) to HPSS Components

HPSS provides an application client library containing file, directory, and client state

operations.

The HPSS Client Library provides the following routines grouped by

related functionality.

API Clients | Description

hpss_Open client | Optionally create and open an HPSS file

hpss_Close client Close a file

hpss_Umask client | Set the file creation mask

hpss_Read client Read a contiguous section of an HPSS
file, beginning at the current file offset
into a client buffer

hpss_Write client Write data from a client buffer to a
contiguous section of an HPSS file,
beginning at the current file offset

hpss_Lseek client | Reposition the read/write file offset

hpss_ReadList client | Read data from an HPSS file, specifying
lists for data sources and sinks

hpss_WriteList client Write data to an HPSS file, specifying
lists for data sources and sinks

hpss_Stat client | Get file status

hpss_Fstat client | Get file status

hpss_Lstat client Get file status, returning status about a
symbolic link if the named file is a
symbolic link

hpss_FileGetAttributes client Get attributes for a file

hpss_FileSetAttributes client Alter file attribute values

hpss_Access client | Check file accessibility

hpss_Chmod client | Change the file mode of an HPSS file

hpss_Chown client | Change owner and group of an HPSS file

hpss_Utime client Set access and modification times of an
HPSS file

hpss_GetACL client | Query the Access Control List of a file

hpss_DeleteACLEntry client | Remove an entry from the Access Control
List of a file

hpss_Update ACLEntry client | Update an entry in the Access Control List
of a file

hpss_Truncate client | Set the length of a file

hpss_Ftruncate client | Set the length of a file

bl

ik

hpss_Fclear
hpss_Cache

hpss_Fcache
hpss_Purge
hpss_Fpurge
hpss_Migrate
hpss_Fmigrate

hpss_Link
hpss_Unlink
hpss_Rename
hpss_Symlink
hpss_Readlink

hpss_Mkdir
hpss_Rmdir
hpss_Opendir
hpss_Readdir
hpss_Rewinddir
hpss_Closedir
hpss_Chdir
hpss_Getcwd
hpss_Chroot

hpss_LoadThreadState
hpss_ThreadCleanup
hpss_Statfs

hpss_AccessHandle

hpss_OpenBitfile

hpss_OpenHandle

client
client

client

client

client

client

client

client
client
client
client
client

client
client
client
client
client
client
client
client
client

client

client

client

client

client

client

Clear part of a file

Cache a piece of a file to a specified level
in the storage hierarchy

Cache a piece of a file to a specified level
in the storage hierarchy

Purge a piece of a file from a specified
level in the storage hierarchy

Purge a piece of a file from a specified
level in the storage hierarchy

Migrate a piece of a file from a specified
level in the storage hierarchy

Migrate a piece of a file from a specified
level in the storage hierarchy

Create a hard link to an existing HPSS file
Remove an entry from an HPSS directory
Rename a file or directory

Create a symbolic link

Read the contents of a symbolic link (i.e.,
the data stored in the symbolic link)

Create a directory

Remove an HPSS directory

Open an HPSS directory

Read a directory entry

Reset position of an open directory stream
Close an open directory stream

Change current working directory

Get current working directory

Change the root directory for the current
client

Updates the user credentials and
file/directory creation mask for a thread's
API state

Cleans up a thread's Client API state

Returns information about the HPSS file
system

Determines client accessibility to a file,
given a Name Server object handle and
file pathname

Opens and HPSS file, specified by bitfile
D

Open an HPSS file, specified by Name
Server object ID and, optionally,
pathname

hpss_GetAttrHandle

hpss_SetAttrHandle

hpss_GetACLHandle
hpss_DeleteACLEntry-Handle

hpss_Update ACLEntry-Handle

hpss_LinkHandle

hpss_LookupHandle

hpss_MkdirHandle
hpss_RmdirHandle
hpss_ReaddirHandle
hpss_UnlinkHandle
hpss_RenameHandle
hpss_SymlinkHandle
hpss_ReadlinkHandle
hpss_TruncateHandle
hpss_StageHandle

hpss_PurgeHandle

hpss_MigrateHandle

client

client

client
client

client

client

client

client
client
client
client
client
client
client
client
client

client

client

Get attributes of an HPSS file, specified
by Name Server object ID and,
optionally, pathname

Set attributes of an HPSS file, specified
by Name Server object ID and,
optionally, pathname

Query the Access Control List of a file

Remove an entry from the Access Control
List of a file

Update an entry in the Access Control List
of a file

Create a hard link to an existing HPSS
file, given the name space object handle of
the existing object, and relative directory
for the new link and the pathname of the
new link

Query the Name Server to obtain
attributes, an access ticket and object
handle for a specified name space entry

Create a new directory

Remove a directory

Read directory entries

Remove directory entry

Rename a directory entry

Create a symbolic link

Read the contents of a symbolic link
Set the length of a file

Stage a piece of a file to a specified level
in the storage hierarchy

Purge a piece of a file from a specified
level in the storage hierarchy

Migrate a piece of a file from a specified
level in the storage hierarchy

65

The Name Server provides APIs for the following operations:

API Clients Description

ns_Insert client Insert a bitfile object into a directory

ns_Delete client Delete a name space object

ns_Rename client Rename a name space object

ns_MkLink client Create a hard link to file

ns_MkSymLink client Make a symbolic link

ns_ReadLink client Read data associated with a symbolic link

ns_GetName client Get path name for the specified bitfile

ns_GetACL client Get an ACL for the specified name server object

ns_SetACL client Set an ACL for the specified name server object

ns_Delete ACLEntry client Delete an entry from the ACL of the specified
name server object

ns_UpdateACLEntry client Update an entry from the ACL of the specified
name server object

ns_Mkdir client Create a directory

ns_ReadDir client Retumn a list of directory entries

ns_GetAttrs SSM, client | Get Name Scrver handle and managed object
attributes

ns_SetAttrs SSM, client | Sct Name Server managed object attributes

The Bitfile Server provides APIs for the following operations:

API Client Description

bfs_Create client Create a bitfile

bfs_Unlink client Unlink a bitfile

bfs_Open client Open a bitfile

bfs_Close client Close a bitfile

bfs_Read client Read data from a bitfile

bfs_Write client Write data to a bitfile

bfs_BitfileGetAttrs SSM, client Get bitfile managed object attributes

bfs_BitfileSetAttrs SSM, client Set bitfile managed object attributes

bfs_BitfileOpenGetAttrs SSM, client Get bitfile managed object attributes (for an
open bitfile)

bfs_BitfileOpenSetAttrs SSM, client Set bitfile managed object attributes (for an
open bitfile)

bfs_ServerGetAtirs SSM, client Get (common) server managed object
attributes

bfs_ServerSetAttrs SSM, client Set (common) server managed object

bfs_Copy
bfs_Copy

bfs_Purge

Migration, client
Migration, client

Purge, client

attributes

Copy storage segments for a bitfile to the
next storage hierarchy level

Move storage segments for a bitfile to the
next storage hierarchy level

Reclaim space (i.e., purge segments)
occupied by a bitfile

The Storage Server provides APIs for the following operations:

API

Clients

Description

ss_BeginSession
ss_EndSession
ss_SSCreate
ss_SSUnlink
ss_SSRead
ss_SSWrite
ss_SSGetAttrs

ss_SSSetAttrs
ss_SSMount
ss_SSUnmount
ss_SSCopySegment
ss_SSMoveSegment

ss_MapCreate
ss_MapDelete
ss_MapGetAttrs
ss_MapSetAttrs
ss_VVCreate
ss_VVDelete
ss_VVMount
ss_VVUnmount
ss_VVRead
ss_VVWrite
ss_VVGetAttrs

ss_VVSetAttrs

ss_PVCreate
ss_PVDelete
ss_PVMount
ss_PVUnmount
ss_PVRead
ss_PVWrite
ss_PVGetAttrs

BEFS, SSM, client
BFS, SSM, client
BES, client
BFS, client
BFS, client
BFS, client
BES, client

BFS, client

Migrate, Repack,
SSM, client

Migrate, Repack,
SSM, client

Migrate, SSM,
client

Migrate, Repack,
SSM, client

SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client

SSM, client

SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client

Start a storage server session
End a storage server session
Create a storage segment

Delete a storage segment

Read data from a storage segment
Write data to a storage segment

Get storage segment managed object
attributes

Set storage segment managed object
attributes

Mount a storage segment and assign it to a
session

Unmount a storage segment

Copy storage segment to new segment on
different virtual volume

Move storage segment to new virtual
volume

Create storage map for a virtual volume
Delete storage map for a virtual volume
Get storage map managed object attributes
Set storage map managed object attributes
Create a virtual volume

Delete a virtual volume

Mount a virtual volume

Unmount a virtual volume

Read a virtual volume

Write a virtual volume

Get virtual volume managed object
attributes

Set virtual volume managed object
attributes

Create a physical volume

Delete a physical volume

Mount a physical volume

Unmount a physical volume

Read a physical volume

Write a physical volume

Get physical volume managed object

attributes

67

ss_PVSetAttrs
ss_SSrvGetAttrs
ss_SSrvSetAttrs
ss_ServerGetAttrs

ss_ServerSetAttrs

SSM, client
SSM, client
SSM, client
SSM, client

SSM, client

Set physical volume managed object
attributes

Get Storage Server specific managed object
attributes

Set Storage Server specific managed object
attributes '

Get (common) server managed object
attributes

Set (common) server managed object

attributes

The Mover provides APIs for the following operations:

API Clients Description

mvr_Read SS, PVL, client | Read data from a device or devices
mvr_Write SS, PVL, client | Write data to a device or devices
mvr_DeviceSpec SS, client Load a physical volume

mvr_DeviceGetAttrs

mvr_DeviceSetAttrs
mvr_MvrGetAttrs

mvr_MvrSetAttrs
mvr_ServerGetAttrs

mvr_ServerSetAttrs

SS, SSM, client

SS, SSM, client
SSM, client

SSM, client
SSM, client

SSM, client

Unload a physical volume

Load message to device's display area
Flush data to media

Write tape mark

Read media label

Write media label

Clear portion of disk

Get Mover device managed object
attributes

Set Mover device managed object attributes

Get Mover specific managed object
attributes

Set Mover specific managed object
attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

The Physical Volume Library provides APIs for the following operations:

API Clients Description

pvl_Mount client Synchronously mount a single volume

pvl_MountNew S§, client Begin creating a set of volumes to
automatically mount

pvl_MountAdd SS, client Add a volume to the set of volumes to be
mounted

pvl_MountCommit SS, client Mount a set of volumes

pvl_MountCompleted PVR Notify the PVL a pending mount has

pvl_CancelAllJobs
pvl_DismountJobld

pvl_DismountVolume
pvl_DismountDrive
pvl_Import
pvl_Export
pvl_Move
pvl_NotifyCartridge

pvl_WriteVolumeLabel

pvl_AllocateVol
pvl_ScratchVol
pvl_DriveGetAttrs
pvl_DriveSetAttrs
pvl_VolumeGetAttrs
pvl_VolumeSetAttrs
pvl_QueueGetAttrs

pvl_QueueSetAttrs
pvl_RequestGetAttrs
pvl_RequestSetAttrs

pvl_PVLGetAttrs
pvl_PVLSetAttrs
pvl_ServerGetAttrs

pvl_ServerSetAttrs

SS, SSM, client
SS, SSM, client

SS, SSM, client
SSM, client
SSM, client
SSM, client
SSM, client

PVR

SS, SSM, client

SS, SSM, client
SS, SSM, client
SSM, client
SSM, client
SSM, client
SSM, client
SSM, client

SSM, client
SSM, client
SSM, client

SSM, client
SSM, client
SSM, client

SSM, client

completed

Cancel all jobs associated with a
connection handle

Dismount all volumes associated with a
specific job

Dismounts a single volume

Forces the dismount of a specified drive
Imports a new cartridge into HPSS
Exports a cartridge from HPSS

Move a cartridge from one PVR to another

Notify the PVL that a cartridge has been
check in or out of a PVR

Rewrite the internal label of a specified
volume

Allocate a volume to a particular client
Return a volume to the scratch pool
Get drive managed object attributes
Set drive managed object attributes
Get volume managed object attributes
Set volume managed object attributes

Get PVL request queue managed object
attributes

Set PVL request queue managed object
attributes

Get PVL request queue entry managed
object attributes

Set PVL request queue entry managed
object attributes

Get PVL specific managed object attributes
Set PVL specific managed object attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

69

The Physical Volume Repository provides APIs for the following

operations:
API Clients Description
pvr_Mount PVL, client Asynchronously mount a single volume
pvr_MountComplete PVL, client Notify PVL a requested mount has
completed
pvr_DismountCart PVL, client Dismount a single cartridge
pvr_DismountDrive PVL, client Dismount the cartridge in a given drive
pvr_Inject PVL, SSM, Accept a new cartridge into the PVR
client
pvr_Eject PVL, SSM, | Eject a cartridge from the PVR
client
pvr_Audit SSM, client Audit all or part of a repository checking
external cartridge labels when possible
pvr_LocateCartridge PVL, client Verify whether or not a PVR manages a
cartridge
pvr_SetDrive PVL, client Takes drives in the PVR on-line or off-line
pvr_CartridgeGetAttrs SSM, client Get a cartridge managed object attributes
pvr_CartridgeSetAttrs SSM, client Set a cartridge managed object attributes
pvr_PVRGetAttrs SSM, client Get PVR specific managed object attributes
pvr_PVRSetAttrs SSM, client Set PVR specific managed object attributes
pvr_ServerGetAttrs SSM, client Get (common) server managed object
attributes
pvr_ServerSetAttrs SSM, client Set (common) server managed object
attributes
pvr_ListPendingMounts SSM, client List all currently pending mounts for the

PVR

The Storage System Manager provides APIs for the following operations:

API Clients Description

ssm_Adm client Perform administrative request on one or more
servers (shut down, halt, mark down,
reinitialize, start)

ssm_AttrGet client Get managed object attributes

ssm_AttrReg client Register an SSM client to receive notifications of
data change in managed objects

ssm_AttrSet client Set managed object attributes

ssm_Checkin client Accept checkins from data server clients

ssm_Checkout client Accept checkouts from data server clients

ssm_ConfigAdd client Add a new entry to a configuration files

ssm_ConfigDelete client Delete an entry from a configuration file

ssm_ConfigUpdate client Update a configuration file entry

ssm_Delog client Allow accept to the delog command

70

ssm_DriveDismount
ssm_JobCancel
ssm_CartImport

ssm_CartExport
ssm_ResourceCreate

ssm_ResourceDelete

ssm_AlarmNotify
ssm_EventNotify
ssm_MountNotify

ssm_BitfileNotify
ssm_CartNotify
ssm_DeviceNotify
ssm_DriveNotify
ssm_LogfileNotify
ssm_MVRNotify
ssm_MapNotify
ssm_NSNotify

ssm_PVNotify

ssm_PVRNotify
ssm_QueueNotify
ssm_RequestNotify

ssm_SFSNotify
ssm_SSNotify

ssm_ServerNotify

ssm_SsrvNotify

ssm_VVNotify
ssm_VolNotify
ssm_Migrate

ssm_Purge

client
client
client

client
client

client

Logging
Logging
PVL

BFS
PVR
PVL
PVL
Logging
Mvr
SS
NS

SS

PVR
PVL
PVL

Metadata
Manager

SS

NS, BFS, SS,
Mvr, PVL,
PVR, Logging

SS

SS
PVL
client

client

Dismount a drive

Cancel a Physical Volume Library job

Import cartridges into the Physical Volume
Library

Export cartridges from the Physical Volume
Library

Create resources (physical volume, virtual
volume, and storage map) in the Storage Server

Delete resources (physical volume, virtual
volume, and storage map) from the Storage
Server

Receive notifications of alarms
Receive notifications of events

Receive notifications of tape mounts and
dismounts

Receive bitfile data change notifications

Receive cartridge data change notifications
Receive device data change notifications
Receive drive data change notifications

Receive log file data change notifications
Receive Mover specific data change notifications
Receive storage map data change notifications

Receive Name Server specific data change
notifications

Receive physical volume data change
notifications

Receive PVR specific data change notifications
Receive PVL queue data change notifications

Receive PVL request entry data change
notifications

Receive SFS data change notifications

Receive storage segment data change
notifications

Receive common server data change notifications

Receive Storage Server specific data change
notifications

Receive virtual volume data change notifications
Receive volume data change notifications

Move storage segments for a bitfile to the next
storage hierarchy level

Reclaim space occupied by bitfiles

71

NN T Yt iRl

Wl

ssm_Repack
ssm_MoveCart
client_notify

client
client
client

Perform defragmentation of physical volumes
‘Move a cartridge from one PVR to another

Notify clients of alarms, events, mount requests,
managed object data changes, and special
System Manager requests

The following managed objects have attributes which may be queried (and

set) by SSM:
Name Server Volume
Bitfiles Physical Volume Library queue

Bitfile Server (common)
Storage segments
Storage maps

Virtual volumes
Physical volumes
Storage Server specific
Storage Server (common)
Mover device

Mover server specific
Mover server (common)
Drive

Physical Volume Library request entry
Physical Volume Library server specific
Physical Volume Library Server (common)
Cartridge

Physical Volume Repository server specific
Physical Volume Repository Server (common)
Security server

Log Daemon server (common)

Log Client server (common)

Structured File Server

The Storage System Manager also receives the following type of
notifications from the HPSS server components:

Alarms
Events

Tape mounts
Data changes for registered object attributes

Some of the more important management operations which may be
performed by the Storage System Manager include:

Import/create resources
Import cartridges

Export cartridges

Move cartridges

(from one PVR to another)
Audit PVR

Migrate

Purge

Repack

Delog

Set devices online/offline
Dismount drive

Start/stop/reinitialize/halt servers
Configure servers
Define/modify ACLs

72

Migration/Purge provides APIs for the following operations:

API Clients Description

migr_StartMigration SSM, client | Start migration for a particular storage class
migr_StartPurge SSM, client | Start purge for a particular storage class
migr_MPSGetAttrs SSM, client | Get the migration-purge server attributes
migr_MPSSetAttrs SSM, client | Set the migration-purge server attributes
migr_ServerGetAttrs SSM, client | Get (common) server managed object attributes
migr_ServerSetAttrs SSM, client | Set (common) server managed object attributes

73

N95- 24114
Jé - (DS

43H55 0

p. 16

A 500 MegaByte/Second Disk Array

Thomas M. Ruwart and Matthew T. O’Keefe
University of Minnesota

Army High Performance Computing Research Center

Graphics and Visualization Laboratory
1100 Washington Avenue South
Minneapolis, MN 55415
+1-612-626-8091
+1-612-625-4583 (fax)
tmr@ahpcrc.umn.edu
okeefe@everest.ee.umn.edu

Abstract

Applications at the Army High Performance Computing Research Center's (AHPCRC)
Graphics and Visualization Laboratory (GVL) at the University of Minnesota require a
tremendous amount of 1/0 bandwidth and this appetite for data is growing. Silicon
Graphics workstation are used to perform the post-processing, visualization, and animation
of multi-terabyte size datasets produced by scientific simulations performed on AHPCRC
supercomputers. The M.A.X. (Maximum Achievable Xfer) was designed to find the
maximum achievable 1/0 performance of the Silicon Graphics CHALLENGE/Onyx-class
machines that run these applications. Running a fully confi gured Onyx machine with 12 -
150MHz R4400 processors, 512MB of 8-way interleaved memory, 31 fast/wide SCSI-2
channels each with a Ciprico disk array controller we were able to achieve a maximum
sustained transfer rate of 509.8 megabytes per second. However, after analyzing the
results it became clear that the true maximum transfer rate is somewhat beyond this figure
and we will need to do further testing with more disk array controllers in order to find the
true maximum.

Introduction

The Silicon Graphics CHALLENGE/Onyx computer system has an enormous [/O
bandwidth that, o our knowledge, has not been fully explored. Researchers at the
AHPCRC are working on projects that require significant I/O bandwidth from these
computer systems [Woodward93]. We performed several experiments to find the total
sustainable 1/O bandwidth of the CHALLENGE/Onyx computer systems that are key to
these projects. These high-end workstations are now achieving transfer rates that are
competitive with mainframe architectures and given their attractive price/performance may
potentially become the primary data servers in future high performance computing

PRECEDING PAGE BLANK NOT FILMFh 75 PAGEJ_%INTENTIONALLY BLANK

[R

| ..

[

[

o

environments. Our goal was to find the /O performance limits for large sequential
transfers on the SGI CHALLENGE/Onyx workstation.

The cost of putting together enough high-speed disk subsystems to push the limits of the
O bandwidth was expensive and remains so to this day. A fully configured
CHALLENGE/Onyx computer system could support 32 fast-wide SCSI-2 channels each
with 20 MBytes/second! of /O bandwidth. Each SCSI channel would require a minimum
of 5 high performance disk drives to saturate the 32 SCSI channels sufficiently to find the
maximum /O bandwidth. This would require a total of 160 disks which implies a great
deal of device management and bus contention if these devices are not managed properly.

Instead of using individual disk drives, we connected a single high-speed disk array
controller to each of 31 SCSI channels? on the Onyx system. These disk array controllers
are much easier to obtain than disks and fewer of them are needed due to their individual
high bandwidth. Furthermore, each disk array controller can easily saturate a single
fast/wide SCSI-2 channel so fewer devices are needed (one per channel) resulting in less
device management overhead.

Experimental Setup

So T

« IRIX Version 5.2, a UNIX SystemV Release 4 derivative
e lv - The Silicon Graphics Logical Volume Device Driver

Hardware

Onyx System Configuration
The system used in this experiment was a Silicon Graphics Onyx machine with the

following configuration:

« 20 150 MHz R4400 Processors (12 Processors for 8-way interleaved memory
configuration)

« CPU: MIPS R4400 Processor Chip Revision: 5.0

« FPU: MIPS R4010 Floating Point Chip Revision: 0.0

» Data cache size: 16 Kbytes

« Instruction cache size: 16 Kbytes

« Secondary unified instruction/data cache size: 1 Mbyte

« Main memory size: 512 Mbytes, 4- and 8-way interleaved
* 4 104 Power Channels

« 32 Fast-Wide Differential SCSI-2 channels

* 2GB System disk on SCSI channel 1

An Onyx system is basically a CHALLENGE with a graphics engine. Since this
experiment did not make use of the graphics engine in the Onyx at any time, these results
can be considered equally valid for a CHALLENGE.

IMBytes/second = 1,000,000 bytes per second.
20nly 23 of the 24 available channels were used due to a minor cabling oversight on the part of the
experimenters.

76

Ciprico Disk Array and Diskless Array Description

The disk devices used in this experiment were Ciprico RF6710 disk arrays. Each RF6710
disk array is a RAID-3 device made up of 8 data drives plus 1 parity drive[Ciprico
93][Patterson89]. The number and type of disk arrays used were:

* 8 real disk arrays populated with Seagate ST12400N 2.5GB 3.5-inch disks.
* 23 diskless arrays populated with simulated Seagate Barracuda-2 2.5GB 3.5-inch
disks.

Because the number of disks required to populate 31 disk array controllers was more than
we could purchase or borrow, there were no disks on 23 of the 31 disk array controllers.
Instead, they were programmed to act like real disk arrays when accessed. The diskless
array controllers read and wrote data as any disk array would with the exception that data
written to the diskless arrays was thrown away and data read was always zero.
Consequently, no file system testing was possible and all testing was performed on raw
devices.

The diskless array controllers have geometry characteristics based on the ST12400N disks
but performance characteristics based on an array populated with Seagate Barracuda-2
disks, the higher performance version of the ST12400N disk. The data read from the array
is always zero with the exception of the first 5 12-byte block on the array which will be kept
in the controller memory and contains the volume header information.

The performance of the diskless array controllers depends on the type of access. For
purely sequential access the seek and rotational latencies are zero. This is because on array
controllers with real disks, sequential read and write operations make effective use of the
data caches on the individual disks thus hiding rotational and seek delays. For any other
access that involves a seek, an appropriate delay was inserted in the command processing
to simulate the seek and rotational latencies. The seek time is estimated to be proportional
to the seek distance and the rotational delay is set to half a revolution (4.1 milliseconds in
this case). The disk drive being modeled is a Seagate Barracuda-2. The seek simulation
feature was used for a different set of experiments but was not used in the M.A.X.
experiment.

For sequential read operations, the performance of the diskless arrays was only 4% higher
than an array disk real disks at moderate to large request sizes (Figure 1). Sequential write
operations on the diskless arrays performed nearly identically to the read operations. It
should be noted that the objective of this experiment was not to simulate a disk array but
rather to saturate the I/O subsystem. Therefore, these performance differences are more of
a benefit than a detriment.

Finally, the read operations on the real disk arrays perform better than write operations on
real disks even when the write caches are used (Figure 2). However, this difference seems
to be reasonably constant for small request sizes and becomes less significant at larger
request sizes.

20

16

14

in MBytes/secand

12

10

Performance

6

Al

——a—— Diskless Array

/ g Real Array

10

100 1000 10000
Request Size In KBytes

Figure 1. Performance of read operations for diskless and real disk arrays for request sizes ranging from
32KBytes to 4096KBytes. At the lower request sizes, the diskless arrays are considerably faster than the

. real disk arrays. However, the performance curves converge at reque

in MBytes/second

Performance

20

18

16

14

12

10

| v

J / -—g— Reads

—— \Nriles

N\

NN

N

10 100 1000 10000
Request Size in KBytes

Figure 2. Performance of a reads and writes versus request size on a real disk array.

operations are cached on each of the individual disk drives within the array.

78

st sizes of 512KBytes and higher.

The write

CPUs Memory

12 0r 20 - 150MHz Rad0o| H}i| 512MB 4- and 8-way
30r5CPU boards, 4 |}; interleaving
CPUs/board 2 or 4 MC3 Memory
boards
104 #0 104 #1 104 #3
[¢] | 1 I 0 I 1 | 0 1
CSIM SCSI ME: ISCSIM [SCSIM CSI ME! ISCSI M
21314 516} 7 23I4 5617 23]4 5167

SCSI Channels 0-7* SCSI Channels 8-15* SCSI Channels 16-23* SCSI Channels 24-31*

- [- - 1 1 [1.
1 | 1 1
Array Array ArTay ArTay ArTRy Array Array Axray
celrt ctlet Ctirtt ctlrtt ctirtt ctlrtt Ctlxtt crirtt
-
L4

* These are Ordinal number ussignments. Actual channel numbers were different.
+ These array controllers have real disks attatched.
i1 These array controllers have no disks attached. These are referred to as Diskless Arrays.

Figure 3. M.A.X. hardware configuration diagram.
Performance Evaluation Program

xdd - An I/O performance measurement tool

xdd 1s a program developed to measure I/O performance by reading or writing large
amounts of data sequentially from a file or raw device. This program is intended to find
the upper limit of performance of an I/O subsystem under specific, well-controlled
operating parameters. xdd takes as command line parameters the target device to operate
on, the operation to perform (read or write), the request size to use for each read/write
operation, the number of read/write requests to perform, and the number of times to repeat
the test in order to obtain a good statistical average. Furthermore, xdd can be instructed to
limit the time to run each test in order to make the runtime more deterministic.

xdd provides three measures of I/O performance: (1) an aggregate transfer rate, (2) a table
of time stamps detailing each request, and (3) the number of /O operations completed
during the test. Upon completion, xdd prints a single line of values indicating the request
size (in 1024-byte blocks) , the average, high, and low /O performance in units of 106-
bytes per second, the number of I/O operations, the average, maximum, and minimum
number of seconds to complete the specified number of requests, and the number of errors
that occurred during the test.

79

The first set of performance values is the aggregate transfer rate and can be affected
erroneously by individual I/O operations that may have "stalled" due to some outside
influence. To help identify these outlying values a collection of high resolution time
stamps are recorded in a file for further analysis. Before each I/O operation has been
initiated, a time stamp is recorded in an internal memory array. This array is pre-allocated
and page locked in order to avoid any paging interference that may negatively affect these
values. After xdd has completed all passes of the requested test, the time stamp values are
written to a file with header that contains the request size in 1024-byte blocks, the
resolution of the time stamp values, and the number of time stamp entries.

In an attempt to minimize the impact of virtual memory management and process
scheduling, the xdd text and data areas, the I/O buffer, and the time stamp table are page
locked during initialization to avoid any page faults or program swapping during the
performance test. The program also sets itself to a non-degrading, high priority in order to
reduce scheduling side effects on the measurements.

xdd uses a single page-aligned memory buffer large enough to handle a single request. An
I/O request to a single disk can range in size from 512-bytes up to a system defined
maximum. Currently, this maximum is set to 4 MBytes (4*1024*1024 bytes), or more
appropriately, 1024 pages3. The IRIX operating system allocates 1024 page mapping
registers for each I/O request but in order to map any arbitrary 4MB 1I/O request, 1025
page mapping registers are required to map requests that do not start on page boundaries.
Therefore, in order to issue an I/O request of 4MB it is necessary to page align the buffer to
insure it can be mapped in 1024 page mapping registers.*

The Experiment

First, a test utilizing eight fast/wide SCSI-2 channels on a single 1045 was run to determine
if the 104 imposed any bandwidth limitations on the eight channels. The aggregate
performance scaled linearly as the number of independently fully utilized channels was
increased from 1 to 8. Hence, there are no bandwidth limitations within an JO4.

The principle testing involved three basic access methods. The first access method was the
simultaneous independent access of 1 to 31 disk array controllers. The second access
method used the Silicon Graphics Logical Volume (1v) striping device driver to access 2 to
31 devices as a single logical device. The third access method was a variation of the first
whereby half the disk arrays would be reading data into memory while the other half
would be writing data from memory to disk. This last test was intended to measure any
bi-directional interference.

Each of these tests were performed using 4- and 8-way memory interleaving. The greater
the interleaving, the higher the effective bandwidth into memory. Figure 4 describes the
overall experimental test layout..

3The page size in IRIX 5.x is fixed at 4096-bytes.
4This problem with one to few page mapping registers exists in IRIX 5.2 but may not exist in later

releases.
5 The 104 card has 4 Fast/Wide SCSI-2 channels.

80

Independent Logical Simultaneous

Access Volume Read/Write
~ N e
4-way 8-way 4-way S\W.ay 4-w§ 8-way

Interleaved Interleaved Interleaved Interleaved Interleaved Interleaved

1-31 devs 1-31 devs 1-31 devs 1-26 devs 2-30 devs 2-30 devs
read and read read and read read/write read/write
write write

Figure 4. The access methods and system memory configurations.

Due to time constraints, write operations were not tested for the 8-way interleaved
Independent Access and Logical Volume tests. However, it was observed in the 4-way
interleaved memory testing that the overall write performance tended to be slightly better
than the read performance. It is believed that this characteristic holds true for the 8-way
interleaved memory as well although it still needs to be verified.

Caveats

e In order to accommodate a shorter than expected testing schedule the 2-way
interleaved memory testing was removed.

» The fully configured Onyx with 4-way interleaved memory was able to
accommodate 20 processors (5 processor boards). However, the 8-way interleaved
memory configuration required 2 extra memory boards that displaced 2 processor
boards reducing the number of CPUs to 12 for this configuration. However, it
should be noted that this would not be necessary on a CHALLENGE server which
can be configured with 36 CPUs, 8-way interleaved memory, and 4 104s
simultaneously.

* The diskless array controllers were measured to be about 4% faster than the real
disk arrays at the top end of their performance curve (18.1 MBytes/sec versus
17.85 MBytes/sec).

« Tt is interesting to note that even with only 12 CPUs on the 8-way interleaved
memory configuration, the I/O rate did not appear to be limited by the CPU
performance.

Results

The results are presented by access method as described in figure 4. First the Independent
Access results are presented (figures 5-9) followed by the Logical Volume results (figures
10-16) and finally the Simultaneous Read/Write results are presented (figure 17).

nde, Access Results

The total bandwidth of the 4-way interleaved memory configuration was tested by
increasing the number of independently accessed arrays from 1 to 31 over request sizes
ranging from 64KBytes¢ to 4096KBytes. Disk array controllers were added one at a time
incrementing monotonically through each 104 until all channels were running. This
procedure was repeated for the 8-way interleaved memory configuration.

6] KByte = 1024 bytes.

81

This access method yielded the best overall performance when compared to the logical
volume and simultaneous read/write access methods. The 4-way interleaved memory
configuration peaked at 392 MBytes/second accessing 27 devices with a request size of
768KBytes, dropping to 310 MBytes/second as more devices were added (figures 5-6).
The 8-way interleaved memory configuration performance was measured at 509.8
MBytes/second accessing 31 devices with a request size of 2048KBytes (figures 7-8).
Request size has a definite effect on the performance with request sizes larger than
512KBytes performing the best (figure 9).

Due to time constraints, testing was limited to read operations only.
Logical Vol Read and Write T.

This series of tests were run to measure the read and write performance of logical volumes
composed of 9 to 30 devices. Since a previous study [Ruwart93] characterized the read
performance of logical volumes composed of 2 to 8 devices it was decided to start where
that study left off in the interest of time.

The results of these tests are reported as Performance as a function of number of devices at
two different step sizes. The step size of a logical volume is the maximum amount of data
read off a single disk array in a single request. Thus, from the disk array's perspective, the
step size is equivalent to a request size because this is what the disk array sees as a request
from the host. The amount of data the xdd application actually requests from the logical
volume was intentionally set to the step size times the number of devices in the logical
volume in order to insure that all devices in the logical volume would be accessed for each
application /O request in the most optimal manner.

As expected, the larger step size of 1024KBytes performed better than the smaller step size
of 256Kbytes (figures 10-15). However, the performance did not seem to depend on the
type of operation (figures 12 and 15) and only slightly on the memory interleaving (figure
16). The peak performance of the logical volume access method was about 240
MBytes/second.

il Read/Write T

The simultaneous read/write tests were run to measure any bi-directional interference when
transferring data to and from different groups of 1/0O devices simultaneously. The
motivation behind this testing has to do with large multi-media servers that must sustain a
large bandwidth in and out of a system.

The results show a peak performance of 482 MBytes/second accessing a total of 30 disk
arrays: 15 reading plus 15 writing using a request size of 1536KBytes and 8-way
interleaved memory (figure 17). This is 97% of the straight read performance of 30
independent disk arrays. The 3% difference is attributed to the slightly lower performance
of the individual disk array write operations (see figure 2). Since 15 of the 30 devices
were writing data in the simultaneous read/write case, the aggregate performance of all 30
disk arrays is less than if all 30 devices were reading.

82

400

380 o t

360 il N
5 340 :
S 32 =*
g ' o Request Sizes
£ 280 iy ,
e 260 o —n— sk
@ 240 . "] —— 128k
= Lo

220 F —=— 256k
o 200 o /
£ e . e 512K
8 160 m—..“ & 768k
& 140 ——g—— 1024k
g :sg . 2048k
g — 3072k
& 80 , rreyy
& 60 ! ——w— 4096k

40 4+ v . m

20 4 i

o 4ttt

A4

]

W OO N &« © O O N < O ~N
- - = v NN N AN &N NN OO O

Number of Devices

T
© «

-

Figure 5. The performance curves for read operations using request sizes 64-4096-KBytes using 4-way
interleaved memory. The performance peaked at 393 MBytes/second using 27 devices with a request
size of 768-KBytes.

400 pEs -
/@ﬁ)]
350 3
v P i
[= 7 3
o . Y T
S 300 AL L)
5 ;@" Request Sizes
[&
s 250 L 64k
“:’ /5(‘5;' —— 128k
= 200 i - 256k
- : g 512K
Sy
é 150 Y - by w768k
o
E
S 100
=
E - A d - A J -
50 41 e b odoat o]
0

L LI L) =
©C N & © @©@ O N ¢ © & O N ¥ © O O «
o o= = - NN NN ;M

Number of Devices
Figure 6. The performance curves for read operations using request sizes 64-768-KBytes using 4-way
interleaved memory. The performance peaked at 393 MBytes/second using 31 devices with a request
size of 768-KBytes.

550

500

450

400

350

in MBytes/second

300

250

200

150

Perfarmance

100

50

8 1012 14 16 18 20 22 24
Number of Devices

LI |
0 2 4 6

26 28 30 32

Figure 7. The performance curves for read operations using request sizes 64, 768, and 2048-KBytes

B 600
550
500
450
400
350
300

in Mbytes/second

250
200
150
100

Performance

50
0

using 8-way interleaved memory. The performance peaked at 509.8 MBytes/second using 31 devices
with a request size of 2048-KBytes.

Regquest size 2048k

——g— 4way interleaved memory

Pe

0

f

4 6 8 1012 14 16 18 20 22 24 26 28 30 32
Number of devices

g 8way interleaved memory
~@— Linear Extrapolation

Figure 8. The performance curves for read opérations using a request size of 2048 KBytes, 8-way versus

- 4-way interleaved memory, for independent processes accessing 2 to 31 disk arrays. The performance using
4-way interleaved memory tracks the 8-way performance curve up to 390MBytes per second where it drops
off noticeably while the 8-way performance curve continues with no signs of tapering off.

N

size of 2048-KBytes

300
280
260
240
220
200
180
160
140
120
100

in MBytes/second

Performance

80
60
40
20

0

550

500
450

in MBytes/second

n
8

Performance

400

g

8

250

150

8

(44
o

o

—]

aasalsaaslasaslisssalasas

0 fuupugnupe g

256
512

-

768
1024
1280
1536

Request

1792
2048

2304
2560
2816

Size In KBytes

Figure 9. The performance curve for read operations using request sizes 64-4096-KBytes using 8-way
interleaved memory. The performance peaked at 509.8 MBytes/second using 31 devices with a request

3072
3328

3584
3840
4096

Fg,,a”"

Step Sizes

—8— 256k

—o— 1024k

o

0 2

T

T

4 6 B 101214 16 18 20 22 24 26

Number of devices
Figure 10. The performance curves for read operations using step sizes 256 KBytes and 1024 KBytes, 4-
way interleaved memory, and a single logical volume consisting of 9 to 30 disk arrays. The performance
peaked at 236.9 MBytes/second using 30 devices with a step size of 1024-KBytes.

85

28 30 32

sma

T

300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

in MBytes/second

Performance

Step Sizes

pan

ol 256k
—— 1024k

0 2 4 6 8 1012 1416 18 2022 24 26 28 30 32

Number of devices

Figure 11. The performance curves for write operations using step sizes 256 KBytes and 1024 KBytes,
4-way interleaved memory, and a single logical volume consisting of 9 to 30 disk arrays. The
performance peaked at 241 MBytes/second using 30 devices with a step size of 1024-KBytes

300
280

{

260

240

220

200

180

160

140

in MBytes/secand

120

100

80

60

IR TEEIETEE IRV I TRR AT TR TARIR NN IRTRE [TRTRRITTU NI BTR I TH]

Performance

40

20

0

0 2 4 6 8 10 1214 16 18 20 22 24 26 28 30 32

Number of devices

——— Reads
—— Writes

Figure 12. The performance curves for read and write operations using a step size of 1024 KBytes, 4-
way interleaved memory, and a single logical volume consisting of 9 to 30 disk arrays. The performance

of the write operations was slightly better than the read operations.

Loy

»

300
280
260
240
220
200
180
160
140
120
100

80

60

40

20

in MBytes/second

Performance

Step Sizes

—o— 256k

—— 1024k

>

3 =

3 x4

£

3 & i

: Ve

: L J

E

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of devices

Figure 13. The performance curves for read operations using step sizes 256 KBytes and 1024 KBytes, 8-
way interleaved memory, and a single logical volume consisting of 9 to 26 disk arrays. The performance
peaked at 223.9 MBytes/second using 26 devices with a step size of 1024-KBytes.

300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
[

in MBbytes/second

Performance

Step Sizes

—a— 256k

——— 1024k

N
"

0

2

4

6 8 1012 1416 18 20 22 24 26 28 30 32

Number of devices
Figure 14. The performance curves for read operations using step sizes 256 KBytes and 1024 KBytes, 8-
way interleaved memory, and a single logical volume consisting of 9 to 26 disk arrays. The performance
peaked at 228.2 MBytes/second using 26 devices with a step size of | 024-KBytes.

ol

AT AU

300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

In MBytes/second

Performance

Figure 15. The performance curves for read and write operations using a step size of 1024 KBytes, 8-
way interleaved memory, and a single logical volume consisting of 9 to 26 disk arrays. The performance
of the write operations was slightly better than the read operations in most cases but are still very close

Step Size 1024k

——&8— Reads

—o— Wirites

in MBytes/second

Performance

250
240
230
220
210
200
190
180
170
160
150
140
130
120
110
100

0 2 4 6 8 1012 1416 18 20 22 24 26 28 30 32

Number of devices

-

wayl intarleayed memory

way intdrieated hem ory

i2s

/
i

o

2 4 6 8

Number of devices

10 12 14 16 18 20 22 24 26 28 30 32

[

1o {"
W

i

Figure 16. The performance curves for read operations using a step size of 1024 KBytes, 8-way versus
4-way interleaved memory, and a single logical volume consisting of 9 to 30 disk arrays (26 for the 8-way
case). The performance using 8-way interleaved memory was slightly better than the 4-way interleaved
memory configuration.

i

500 ; —F
480 —
© \\
€ 460 Y/ -
8 440 ’
[/
R I A
@ 380 / ~
360] B B
£ 340 f
2
§ 320
- ARy inrieabed
3 a0 8-why interiealed
;5. 240 il | 30 ndepandebtde- ices
220
200 +——r——+t+——+——+ -+ttt
o @ o @ <+ (=4 [{=] o «© <+ (= © N ®
w - @ N @ (3] [} < (= [Ie] — ~ o
Nemo 82 EgRERS B

Request Size in KBytes

Figure 17. The performance curves for simultaneous read and write operations using a request sizes
ranging from 128KBytes to 3072KBytes, 8-way versus 4-way interleaved memory, reading from 15 disk
arrays while writing to 15 other disk arrays. The performance using 8-way interleaved memory was
consistently better than the 4-way interleaved memory configuration. The top curve represents read
operations on 30 independent devices.

Conclusions

The M.A.X. experiment demonstrated a sustained performance of 509.8 MBytes/second
reading data from 31 independent disk arrays simultaneously into an 8-way interleaved
memory subsystem on the CHALLENGE/Onyx system. However, the maximum
achievable transfer rate was not observed because 31 disk arrays were not enough to
saturate the I/O subsystem. This statement is based on the results for the 4-way interleaved
memory configuration whereby the performance hits a maximum and degrades as more
devices are added. This effect was not observed for the 8-way interleaved memory
configuration. Therefore, we believe that the actual maximum 1/O performance of the
CHALLENGE/Onyx is greater than 510 MBytes/second.

The logical volume testing showed a maximum transfer rate of approximately 240
MBytes/second for reading or writing. The memory configuration did not have any effect
on the overall performance of any logical volume configuration.

Finally, the simultaneous read/write tests demonstrated a maximum performance of 482
MBytes/second using 30 disk arrays: reading from 15 while simultaneously writing to 15
others. Since this performance is measured over 30 devices, it is estimated that 31 devices
would provide an additional 16 MBytes/second for a total sustained performance of 498
MBytes/second.

The M.A.X. experiment was a success and exceeded our expectations inasmuch as we
expected to observe a peak performance less than 500 MBytes/second. Had we known
that the peak would have been higher we would have designed the experiment to utilize far
more disk array controllers and SCSI-2 channels. The Silicon Graphics
CHALLENGE/Onyx system architecture has proven to have a very efficient I/O
subsystem that has a tremendous usable bandwidth.

89

[N I Tt P

Future Work / Related Work

* Perform 8-way interleaved memory testing on a CHALLENGE and more
processors, 6 I04's, and 48 fast/wide SCSI-2 channels with a theoretical peak
bandwidth of 960MBytes/second.

» File System Testing with 160 Real Disks and/or 32 Real Disk Arrays

« Testing with Multiple 100-MByte/second HiPPI and/or Fibre Channel Devices

* Bit rate consistency testing for multimedia applications

Acknowledgments

We would like to acknowledge Silicon Graphics, Inc. for providing the hardware required
to attach the disk arrays to the Onyx machine and Ciprico, Inc. for providing the disk array
controllers and engineering that went into making them believe they had real disks
attached.We thank Jeff Stromberg and Steve Soltis for their hard work in taking the
measurements. This work was supported by the U.S. Army and by grant no. 5555-23
from the University Space Research Association which is administered by NASA’s Center
for Excellence in Space Data and Information Sciences (CESDIS) at the NASA Goddard
Space Flight Center.

References

[Ciprico93] ““RF6700 Controller Board Reference Manual,”" Publication Number
21020236 A, Ciprico, Inc., Plymouth, MN, August 1993.

[Paterson89] D.A. Paterson, P.M. Chen, G. Gibson, and R H. Katz, ““Introduction to
redundant arrays of inexpensive disks (raid)," Proc. IEEE Compcon, Spring 1989.

[Ruwart93] T.M.Ruwart and M.T. O'Keefe, *"Performance Characteristics of a
100MB/second Disk Array," Army High Performance Computing Research Center
Preprint Series, no. 93-123, 1993.

[Woodward93] P.R. Woodward, **Interactive Scientific Visualization of Fluid
Flow,"TEEE Computer, vol. 6, no. 10, pp. 13-26, October 1993.

N95- 24115

4355/

New Architectural Paradigms for Multi-PetaByte Distributed
Storage Systems

Richard R. Lee
Data Storage Technologies, Inc.

Post Office Box 1293
Ridgewood, New Jersey USA 07451-1293
Tel: (201)-670-6620
FAX:(201)-670-7814
e-mail: rrl@dst.com

Abstract

In the not too distant future, programs such as NASA's Earth Observing System,
NSF/ARPA/NASA’s Digital Libraries Initiative and the Intelligence Community's (NSA,
CIA, NRO, etc.) mass storage system upgrades will all require multi-petabyte (or larger)
distributed storage solutions. None of these requirements, as currently defined, will meet
their objectives utilizing either today’s' architectural paradigms or storage solutions.
Radically new approaches will be required to not only store and manage these veritable
"mountain ranges of data", but to make the cost of ownership affordable, much less
practical in today’s (and certainly the future’s) austere budget environment!

Within this paper we will explore new architectural paradigms and project systems
performance benefits and $/PB of information stored. We will discuss essential "top down"
approaches to achieving an overall systems level performance capability sufficient to meet
the challenges of these major programs.

Foreword

Today’s data center is growing at a rate of per year of 40% CAGR, without even factoring
in the impact of new multi-media and imagery-on-demand applications. This means that
someone with a 10 TB problem today will have a 100 TB problem in 2-3 years and a multi-
Petabyte problem in 7-10 years. Many of the large data centers found today have multi-
PetaByte problems already. Based on this growth new exponential factors must be defined
in order to understand the magnitude of the problem. Based on new exponent prefixes
defined in the past two years, we have compiled a listing for reference throughout our
discussions.

TeraByte: 1012 Bytes of bitfile data
PetaByte: 1015 Bytes of bitfile data
ExaByte: 1018 Bytes of bitfile data
ZettaByte: 1021 Bytes of bitfile data
YottaByte: 1024 Bytes of bitfile data

91

L

4

Near-Term Programs with Storage Requirements in Excess of 1 PetaByte

Within the federal end-user community today there are a number of requirements for multi-
PetaByte archival systems already. A number of these will be based on years and years of
data gathering by numerous Earth resources and imagery satellites producing warehouses
of bitfiles which will be made available to thousands of researchers worldwide. For
purposes of our discussion we will profile a sampling of the more visible ones.

NASA EOSDIS: Part of NASA’s “Mission to Planet Earth”, EOSDIS is a 13 site (8
directly associated with the program and 5 affiliated) distributed archive and data center for
earth science data. This program has a data ingest, product generation & data distribution
rate in excess of 1000 GB per day, with a 15+ year life span i.e. 11 PetaBytes anticipated
over the program’s life.

NASA EDOS: Allincoming Level O data from EOS and International Partner satellite
platforms is collected at this site in WV for archiving and processing into higher order data
products. It is then distributed to the 13 EOSDIS sites (as well as IP sites upon request).
Level O and higher order data products in excess of 1 TB per day will be archived,
processed and distributed from this site over the 15+ life span of the program. Total archive
capacity will exceed 1 PB during this time.

ive: Envisioned as the “Data Malls on
the Information Superhighway” these distributed information infrastructure servers will
provide fast access to thousands of TB’s of data, and will open the infrastructure up to the
general public. They are intended to capture, store, distribute and provide access to every
type of bitfile data available from public and private sources. Given the scope of this plan it
is envisioned that this will comprise hundreds to thousands of PB’s over its useful life.

- “Hi ion Vi vices’: As one of the most visible
components of the National Information Infrastructure concept, this application has been
embraced by the entire telecommunications and computer industries as well as capturing a
significant share of the NII federal funding dollars available, and the public’s mindshare as
well.

Using the most advanced image compression techniques available today can only reduce
the large size of a “digital movie” to 10’s of GB’s (assuming higher resolutions than found
in conventional broadcast today). This nets out to a requirement of multiple PB’s in key
VOD locations serving major metropolitan areas across the country (each Blockbuster
Video location currently houses in excess of 10,000 feature length movie titles).

The Intelligence Community’s Consolidation of Disparate Archives: Hard to
describe in any other terms, the United States’ Intelligence Community (CIA, NSA, NRO,
DIA, etc.) is faced with dilemma of providing higher and faster levels of service to its end-
users with less capital to work with (dollars and personnel). In total, the IC ingests over 4
TB per day from classified sources alone (1 TB+ per day from images that are
approximately 1 GB each), not to mention the thousands of unclassified sources worldwide
that are routinely accessed. In trying to meet the needs of their end-users they must respond
to numerous real-time queries across disparate resources. All combined, the IC has in
excess of 10 PB of data already archived, with this growing ata much higher rate than that
of the rest of end-user community (60+% CAGR).

Current Storage System Architectural Paradigms i.e.“Multi-TeraByte Class”
Types

» Direct Connected Peripherals i.e. “The Mainframe Era”

» Stand-alone Data Servers i.e. “The Client/Server Mantra

* Network Attached Peripherals i.e. “The NSL Approach”

+ IEEE Mass Storage Systems Reference Model i.e. “The Open Systems Standard”

O

DASD Drive

S e

& \“\‘&W&&:&W}&WW

Network UF o B 8 Dedicated CPU [qautlh Y 1/2 Tape Drive

&NN%N‘&&X\&&Q\
AR

§

3 Tape Drive(s)
w/Robotics

&
T R R TR R

. 66 24 v

e Overview

Systems conforming to the first two of these types of architectural paradigms (Mainframe
attached and Client/Server) are essentially CPU Centric and appear as a centralized
repository of bitfiles to the outside world. Bitfiles may be distributed out over a network to
various clients, but still originate from a centralized location. The IEEE Mass Storage
Reference Model promises to break this scheme into either a distributed or quasi-distributed
one, but all implementations fielded to date behave in a centralized manner and will
potentially fall apart when distributed.

In short, these systems all suffer from the same type of performance limitation; that of
acting as a single point of access for all classes of service. The controlling/serving CPU can
only maintain one connection/DMA access at a time in practical terms and even through the
use of multiple CPU’s and multi-threaded OS’s one can only maintain a small number of
transfers simultaneously (mostly due to shared memory and operating system software
limitations) appearing on an effective basis as a single point of access to the network.

Systems based on the NSL/HPSS paradigm (network attached peripherals) are designed to
support high-speed transfers of large bitfiles, but do not translate to a distributed
environment and are far too costly for the mainstream of the end-user community. For this
reason we have classified them as part of the TeraByte class.

Network Bus

Super-

WS "
Computer

Cluster

DISK & ATMFCHIPPL B o Solid State
; Disk
Array Switch Fabric
Wide Bandwidth

\ Interconnects

Helical . .
Scan Tape Yispalization,

Archive File Switch Fngine

Control Servert

Device Control Bus

o« &6 1 7y

Concepts for Future Storage System Architectural Paradigms: “Multi-

PetaByte and Beyond™

In order to meet the challenges of managing multi-PetaByte distributed archives we need to
think beyond the current COTS mindset and explore new approaches altogether, some
based on concepts being used in parallel computing today (using however, COTS
components where practical). We feel that a parallel architecture eliminates much of the
problem encountered with “single point of access” found in traditional architectures of the
day. Much of what we will present is still in the early stages of development, but does
represent a logical approach to the problem at hand.

* Distributed Cluster-type

This architecture envisions an environment where a clustered array of servers are
interconnected via a LAN to a series of data repositories. These servers are in turn
connected to a WAN and serve clients and other servers distributed throughout the
enterprise. Each repository contains multiple peripherals and robotics assemblies for
contention free search and access of bitfiles. Using fast packet technology, the system is
capable of storing and retrieving bitfiles within the repositories at very high packet rates,
but at a relatively low cost. Utilizing this type of architecture allows for many points of
access, while retaining the benefits of using commodity type technologies.

M"M ‘
~"ATM LAN

e

@ &w ATM WAN

e Scalable Parallel

This architectural approach borrows much from today’s scalable processors i.e. shared
memory parallelism. The system is essentially demand driven and each process
automatically adapts itself to the number of resources (CPU’s and peripherals) available to
the user at the time of the request. This architectural approach is totally scalable and higher
levels of performance can be obtained by merely adding more CPU’s and peripherals i.e.
forward extensibility without obsolescence.

Data Repository Y

Data Repository X

ATM WAN

95

e Dynamically Configurable

As implied by its name, this architectural approach is the most flexible in meeting “data on
demand” requirements. The system configures itself dynamically depending upon end-user
demand and resources available. During times of extremely high demand the system
configures itself as highly parallel, while during periods of light-medium demand it acts as
a clustered resource. The benefits of this approach are that it eliminates single-node
bottlenecks (the slowest component of a distributed system throttles the performance of the
entire system) and acts as a high-availability resource under all load conditions.

ATM LAN

=g Data Repository X+
Data Repository X+%

Data Repository X

ATM WAN

(13 4 1t €61 ”

The concepts that we have discussed here are by no means new or all encompassing.
Rather, they are shown as examples of wide departures from the status quo which seems to
pervade the mindset of today’s systems planners and developers as the only approach
available to meet the challenges set forth. We expect that as everyone’s eyes are opened
wider to both the scope of the challenge as well as the tools available to respond to it, that
new mindsets will develop.

Additional Considerations

Adoption of new hardware architectural paradigms alone will not suffice to meet the
challenges of these ever increasing requirements. We will need to accomplish the following
in parallel with these developments;

» Adopt Object Driven files systems for faster query, search and access to bitfiles

» Continue to develop “bandwidth on demand” driven internetworks and storage
peripherals

* Eliminate all “single point of access” failures and bottlenecks

» Utilize distributed Metadata and Browse data db’s

* Migration to higher order data transfer and communications protocols

* Achieve continuing incremental reductions in Unit Storage Costs with attendant increases
in Capacity-per-physical unit and vastly improved data reliability.

« Achieve continuing incremental reductions in Unit Storage Costs with attendant increases
in Capacity-per-physical unit and vastly improved data reliability.

Cost Projections & Realities:

Based on the use of conventional architectures and components, we project that
most end-users are looking at fielded system costs of $40-60M per PetaByte, with the
majority of these costs being centered around expensive CPU’s, network fabrics and high-
end peripherals. This level of cost is far too high for most, if not all budgets today and
does not include the manpower or materials necessary to operate and maintain these
systems over their useful life (a major component of total cost).

We believe that in order for the key programs discussed earlier to be achievable,
that costs in the $10-20$/PetaByte range must be achieved. This can only be realized by
embracing radical new approaches similar to what we have outlined.

Conclusions and Recommendations:

Current architectural approaches “bottom out” when tasked at multi-PetaByte levels
(access, bandwidth, file management, cost, etc.).

Scalable and dynamically Configurable hardware architectures off significant
promise in overcoming many of these limitations.

In addition, exponential increases in hardware, software and protocol efficiencies
are mandated to meet this challenge as well.

In short, “The ways of the past must give way to the needs of the future” i.e. the
familiar and comfortable path of the present will not suffice.

References;

[1] Lee, R. and Dan Mintz, "Grand Challenges in Mass Storage - A Systems Integrators
Perspective", Second NASA Goddard Conference on Mass Storage Systems and
Technologies, Greenbelt, MD, September 1992

[2] Lee, R., "The Future of Mass Storage", THIC Winter Meeting, San‘ Diego, CA,
January 1993

[3] Lee, R., “New Architectural Paradigms for Multi-PetaByte Distributed Storage
Systems”, Massive Digital Data Systems Workshop, Reston, VA, February
1994/Supercomputing ‘94, Washington, D.C., November 1994

[4] Kuhn, T., "The Structure of Scientific Revolution", University of Chicago Press,
Chicago, IL 1970

[5] Lee, R., 19mm Helical Scan Recording Technology for Data Intensive Computing
Environments", 10th IEEE Symposium on Mass Storage Systems (vendor poster session),
Monterey, CA, May 1990

[6] Coleman, S. and R.W. Watson, "The Emerging Paradigm Shift in Storage System
Architectures", review copy for Proceedings of the IEEE, April 1993

97

[7] Coyne, R. , H. Hulen and R. Watson, "Storage Systems for National Information
Assets", Proceedings- Supercomputing '92, Minneapolis, MN, November 1992

[8] Lee, R., "Mass Storage - the key to success in high performance computing" , Convex
File Server Seminars, Milan/Rome, Italy, February 1993/Third NASA Goddard
Conference on Mass Storage Systems and Technologies, College Park, MD, October 1993

[9] Lee, R., "19mm Data Storage Applications", THIC Fall Meeting, Annapolis, MD,
October 1990

[10] Panel Discussions, Mass Storage Roundtable, Supercomputing ‘94, Washington,
D.C., November 1994

[11] EOSDIS Core System Science Information Architecture “White Paper” Doc
#FB9401V2, Hughes AIS, Inc., Landover Maryland, March 1994

[12] Dixon, Dick, “Statement of Requirements of the European Mass-Storage Specification
Working Group Working Version 1.1” , European Weather Centre, June, 1994

[13] Teaff, Danny, “The High Performance Storage System”, IBM U.S. Federal
Publication

[14] IEEE Storage Systems Standards Working Group, “Mass Storage Systems Reference
Model Version 57, IEEE Computer Society Mass Storage Systems and Technology
Committee, Balloting Draft, July 1994

[15] “National Science Foundation’s MetaCenter”, NSF Division of Advanced Scientific
Computing, NSF Publications, Arlington, VA., 1994

[16] “Program Guideline/Program Briefing”, ARPA/NASA/NSF Research on Digital
Libraries Initiative, Arlington, VA, September/December ‘93

[17] Convex Exemplar System Overview, DOC 080-002293-000 V1.1, Convex Computer
Corporation, Richardson, Texas, 1994

N95- 24116

Optimizing Raid Performance With Cache 43 &S 22—

Alex Bouzari, President ﬂ {

Mega Drive Systems, Inc.
489 S. Robertson Boulevard
Beverly Hills, CA 90211
phone: (310) 842-9616 fax: (310) 247-0006
e-mail: abouzari @uu1201.megadrive.com

We live in a world of increasingly complex applications and operating systems.
Information is increasing at a mind-boggling rate. The consolidation of text, voice, and
imaging represents an even greater challenge for our information systems. Which forces
us to address three important questions: Where do we store all this information? How do
we access it? And, how do we protect it against the threat of loss or damage?

Introduced in the 1980s, RAID (Redundant Arrays of Independent Disks) represents a
cost-effective solution to the needs of the information age. While fulfilling expectations for
high storage, and reliability, RAID is sometimes subject to criticisms in the area of
performance. However, there are design elements that can significantly enhance
performance. They can be subdivided into two areas: 1) RAID levels or basic architecture.
And, 2) enhancement schemes such as intelligent caching, support of tagged command
queuing, and use of SCSI-2 Fast and Wide features.

Host-independent hardware-based RAID

There are three types of disk arrays: 1) hardware-based, host-independent; 2) hardware-
based, host-dependent; and, 3) software-based, host-dependent. Software- based disk
arrays are very taxing on the CPU because most of the processing is done in the host
computer. On the other hand, hardware-based, host-dependent RAID systems fall short by
foregoing the host-side benefits of SCSI.

Therefore, this article will focus on host-independent, hardware-based disk arrays as they
typically provide significantly improved overall performance (as measured by throughput
and 1/Os per second).

RAID levels

RAID O uses disk striping to distribute data evenly across all the disks in the array. There
is no redundancy or duplication of any data, therefore data-security in minimized. The
upside of this scheme is that it provides very high data transfer, and high 1/0 rates for both
read and write. Supplemented with a well implemented data integrity scheme, RAID O can
significantly enhance performance in most general applications.

RAID 3 subdivides and distributes each data sector across all data disks, with redundant
information stored on a dedicated parity disk. Data can be accessed on different drives
concurrently, thereby offering very high data transfer rates, but no gains in 1/O rates.
RAID 3 is a great performance enhancer for large blocks of data such as video and
multimedia type applications. '

RAID 5 distributes data sectors as with disk striping, with additional independently
computed redundant information. It significantly enhances data transfers and 1/O reads,
but penalizes writes. RAID 5 offers great performance in most business and database
applications.

Other RAID levels that have been proposed to enhance performance, but they typically rely
on complex and costly proprietary structures which have not gained broad market and
industry acceptance.

Tools Available in RAID Systems to Enhance Performance
A well constructed caching algorithm is essential to a high performance RAID system.
This article will cover methods to get the most out of caching.

Intelligent caching

Data transfers can be greatly improved by using adaptive techniques to allocate the optimal
amount of cache memory to various read and write command blocks. Varying these
segment block sizes will improve cache performance.

Caching and look-ahead

A look-ahead scheme ensures that when the host CPU requests data, the RAID caching
algorithm provides the requested data. Look-ahead goes one step further and reads
sequential data immediately following the request. That sequential data is written to a cache
block on the array controller. If the host CPU requests that subsequent data, it can retrieve
it from the cache nearly 1000 times faster than it normally would.

Studies have shown that 55 to 70 percent of all disk requests are sequential. As a result,
well designed cache look-ahead schemes keep track of the sequential nature of data and
continuously fill the cache with new data based on sequential patterns encountered in user
storage activity.

Look-ahead caching eliminates the seek time and latency associated with non-cache
transactions and keeps track of the type of drive activity (sequential versus non sequential)
as well as the length of time a block of data resides in cache without being requested (FIFO
implementation).

Effective array level caches typically range from 8 MB to 128 MB with the
cost/performance ratio being optimized for most broad based applications in the 16 to 32
MB range.

Itis worthy to note that the disk array’s cache complements and greatly enhances the less
sophisticated system level cache and smaller drive level caches found in most current hard
disk drives.

Caching caveats

Caching offers significant performance gains in a disk array architecture. However, in
order to maintain the RAID system’s data integrity and fault tolerance requirements, it is
critical that the data present in the cache during a system failure be gracefully recoverable.

This can be done by incorporating a UPS (uninterruptible power supply) in the RAID
system and providing adequate firmware to flush the cache and carry through the rebuild
process without data loss.

Multi-tasking environments

In a multi-tasking environment such as UNIX, where a disk array typically services
multiple CPU operations, the array must divide the available time among all operations,
even though each might be requesting data sequentially from the disk.

100

Without an adequate caching implementation, the read/write heads in the array will typically
seek from one location to another in order to service multiple data requests. With caching,
the number of seeks required will be significantly reduced because of segmented cache.
After the first seek and read has been performed for each cache, the disk array’s cache on
board typically takes over and transfers the data directly from the various segments of
cache memory.

Tagged Command Queuing

Tagged command queuing (TCQ) allows the host to send multiple commands (from 8 to 64
depending on the implementation) to the disk array for processing. These commands are
then tagged and can be reordered in the queue to reduce the time it takes for drives in the
array to 1) access specific blocks of data (minimize latency); 2) optimize the use of
sequential data; and, 3) increase the number of cache hits, and optimize the execution of a
command stream. TCQ is most beneficial in environments which support that feature (such
as Unix).

Handling large blocks of data

Another bottleneck in disk array performance has to do with the transmission of large
quantities of data. Typical examples are emerging multimedia and related full motion video
and video-on-demand applications, as well as traditional multi-tasking and LAN based
database and general server applications.

An intelligent way to address these challenges is to eliminate the REQ/INIT/ACK CPU
intensive steps usually present between blocks of data by implementing intelligent DMA
(direct memory access) techniques.

Similarly, it is possible to reduce the number of interrupts handled during the processing of
an [/O request, freeing valuable CPU time. The result is faster throughput to the system,
especially for large blocks of data, such as those described above.

SCSI as a bottleneck

The SCSI standard alone can be a potential bottleneck to the RAID disk array (SCSI Fast is
only 10 MB/sec. versus SCSI-2 Fast and Wide at 20 MB/sec.) As previously explained,
the best disk array performance can usually be obtained in hardware-based, host
independent implementations.

Most of the methods we have discussed offer significant enhancements and overcome the
performance penalties inherent to the other two aspects of RAID: better data integrity and
lower cost. With these tools, a hardware-based subsystem can come very close to the
sustained throughput limit of SCSI-2 Fast and Wide (ie 20 MB/sec.).

The future

SCSI is becoming a limiting factor in our performance requirements. Full-motion video,
multimedia, and increasingly complex business applications being right-sized from the
glass room to personal computers and workstations--will need significantly more power
than SCSI can harness.

Intel’s P-6 and Motorola’s future PowerPC chips will provide the needed processor

power. RAID can and will provide high bandwidth storage. What is missing is a faster,
more flexible and cost effective interface standard.

101

Faster Interface Standards
Fiber channel’s Gigabit/sec. throughput, under any of its current four or five proposed
implementations, shows every sign of fulfilling this promise in the next few years.

Fiber will tie in processor and RAID storage under one high power interface standard and
provide us with the high-speed highway needed to support our exponentially growing
information needs.

RAID technology is capable of offering the high performance needed to access and process
large amount of information, when properly implemented. There are many factors that
contribute to RAID performance. The key is to assess the specific storage and application
requirements, and select the most appropriate RAID scheme. Once this is done, the RAID
system can offer significant performance gains over JBOD (Just A Bunch of Drives) by
using the tools such as the ones discussed here.

102

PEDIOIS SSDIN DO fO I8MOF L], \
JArdavoIy &4

ulen)
aoueuLIOLdd ON

Aosuepunpay oN

PEE

ureH)
9ouRULIOpa [lRWS

s|qissod soAuQ o Renty
Aosuepunpey swos

vy
uIBY) S0UBULIOHD SINOS

1S3poN
a|qissod
Aouepunpay awosg

 seauq jo Aenry

+ | 31EMOS AIVY

SoUBLIOLBd 30N

| 108599014 QIVH
| peseg-soejaiu)

aiqissod seugso ey | 4

Aouepunpay swosg

aivd
RIRMDIRL
agsueuLIONdd 1s3g

oiqissod
Aauepunpay jind BUON

VH paseq-alempiey yum
$ Qlvy abijeiug

~_sossaooid g
. wals)

103

[V EIEMIIOE "SR EJEMEIE

N95- 24117

Document Image Archive Transfer from DOS to UNIX

Susan E. Hausef, Michael J. Gill, George R. Thoma
Lister Hill National Center for Biomedical Communications

National Library of Medicine S G-/
Bethesda, Maryland 20894
hauser@nlm.nih.gov 4345 S
Tel: 301-496-4496 _
Fax: 301-402-0341 i?f

Abstract

An R&D division of the National Library of Medicine has developed a prototype system
for automated document image delivery as an adjunct to the labor-intensive manual
interlibrary loan service of the library. The document image archive is implemented by a
PC controlled bank of optical disk drives which use 12" WORM platters containing
bitmapped images of over 200,000 pages of medical journals. Following three years of
routine operation which resulted in serving patrons with articles both by mail and fax, an
effort is underway to relocate the storage environment from the DOS-based system to a
UNIX-based jukebox whose magneto-optical erasable S 1/4" platters hold the images.
This paper describes the deficiencies of the current storage system, the design issues of
modifying several modules in the system, the alternatives proposed and the tradeoffs
involved.

Background

The Lister Hill National Center for Biomedical Communications, an R&D division of the
National Library of Medicine, has developed a prototype system for the automated
retrieval and delivery of document images as an adjunct to the manual interlibrary loan
service of the library. The system is integrated with the library's existing interlibrary loan
system and is transparent to the requester. Since April of 1991, the system has retrieved
from optical disk storage and delivered to patrons the images of over 27,000 articles by
fax and mail. While the current operation has been scaled down, the system continues to
deliver about 450 articles per month and about 550 page images are added to the image
archive per month.

The prototype system [1] consists of several DOS-based workstations connected to a
LAN and supported by a Netware 3.11 file server. The workstation functions include
document capture, image quality control, document tagging, document image archive,
communications gateway and document delivery. Most of the software to support these
functions was developed in house. The file server serves as a temporary image store until
captured images have passed quality control, and it stores the several databases that the
system uses to track images and requests.

PRECEDING PAGE BLANE 105 [i
NOT FILMFD paGELO T INTENTIONALLY BLANK

The image archive is implemented by a bank of four 12" WORM optical disk drives
connected via SCSI-1 to a PC. The vendor-supplied software that mediates the operation
of the drives configures the workstation as an optical disk server that communicates with
other PCs on the network via the IPX protocol used by Netware. Thus, by logging into
the optical disk server, other PCs on the network can write and read image files directly to
and from the optical platters. All of the files on the optical disk server appear to the PC to
be located at a single drive letter. The archive currently holds over 200,000 image files on
15 12" platters, for a total archive of approximately 15 Gigabytes. Because there are more
active platters than there are drives, software has been written to effect a "human jukebox"
for manual platter exchange.

Optical Disk Server Problems

The four WORM drives of the archive workstation range from 2 to 9 years old and all
have been in continuous operation since delivery. These aging drives are no longer
supported by the manufacturer. Although maintenance, troubleshooting and some repair
and replacement are performed by in-house technicians, parts and high-level repair must
be obtained from a third party. Compatible and reliable media are also becoming difficult
to obtain. In addition, the frequent manual exchange of platters is taking its toll on both
drives and media.

At the time that the optical disk server software was purchased, there were few
commercial options for network access to 12" WORM drives from PCs. The optical disk
server software was selected because it met our minimum requirements for remote access
to optical platters and included a small set of C-callable functions that our in-house
programs could use to obtain information about the status of the drives and platters.
However, this DOS-based software has not proven to be robust when handling multiple
requests and error recovery is generally inadequate, requiring frequent intervention by the
technical staff The original manufacturer of the optical disk server software sold their
license to a company overseas with no support staff in this country. The new company has
not addressed the reliability and error recovery issues, and their new version of the
software cannot write to platters written to by earlier versions.

The optical disk server continues to function adequately at its current low usage level, but
at the cost of several man-hours of labor per week. There is also the threat of irreparable
breakdown of one or more of the aging, irreplaceable optical disk drives. For these
reasons, we are exploring the transfer of the image archive to a more reliable, flexible
optical disk server employing current technology.

106

Rationale

The degree to which images in the archive are accessed is a function of their age, the
probability of more recently published documents being accessed being higher than for
older documents. One approach to solving the archive problem is to permanently retire
disks containing older documents, and have only three or four platters permanently placed
in the drives. These would then contain those documents that have the highest probability
of being requested, thus reducing wear on drives and media from manual platter exchange.
This approach might extend the life of the system for a short time but is not likely to
significantly reduce the amount of staff labor needed to maintain the system.

There are good reasons to preserve the entire image archive. These images represent a
large investment in equipment and labor. Although the development and operation of the
prototype system largely answered the original research questions regarding cost,
performance and image quality, the database of document images has potential value for
future research. The archive could be used in projects addressing document image
processing, image compression, file format conversion, image transfer, image access, or
mass storage. It could also prove useful in testing components of improved document
image delivery systems.

For these reasons, an effort has begun to relocate the entire image database from the
DOS-based system to another system of optical media in which media are automatically
exchanged when necessary and multiple network communications are handled reliably.

New Image Storage Requirements

In the new image store, all active images should be accessible from the current document
delivery system without manual intervention. To be available to the widest number of
future projects, the image database should be accessible from UNIX platforms, which
normally communicate via TCP/IP, as well as from the many Netware-based PCs in the
division. Internet access to the database would make it available to collaborators at other
sites as well. These requirements are met by the division's HP 100 optical disk jukebox [2]
in conjunction with the Netware NFS Gateway software [3]. The four-drive jukebox has a
current near-line capacity of 93 Gigabytes, expandable to 186 Gigabytes. It is connected
to a Sun 670MP and controlled by software from Alphatronix. Each platter side appears
as a UNIX file system and is directly available to any computer to which it is exported.
Netware NFS Gateway software supports NFS mounting of UNIX file systems to
Netware servers, where the file system is available to Netware users as a Netware volume.

The jukebox also supports other projects. Should insufficient space be available for the
image database, other commercial solutions are appearing. It is expected [4] that
expandable network storage products will soon emerge that will connect directly to the
network and will offer storage that is independent of the operating system. There is one

107

optical disk jukebox system available now that connects directly to the network and
supports both TCP/IP and IPX/SPX communications [S].

Software Requirements

In an ideal world, the image database could be moved to a new image store with no effect
on the operation of the current document delivery system. However, because much of the
in-house-developed software is tightly integrated with the current optical disk server
software and the operation of the "human jukebox", no simple substitution is possible. Any
change in image store will require modifications to several of the modules that comprise
the system. Software modification is not a casual matter. Several of these modules are
written for a C compiler that is no longer supported, while others are written for an older
version of Microsoft's C compiler. All these modules use a no-longer-supported library of
routines to interact with the databases that resolve the location of image files
corresponding to journal articles.

Key

O Programs/functions
—

Lattice C

Microsoh C

Figure 1. Modules of the current system that access the image store.

Figure 1 illustrates the software modules of the current system that interact with the image
store and the libraries that are used to facilitate use of the optical disk server. The archive
module moves the page images of a journal issue from the temporary store on the Netware
server to permanent store on a WORM platter. For each issue, the tagging module adds
operator-supplied data that identifies the page images that correspond to individual articles
in the issue. An operator can use the browsing module to match articles with requests

108

containing ambiguous or insufficient information for the system to automatically select the
article. The output server copies page image files corresponding to an article from an
optical platter and either faxes the images to the requester or prints the article for delivery
by mail. All but the output server interact with an operator.

Ultimately all reads and writes to the optical disk server are straightforward, but modules
must first determine if the required platter is in a drive. If it is not, human intervention
must be invoked through the module labeled "human jukebox" in the figure. In addition,
before archiving a journal issue, the archive module must determine the remaining space
on a platter to be certain that there is sufficient space for all page images of the issue.
Since a file/platter locking feature is not part of the commercial optical disk server
software, all modules use the special opticallok file to prevent one module from
requesting the operator to remove a platter that another module is using. Although three
of the modules share a few library functions, as shown in Figure 1, in general each module
is responsible for how it accesses files on the optical disk server.

Minimum modifications to the software to accommodate a new image store implemented
by an optical disk jukebox will have to remove references to operator intervention and to
the functions that obtain information about drive and platter status.

Other issues

File format and image organization: The page images in the current system are
compressed using the CCITT Group IV algorithm. Each page is stored as a separate file
with no header. All of the page images from one journal issue are stored in one
subdirectory. The metadata that describes which page images are associated with each
article in the issue are stored in one file in the subdirectory with the images. The
subdirectory name is a number, assigned consecutively at the time the issue is archived.
Thus, any module using images as they are currently stored must obtain information from
the system database files to find the path to a given issue, must be able to interpret the
metadata file to find pages for a given article and must have a priori knowledge of the
image file format. To make the image database not only available to a wider audience, but
also self-explanatory, changes in file format and organization will be considered.

Access time: Very fast image retrieval is not critical to the system supporting interlibrary
loan since the recipients of the articles are not on line waiting for delivery. Earlier studies
of jukebox performance [6] found that the time to retrieve one article is about two
seconds when the platter on which the images resides is in a drive. When the platter is not
in a drive, the retrieval time becomes a function of the number of other requests waiting
for service from the jukebox. In general, retrieval times from the jukebox are sufficiently
fast to support the interlibrary loan prototype system. If the image database is used for
some other project for which inherent retrieval times from the jukebox are too slow,
apparent speed can be improved by designing a prestaging algorithm specifically for the
application. ‘

109

Backup: Once each 12" WORM platter of the prototype system is filled to 95% of its total
capacity, a duplicate platter is made using in-house software, and a new platter is
formatted for succeeding documents. Should a platter fail, which has happened, the
backup can be used in its place. To date, the magneto-optical (MO) media in the jukebox
have proven to be reliable. Since it is unlikely that an entire MO platter will fail, it may be
sufficient to back up the document files to tape in case individual files should become
corrupted. The important issue of effective backup procedures has yet to be fully
addressed.

Platter spanning: The software controlling the jukebox supports platter spanning [7].
With spanning, up to 16 platter sides can be merged to become one filesystem of about 4.5
Gigabytes. The filesystem can be exported to the Netware server and made available to PC
users as a single Netware volume. The current image database would require more than
three such volumes.

Proposed Solutions

In addition to the hardware and software requirements discussed earlier, the design of a
new image store should include as goals: a) minimum investment of labor and equipment,
and b) maximum flexibility to allow future changes to the image store and future use of the
image database. Meeting these goals involves tradeoffs. Minimum investment in labor and
equipment implies minimum software modifications to the current document delivery
prototype system and the use of current storage devices, namely the HP jukebox.
Maximum flexibility to position the database for continued and future use may require new
hardware procurements for the image store and extensive changes to the current software.
These solutions are discussed below.

Solution 1: For Minimum Cost

To minimize software modifications, the new image database would be organized exactly
like the current database, with the images of each issue residing in an arbitrarily named
subdirectory, accompanied by a cryptic file containing data used to connect individual
pages to the respective articles in the issue, and using a headerless file format for the
images themselves. To minimize modifications, the current conglomerate of outdated
compilers, databases and user interfaces would be preserved. The result may support the
document delivery system for several years, but would provide other applications only
awkward access to the images. Furthermore, should the image database require another
physical move, to be distributed among several servers, for example, the software would
likely have to be modified once again.

Figure 2 illustrates how modules of the document delivery system that access the image
store would be organized in a system designed to minimize labor and equipment costs. In

110

this scheme, a selected subset of the images are moved to platters in the HP optical disk
jukebox connected to the Sun host. Sixteen platter sides in the jukebox are spanned to
create one 4.5 Gigabyte filesystem that is exported to the Netware server. Only the more
heavily requested issues would be copied to the new image store, with one Gigabyte
reserved for about 2 years worth of additional documents. The remaining images are
permanently retired. Files in the new filesystem are organized exactly as in the current
document delivery system. The entire filesystem appears to the document delivery
workstations as one Netware volume which is mapped to a single drive letter, just as the
current optical disk server is accessed though a single drive letter. Functions in the
iwmount_lib library, which were previously used to operate the "human jukebox", are
replaced by functions bearing the same name whose only purpose is to return a good
status. In this way, the tagging and browsing modules need not be rewritten, but only
relinked to the new library. Because the archive module is so tightly integrated with the
current optical disk server and includes functions, such as determining available space on a
platter, that are not in the iwmount.lib library, it must be rewritten to support the same
functionality with respect to the jukebox. The required information can be obtained
through functions in the Netware Software Development Kit (SDK). Since the SDK
supports Microsoft, but not Lattice compilers, the new archive module is written for
Microsoft. The output server module may not need to be rewritten or relinked. Because it
is intended to operate automatically, even during periods when an operator is not
available, it does not directly access the "human jukebox" functions.

Key

O Programs/unctions

Lattice C

Microsoft C

Figure 2. Proposed modules for minimum cost solution.

111

Solution 2: For Maximum Flexibility

To maximize flexibility and access, the image database would be reorganized for easy
management and for intuitive navigation to image files that have a standard file format and
header. The path to the subdirectory containing the images for one issue includes a three
letter code identifying the journal title and other characters to indicate volume and issue.
With each issue there is an easily interpreted text or database file containing data linking
page images to articles. All images reside in an optical disk jukebox with sufficient
capacity to store the existing database plus at least five years expansion. The jukebox
connects directly to the network with software that supports access via both TCP/IP and
IPX/SPX. Each platter side appears as one volume to Netware clients and as one
filesystem to UNIX clients. All modules of the document delivery system that access the
image database would be rewritten to reflect the new organization and location of the
image archive. The result would permit easy access to the database by both Netware and
UNIX applications. However, the high cost of the new, sophisticated image store and the
many person-months of programming effort may need to be justified on programmatic
grounds.

Netware SDK

Various Databases

BROWSING

OUTPUT
SERVER

Figure 3. Proposed modules for maximum flexibility solution.

Figure 3 illustrates one concept of how modules of the document delivery system that
access the image store would be organized in a system designed to maximize flexibility
and access. All modules are rewritten to reflect the new system and file organization. They
are no longer individually responsible for understanding image database organization or
file location, but invoke a new module for all image file access. The new file I/O "agent" is

112

responsible for specifying or discovering the location of any file and mediating all reads
and writes to the image store. It creates and uses database information to determine the
path to a given file and employs the functions in the Netware SDK to obtain information
about the volumes containing the files. Should the image database be relocated or
distributed among several sites, only the databases used by the file I/O agent would be
changed.

Conclusions

Most hardware and software requirements for a new image store are satisfied by the
division's HP 100 optical disk jukebox connected to a Sun UNIX platform and accessible
from PC Netware clients via the Netware NFS Gateway. Moving the image database to a
UNIX platform also immediately increases its exposure to a new set of clients and
potential applications. But moving the image database to any new location demands
changes in the software of the application for which it was originally created. The
difficulty in determining the design of the new image store lies with the conflicting goals of
minimizing cost and maximizing flexibility and access. The final decision on the design
approach will depend upon the importance to the organization of being able to use the
image database in the future.

References

1. "System for Automated Interlibrary Loan (SAIL): System and Operations Description,”
Internal technical report, Communications Engineering Branch, Lister Hill National Center
for Biomedical Communications, National Library of Medicine, Bethesda, MD, November
1992.

2. Hewlett-Packard. Optical Disk Library Systems: Product Family Brief, April 1991.

3. Novell, Inc. NetWare NFS Gateway Supervisor's Guide, 1993.

4. Root R. Data storage in the networks of the '90s. Inform, July 1994.

5. Symmetrical Technologies. SPANStor-Opti data sheet, 1994.

6. Hauser SE, Roy G, Thoma GR. Optical disk jukebox performance in multi-user
applications. Proceedings of the 1994 Optical Data Storage Topical Meeting, Vol. 10:
pp.53-55.

7. Alphatronix Inc. Inspire Jukebox: User's Manual for Sun Workstations, June 1993.

113

N95- 24118
High Data Rate Recorder Development

at MIT Haystack Observatory ~
S6=-35
H.F. Hinteregger
MIT Haystack Observatory, 7
Westford, MA 01886-1299 7375 %
508-692-4764
hfh@wells.haystack.edu / 7
rd

Abstract

Current operational capabilities of tape recording for Very Long Baseline Interferometry (VLBI) at
the Haystack Observatory allow 0.7 terabytes (12 hours at 128 Mb/s) of data to be stored in a

128 in’ volume. On-going efforts are aimed at full time 1 Gb/s operation with two 36-channel
headstacks. Applications for linear digital tape recording, with suitable development of thin-film

head arrays, suggest a volume density exceeding 1 TB/in® to be achievable in the future.

I. Introduction

The sensitivity of Very Long Baseline Interferometry [VLBI] observations is proportional to only
the square root of the numbser of bits recorded and processed. This fact, and the lack of affordable
alternate means of sustained high-rate data transmission, continues to spur development of ever
higher rate and density tape recording systems for VLBI.

The VLBI recorders developed at Haystack for VLBI operation employ the linear [longitudinal]
Metrum, formerly Honeywell, Model 96 instrumentation drive, which was selected in 1975 for its
excellent tracking repeatability. These drives reliably handle 14” reels of inch-wide tape, now at
speeds up to 10 m/s [420 ips], as well as with tape tension as low as 5/8 and as high as SN.

VLBI-qualified tapes (3M5345 and SonyD1K) can be shuttled for thousands of passes under these
conditions without any noticeable edge-damage [as evidenced by the formation of a bumpy pack].
An understanding of the damage mechanisms and tape-path modifications were developed to make
the drive safe for thin tape at high speed. The 15.2 mm thin, 5500 m long, SVHS-similar Co-
Fe2O3, PET-based tapes, which we have qualified for recent VLBI systems, each store 0.7

terabytes [12 hours at 128 Mb/s] in a 128 in’ volume.

A total of 576 [38 mm wide] tracks, for example 16 passes with 36 channels at a time, are written
at a linear density of 2.25 transitions/mm [2 bits/mm with an 8/9 channel code]. A new version of
the recorder (MkIV) operating at 8 m/s is capable of 1 Gb/s operation with two 36-channel
headstacks and 2 Gb/s with four headstacks. The growth of the data rate and volume density in
VLBI recording is illustrated in Figure 1.

Haystack's narrow-track ferrite read-or-write headstack design, illustrated in Figure 2, has been
used since its introduction in 1985. It has been a ‘product’ manufactured by Metrum since 1989,
unfortunately only in the small volumes required by its single VLBI application, which makes it
increasingly less affordable. More recent recorder applications all use the same sub-mm resolution
positioner [piezoelectric Inchworm actuator and LVDT sensor], one for each headstack. This
positioner was developed to support narrow-track serpentine recording. It will need no significant
improvement to support much narrower, even sub-mm, trackwidths since actuator resolution is
about 4 nm.

115
A
PRECEDING PAGE BLANK NOU FUMED Ph@f-l_lﬁf-_mrsnnoNALLv BLANK

TERABYTE /INCH® —» ———)]

/7
/7
7/
¥ T T TTITTIT 1 LR LELE] T LRI BEL ¥ LR S LA] LN LL 7
10" /7]
2T
e
, .
,]
. 7 =
Hi8 @ ViRe]
10"’ /// :
52 2 . 3
SVHS @ + NG]
'87 | VLBA | MKIV]
7 K& (D)) | T
— '85 7, -
% 10° lMK e >\/ ' & :
S 7 MK Il A A
~— [} 4 _ W :
(721 79\// E -
= 78 s A <
£ s S 4
] /)\]
= 10 7 :
7] ’ 3
MK 11l .
= / @ 4
" RELL |
= ’ l
3 101 // 3
o // 3
— ,]
7/ .
7/ .
'67 ,7 -
/\< '
w —|- VLBI SYSTEMS -
_‘.!““ A VLBI GOALS)
; @ COMMERCIAL SYSTEMS 1
10 1 riiua 1.1 1 J1ilit 11 P itPyl b % 1i1ORIR L 1 111311
10° 10° 107 10° 10° 10'°

DATA RATE (bits / sec)

In the 25-year history of VLBI, data rate has grown by more thai three orders of magnitude to
one gigabit/second in the Mark 1V sustem. A further hundred-fold improvement in bandwidth
and density is now a technically-realistic goal.

Figure 1
116

7 21n31J

winy gy

v 100 JoxXnjj
;¢ f {1 J

suorotwt (og = YIpmm doyspespy

9UI] }0®}U0D

ZHW 01 e 002 ‘xoxdde nw
91LII3] [e}sLIo oa[duls

I

aseq JoXN[y

auIl }0®'}1UO0D

orerd dij,

suoJotwl ¢g'0 = Yrsual den

suodotwr gg = Yipm den
suoxotwt gg = ded jo yyda(

117

SUOJDIUI (02

a1eos

II. Goals for Future Developments

The more recent version of our VLBI tape recorder developed for the NRAO VLBA system is
designed to operate full-time at 128 Mb/s at 2 m/s. With a 10-station array, the VLBA collects
14 TB/day and could process 56 TB/day with its 20-station 4 m/s correlator. A new correlator
(MKIV) under development at Haystack will be configurable to keep up with 4 Gb/s per station;
another iteration could easily raise that to 4 GB/s. Processing hardware will therefore soon cease
to be the chief limit on VLBI bandwidth, hence sensitivity.

Thus there is a need to provide affordable full-time VLBI recording soon at Gb/s, and not much
later at GB/s, rates. The first goal, achieving Gb/s rates, requires only new thin-film head-arrays.
The second goal, achieving GB/s rates, requires new tape as well. Both these goals are discussed
below.

The highly repeatable tracking of the Model 96 drive has been modeled and is now well
understood. It is good enough to permit trackwidth reduction from 38 to 7-10 mm without, and
probably less than 2 mm with, possibly only minor modifications. Short-term nonrepeatability is
about 1 mm p/p and is due to wobble of the capstan, which is in close proximity to the head. The
‘perfect’ edge-guide [bearing point] in the slanted-wall vacuum pocket is much further away. The
desired modifications under development should have the effect of bringing head and edge-guide
very much closer together. They must also increase the along-tape distance from head to capstan,
and/or isolate it with another sliding edge-guide between head and capstan.

The principle of tilted-wall vacuum-pocket edge-guiding can be applied to vacuum-less guides
such as tilted posts or flexible conical-foil air-bearings. Long-term nonrepeatability and sensitivity
to pack imperfections which produce a reel once-around ‘bump' signature is also eliminated by
bringing head and edge guide together. Much more robust, pack-imperfection-tolerant passive
tracking should result.

a. Thin-Film Head-Arrays

Haystack is seeking support to collaborate with Seagate Tape Technology Inc. to further develop
thin-film head-arrays for linear multichannel drives. Thin-film head-arrays, with inductive write
(IW) and magnetoresistive (MR) read elements, are key to achieving both high data rate and
density at the lowest cost. Sensitive MR heads will allow a 4-fold increase in track density with
the present tapes. A read-width of 9 mm and write width of 11 mm can therefore now be
targeted. More conservative specifications for VLBI thin-film head-arrays proposed in 1993 (not
funded) are given in Table 1.

Current processes for thin-film IW-MR disk heads allow increasing channel density from 36 to at
least 144 per inch. Channel densities of 1000 per inch or so are not far off for MR and 1-2 turn
IW heads. With a mature high-yield process, if chips are of comparable size, the cost of a dense
head-array should eventually become comparable to that of a single-channel disk slider. This will
happen only when and if a comparably large linear tape head market develops. Commonality at the
wafer level with a high volume PC/consumer product is therefore highly desirable. The
manufacturability of dense arrays is the central issue for this kind of product.

b. The Promise of Advanced Tapes

Advanced high-SNR, high-resolution, super-smooth, ultrathin (3-7 mm) metal-evaporated, metal-
particle, and barium ferrite tapes promise further 4-fold density increases in each dimension and

continue to be evaluated. TB/in> volume density is technically within reach with products like
WVHS and Hi8Master tape.

Efforts to guarantee more nearly ideally robust edges for ultrathin tape must be pursued with the
118

Specifications for VLBI Head Array Prototypes

Read-Only Array

Technology Thin Film MR

Track Width 19 Microns

Head Pitch 349.25 microns

Number of Heads in Array 72

Equivalent Spacing < 0.05 microns
Write/Read-Verify Array

Technology Thin Film Inductive

Track Width 22 microns

Head Pitch ' 349.25 microns

Number of Heads in Array 72

Equivalent Spacing <0.1 microns

For Both Arrays

Minimum Record Density 56,000 kfci

Tape Speeds Up To 8 m/s (320 IPS)

Media 3M 5345 (16-micron thick)

Similar to S-VHS)

Table 1

119

collaboration of manufacturers. A degree of rounding of the corners of order 10% of thickness
and comparably small edge asperities are needed to guarantee that plastic deformation of these
asperities does not lead to edge-thickening which results in a bumpy pack.

Since the stiffness of tape goes as thickness cubed there may be a more fundamental problem with
winding much thinner than 15 mm tapes on large self-packing reels. These were invented for
VLBI in 1978 and the design was improved in 1994 explicitly to suppress scatter-wind so as to
make the tape directly shippable. Self-packing reels intentionally use close spacing and curvature
of the flanges to guide the tape into a smooth-faced pack. This does not damage the edge even
under extreme high-speed [8 m/s], high-tension [4.4 N], long-term [1000 pass] running
conditions. Both 3M5345 and SonyD1K typically pass such ‘torture’ tests with no evidence of
damage [a bumpy pack when wound at 2 m/s]. With 9-mm tape samples similar to 3M5354 the
tape edge tends occasionally to hang up slightly on the flange and voids are formed because
subsequent turns yield too easily. Even without this problem, unreasonable thickness uniformity
requirements may be placed on ultrathin tape wound into a 14” diameter pack. Ultrathin tapes are
likely to be much better suited for formats where the pack diameter is kept under about 3” [VHS,
3480, DLT, QIC, etc.].

III. Longer Term Potential of Tape Recording Applications

Tape recording is and for the foreseeable future will remain by far the densest and most economical
form of data storage. Applications that must sustain high data rates in the 0.1 to 10 Gb/s
neighborhood or that require convenient access to enormous [of order 10¥*15 bytes (petabyte)]
data libraries will continue to rely on tape.

The overwhelming volume density and capacity advantage of tape is due entirely to its high
relative thickness-density. The areal density of tape recording can keep up with the advances in
disk recording. Though track densities on tape [especially in linear systems] have traditionally
been lower than on disk, simple passive edge-guides can provide essentially perfectly repeatable
tracking; active track-following should not be needed to at least 10,000 tpi.

The two fundamental advantages of linear [compared to helical-scan] tape drives are: (1) its
mechanical simplicity, and (2) its ability to support many parallel channels, hence very high
aggregate data rates, without added complexity.

A low-cost high-rate linear digital VCR is possible in the future. Given the 4 in> capacity of a
VHS cassette or 3480 cartridge for example, a 250 Mb/s machine could operate for two hours at a

volume density of only 1/16 terabyte/in3, a density that can be achieved with some of today's tape
and head components. The ‘effective density’ of the Hi8 analog consumer video tape recording

format in long play mode is about 1/20 TB/in® for example. This density is already so high that
the use of so-called data-compression [redundancy reduction, especially the lossy varieties used
for video] for tape-storage seems counter-productive, an unnecessarg added special-purpose

complexity. Rather, with more than an order of magnitude higher TB/in~ density on the horizon,
the highest-volume market for such high capacity storage should be cultivated. There should be no
doubt that the all-purpose high-rate capability of the linear recorder can be made attractive to the
consumer/PCuser. ’

The key prerequisite for this development is the availability of mass-production processes for (1)
dense thin-film narrow-track head-arrays as discussed above, and (2) simple, low-power, multi-
channel ICs.

The thin-film head and integrated channel technologies are ones in which the U.S. maintains a
120

strong leadership. These provide a major opportunity for the U.S. storage industry to take the
initiative to reenter the consumer market with native drive, head, channel, and tape component
technologies, each of which has substantial technical and/or manufacturability advantages.

Author's VLBI-Related Work Background

Hans F. Hinteregger received B.A. and Ph.D. degrees in physics from MIT in 1964 and 1972
respectively and has been at Haystack Observatory since 1967 at the time of the first very long
baseline interferometry (VLBI) experiments. He pioneered the geodetic/astrometric applications of
VLBI by introducing means to accurately measure group delay (by coherently sampling a wide
spanned bandwidth). Since 1975 his work within the Haystack VLBI Group has focused on the
development of the extreme wideband digital tape systems required by VLBI. The latest version of
this system (Mark V) has demonstrated 1 Gb/s operation with sixty-four 16 Mb/s channels [using
two headstacks of the author’s 1985 design].

121

N95- 24119

Petabyte Mass Memory System Using
the Newell Opticel*

Siy-460

Chester W. Newell

Primelink Technologies Inc. -,
#208, Advanced Technology Centre 4 3 L/5 5
9650 - 20 Avenue 4/
Edmonton, Alberta, Canada T6N 1Gl1 /9 _ J
Phone: +1-403-440-0111; FAX: +1-403-440-0110

Email: evergreen @maugham.atc.edmonton.ab.ca

Abstract

A random access system is proposed for digital storage and retrieval of up to a Petabyte
of user data. The system is comprised of stacked memory modules using laser heads
writing to an optical medium, in a new shirt-pocket-sized optical storage device called the
Opticel’. The Opticel described is a completely sealed “black box” in which an optical
medium is accelerated and driven at very high rates to accommodate the desired transfer
rates, yet in such a manner that wear is virtually eliminated. It essentially emulates a
disk, but with storage area up to several orders of magnitude higher.

Access time to the first bit can range from a few milliseconds to a fraction of a second,
with time to the last bit within a fraction of a second to a few seconds. The actual times
are dependent on the capacity of each Opticel, which ranges from 72 Gigabytes to 1.35
Terabytes. Data transfer rate is limited strictly by the head and electronics, and is 15
Megabits per second in the first version.

Independent parallel write/read access to each Opticel is provided using dedicated drives
and heads. A Petabyte based on the present Opticel and drive design would occupy 120
cubic feet on a footprint of 45 square feet; with further development, it could occupy as
little as 9 cubic feet.

Introduction

The Compact Disc digital audio player dramatically illustrated the classic criteria for a
successful new market entry: it produced a significantly higher-quality product in a
smaller size, with important new features yet at a competitive price, in a marketplace
which had stagnated.

The Newell Opticel promises the equivalent for video bandwidths: a digital recorder-
player module which, by meeting the same criteria, would bring about an even more far-
reaching revolution in the computer and home-entertainment markets.

" Trademark

123
PRECENTNG PAGE BLANK NOT FILMED ‘PAGE_Ll_/)' INTENTIONALLY BLANK'

The Opticel drive combines novel cartridge concepts with three other discrete
components: optical heads, optical media, and signal and control electronics. It is
packaged in a standard 3-1/2-inch form factor, one-half the volume of the highest density
5-1/4-inch CD ROM drive, with over ten times its capacity, yet with access times
comparable to single-disk systems, and transfer rates limited only by the digital
electronics.

There are many development efforts under way seeking such an objective. Those known
all suffer critical shortcomings: disk-based systems are bulky and have limited transfer
rates; tape-based systems have poor access times. The Opticel retains the advantages of
both with none of the fundamental disadvantages.

The Optical Head
Primelink is developing two heads:

(a) An IR-laser head, on a conventional 2-axis fine actuator movement (tracking and
focus) and a stepper-motor/ball-screw carriage assembly for coarse tracking, is
being designed.

(b) A red-laser-based, integrated, solid-state, multi-channel head system is being
researched, with no tracking movements (i.e. no moving parts).

The first head will go to production in mid-1995; the second is scheduled for release in a
second-generation product (probably around the year 2000).

The Optical Recording Media

Primelink has working agreements with two U.S. companies for archival or WORM
optical tape, and for non-archival, erasable tape. Both are compatible with the optical
head lasers.

The Data Encoding/Decoding Method

Background - The encode/decode technique normally used in today’s WORM disks is to
ablate a pit using an IR laser. The data are encoded by phase-modulating the position of
the pit-edge along the track.

If the wavelength of the laser is A, the numerical aperture of the lens N, and ablation is set
to occur at the 50% level on the Gaussian energy curve, then the pit diameter becomes

A
dy = o M

9412-16 124

A commercially available head' employs, for example, A = 785 nm, NA = .53. This
gives a spot size of 0.74 micron. To allow for inter-track grooves and tracking servo
error, a track pitch of 1.6 micron is employed. This yields a raw areal density of

6
b o 10 _
0.74 x 1.6

= 0.84 x 10° cells/ mm?)

A 5-1/4-inch CD-ROM provides 8 x 10° square millimeters of usable recording area. The
capacity of the ROM is thus

C = 0.84x8x10°

raw

6.72 x 10° cells 3)

For digital data, run-length-limited (RLL) encoding can be used, giving 1.5 bits/cell.

Formatting and error correction to a bit-error rate (BER) of a 1 x 107 requires an
overhead of about 50%. The number of bits/cell is thus

N =15x05

0.75 bits/cell ' (4)
The net user capacity is thus

_6.72x 10° x0.75

C =
e 8x10°

=630 MB 3)

High Density Encoding

Two state-of-the-art techniques have been evaluated for the encoding/decoding circuitry:

(a) Light Intensity Modulation (LIM) - Asahi’ has demonstrated that it is feasible to
reduce the spot diameter by as much as one-sixth that previously realizable for an
IR laser, and the track pitch to 0.87 micron, thus theoretically increasing the raw
storage capacity of a 5-1/4-inch CD-ROM to as much as 10 Gigabytes. This was
accomplished by modulating the light intensity of the laser, using feedback to
allow operation higher up on the Gaussian curve. To achieve this density in

9412-16 125

(b)

9412-16

practice, however, would require a shorter-wavelength reading laser and
extremely high mechanical tolerances.

Solid-state blue lasers are under development by several companies;® however,
they are not expected to be commercially available for several years. However,
green lasers are becoming available and should be able to resolve cell lengths in
the order of 0.47 micron. This is also more practical mechanically.

Assuming a green laser, and assuming the bits/cell of equation (4), the user bit
length using LIM would be:

0.47
d -
™M 075

0.63 u (6)
Using Asahi’s track spacing of 0.87 microns, this would give an areal density of

1

D=———
.63 x 0.87

1.8 Mb/ mm* @)

Mark Edge Recording - SOCS Research*, Los Gatos, California, and Sony® have
demonstrated the ability to write three bits on both the leading and trailing edges
of the cell (see Fig. 1). Primelink has taken a license under this patent. Using an
IR laser, Primelink has demonstrated:

. a track width of 0.87 microns
. a cell with 6 bits on 1.67-micron centers gives an average bit length of
D, = 1.67
6
= 0.28u (8)

Using the Sample Servo method for tracking in place of grooves, a track pitch of
1.2 microns was achieved. This gives a raw areal density of

6
Dl’BW L
028x1.2

= 3.0 Mb/ mm? 9)

126

The Cartridge/Drive System

As described above, the raw areal densities achievable using production heads and state-
of-the-art encoding techniques on 5-1/4-inch disks, have been demonstrated to be
between 1.5 to 3.0 Megabits per square millimeter.

Primelink has developed a digital video optical recorder using the Mark Edge Encoding
method on phase change (reversible) and ablative (archival) media. To provide “high
fidelity” video graphics to the PC market, it was assumed that at least VGA resolutions of
640 x 512 pixels/frame are needed. To upgrade NTSC and VGA to SVGA resolution and
provide for HDTV quality for ultimate home entertainment systems, two proprietary
DSP algorithms were used to quadruple the pixels to 1280 x 1024. 8 bits/pel were used
for luminance, 4 bits/pel for each of the chrominance pixels. From subjective tests using
a simple, proprietary, lossy compression algorithm, it was determined that compression
ratios of 10:1 would yield decompressed images subjectively virtually indistinguishable
from the original.

Using the above parameters, the required user capacity/frame during transmission and
storage is

640x512(8 + 4 + 4)
10

C . / frame

(.52 Mb/frame (10)
For full motion, 30 frames/sec. are required. The average bit transfer rate is thus:
BTR = 0.52x 10° x 30

= 15.7 Mb/s (11)

15.7 x 10% x 3600
e 8x 10°

@

=

=
I

= 7.1 GB/hr. (12)

Combining equations (7), (8), and (12), and allowing 50% overhead for error correction
and formatting, the recording surface area required, depending on the laser/media
required, is:

- 7.1x10° x 8
" (3.0t01.8)x10° x05

= (3.8106.3)x 10* mm */hr. | (13)

9412-16 127

Background

Using 5-1/4-inch CD-ROM disks with a useful area of 1 x 10* square millimeters, from
equation (13), the number of disks required would be:

N = 3.8 to 6.3 disks/hr. (14)
This is not an attractive solution for digital video, for the following reasons:

1. To be a next-generation (full bandwidth digital) version of SVHS (analog)
recorders, the capacity should provide for at least 5 hours. 20 and 40 CD-ROM
disks or two disks, requiring a stackloader, 15 to 20 inches in diameter would be
needed.

2. Even the 5-1/4-inch drive form factor is too large for lap-top computers and hand-
held camcorders. A single standard for universal application would not be
possible. This is a requirement for the Primelink system.

For 15.7 megabits per second transfer rate, 50% overhead, from equations (6) and (8), the
required beam writing velocity is:

\% 15.7 (0.28 t0 0.63) x 2

10 to 20 m/s (15)

and the total capacity required is:

C... = 7.1x5 = 355GB (use 36 GB) (16)

min

While this writing velocity is not difficult to achieve with rotating disks and stepped
laser-optical heads, disks have been shown above to be impractical for our purposes
because of their limited capacity. To achieve the required storage area, especially in a 3-
1/2-inch form factor, a tape system became mandatory.

Tape

Known attempts to achieve such optical beam writing velocities using conventional tape
drives have all employed scanning devices of one type or another:

€))] Rotating scanners:
Many historical attempts have been made using rotating prisms, lasers on head-

wheels, etc. They have invariably failed to reach the market in small, modest-cost
systems because of the problem of tracking to the tolerances of laser writing.

9412-16 128

2) Solid-state scanners

LaserTape and others have attempted use of solid-state scanners without
commercial success, because of difficulty in achieving the required scan angle in
compact-geometry systems, as well as in tracking lateral tape skew.

3) Linear-motor scanners

CREO is the only company which has achieved substantial sales with an optical
tape recorder. Using a linear motor-driven platform on which 16 writing and 32
reading lasers are arrayed, a stationary field of 35-mm. tape is scanned, after
which the tape is incremented to the next field. The system is mechanically
massive, and sells for about $250,000 CDN. This approach offered no solution
for the Primelink project.

The Newell II (NIT') Tape Cartridge® can easily achieve the required writing velocities
without use of an intermediate scanner, and could have been used for this application.
The author demonstrated such a cartridge at Newell Research Corp., using 100 meters of
8-millimeter ICT optical tape on 25-micron basefilm, thus providing 8 x 10° square
millimeters of surface area at tape speeds to 1000 inches per second. This would
potentially provide raw capacities of

(1.8t03) x 10° x 8 x 10°

Cm = 8
= 180to 300 GB an
for video recording times of
T = 180 to 300
7.1
= 25t042 hours (18)

Such a system was an “overkill” for the proposed Primelink project, however, and would
be more expensive than desired because the cartridge must be reversed at beginning and
end of tape. The pulse-power of the motor-drive system required to reverse the system
within a time interval that could be economically buffered for continuous video, would be
high.

* Trademark

9412-16 129

The Newell Opticel’

The low tape consumption required for the Primelink project suggested the use of an
endless tape loop in a “scramble bin.” Such a loop in concept is much simpler than the
NII cartridge, in that no tape drive belts or tape reels are required within the cartridge (see
Figs. 2,3).

While endless loop systems are well known in magnetic tape systems, the unique
problems of an optical tape system using a loop were not trivial, due to the following
factors:

® The loop must revolve at high speeds, thousands of times during each record/play
cycle.

* The optical recording surface must not be fogged during the life of the cartridge
(hundreds of thousands of passes).

e Due to the sub-micron dimensions of the bit cell, debris must not be allowed to
accumulate on recorded surfaces from wear or environmental contamination.

e The film must be coupled to the drive and tensioned precisely in the longitudinal
direction (X-axis control).

e The film must be edge-guided with very low edge pressure to avoid edge fatigue (Y-
axis control).

* The film must be stable in the axis of the laser optics due to very shallow focal depth
of the optics (Z-axis control).

Each of these problems, and the method for dealing with it, is disclosed in several patents
pending, available on request under a suitable Confidential Disclosure Agreement.

To achieve five hours of high-definition digital video, 16-millimeter tape was used, and
two loop lengths were provided for the two encoding methods:

_ 5(3.8t06.3)x 107
- 16 x 10°

= 12t020m (19)

To achieve long life, bending stresses in the tape were kept within 35% of elastic limits,
and no optical surfaces or tape edges touched any other surface. The Opticel case was
hermetically sealed and back-filled with one atmosphere of a suitable dry gas. 12.5-
micron tape was used.

9412-16 130

The above parameters required Opticel case sizes of:

Height: 18.5 mm
Width: 90 mm
Length: 95 mm and 140 mm

The standard Opticel is on the footprint of a 3-1/3-inch floppy disk.
The drive used exactly the same elements as a WORM disk drive:
e Laser head (with Y-Z axis control)
e Drive motor (brushless)
e Control and DSP electronics (ASICs)

3-1/2-inch standard drive dimensions were employed:

Height: 41.3 mm
Width: 101.6 mm
Length: 152.4 mm

An Interchangeable Opticel Using the NII Principle

To achieve much higher capacities, the same cartridge/drive interface geometry of the
Opticel scramble-bin cartridge can be employed in an NII-type cartridge (see Fig. 3).
This allows a high-performance drive system to be developed that would be downward
compatible in writing and reading the Opticel.

The NII development is not within the scope of the present Primelink project. However,
this development would be a logical follow-on to the Newell Opticel.

Summary

e The Opticel drive uses the 3-1/2-inch standard form factor for both standard and
“stretch Opticels.

o The time to the first bit is less than 5 milliseconds; to the last bit is 1 second for the
standard Opticel, 2 seconds for the “stretch” Opticel

e The parts count in the drive is lower than that in a typical 5-1/4-inch WORM optical
disk drive.

e Capacity of each Opticel (formatted data with BER of 1 x 10™°) is 36 Gigabytes for
the standard Opticel, and 72 Gigabytes for the “stretch” Opticel.

9412-16 131

Two Proposed Petabyte Systems

Based on the loop Opticel

A “stretch” Opticel with MER encoding using 24 meters of tape gives 72 Gigabytes per
Opticel. This will fit in a 6-inch drive, with 1-1/2-inch overhang.

For a Petabyte, number of drive modules needed is:

10]5

m = 13,889

In a stack loader (see Fig. 4) use:
64 modules/column
8 columns/drawer
3 drawers/cabinet
9 cabinets
This would give dimensions of:
Height: 2.75m
Depth: 0.813 m
Width: 0572mx9 = 5.15m

With additional R & D the size and access time can be reduced by using:
e Smaller cells:
Light intensity modulation, MER encoding

Short wavelength laser (green or blue)
Tighter track servoing

From Asahi predictions:
Minimum cell size: 0.2

0.20
Cell ing: 1.67x — = 045
ell spacing X 074 1]

Track pitch: 0.87p

9412-16 132

Equation (9) becomes:
D’ = 6x 10°
0.45x 0.87
= 15 Mb/mm* 9)

Thinner tape:

The limiting factor is the shear strength between coating and basefilm; ie., the
capacity is inversely proportional to the basefilm thickness. By using 4-
micron basefilm, maximum length in the “stretch” version can be increased,
and equation (19) becomes

= 75m. (19

Higher tape velocity:

Primelink has attained tape velocities of 25 meters per second with no
difficulty, giving an access time of 3 seconds to 75 meters.

User capacity/Opticel with loop would thus increase to:

. 05x75x15x 16 x 10°
user 8
= 1.125TB (20)

For the Petabyte, number of drive modules would be:

10°
1.25

= 889

The stack loader would require only two drawers in one cabinet.

Based on the NII Opticel

The NII cartridge with 4 micron tape can store 450 meters of 16-millimeter tape in the
standard Opticel case size.

9412-16

Again, using proven MER encoding with IR lasers, the user capacity becomes

133

0.5x450x3x 16 x 10°

would be

user 8
= 1.35TB @D
Maximum access time would be 18 seconds. Number of drive modules for a Petabyte
3
10 = 741
1.35

Again, two drawers in one cabinet would be required.

Using LIM encoding with green lasers, the user capacity could be theoretically
increased fivefold to 6.75 Terabytes, reducing the number of modules to 148, thus
reducing cabinet dimensions to, say

Height: 1.60 m
Depth: 0.813m
Width: 0.470 m

Its volume would thus be 9 cubic feet.

9412-16

REFERENCES
Mitsubishi ME3HI.

1. Morimoto et al., “Ultrahigh Density Recording Using Overwritable Phase
Change Optical Disk,” SPIE Proceedings, Feb., 1992.

W.J. Kozlovsky et al., “Optical Recording in the Blue Using a Frequency-
Doubled Diode Laser,” SPIE Proceedings, Feb. 1992.

U.S. Patent No. 4,736,258, “High Density Storage of Information on a Compact
Disc.”

S. Kobayashi, J. P. de Kock, T. Harigome, H. Yamatsu, H. Ooki, “High Density
Optical Disk Recording by Pit Edge Modulation,” Corporate Research
Laboratories, Sony Corporation.

U.S. Patent No. 4,172,569, “Tape Transport System With Peripheral Belt Drive.”

U.S. Patent Pending, Primelink Technologies Inc.

134

won Sumeina) |/
r\I WPl dasq ey
3 LT g (Bumpuag 189)
¢ . wpky apys) mg HqEI
seinde) npdn) —~— > ,\I wseds
(xp) suamyy ‘IE 7 r (xp) sadnary (Jmpuay 1mg) swlg
e
(WALSAS AVAH-¥) TADLLAO A 1JIONIUd 1IN :€ "OI4 TADILJO NId I THN VIS T 914 %
" a0y Auoy :adunoy *duj sAF0IOUYII | NUIPWILJ IDIN0Y
Le-0 § 02 L0 , 0L
(wesm vopeuLONY)

Qep pexyy

(owd) Alo X UQYL THM ¥y
203 teullys oppny

. | X0 108" NWZ THN S Y
AI..IQ/OAI' aoes ¢ VWA sy All \eubys oo

303

LVIWHO4 ONIQHODHY ADAH MUV INI'TANIE 1 "Dl4

FIG. 4: PETABYTE MASS MEMORY SYSTEM
Proposed by Primelink Technologies Inc.

- e —— . —— . —— o —— - A—

Drive Modules (with Opticels)

/// //////Il ALY ////////////////////////////////

/// AN ////////é/////////////////////
Ak //////////////////////é,///// ,,/
. ,// N o.
////// ///////////////éy///////////////////////
A T S Mt / ..l?
f-.//é,g/////////////////////////////// AN A
'#//// NN //ﬂdr

/]

136

N95- 24120

Integrating UniTree with the Data Migration API

David G. Schrodel

Convex Computer Corporation S /<= b /

3000 Waterview Parkway
PO Box 833851
Richardson Texas 75083-3851 4345 ¢
Tel: +1-214-497-4565 Iﬂ P

Fax: +1-214-497-4500
schrodel @convex.com

1.0 Abstract

The Data Migration A pplication Programming Interface (DMAPI) has the potential to allow
developers of open systems Hierarchical Storage Management (HSM) products to
virtualize native file systems without the requirement to make changes to the underlying
operating system. This paper describes advantages of virtualizing native file systems in
heirarchical storage management systems, the DMAPI at a high level, what the goals are
for the interface, and the integration of the Convex UniTree+ HSM with the DMAPI along
with some of the benefits derived in the resulting product.

2.0 Introduction

For years developers of Hierarchical Storage Management (HSM) systems have had to
choose between integrating their system with the underlying Operating System (OS), or
take the more “open systems” route of not requiring any changes to the OS. Integration
with the OS allows an HSM to virtualize the native file system. The open systems approach
allows easier porting from platform to platform.

The advantage to virtualizing the native file system is that most all applications that reside
on top of the file system will continue to operate without requiring changes. Even low level
functions like the NFS' network protocols continue to function on HSM controlled file
systems. In addition, applications that access data in these file systems can expect
performance equivalent to file systems not controlled by an HSM for resident files.
Examples of products in the market place today that require changes to the OS include the

" NFS is a registered trademark of Sun Microsystems, Inc.

137

'7

EpochServ2 product from Epoch? Systems Inc., and the AMASS4 product from Advanced
Archival Products Inc.

The Epoch Serve product uses “hooks” in the OS via a special device driver and changes to
the native file system to gain access to events like file creates, removes, accesses, eic.
Although the OS changes have been minimized, subtle changes in the operating system
from release to release can introduce problems in the HSM support functions. For example,
suppose the OS vendor changes the interface to the kernel memory allocator that the HSM
hooks use. Now the HSM must be modified to work with the new allocator, qualified, and
released with all of the costs associated with that process.

The AMASS product installs a new file system into the host operating system at the Virtual
File System (VFS) layer. Although the VFS interface is fairly well defined industry wide,
subtle changes from release to release can cause problems interfacing with the kernel
support functions not as well defined. Although changes to the OS can be minimized,
kernel integration makes porting of the products more difficult.

UniTree? is an example of a product that requires no operating system changes. It sits
above the OS and accesses the required OS functions via the POSIX p1003.1 interfaces. It
provides access to the data in the archive via the FTP, RCP, and NFS protocols. It does
not use native file systems or utilities, but instead provides separate implementations of
cach. As a result, the product is more easily ported from platform to platform and usually
does not require changes as a result of a new OS release. This portability comes at a cost
however. UniTree products do not benefit from enhancements provide by the base
operating system. New operating system releases tend to have both functionality and
stability enhancements included. Because UniTree implements its own file system, the new
functionality may not be available. Applications that access a file systcm by read and write
system calls cannot access data stored in the UniTree file system without going through the
NFS protocol stack. The access methods provided by UniTree tend to be slower than the
same services provided by the underlying operating system. To quantify the performance
penalty for this, a single stream access to the local file system in the ConvexOS can reach
rates above 45MB/s. UniTree file system access through local host NFS protocols are
under IMB/s.

An alternate approach to the two type of HSM’s described above is one that requires no
operating system changes yet has access to the native file systems through a set of kernel

2 EpochServ is a registered trademark of Epoch Systems Inc.

3Epoch is a registered trademark of Epoch Systems Inc.

4 AMASS is a trademark of Advanced Archival Products Inc.

5 UniTree is a trademark of UniTree Software Inc.

138

supplied “file system hooks”. Three examples of HSM’s with this attribute is the FileServ
Software® product from EMASS’, the Convex Storage Manager (CSM) product from
Convex Computer Corp., and NAStore developed by NASA Ames Research Center. All
of these products sit on top of the ConvexOS operating system which runs on the C-Series
architecture’s. ConvexOS exports a set of interfaces that provides functionality similar to
what the kernel intrusive HSM’s described above export to their user level applications. An
application can receive events like read(), write(), trunc(), create(), etc. as well as suspend
access to data in a file for non HSM applications. The HSM applications can read data from
a file without updating time stamps, punch holes (i.e. free space in a file without changing
the apparent size of the file), fill files with data previously migrated out, and re-enable
access to the file for non HSM applications. All of these operations can be accomplished
completely transparent to normal applications. This allows development of HSM
applications like the kernel intrusive ones described above without the drawbacks of having
to integrate changes into the base operating system.

The major drawback to the ConvexOS file system hooks are that they are not available on
“any platform besides the C-Series line of products. What HSM vendors require is access to
a standard set of file system hooks across a diverse set of operating systems and platforms.
Without this, an HSM vendor can only make a business case to support platforms where
they can deliver sufficient volume of product to offset the inherent cost of supporting
kernel modifications. This realization was what prompted a set of competing vendors of
computer platforms and HSM products, to form an industry consortium known as the Data
Migration Interface Group (DMIG).

3.0 DMIG

The DMIG consists of a large group of vendors and a smaller group of active participants
in the specification process including: 3M, ACSC, Amdahl, Auspex, Avail Systems, Bull,
Convex, E-Mass, Epoch, Hitachi Computer, HP, IBM, Lachman / Legent, Legato,
NASA / Ames, Netsor, Novell / USL, OpenVision, SCO, SGI, Sunsoft, and Veritas® .
This group got together through the 1993 - 1994 time period to produce a specification for
a file system interfaces that all parties could agree to support (if not in a product, at least in
spirit). The goal of the interface is to enable development of HSM and backup products on
computer systems that virtulize the native filesystem without requiring OS modifications.
Needless to say, there were many heated debates during the course of the meetings and on
the DMIG reflector, but the group did finally agree on a set of interfaces known as the
DMAPIL

¢ FileServ Software is a registered trademark of E-Systems.
"EMASS is a registered trademark of E-Systems.

® The companies listed are those that attended at least one meeting in the 1994 time frame and if I missed
someone, | apologize in advance.

139

4.0 DMAPI [1]

The DMAPI is a set of interfaces to be provided by the base operating system that enables
HSM and backup applications to gain access to native file system data and metadata
transparent to normal applications. It includes the following basic concepts:

1: Events - Data Management (DM) applications can request to be informed of specific
events like read(), write(), etc. The event notification is via messages which DM
applications gain access to via the dm_get_events() call. There are two distinct
message types; synchronous, and asynchronous. Synchronous messages have
tokens associated with them. Asynchronous do not have tokens associated with
them.

2: Tokens- a token is a reference to the state associated with a synchronous event
message. The contents of a token are opaque to the DM application. DM
applications can modify the contents of a token only through the
dm_request_right() and dm_release_right() call. Rights can be granted to a DM
application including DM_RIGHT_EXCL, DM_RIGHT_SHARED, and
DM_RIGHT_NULL. DM_RIGHT_EXCL prohibits any access to a file except
through DMAPI calls that accept tokens, and only then if the token with the
DM_RIGHT_EXCL right is passed to the interface. DM_RIGHT_SHARED
protects against any modification of the data or metadata associated with a file, by
normal or DM applications, but will allow multiple accesses to the data or metadata.
DM_RIGHT_NULL grants no rights.

3: Managed Regions - A managed region designates the portions of a file that the DM
application is managing. There are 3 possible events that may be enabled on a
managed region; DM_REGION_READ, DM_REGION_WRITE, and
DM_REGION_TRUNCATE. If the corresponding action, read, write, or truncate,
is attempted by a non DM application to the associated region, an event will be
generated for the DM application that has expressed interest in the corresponding
portions of the file. The number of managed regions supported by the DMAPI is
implementation defined.

4 Handles - Pathname independent references to file system objects. A file handle
uniquely identifies a file system object. Handles exist for file systems, directories,
files, symlinks, and one special global handle that does not refer to any object but
allows a DM applications to register for mount events.

5 Sessions - The interface between the DM application and the DMAPI is session
based. The session is the identifier used to determine who receives events for a
particular file system object. Sessions can be thought of as two things; a queue that
event messages are queued ut to, and an identifier for use in tracking, auditing, and
controlling access to the DMAPI facilities.

140

6: Data Management Attributes - Space for a DM application to store pertinent
information about a file. The data in the attribute space is opaque to the DMAPI
implementation. Examples of information that might be stored include the location
of data from the file in the archive for migrated files. DM attributes are an optional
portion of the DMAPI.

7 Holes - Holes can be created two ways. First is via the Iseek() function. If an
application seeks past the existing end of a file, and writes some data,
implementation may create virtual space in a file without any corresponding storage
allocated. The second way is via the DMAPI call dm_punch_hole(). This call frees
the storage associated with the portion of the file where the hole is punched (i.e.
frees file system space once a file is migrated to tertiary storage).

In general DM applications create a session, register for mount events, catch mount events
and establishs interest in files by registering for events within a file system. They then
catch events for the files of interest, and perform actions to migrate files in or out as
needed.

DM applications are viewed as a part of the file system implementation and as such have no
security restrictions placed on them. All calls to the DMAPI are expected to be run as
superuser or some other file system permission that would give an application un-restricted
access to the data and metadata in a file system. There is no association of DMAPI objects
to any one process. Any application, running at the appropriate security level, with the
correct session identifier and token identifier, can take actions on file system objects. The
rational for this is to allow a DM application to use as many processes as required to deliver
acceptable performance. There is also an underling assumption in the specification that only
one DM application will attempt to control a file system. There is nothing to prevent
multiple DM applications from controlling a file system, but coordination of the DM
applications is outside the scope of the DMAPI. An example of a case where multiple DM
applications may run on a single file system is where an HSM application and a Backup
application cooperate to backup the HSM controlled file system. The reason for this is, for
more than one application to control objects in a file system would require considerable
machinery in the DMAPI. One of the primary goals of the DMIG group was to produce a
specification that could be implemented in a six man month development project. To
produce the machinery required would extend the level of effort far beyond the six man
month goal.

The following are examples of DM applications pulled from the DMAPI specification.
These are included to give a better idea of how the interfaces are intended to be used. [1]

4.1 Stageout

This example will stage out a 512 megabyte file names /test /foo. The first 64K will
remain as a fence post. The remainder of the file will be staged out in 32 megabyte clusters.

The following concepts are illustrated:
¢ Use of the file change indicator

141

¢ Invisible read

* Setting managed region

* Punching holes
char *buf,
void *hanp;
size_t " hlen;
size_t retrgns;
size_t nchunks;
int change_end, change_start,
off_t off;
dm_token_t filetoken;
dm_stat_t statbuf;
dm_region_t rgnbuf]2];
dm_size_t roff;
dm_off_t rlen;
dm_sessid_t sid;

if (dm_init_service() ==-1) {
err_msg("Can't initialize DMI\n");
return(0);

}

dm_create_session(DM_NO_SESSION, &sid, "generic_app™);
dm_path_to_handle("/test/foo", &hanp, &hlen);

[*

* In order to stat the file, we need a shared lock.

¥/
dm_create_userevent(sid, 0, (void *)0, &filetoken);
dm_request_right(sid hanp hlen filetoken DM_WAIT DM_SHARED);

1%

* While writing the file out to tertiary storage, we drop locks. We first
* get the file change indicator, and query it after we're done.

* If it changed, then we give up

*/
dm_get_fileattr(sid, hanp, hlen, filetoken, DM_AT_CFLAG, statbuf);
change_start = statbuf .dt_change;

/*
* We don't bother with any DM attributes, just the data.
* We write the file out in 32 meg chunks.
*/
nchunks = (512 * IMEG) / CHUNKSIZE;
for (i=0; i<nchunks; i++) {
dm_read_invis(sid, hanp, hlen, token, off, CHUNKSIZE, buf);
dump_data_to_archive(hanp, hlen, off, buf);
off += CHUNKSIZE;

}
dm_release_right(sid, hanp, hlen, filetoken);

/%
* Store an DM application specific information, such as the file size,
* file handle, etc., with the data

¥/

dump_myinfo_to_archive(hanp, hlen);

142

/ x
* Check the file change indicator to see if the file changed
* while we were doing other things. If not, then set a managed
* region on the file
*/
dm_request_right(sid, hanp, hlen, filetoken, DM_WAIT, DM_EXCL);
dm_get_fileattr(sid, hanp, hlen, filetoken, DM_AT_CFLAG, statbuf);
change_end = statbuf st_change;
if (change_start != change_end) {
err_msg("File changed, bailing...\n");
do_cleanup(); -
return(1);
}
/*
* Set up the managed regions so that the first 64K won't cause events
* 10 be generated, but a foray into the rest of the file will generate
* events
*/
rgnbuf[0].rg_ofT =0;
rgnbuf[0].rg_size = FENCESIZE;
rgnbuf[0].rg_flags = DM_REGION_NOEVENT;
rgnbuf[1].rg_off = FENCESIZE;
rgnbuf[1].rg_size = (512 * IMEG) - FENCESIZE;
rgnbuf[1].rg_flags = DM_REGION_READ I DM_REGION_WRITE|
DM_REGION_TRUNCATE;
dm_set_region(sid, hanp, hlen, filetoken, 2, rgnbuf, &retrgns);

/*
* Punch a hole in the file. We assume that we know that what the
* rounding constraints are so that we don't have to do a dm _probe_hole()
¥
dm_punch_hole(sid, hanp, hlen, token, rgnbuf[1].rg_off, rgnbuf[1].rg_size,
&roff, &rlen);
/ *

* We're done. Release the token
*/

dm_respond_event(sid, filetoken, 0,(void *)0, DM_CONTINUE, 0);
4.2 Stagein
This example will stage in the file that was staged out in the above example.

There is a master daemon that receives messages from the kernel, and sends them on to
worker bees for processing. The master daemon is only monitoring the read, write,
and truncate managed region events in this example for the filesystem /test. There is
some magic here that is not shown. The master daemon knows about, and has access to,
two other sessions that are used to perform event-specific handling. Information is shared
between the master daemon and these other processes through some application-specific
mechanism that is not shown. This could be shared memory, a socket, a well-known file,
or any other mechanism. The details are left to the dazed reader.

143

The following concepts are illustrated:

* Sharing of tokens and sessions

* Setting event disposition

* A simple get_event loop

* Having a master daemon move an event to another session
¢ Complex lock upgrade

» Setting managed regions

extern dm_sessid_t rw_sid, trunc_sid;

void *fs_hanp;

void *msgbuf;

size_t fs_hlen;

size_t msgsize, msgbuflen;
dm_sessid_t sid;

dm_token_t fs_token, newtoken;
dm_event_set_t eventset;

dm_eventmsg t *msg;

if (dm_init_service() ==-1) {
err_msg("Can't initialize DMI'\n");
return(0);

}
dm_create_session(DM_NO_SESSION, &sid, "generic_app");

I
* Since we'll be communicating with other processes, we do some

* magic setup to get their sids, establish communications channels,

* etc. We could use dm_send_event(), stuff the data in a shared memory
* region, open a socket, or whatever

*/
setup_communications(sid, &rw_sid, &trunc_sid);

dm_path_to_fshandle("/test", &f: s_hanp, &fs_hlen),

/*
* Now get a token and rights so that we can set the disposition
* of events
*/
dm_create_userevent(sid, 0, (void *)0, &fs_token);
dm_request_right(sid, fs_hanp, fs_hlen, fs_token, DM_WAIT, DM_EXCL),

/ *
* Set the disposition of the events we want to monitor
*/
DMEV_ZERO(eventset);
DMEV_SET(DM_READ, eventset);
DMEV_SET(DM_WRITE, eventset);
DMEV_SET(DM_TRUNCATE, eventset);
dm_set_disp(sid, fs_hanp, fs_hlen, fs_token, &eventset, DM_MAX_MSG);

dm_release_right(sid, fs_hanp, fs_hlen, fs_token);

144

The master daemon now enters a simple loop where it will spend all its time. It simply asks
the DMAPI for more messages and dispatches them to its worker processes.
1%
* Find out the size of the largest message that can be delivered
* on this filesystem. We use this to size an event buffer to get
* an arbitrary (16 in this example) number of messages at the same
* time.
*/
dm_get_config(fs_hanp, fs_hlen, DM_MAXMSG_SIZE, (long)&msgsize);
msgbuflen = msgsize * 16;
msgbuf = (void *)malloc(msgbuflen);

/*
* Enter a simple loop, looking for messages. We don't worry about
* resizing the buffer
*/
for ;) {
dm_get_events(sid, msgbuflen, msgbuf, &ret_msglen, 0, DM_WAIT);
msg = (dm_eventmsg_t *)msgbufl
while (msg != NULL) {

/ *
* For read and write events, we send them to other processes
* with 'well known' sids that are handling these things.
*/
if (msg->ev_type == DM_READ | msg->ev_type == DM_WRITE) {
dm_move_event(sid, msg->ev_token, rw_sid, &newtoken);

} else if (msg->ev_type == DM_TRUNCATE) {
dm_move_event(sid, msg->ev_token, trunc_sid, &newtoken);

}else {
err_msg("Unknown event type\n");
dm_respond_event(sid, msg->ev_token, 0,(void 0,
DM_ABORT EINVAL);
continue;

}
msg = DM_STEP_TO_NEXT(msg, dm_eventmsg_t *);
}
}

The worker bee processes also do some initial setup, which won't be shown. For a simple
stagein, we'll assume we've receive a DM_READ event on a managed region. We join our

fearless process at the point in which it has received the event that was directed to it from
the master daemon, and is starting to reload the data.

int change_start;
void *hanp;

size_t hlen;

size_t nchunks;
size_t : retrgns;
dm_off_t off;
dm_size_t len;

dm_right_t right;

dm_sessid_t sid;

dm_stat_t statbuf’;

dm_eventmsg t *msg;
dm_data_event_t *read_event;

145

dm_region_t rgnbufl1];

msg = eventbuf;
read_event=DM_GET_VALUE(msg, data, dm_data_event_t *);

hanp = DM_GET_VALUE(read_event, handle, void *);
hlen = DM_GET_LEN(read_event, handle, size_t);

/¥ .
* Check to see what the rights are that came with the message. If
* they aren't exclusive, we must go get them
*/
dm_query_right(sid, hanp, hlen, msg->ev_token, right);

if (right == DM_SHARED) {
/%

* We really need exclusive. We'll try to upgrade the lock,
* but if that fails, we'll have to drop it and go to
* sleep.
*/
if (dm_request_right(sid, hanp, hlen, msg->ev_token, DM_EXCL,
DM_NOWAIT)=-1
{

if (ermo '=EAGAIN) {
err_msg("Can't upgrade lock\n™);
do_cleanup();
return(1);

}

/ *

* Before we drop the lock, get the file change indicator

*/

dm_get_fileattr(sid, hanp, hlen, msg->ev_token, DM_AT_CFLAG,
statbuf);

change_start = statbuf .dt_change;

dm_release_right(sid, hanp, hlen, msg->ev_token);
dm_request_right(sid fshanp fshlen,msg-
>ev_token, DM_WAIT DM_EXCL);

/*
* Now that we've come back from sleeping, see if the file changed.

* If so, we just bail.
*/
dm_get_fileattr(sid, hanp hlen,msg->ev_token,DM_AT_CFLAG statbuf);
if (statbuf.dt_change != change_start) {
err_msg("File changed. Bailing...\n");
do_cleanup();
return(1);

}
} else if (right == DM_NONE) {

dm_request_right(sid hanp hlen,msg->ev_token, DM_WAIT,DM_EXCL);}
}

The worker bee is now at the point where it has exclusive access to the file. This is needed
for dm_write_invis().

/*
* Now that we have exclusive access to the file, we need to

146

* go off and find where we stored the file's data in our

* repository

*/
offset = DM_GET_VALUE(read_event, offset, dm_off_t);
len =DM_GET_VALUE(read_event, len, dm_size_t);
find_our_file(hanp, hlen, offset, len);

/*
* Restore the data for the file.
* We'll assume that the file length is some nice integral multiple
* of our chunksize;
*/
nchunks = len / CHUNKSIZE;
for (1=0; i<nchunks; i++) {
get_data_from_archive(hanp, hlen, off, buf);
dm_write_invis(sid, hanp, hlen, token, off, CHUNKSIZE, buf);
off += CHUNKSIZE:

/*
* Clear the managed region
*/
rgnbuf[0].rg_off =0;
rgnbuf[0].rg_size=0;
rgnbuf[0].rg_flags =DM_REGION_NOEVENT;
dm_set_region(sid, hanp, hlen, msg->ev_token, 1, rgnbuf, &retrgns),

1%

* We're done. Release the token
*/

dm_respond_event(sid, msg->ev_token, 0,(void *)0, DM_CONTINUE, 0);

4.3 DMAPI Status

The current status of the DMIG is that the V2.0 version of the interface specification is out
for industry review. Several companies are actively prototyping the interface, and some are
close to having product available in the marketplace. Below:is the status of several
companies polled for their stance regarding the DMAPI:

I: Convex - Development under way for C-Series platforms for NAStore product.
Development underway for HP platforms supported as data management platforms.
Plans to port DMAPI to SPP product line in Q1-Q2 1995.

2 Hitachi Computer - Development underway to provide DMAPI on Veritas file
system to integrate with Epoch product.

3. IBM - Prototyping underway. No firm plans to release support

147

4 SGI - Will release support for DMAPI in first half of 1995 in their XFS file
system.

5 Sunsoft - Plan is to watch marketplace. No plans currently exist to support
DMAPI.

6 Legent - “Legent, through its acquisition of Lachman Technology, has been behind
the DMAPI interface ever since the group began meeting. We believe in the goals of
the group and anxiously await adoption of the interface by UNIX operating system
vendors. DMAPI will strengthen these platforms and will help vendors like Legent
offer its storage management products across the broadest range of available
systems.”

Although not all vendors have committed resources to the DMAPI, it is clear from the
above list, that several vendors believe that it is a viable interface and worth investing in.
Given that the early adopters of the interface are successful in the market place, other
companies are likely to put plans in place to formally support the DMAPI.

5.0 UniTree+ and the DMAPI

In section 2.0, several of the deficiencies in UniTree+ were described. It fundamentally is a
result of the fact that UniTree+ does not virtualize the native file system. What was not
discussed in section 2.0 was that UniTree+ has the capability to handle 1,000,000+ files
and many terabytes of data in the archive. The combination of UniTree+ and an access
method that virtualizes the native file system yields a product that provides the functionality
and performance of native file system accesses, and the ability to support very large
archives with high data ingestion and retrieval rates.

5.1 Standard UniTree+

UniTree+ as shipped today has an architecture that consists of a the following major
blocks:

I: Nameserver - A server that maps pathname to capability ID. It supports a
namespace that looks very similar to traditional UNIX’ file system namespace.

*UNIX is a registered trademark of UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell,
Inc. :

148

2 Disk Server - The server responsible for providing magnetic disk cache for datain
the repository. All access methods read and write through the disk cache. No direct
reading or writing of tape is supported.

3: Tape Server - The Server responsible for moving data to and from the tape
system(s) and the magnetic disk cache. Provides mapping for capability ID to tape
location mapping.

4 Access Servers - Daemons that provide the FTP and NFS protocols.

Figure 1: UniTree+ Today

The problem areas in the above architecture reside in the access servers and the name
servers. All accesses traverse a network protocol. Even same machine accesses go through
the localhost interface. The bulk of the slowdowns in the UniTree interface is because of
latency associated with small transfers. This is especially true for metadata operations. If

149

you view the graph below comparing native HP/UX ' file system operations versus

UniTree+ running on the same HP"! system, you will notice a substantial difference in wall
clock execution time. Times shown as .1 seconds returned zero seconds when measured
with the HP/UX time command because the granularity of wall clock time is 1 second.
There was no effort made to optimize the times shown below, but they are instead just an
indication of relative execution times between native file system operations and UniTree+.

Native FS vs UniTree4

10,000.0

Native Create

1,000.0 .
——— Native Is -IR

100.0 ——¢— Native Remove

10.0 —O&—— UT Create

A

UT Is -IR

Wall Clock in Seconds

—&A—— UT Remove

10 100 1000 10000

Number of Files

Figure 2: Performance Graph of Native File System versus UniTree+

All of the files created in the above test were of zero length. UT 10,100,1000,10000 refers
to UniTree performing the operation listed on 10,100,1000,10000 files respectively, where
Native 10,100,1000,10000 refers to the same operations executed on the Native file
system and 10,100,1000,10000 files respectively. Creates of zero length files in UniTree+
involve primarily the NFS access daemon and UniTree+ name server. Replacement of
those two servers in UniTree+ with native file system operations will dramatically improve
the metadata operations in the resulting HSM.

""HP/UX is a registered trademark of Hewlett Packard Corp.
"HP is a registered trademark of Hewlett Packard Corp.

150

5.2 Convex Virtual Disk Manager (CVDM)

The Convex Virtual Disk Manager (CVDM) does exactly what the name implies. It’s
function is to control space allocation in native file systems using the DMAPI. It currently
runs on ConvexOS and HP/UX systems controlling the UFS native file systems. The
major functional blocks are as follows:

1: Migd - Responsible for startup and shutdown of system.

2 SSD - Responsible for creation of daemons for each file system put under CVDM
control.

3: Migdmon - Daemon responsible for interfacing with the DMAPI to catch events and

start actions required by the events.

4 Migout - Responsible for scheduling migrate out processing.

5 Migin - Responsible for migrating in data as a result of an access to non-resident
data within afile.

6: Interface Manger - Responsible for communication with UniTree+ back end.

The structure of the daemons looks as follows:

151

Interface
Managers

L

Figure 3: CYDM Server Architecture

Foer

g

The interface manager and movers are responsible for communicating with the UniTree+
back end. As a result of the separation of CVDM from the UniTree+ archive portion,
multiple instances of CVDM can communicate with multiple instances of UniTree+. The
following diagram illustrates a possible configuration:

152

o

AR TAYATRA YRS
b

Host B

L4
~ . NN
s £
Y AR
4 (4 £ 7
~

~
LSS
T S S T .

<

3
N
T
3

r

AAFAPNEAFATAP

rd

;o
P

A
ks

FAFAFAVAF AN AYAY)

Figure 4: CVDM/UniTree+ Configuration Example

The above example configuration shows a configuration where the access servers are
distributed over three distinct server platforms. The archive servers are also distributed over
two distinct server platforms. This allows the site to tailor their system to meet the load that
their environment places on the servers. If the sysiem tends to be a read mostly system,
increasing the number of access servers improves performance of the data retrieval. If a site
uses their system in a write mostly environment, increasing the number of UniTree+
archive server platforms allows a system to handle very large data ingestion rates.

The architecture of a system running CVDM and UniTree+ on the same system appears as
follows:

153

AT TR AT

y £ 7RSS
A Y SRR FLTIL SN
y 7 7 £
NN AR
Yy # 7 72 F5r 757 S S
RN N N N Y Y NN Y
AN DA RN R0 B AV AP

CVDM localhost

Figure 5: CVDM/UniTree+ Architecture

As shown above, the user application accesses the file data exactly as it would in a non
HSM environment. Performance on resident files has shown to have < 1% deviation from
native file systems not under HSM control. Except for delays for non resident files, the
HSM is completely transparent to the application.

Migration in the current system transfers data from the native file system, via CVDM
movers, to the UniTree+ disk cache, via UniTree+ disk movers. The data in the disk cache
is marked to purge immediately and is therefore scheduled to move to tape from the disk
cache in the next UniTree+ migration round. Requiring files to move from native disk to
the UniTree+ disk cache has benefits, but also introduces some problems. The benefit of
caching data is it allows remote CVDM servers to transfer data at network speeds. Data
then is written to tape at tape speeds. The disk cache acts like a rate matching buffer
between the network and tape devices. Tape devices are never tied up waiting on network
transfers. The drawback is that the UniTree+ disk cache must be large enough to hold the
largest file being migrated. Moreover, for local CVDM servers, there is no need for the rate
matching buffer because the data can come from local disk. Non of these issues are
architectural in nature, but instead are a result of merging CVDM and UniTree+ with
extremely minimal changes to the UniTree+ base. In fact, UniTree+ can support both
CVDM access servers and the existing UniTree+ access servers simultaneously.

Migration rounds in CVDM can be initiated in a variety of ways. Administrators can start a
migration round via cron jobs or manually. Candidate selection is also configurable. A
utility, migfind, scans the UFS name space looking for possible candidates. Weights are
assigned to file attributes like size, modification time, creation time, owner, etc. Migfind
then generates a sorted list of candidates to hand to migout, which in turn initiates
migration. Migration rounds can also be initiated when space in a file system crosses preset
thresholds. In this case, the system will first look for files that are migrated, but whose data
is still cached in the file system. For these files, space can be freed by punching a hole in
the file with the dm_punch_hole() call. If enough space is not freed by pruning cached
data, a full migration round is initiated.

154

5.3 CVDM Futures

In future releases of CVDM, the UniTree+ tape mover and the CVDM disk mover will be
collapsed into a unified mover for local CVDM servers. This unified mover will only be
used for the local CVDM case so the rate matching nature of the UniTree+ disk cache will
be retained for the remote servers. The use of a unified mover will dramatically decrease
the overhead associated with migration from local CVDM servers.

Remote CVDM servers benefit greatly from buffering data in the UniTree+ disk cache. For
large files, it may desirable to start the migration of data from the UniTree+ disk cache to
the tape archive prior to completely transferring all of the file data. This is especially true
for high bandwidth networks like HIPPI which can transfer data at rates above existing
tape transports, or FDDI combined with low transfer rate tape drives. The UniTree+
system will be extended to support this.

6.0 Summary

The DMAPI has the potential to increase both the availability and quality of HSM products
while providing functionality only available in the kernel intrusive implementations of
today. As is usually the case, availability of the DMAPI will be driven by the market place.
If customers ask for it, or as competitors begin winning sales because they have it, more
OS and HSM vendors will deliver products based on it.

[1] Information in this section was obtained from the Data Migration Interface Group -
Interface Specification. Version 2.0. This document is available via anonymous FTP at
internet address 143.127.0.2

155

N95- 24121

Constraint Based Scheduling for the
Goddard Space Flight Center Distributed Active Archive Center's
Data Archive and Distribution System

Nick Short Jr. - Information Science and Technology Branch 5/\2 .,3 2—

NASA - GSFC
Greenbelt Road _ 7
Greenbelt, MD 20771
301-286-6604 43 qb
short@dunloggin. gsfc.nasa.gov ‘0 / q
-

Jean-Jacques Bedet and Lee Bodden - Hughes STX
7701 Greenbelt Road, suite 400
Greenbelt, MD 20770
301-441-4285 Fax (301) 441-2392
{bedet,bodden} @daac.gsfc.nasa.gov

Mark Boddy, Jim White, and John Beane - Honeywell Technology Center
Honeywell Technology Center
3660 Technology Dr.
Minneapolis, MN 55418
612-951-7355 Fax 612-951-7438
{boddy,jwhite beane} @src.honeywell.com

Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has
been operational since October 1, 1993. Its mission is to support the Earth Observing
System (EOS) by providing rapid access 10 EOS data and analysis products, and to test
Earth Observing System Data and Information System (EOSDIS) design concepts. One of
the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's
Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an
estimated several Petabytes (10715) of data will be permanently stored. Accessing that
amount of information is a formidable task that will require innovative approaches. As a
precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has
implemented a prototype of a constraint-based task and resource scheduler to improve the
performance of the DADS.

This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell
Technology Center in cooperation with the Information Science and Technology
Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes
better use of limited resources, prevents backlog of data, and provides information about
resource bottlenecks and performance characteristics. The prototype which is developed
concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as
ingestion and distribution with priority, precedence, resource requirements (disks and
network bandwidth) and temporal constraints. HTRS supports schedule updates,
insertions, and retrieval of task information via an Application Program Interface (API).
The prototype has demonstrated with a few examples, the substantial advantages of using
HTRS over scheduling algorithms such a First In First Out (FIFO) queue. The kernel B

PRECRDING PAGE BLANK NOP FMPD/ ’
:]
pace LD Y renmionaLLy Lank

scheduling engine for HTRS, called Kronos, has been successf ully applied to several other
domains such as space shuttle mission scheduling, demand flow manufacturing, and
avionics communications scheduling.

Introduction

The main objective of the Code X Operations Technology Program (X-OTP) is to provide
advanced techniques in order to reduce NASA's operational costs by focusing on reusable
software technology. In addition to numerous technologies such as electronic
documentation, database management systems, system diagnosis, and data analysis tools to
name a few, one of the successful areas of X-OTP has been the application of planning and
scheduling technologies to missions operations throughout NASA. In cooperation with the
GSFC DAAC and Honeywell Technology Center, X-OTP has initiated a program to apply
scheduling technology to various areas within the EOSDIS. In addition to providing local
management for this project, the Information Science and Technology Branch, which is
part of the GSFC supercomputer facility or the Space Data and Computing Division, has
been providing its Intelligent Information Fusion System (ITFS) as a modular, end-to-end,
advanced prototype system for testing these new technologies. Free from many
requirements of operational systems, this prototype system is being used to guide several
of the technological extensions for this scheduling project.

This paper presents the first phase of this project by discussing the capabilities of the
Honeywell Task and Resource Scheduler (HTRS) as they apply to the scheduling of
operations in large mass storage systems. The GSFC DAAC architecture is briefly
introduced and the main DADS functions are described as they relate to mass storage
issues. The approach used to solve scheduling issues and the specific DADS scheduler
requirements is then explained. The architecture of the scheduler, its domain model, and an
application Program Interface (API) to communicate with the scheduler is also presented.
In particular, the paper describes the application of a constraint-based scheduling to a mass
storage system for the management of data ingestion, dissemination over a network
environment, and distribution of datasets copied to tapes. Due to the large number of daily
tasks and their dependencies, the slow seek time on tapes, and deadlines which must be
met, a First In First Out (FIFO) scheduling algorithm, as well as other queuing approaches,
is not adequate. HTRS increases the throughput of the various DAAC activities by making
efficient use of the DAAC's computer resources. The HTRS is an adaptive, dynamic
scheduler capable of modeling numerous system resources such as disk storage, robotic
devices, processors, memory, and network bandwidth. HTRS handles resource
contention, prevents deadlocks, and makes decisions based on a set of defined policies.
By modeling database operations as tasks with priori ty, precedence, duration, resource
requirements and temporal constraints, HTRS efficiently supports schedule updates,
insertions, and retrieval of task information.

General Scheduling issues

Given many of the misconceptions about scheduling, this section will cover a brief
summary of the common definitions and topics surrounding data processing scheduling for
those readers not familiar with the terminology in the following sections. In general, most
non-real-time Operating Systems (OS) handle task management by assuming that tasks
operate independently of each other and that execution characteristics cannot be accurately
determined a priority. Hence, simple queuing methods dominate this category, often
providing sub optimal solutions (e.g., FIFO scheduling). The UNIX OS, in fact, was
designed for general purpose workstations where little is ever known about task
characteristics.

158

Improvements to these approaches require an analysis of the operating characteristics of
typical tasks, such as determining if tasks have priority or deadlines, arrive periodically or
arbitrarily, operate in a uniprocessor/multiprocessor or heterogeneous’homogeneous
environments (i.e., different or same processors), exhibit predictable resource properties,
and organize into a data flow graph (i.e., tasks whose execution precedes and passes data
to others). These improvements are constrained by the operational requirements such as
trying to minimize task completion time, demanding that most or all tasks meet their
deadlines (i.e., soft real-time or hard real-time), and allowing tasks to be preemptable or
nonpreemptable to name a few.

Based on these characteristics, the scheduling problem can be defined as given a set of
tasks T associated with a subset C of the aforementioned constraints, determine the
execution sequence, if possible, that best satisfies C. Two basic types of scheduling
approaches exist: static (or deterministic) and dynamic (or non-deterministic). Static
schedulers create schedules off-line after all task information has been collected while
dynamic schedulers determine schedules on-line during continuous data collection. Any
static scheduler is optimal only if it produces schedules that satisfly C whenever any other
scheduler satisfies C. A dynamic scheduler, however, produces an optimal schedule if it
always produces a feasible schedule when a static scheduler with complete information can
create one. Obviously, static schedulers are always sub-optimal when the collected
information changes before the schedule is produced, regardless of which scheduling
algorithm is used. While dynamic schedulers suffer less from this problem, they incur a lot
of overhead due to the cost of constantly collecting information. For this reason, many
schedulers utilize a hybrid approach where scheduling is done off-line while adjustments
are made on-line.

Related to this issue, schedulers are also classified as adaptive or non adaptive depending
on whether the environment provides feedback to the scheduler. That is, the scheduler's
control mechanism changes in response to system histories or trends. Dynamic schedulers
are almost always adaptive. Of course, the type of information collected determines how
well the scheduler performs. Estimates of task duration can be based upon best, average,
or worst-case estimates depending on optimism or pessimism. Other statistics can include
modeling the average number of tasks arriving for particular times, hot spots for resource
usage, inter-task communications costs, etc. Determining how refined the statistics model
always depends on the performance requirements, which often change to meet evolving
bureaucratic policies.

Institutional requirements usually determine the control architecture of the scheduling
environment. For example, Centralized systems such as shared memory models are those
where processors essentially operate in a group where inter processor communication costs
are minimal with respect to processor execution costs. By contrast, decentralized systems
such as wide area networks (e.g., the DAAC's) imply high inter processor communication
costs. Often times, centralized or distributed scheduling means that the computing
environment is centralized or decentralized. This should not be confused with the much
harder problem of using multiple schedulers to control a distributed environment versus
using a centralized scheduler to control a distributed environment.

Adding to the confusion, the power of scheduling algorithms is often overestimated. For
example, scheduling tasks with arbitrary precedence between tasks for multiprocessors is
proven to be NP-hard (i.e., essentially known to take an exponential number of steps as a
function of the number of tasks) with only unit execution time, regardless of whether tasks
are preemptive or non preemptive. Hence, because most of the non NP-hard algorithms
(i.e., polynomial) are too restrictive, schedulers realistically must utilize heuristic

159

approaches (i.e., smart guessing) while searching for feasible schedules. This involves the
construction of a function, often called an objective function, that encapsulates a notion of
"goodness" for evaluating one proposed schedule versus another during the search through
the space of possible schedules. Objective functions can be explicitly represented by
numeric formulae for simple comparison or they can be implicitly captured in the
scheduling policy algorithm. Regardless, the objective function or scheduling policy
algorithm should be flexible enough to change as the institution governing the processing
environment modifies its notion of a good schedule. For instance, an institution may want
to guarantee that all or most task deadlines are met one day while on another day, it may
wish to minimize completion time of tasks.

Scheduling issues with mass storage systems

Today's mass storage systems are critical resources that usually must operate in a complex
and changing institutional environment. These institutions must process large volumes of
data while providing efficient and reliable service to a large number of users, who typically
request resources at unpredictable times. Satisfaction of these users is critical in order to
justify the enormous investment required to run these large institutions. Also, proper
decision making about which resources is absolutely necessary for controlling the high cost
of these computing environment. Scheduling technologies allow institutions to provide
services according to reasonable user deadlines while providing information about which
resources are bottlenecks that must be alleviated with the purchase of appropriate hardware.

These characteristics are certainly true of the EOS architecture and, in particular, are being
evaluated in the context of the GSFC DAAC -- a system that is intended as an operational
testbed for EOS. Although nowhere near the size of the final EOS system, the GSFC
DAAC is estimated to process 250 SeaWiFs orders per day, corresponding to 40 GB of
data. In addition, 20 GB of non-SeaWiFS products are expected to be ordered each day
while 26 GB of new data will be ingested. Due to the large number requests and the large
volume of data to process, manually generating feasible schedules will not be possible.
Moreover, using the FIFO queue approach is not an acceptable solution because it does not
make the best use of the resources available (e.g., tape drive, disk space), it doesn't have
the ability to guarantee that most deadlines are met, and it provides little information about
resource bottlenecks.

Of particular note, each request (e.g., distribution) has several tasks that must be scheduled
individually. For example, to process an order for data requested on an 8-mm tape, the
tasks may consist of retrieving the data from near-line devices, transfer the files to a staging
area, and then copy the files to an 8-mm tape. Overall thousands of tasks with predecessor
and successor tasks, each with specific needs for resources, must be scheduled and tasks
cannot be treated equally. Requests for data to be sent over the network may be given a
higher priority than data requested on tapes. Hence, the schedule should reflect these
DAAC policies that determine, for example, deadlines and priorities.

Given that many of the operations involve transfer from one medium to another, proper
migration from slower devices such as mass storage to faster devices is necessary to
minimize average access times. That is, anticipation of requests should cause data to be
moved into faster devices "just in time" for the request to be satisfied. This, of course, is
similar to the notion of "locality of reference" in any memory hierarchy where the storage
management system pre-fetches blocks of data in anticipation of future access to those
blocks. Only here, the pre-fetching is also based on models of the external task
environment in addition to load characteristics of the tasks, implying that a powerful
scheduler can reduce access times by performing tasks just in time for delivery.

160

Because of the need to quickly anticipate trends in the external and internal processing
environment, another challenge is to have a schedule that can be dynamically and quickly
updated when new orders are received, when some of the resources become unavailable
during a period of time, or when a given resource must be restricted to improve the overall
performance of the system. For an example of this last category, tests conducted at the
DAAC have shown that the number of concurrent NFS actions between the Unitree cache
and the distribution staging area had to be limited to six or seven in order to achieve an
acceptable throughput. Thus, the scheduler should model resources such as NFS
resources to anticipate the proper localities of reference.

While the anticipation of many actions can be automated, many external events to the
system requires that a human operator be present to make adjustments. That is, in any
symbiotic production environment involving both computers and humans, tools must exist
to help operators identify the status of the orders and their respective tasks as they relate to
policies provided by management. For example, an estimated completion time for each

task could be presented to the operator in order for the operator to communicate information
back to high priority users.

These estimates should be based not only on the approximate duration of each task but on
the availability of the resources. In fact the estimates for each task could be complex,
however, the actual and the estimated times can be continuously compared so that better
statistical approaches can be introduced. After conducting several tests simulating next
year's workload, it became clear that scheduling was very important.

GSFC DAAC architecture

The GSFC DAAC has been developed to support existing and pre-EOS Earth science
datasets, facilitate scientific research, and test EOSDIS operational concepts. Its design is
based on the EOSDIS functional requirements and the requirements generated by specific
Science projects such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS).

GSFC DAAC has three main components illustrated in Fig 1. The Product Generation
System (PGS) receives low-level data products and generates higher level data products.
The Data Archive and Distribution System (DADS) role is to archive all new data products
and to distribute over the network or on a variety of physical media, data ordered by
researchers. The Information Management System (IMS) is a data base of the data
holdings which can be searched, browsed by researchers to help them identify and order
data of interests. '

161

Users

Oq
Search ¥ ey LO data
Orders metadata
Orders
—p L0414 data
IMS DADS [e » PGS
< Metadata
metadata
LO-L4 data
metadata metadata
Archive
o near-line
o on-line
o off-line

Figure 1 GSFC DAAC components

Although smaller than the overall facilities in the Space Data and Computing Division, the
GSFC DAAC has currently 731 GB of data archive but this number is expected to increase
to about 18 TeraBytes by FY97 [1]. To satisfy these requirements the GSFC DAAC has
the following hardware architecture.

* The IMS system with its Oracle data base runs on a dedicated SGI 4D/440 VGX.

* The DADS software and the Hierarchical Storage Management (HSM) system Unitree to
automate the migration and the stage operations, run on a SGI 4D/440 S. Data are archived
either on a Cygnet 1803 jukebox (1179 MB) with 2 ATG WORM drives or an RSS-600
Metrum Automated Tape Library (ATL) (8700 MB) with 4 RSP 2150 VHS drives. The
SGI 4D/440 § was too limited in terms of /O bandwidth and ports. A SGI challenger L
(DADS?2) has been acquired to handle all the distribution copies on tapes. There are
currently nine 8 mm drives, four 4 mm drives, and two 9 track drives attached to the
EOSDADS2 machine.

* There is a future plan to build a Backup system that will run on an SGI Challenge S. Its
function will be to keep a second copy of all data ingested at the DAAC.

* The PGS is composed of 3 SGI workstations. Two additional workstations are used to
do Q/A on the data.

* The DAAC's distributed environment includes two Ethernet Local Area Networks, and an
FDDI network.

162

GSFC V0 DADS functions

The three main functions of the DADS are archive, distribution, and data management. The
archive function consists of accepting data products from outside the system, extracting
metadata, validating files, and updating the database. The distribution function retrieves
files from archives, stages them to a distribution staging area, reformats the data if
necessary (e.g., tar is the normal format for orders), and writes the data to tapes or to the
FTP staging disk. The DADS management handles the schedules, tracks DADS activities,

and allocates/deallocates resources.

DADS V0 Scheduler

DADS Task & Resource
al]——— >
Manager Scheduler

Application Program Interface

; '

Task Execution
Dispatcher Monitor

Figure 2. The HTRS Scheduler's Architectural Environment

The DADS VO Scheduler is responsible for scheduling actions and resources to ingest data
from a network to buffer disks, transfer buffered or cached data to a mass storage archive,
and to retrieve archived data upon request. The scheduler was developed concurrently with
the design and implementation of the GSFC VO DADS. Consequently, the architecture and
interfaces must tolerate changes as the system design evolved. The current version of the
DADS software uses a multi-level priority queue algorithm, as a baseline system, to
schedule its activities, however, there are plans to integrate the Honeywell Task and
Resource Scheduler to the DADS for performance improvements. The baseline
architectural environment of the HTRS scheduler is depicted in Figure 2. This environment
continues to evolve, but its conceptual and unctional characteristics remain stable, so many
system changes can be accommodated in the Application Program Interface (API).

The DADS Manager submits scheduling requests, handles errors, and retrieves schedule
information. The Task Dispatcher periodically queries the scheduler for a list of upcoming
scheduled activities to be executed. The execution monitor notifies the scheduler of events
that affect the schedule.

163

Approach

Constraint envelope scheduling technology offers an attractive, proven method of meeting
the scheduling needs of data archiving and distribution. This technology, embodied in
Honeywell's enhanced implementation of the Time Map Manager (TMM), supports the
concept of a Temporal Constraint Graph (TCG) which can be used to represent multiple
projections of future system behavior, thereby providing rapid rescheduling with minimal
disruption in the presence of schedule uncertainty or changing policy situations.

The DADS VO Scheduler is an application of the Kronos scheduling engine that is built on
top of TMM and designed to be adaptive and dynamic. Kronos has been successfully
applied to domains such as space shuttle mission scheduling, demand flow manufacturing,
and avionics communications scheduling. It has handled scheduling problems involving
20,000 tasks and 140,000 constraints, with interactive response times for schedule
modification on the order of a few seconds on a SPARC10.

Scheduler Requirements

Detailed scheduler requirements were initially established for the DADS application, then
extended and adapted to encompass the scheduling needs of other NASA programs based
upon feedback from the IIFS. The following paragraphs summarize requirements at a hi gh
level. They confirm the need to be appropriate to the application domain, to be compatible
with the target system, and to provide responsive performance reliably.

i ropriate - Commercial scheduling tools sacrifice domain relevance to extend
their range of applicability, and hence their marketability. They often lack the capacity to
efficiently handle the precise scheduling needs of large, complex applications such as those
presented by EOS. In order to select or define a scheduling tool that is domain appropriate,
application-driven requirements must be established. Whenever possible, these
requirements should be based on multiple examples of domain operations and scheduling
functions using realistic data sets. They must include a quantitative demonstration so that
capacity and performance goals can be met simultaneously.

Since the GSFC VO DADS is being developed concurrently with the prototype scheduler,
we were careful to maintain a high degree of generality in the scheduler implementation,
By first building a core scheduling capability derived from our Kronos scheduling engine,
and then extending that capability through specialization, we were able to meet the specific
needs of DADS while providing a scheduling tool that can easily be applied to similar
problem domains in EOS.

Stated as a system requirement, the schedulin g core domain model must be compatible with
objects and functions required by the target application. Further, its customization
capabilities must support accurate modeling of every schedule and relevant aspect of the
domain. Care should be taken to ensure that this model reflects the intended scheduling
policies and procedures of the application, and not the characteristics of analytical models
used to project system performance.

Details of the scheduling core domain model are described in the Domain Model section.
For the prototype scheduler, subclasses were created to capture application specific
attributes and relationships. These attributes may be used to carry system data through the
schedule or to support performance monitori ng and analysis.

164

By creating persistent requirement and persistent resource profile classes as subclasses of
the requirement class and resource profile class using an object-oriented model,
respectively, we were able to provide the necessary scheduler functionality with a minimum
of disruption. Persistent requirements have the option of specifying that they begin, use,
or end with their associated activity. This allows the resource allocation to be open ended if
desired.

To be effective, any tool must be functionally complete and be able to solve the problems
for which it is applied. A scheduler must enforce structural constraints (i.e., predecessor-
successor and parent-child relationships), temporal constraints (e.g., earliest start or
deadline), and resource availability constraints while carrying out the desired scheduling
and resource allocation policies in an automated fashion. In the prototype scheduler,
policies are currently encoded as functions and a domain-specific algorithm (as described in
the Scheduling Policy section.

We plan to eventually excise policy details from the scheduler by defining syntax for policy
specification. One possible solution would be to utilize a rule- or knowledge-based
approach to represent the numerous institutional policies. The major advantage of this
approach is that rules (e.g., if-then statements) can naturally represent situations when a
particular schedule is "good". Likewise, a dependence on rules allows for the
incorporation of several knowledge acquisition tools. In the I[IFS, for example, the Advice
Taker/Inquirer (AT/I) allows users to enter and modify expertise in lucid forms such as
natural language. Should a policy change, a tool like the AT/I could be used to quickly
modify the appropriate rule governing that policy.

Compatible - The scheduling tool described here is designed be integrated as a functional
component into the target application system. It cannot dictate requirements to that system,
rather, it must adapt to the physical and logical demands of the encompassing system. The
scheduler must execute on available hardware running the specified operating system. It
must be able to communicate with asynchronous functional modules of application system
via standard interprocess communication system facilities.

The scheduler must also be linguistically compatible with the surrounding system. It must
be able to interpret and respond appropriately to requests for service and information. The
prototype scheduler meets this requirement in several ways. The scheduler includes an API
customized to the syntactic and semantic needs of the DADS modules with which it
interacts. An underlying set of basic API functions facilitates this customization.

The scheduler supports the notion of activity state. The exact states and legal state
transitions are defined for the application. In DADS, activities can be scheduled,
committed, dispatched, executing, complete, or failed. Additional states and even
additional state dimensions can be added as the need arises.

- Performance is often a critical requirement, but it is frequently overlooked in
scheduling. There are often assumptions that scheduling will be performed once in an
initial scheduling effort and that the resulting schedule will satisfactorily describe the actual
execution of activities. This view is seldom correct and certainly incorrect in data
processing scheduling.

We have segregated the total problem into two phases, planning (what to do) and
scheduling (when to do it). In other words, planners are allowed to substitute similar
tasks in order to find a set of tasks that have feasible schedules. Schedulers per se are
given a fixed set of tasks and only leeway in the selection of resources and start/end times.
Unlike the DADS and for that matter, the rest of EOSDIS, the IIFS utilizes the

165

planning/scheduling approach to generate browse products in lieu of standard products
when computational constraints are too great for standard product generation. For
example, computationally cheaper, yet less accurate tasks can be intelligently substituted
for expensive tasks in order to better meet deadlines or minimize resources. This situation
occurs often in image processing where resampling routines can reduce the image size.
The browse products can be used by users to decide whether to initiate a standing order
request. In this way, just as it was one of the first systems to suggest object-oriented
programming and databases for the EOSDIS domain, the IIFS has allowed for the testing
of risky, new ideas that may not yet have been considered within the operational DAACs.

Nevertheless, by making this distinction, we have not only, made each aspect more
manageable, but we can tailor the functionality and performance of each component's
implementation to the needs of the application. Planning typically occurs before
scheduling, though replanning may become necessary. In the GSFC VO DADS
application, there is a small set of functions to be performed (e.g., ingestion, distribution).
These can possibly be pre-planned in advance and described to the scheduler as tasks (with
subtasks).

The scheduler must, on demand and in near real time, fit each new instance of a task into
the current schedule in accordance with task priorities and deadlines while ensuring that
necessary resources will be available. As actual events occur in the execution of the
scheduler, it must rapidly reschedule to reflect the impact of the event. It must provide data
to support graphic presentation of the current schedule, and even allow operator
manipulation of tasks.

Reliable - The fault tolerance approach employed by the target application must be
supported by the scheduler. In the GSFC VO DADS this translates to requirements for
redundant archiving of schedule information and rapid recovery of the schedule after a
failure. The prototype scheduler does not fully include these features at present. However,
basic mechanisms needed for reload are present in the script processor described in the
Prototype Environment section. Also, previous schedulers based on the Kronos engine
have included schedule storage and reload capabilities.

Prototype Environment

The DADS VO Scheduler is being developed concurrently with the GSFC VO DADS.
Consequently, a stand-alone environment was needed in which to test and demonstrate
scheduler functionality. The operation of components external to the scheduler was
simulated via a script processor as shown in Figure 3. The script processor is controlled
from a demonstration Graphical User Interface (GUI) that displays schedule activities and
resource utilization profiles. Snapshots of the demonstration GUI screen may be seen in
Figures 6 and 7. The GUI supports selection and execution of an event script which the
script processor translates into API commands that it sends to the scheduler.

166

Demo Task & Resource <> Audit
GUI Scheduler

Application Program
Interface

' ¥

Script Processor

P Test

Figure 3. The Prototype System Architecture

A typical script initializes the scheduler by describing the resources available for
scheduling, commands the creation of activities to be scheduled, and simulates execution
events such as completion of execution. The script also notifies the GUI as objects to be
displayed are created.

Graphical presentation of scheduler operation is visually convincing, but it is inconvenient
for testing and benchmarking purposes. Recently, auditing and test functions were added to
facilitate execution and validation of complex event scripts. The test function automates the
execution of scripts and the invocation of the audit function, which checks the schedule for
consistency and correciness.

Architecture of the Scheduler
The internal architecture of the scheduler is depicted in Figure 4. The base layer supplies

basic temporal reasoning capability. This includes objects such as uncertain time-points
and constraints, and functions for updating and querying the temporal knowledge base.

Application Specific (DADS) Program Interface

DADS Domain Model Generic Application
Program
Scheduling Core Domain Model Interface

Constraint Engine & Temporal Knowledge Base (TMM)

Figure 4. The Architecture of the Scheduler

167

The Scheduling Core Domain Model supplies the basic objects and functions needed for
scheduling and resource management. Combined with the Generic API, these layers form
a core scheduling capability that can be applied to various scheduling domains. In the

DADS VO Scheduler imple
specialization and extension

mentation, the base domain model was extended through

to provide appropriate domain-specific capabilities, shown in

the figure as the DADS Domain Model and the DADS API.

Domain Model

Key object classes of the scheduling core domain model include resources, requirements,
activities and hierarchical activities. These are shown in Figure 5. along with related
objects classes of the DADS scheduling domain model.

)

[Resource

name
attributes
avallabilities

- J

T

[DADS Obj. |

client
dads-name

— J

[bADS Res. |

[Activity
main-token
requirements

(: B L J
Requirement
attributes
activities <+
L) -~
rHierarchical
activity
parent
children
J

[DADS Req. | [DADS Act. |

usage predecessors
usage-type successors

Figure 5. Key DADS Scheduling Object Classes

168

An activity represents an action to be scheduled. Each activity has an associated main-
token which defines its end points in time and its possible duration range. An activity may
be linked to multiple resource requirements. These abstractly define attributes that must be
satisfied by the resources allocated to the activity. A subclass of the activity allows
hierarchical activity structures to be defined. These were used in the DADS scheduler to
implement tasks with component subtasks.

As an example, in the DADS application, a data ingestion task will have several subtasks.
The data buffering subtask requires access to the FDDI network and a specific amount of
space on one of the data ingestion magnetic disks. A subsequent archiving subtask
requires access to the data on buffer disk and space on the UNITREE archive magnetic
disk.

The core resource classes allow resources to be conceptually organized into pools using a
hierarchical name structure (which permits wildcards) and using a list of resource
attributes. Each resource has an associated availability that defines the maximum quantity
of that resource and its temporal range.

Specialization of the core object classes extend the hierarchy to include characteristics of the
target domain. In the DADS scheduler these specializations share a common parent class,
the DADS object, which defines attributes every DADS activity, resource requirement, or
resource must have. Only the client and dads-name attributes are shown in the figure.

Application Program Interface (API)

The Application Program Interface was specified formally by documenting data content
(i.e. fields and forms) of the primary information components (i.e. tasks, subtasks,
resources, etc.) exchanged between the scheduler and DADS subsystems. For each
command, the documentation details the participants in the exchange utilizing the
command, the conditions under which the command occurs, the intent (semantics) of the
command, and the scheduler's response to the command under both normal and error
conditions.

The following command categories describe the functions of the scheduler visible via the
APIL. The categories have been intentionally kept rather abstract and high level here. Not all
command categories have been fully implemented in the prototype scheduler.

Definition/Instantiation - Inform the scheduler of the existence of scheduling entities such
as activities (i.e. tasks and subtasks), resources, and abstract resource utilization
requirements. These commands do not cause scheduling to occur.

Modification - Change the specifics of information known to the scheduler. This category
encompasses only changes to the scheduling problem (e.g. relaxation of a deadline). It
does not include notification of real-world execution events.

- Retrieve schedule and resource allocation information from the
scheduler. This information is based on the scheduler's model of the problem space, its
record of past events, and its projection of future events including resource utilization.

ing - Compute a new schedule with resource allocations. Commands
in this category may be invoked indirectly by commands in the Update/Synchronization

169

category. Update/Synchronization - Inform the scheduler of the occurrence of real-world
events (e.g. activity execution completion) which may affect the schedule. This category
also includes commands for the transfer of responsibility for an activity from the scheduler
to another subsystem (e.g., an execution monitor or dispatcher).

Notification - Inform another subsystem that a problem (or potential problem) has been
detected by the scheduler.

Communication Handshaking - Provide positive acknowledgment of information transfer.
Fault-Tolerance/Recovery - Support for information backup and recovery from failures.

Scheduling Policy

The operation of the scheduler is controlled by scheduling policies. These are currently
captured in domain-specific, hard-wired algorithms for resource assignment and activity
scheduling.

The baseline resource assignment and scheduling algorithm is:
For each activity to be scheduled:

If the activity has component activities,
Schedule each of its component activities (i.e., apply this algorithm recursively).

If the activity is scheduleable,
For each resource requirement of this activity:

- If a satisfactory resource is available for use without causing it to be
oversubscribed,
assign that resource to meet the requirement.
Availability implies that the resource is part of the resource pool
specified in the resource requirement and has the attributes specified
in the resource requirement.

-If no satisfactory resource is available,
apply the following stratagems in sequential order,
using the possible resources until one of them successfully eliminates
the oversubscription:

* Constrain the order of activities involved in the oversubscription:
Individually before the activity, or
Individually after the activity, or
Collectively before the activity, or
Collectively after the activity.

* Relax the deadline of activities involved in the oversubscription and
constrain the order of activities (as above)

* Constrain the order of parent activities of the activities involved in the
oversubscription (as above)

* Report failure [and Exit]

170

If the activity is still scheduleable
and all component activities of this activity have been scheduled,
Mark the activity scheduled.

Then update:
The schedule's temporal knowledge base,
The time bounds of all changed resource utilization profiles.

One thing to notice in the algorithm is the emergence of situations to control the scheduling.
For example, take the situation where the scheduler should schedule activities if their
resources won't possibly be oversubscribed. This was a DADS requirement that other
domains need not be constrained to have. But, in its current incarnation, it is hard-wired
into the algorithm. Should this change, then the algorithm must be modified, increasing
scheduler maintenance costs. As new policies are incorporated, these costs will be
untenable. Hence, changing over to other approaches such as rule-bases, will constrain
costs and allow for evolvability.

Scheduling Example

The operation of the prototype scheduler is revealed in Figures 6 and 7. In this simple
example, seven data ingestion tasks have been scheduled. Each task contains four subtasks
(not visible) and is represented in the display as a horizontal timeline. The solid portion of
the timeline indicates the earliest possible execution of the task. The dashed portion of the
timeline indicates scheduling flexibility between earliest execution and the task's completion
deadline.

At the bottom of the display, the resource utilization of a selected resource is shown. The

black profile line indicates expected resource utilization if all tasks execute as early as
possible. The gray profile line indicates possible resource utilization.

171

" DADS - demo-ingestion-3.disp

Last Result: Task 106 could not begin until Task 104 completed,
Next Step: Script Complete
(File v) (Step v) (Help..) Current Date: 00_11:00 Step: 7
0 100—task 100 ‘:’ | T |
0 101-task 101 S - - |
0 102-task 102 3 [(ELERLL] |
0 103-task 103] J—— -

0 104-task 104 - sssnscsnsosisenwsnennusnTUnnu N RNEnS
u1usmk1os _IUIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHI
0 106-task 106 _llIllll'Il'lIIl.IIIIIIlIIlIIIII

600
BO2 ingestion m

-1000

3 3
i ORD i
(o F

Figure 6. Simulation of the Baseline DADS VO Scheduling A pproach (FIFO Queue)

[3)]
o).

~

@©

In this figure, the tasks have been configured to simulate the baseline DADS VO scheduling
approach. In the baseline approach, all resources needed by the component subtasks are
allocated to the task. Then tasks are then scheduled using a First-In First-Out (FIFO)
Queue. Additional constraints were added to enforce this queuing.

Parallel task execution occurs until resource utilization reaches 100%. The subsequent
tasks must wait for ongoing tasks to complete.

The deadlines of tasks 104 through 106 could not be met. These deadlines were removed,
causing the dashed portion of the timeline of these tasks to extend to inf inity. Task 106
actually started AFTER it's completion deadline.

The resulting resource utilization is very inefficient. It has large regions of rather low
utilization an is spread over almost five hours.

Figure 7. Shows the same tasks scheduled using the full power of the HTRS scheduler.

172

DADS — dem—ingestion—l Jdisp

Last Result: Task 106 has been scheduled, Shrink
Next Step: Script Complete Zoom
(File v) (Step v) (Help..) Current Date: 00_11:00 Step: 7 (Expert)
0 100-task 100 f’ | LECECLELTTY |
0 101-task 101 P s
0 102-task 102 - MENensassunsnayd
0 103-task 103 T " FERTLLY |
0 104-task 104 [XYY |
0 105-task 105 |~ XYTRTERTY |
0 106-task 106 P« e e]

1000
-1000

Figure 7. Efficient Automated Scheduling and Resource Allocation

Resource requirements were specified with respect to individual subtasks, and FIFO
queuing constraints were not imposed. The resulting schedule is clearly superior.

All tasks were scheduled within their deadlines. The scheduler has optimized resource
utilization (as evidenced by the compact profile). And the entire group of tasks requires
only slightly more than one hour. This leaves time for an opportunistic system to initiate
several tasks such as trend analysis routines, maintenance tasks for adding new system
components, or quicker service. Moreover, using less powerful hardware could lengthen
the overall duration, but still beat the performance of the FIFO approach.

This simple example shows that a constraint-based task and resource schedule can provide
substantial improvements in system performance over simple queuing schemes. What may
not be evident are the benefits it provides through rapid rescheduling in response to
unexpected events (e.g., resource failures), and through the automation of complex
scheduling policies. These performance improvements could translate into cost savings
through the use of less expensive hardware.

173

Conclusion

The HTRS scheduler prototype has been successfully developed for the GSFC DAAC.
Special attention should be paid in the identification of the scheduler requirements and the
DADS domain model. Even though the prototype is still in its initial phase and it has not
yet been integrated into the DADS, the effort has been very informative. In particular, it
was demonstrated using realistic examples of DADS activities that a FIFO queue algorithm
can be extremely inefficient under certain conditions, and can drastically reduce the overall
performance of the DADS. The scheduler cannot only make better use of limited resources
and prevent a backlog of data, but it can also provide valuable information about resource
bottlenecks and performance characteristics. The next challenge will be to integrate HTRS
in the DADS , monitor its performance, and evaluate its benefits when running in a real
operational system such as the GSFC DAAC.

In the context of mass storage systems, scheduling can help ensure that timely service is
provided to users who expect a lot from these expensive computing facilities.” Likewise,
scheduling can be used as a simulation tool to predict the performance from adding
particular hardware. By utilizing the same scheduling environment, these simulations can
be based on real information from the operating environment and can provide quality
information for decision makers. In some cases, decision makers may avoid costly
hardware purchases by tweaking the scheduling policy algorithm. Hence, the scheduling
policy algorithm must be flexible enough to be modified quickly in order to contain
software maintenance costs. Certainly, the use of scheduling will provide better service for
users, faster processing throughput, and cheaper costs.

In fact, many of the scheduling issues presented here have arisen throughout numerous
NASA applications. Over the years, the X-OTP has provided scheduling expertise to
various projects by focusing on rapid prototyping of new technologies for mitigation of
risk, technology transfer through continued software development from prototypes, and
reduction in cost through software reuse of generic tools. By working with Honeywell
Technology Center, X-OTP is further reducing software development costs by providing
difficult requirements to companies, who can then apply developed techniques to other
commercial domains such as aviation communications scheduling. By helping companies
expand into new markets, NASA, without incurring high maintenance costs, increases the
likelihood that dual-use commercial software will survive over the lifetime of lengthy
projects such as EOS.

X-OTP, on the other hand, requires feedback from projects whose requirements push the
state-of-the-art. As intended, the GSFC DAAC, through Hughes-STX, has provided this
feedback before the larger EOSDIS has gone into operational use. The GSFC DAAC,
however, is an operational system that cannot be interrupted with technology that is too
risky. Hence, prototypes such as the IIFS can quickly test very risky technology in an
end-to-end framework without adversely affecting operations. For one thing, the ITFS
was the first system at GSFC to suggest the use of object-oriented databases for the EOS
domain. Likewise, the IIFS was the first system to suggest the use of neural networks for
classifying remote sensing data -- a technique that is now widely accepted in remote
sensing circles. And, finally, the use of this particular scheduling sofiware was based upon
aNASA internal R&D project (i.e., Directors Discretionary Fund) entitled "Near real-time
generation of Browse Products" and incorporated into the IIFS. Because of the
development of the IIFS and the close proximity to NASA projects, the Information
Science and Technology Branch has provided in-house expertise regarding emerging
technologies such as these. Moreover, in addition to applied research, the branch has
developed one of the DAACs operational quality assurance routines for the TOVS

174

pathfinder data sets. Likewise, the Space Data and Computing Division, for which the
Information Science and Technology Branch is a part of, is currently GSFC's only
supercomputing facility with an extremely large mass storage system (over 20 Terabits);
this enables feedback regarding technology integration of large, expensive systems. All in
all, elaborate collaborations such as these will obviously be required to evolve one of the
most ambitious engineering and information system projects, or namely, the Earth
Observing System.

Acknowledgments

Primary funding for this scheduling project has been provided by the Code X - Operations
Technology Program under Dr. Mel Montemerlo, NASA-HQ. Funding has also been
provided by the GSFC DAAC as well as Honeywell Technology Center. Special thanks
are extended to members of the Information Science and Technology Branch, who have
provided invaluable feedback through the use of the Intelligent Information Fusion System.

1.L. Bodden, P. Pease, JJ. Bedet, W. Rosen: Goddard Space Flight Center Version 0 Distributed Active
Archive Center. In Third Conference on Mass Storage Systems and Technologies. NASA CP-3262, 1993,
pp. 447-453.

2. H. El-Rewini, T. Lewis, H. Ali, Task Scheduling in Parallel and Distributed Systems. PTR Prentice
Hall, Englewood Cliffs, New Jersey, co. 1994

175

<'\ e
N95- 24122

e~ O

A Comparison of Rotary- and Stationary-Head Tape Recorders

John R. Watkinson
‘Resurgam’, 2 Hillside -
Run Length Limited, Burghfield Common RG7 3BQ, U.K.
Phone: +44-734-834285

Abstract

Digital recording may take advantage of many types of media, but usually a preferred type
of drive or transport emerges for each. In magnetic tape recording, two approaches have
emerged in which essentially the same medium is tracked in two radically different ways.
This paper compares the characteristics of Rotary- and Stationary-Head transports in an
attempt to establish which approach might be considered for a given application. The
conclusion is that in many cases there is no obvious choice based on recording physics and
that often the choice will be made on the experiential knowledge of the designer.

The Limits of Tape Recording

This paper restricts itself to digital recording, but in practice a tape transport does not know
the meaning of waveforms passing through its heads and media. These waveforms
experience an analog channel which has suboptimal frequency response as well as non-
linearities and various noise mechanisms. It is the discrete decision-making process of the
replay data separator which renders the entire machine digital. The channel coder in the
record section merely produces waveforms which are advantageous to a discrete data
separator. The impairments of the real channel result in a certain error rate distribution and
a suitable error correction strategy will be employed in order to meet the residual BER
demanded by the application.

Assuming an acceptable BER, tape-based data recorders are measured by the following
primary parameters: Unit cost, maintenance cost, cost per bit stored, transport and medium
size and weight, access time and transfer rate. Secondary parameters are figures which are
only critical in certain applications. These include environmental tolerance, power
consumption, speed range, startup time and so on. The storage density emerges as a critical
factor as an improvement allows the same job to be performed with a smaller, lighter
machine at a lower cost per bit. Storage density improves by paying attention to three
dimensions. Thinner tape allows a greater surface area in a given volume and allows better
conformity with the head. It does, however, require a substrate with higher tensile strength
and more precision in the tension control system of the transport. A reduced track pitch
increases density but requires a more accurate track-following mechanism, improved
means to reject crosstalk and a higher output medium to restore the noise performance.
Reduced bit-length along the track is the third dimension and demands heads with smaller
gaps, better head/tape contact, higher output media and channel codes with improved
figures of merit. In general an increase in density will raise the raw BER and require a
more powerful error correction strategy.

An improvement in superficial (or areal) density reduces access time as a shorter tape holds
the same data. Smaller reels have lower inertia and withstand harsh acceleration
environments better. The linear (along-track) density is primarily determined by magnetics
and coding, whereas the cross-track density is primarily limited by tracking accuracy which
is mechanically determined.

177
[V ,
SRECFDING PAGE BLANK NOT FILMFD ML?._INTENTIONALLY BLANK

Mechanical Considerations

The above criteria can now be examined from the alternative viewpoints of stationary and
rotary head implementations. [Reference 1].

As tracks of the order of 10 micrometers wide are in use today, clearly a single track tape is
a mechanical impossibility. A stationary head recorder will as a practical matter need to use
a significant number of parallel tracks across the tape and the bit rate will be divided
between them. These tracks will be recorded and played by multi-track head stacks. High
density machines will need active track following mechanisms physically to move the
headstack in compensation for tape weave, typically using piezo-electric or
magnetostrictive "muscles".

The track width and pitch are fixed and are determined by the head design. Crosstalk in the
form of mutual inductance may take place between the various magnetic circuits in the
headstack and this must be controlled by the introduction of spaces and/or shields between
the magnetic circuits which result in guard bands between the tracks. Photolithograpically
produced heads are better from the standpoint of mutual inductance because of their flat
construction, but spaces between the tracks are still inevitable because of the need to
arrange windings around the poles.

As an alternative interleaved headstacks may be made in which only one in N tape tracks is
furnished with a magnetic circuit. Depending on the bit rate required, the transport may
have N headstacks or may transport the tape N times through the machine in a serpentine
fashion, indexing the headstack to one of N places on each pass. If N headstacks are used,
each must have its own track following actuator. A serpentine recorder needs only one
headstack actuator, but its travel will be much longer.

To record the same bit rate, the rotary head recorder produces a large number of slant
tracks by the rapid rotation of a small number of heads. These tracks can be nearly
perpendicular to the tape motion in transverse scan recorders or nearly parallel to the tape
motion in helical scan recorders. In both cases the tracking mechanism relies upon the
cross-track component of tape linear motion which can thus be controlled by capstan
phase. The track pitch is controlled by the linear tape speed and is independent of the
dimensions of the head. It is possible to have a machine which supports more than one
track pitch so that, for example, tapes of various coercivities can be used. The heads on a
rotary scanner are not in a stack, but are distributed around the periphery so that mutual
inductance effects are negligible. Rotary transformers are required to couple the rotating
signals with the stationary signal processing circuitry and these will be prone to crosstalk,
although modern multi-head machines have rotating pre-amplifier circuitry so that the
transformers do not handle signals direct from the replay heads.

We can say that a rotary head recorder is no more than a mechanical multiplexer which lays
down tracks rapidly with few heads whereas a stationary head recorder lays the tracks
down slowly with many heads. We could well use the analogy of serial and parallel
transmission. Both approaches require active track following at high density. The
stationary head transport does this by moving the head whereas the rotary head machine
moves the tape. Thus the common criticism that rotary head machines are complex is not so
strong at high densities where a stationary head transport needs a track following servo, or
with interleaved heads, several servos.

Capstan phase control in rotary head recorders cannot accommodate track straightness
errors due to, for example, interchange inaccuracies. In this case, the rotating heads may
have an additional track following mechanism which allows the heads to be deflected along

178

the scanner axis (i.e transversely with respect to the tape track) as the scanner rotates. In
this case geometric errors within the track can be compensated. In a rotary head recorder
the head/tape interface is complex. The revolving scanner builds up an air film and the film
thickness stabilizes when the tape tension balances the air pressure. This is one reason why
tape tension is critical in rotary head recorders. As a result of the air film the scanner itself
does not touch the tape and friction around it is very low. The head pole must project out of
the scanner by a distance equal to the film thickness plus an amount needed to deform the
tape to give the required contact pressure. The traveling deformity in the tape results in
acoustic noise which may need attenuation in some applications. The linear speed of the
head with respect to the tape must be kept below the propagation speed in the tape to avoid
the creation of mechanical shock waves which result in rapid wear. At the relative speeds
involved, there is appreciable aecrodynamic lift attempting to separate the head and the tape.
The conditions are in a region midway between the firm contact of a slow speed stationary
head tape and the non-contact system of a hard disk. The wear reducing properties of the
lift can be balanced against separation loss. In practice head wear is greater on new tapes
where asperities are linished by the heads. Older tapes show reduced head wear and error
rates.

Head Design

Naturally rotary heads experience high frequencies and the magnetic circuit must be
constructed is such a way that eddy current losses are minimized. Ferrite is non conductive
but saturates before today's high coercivity tapes can be fully modulated. Metal pole tips
can be fitted to ferrite bodies, or lamination or sintering can be used to raise head
resistivity. A single head may reach 200 megabits/second, but in practice lower figures are
used for other reasons such as the need to distribute data over several heads to give
resistance to clogging or to reduce the frequency at which the associated circuitry must
operate. Whilst the reading speed has no effect on most types of noise, raising the speed
does increase the replay signal in proportion and so the effect of head and preamplifier
noise is reduced.

Conversely inductive heads are at a disadvantage at low relative speeds. For a given bit
rate, stationary head, or parallel recording, implies low frequencies where magneto-
resistive heads with their non-derivative action give a noise advantage. There is a
changeover at approximately one megabit per second where the two types are roughly
equal in performance. Thus in general rotary head recorders use inductive heads where
eddy current losses are a concern whereas stationary head recorders will use magneto-
resistive heads where eddy current losses are insignificant unless prodigious bit rates are
envisaged.

Apart from the requirement for the appropriate magnetic orientation for transverse scan,
there is little difference in the magnetics between tape intended for rotary and for stationary
head machines. Therefore any development in tape technology is available to both.
Similarly developments in channel coding and signal processing are also available to both.
Rotary head recorders require smaller DC components in channel codes due to the presence
of the rotary transformers, although in practice both types of machine have been seen with
the same channel code. Similarly techniques such as partial response are equally applicable.

In error correction, stationary head recorders see defects in several tracks simultaneously
and need to interleave by distributing codewords over several heads to restrict their impact.
Rotary head recorders to an extent interleave mechanically as a circular dropout appears as
a spaced out series of defects in successive head scans.

179

One significant difference between serial and parallel recording is that the rotary head
recorder is naturally complemented by the adoption of azimuth recording. Rotary head
transports have a small number of heads and these are spaced apart physically. It is easy to
make such heads (minimum two) with alternating azimuth angles. If a suitable channel
code is employed to restrict the ratio of maximum and minimum wavelengths, erasure by
overwrite can be employed. Not only does this eliminate the erase head, it allows the track
width to be determined by the tape speed and not the head design. If the poles of the record
head are made wider than the track pitch, part of the side of a given track will be erased by
the next track to be written. Azimuth effect allows replay heads to read these adjacent tracks
despite the lack of a guard band. As a result azimuth recording has come to be synonymous
with the term guard-band-less recording.

Tapes of different coercivity can be handled by choosing an appropriate track width and
driving the tape at a suitable linear speed. This approach is used in RDAT which can
operate with 13 micrometer tracks on metal particle tape but which uses 20 micrometer
tracks on barium ferrite tape which is required for contact duplication.

In principle certain aspects of azimuth recording can be used with stationary heads, and
such devices are known if uncommon. In one implementation, two interleaved headstacks
are used, one of each azimuth type. The first head writes tracks which are oversized, and
the second writes tracks of the correct width between the others, side trimming them to size
by overwrite. In practice it is difficult to fabricate multitrack heads with azimuth angles
other than 90 degrees. This applies to conventional heads as well as those which are
fabricated using photolithography.

Variable Speed

The different transport designs react differently to the requirement to operate at variable
speed. It is necessary to be quite precise about the kind of variable speed operation being
considered. In instrumentation, variable speed operation implies that the timebase of the
recording and reproduce processes is different, but all of the data are fully recovered. This
allows, for example, the high data rate of a practical experiment to be recorded as it occurs,
but reproduced at a rate appropriate for the analysis process, which may well have a
restriction such as the 1/0 speed of a computer. A linescan recording from a high speed
airplane may be studied at leisure on a display.

On the other hand the requirement in a digital video recorder is only that a recognizable
picture shall be available at non-standard speeds, and so a great deal of data can be lost.

In computation, the transfer rate of a given drive is usually fixed, but a variety of drives
may be available, at different costs, which can offer different transfer rates on a common
interchange medium.

In a stationary head recorder, the data rate from the heads is directly proportional to the tape
speed. If a variable bit rate is required, then changing the tape speed will require a
corresponding change in any record or reproduce equalization in every active track. In
machines with a large number of tracks this becomes very complex. At high speeds the
frequencies seen by the heads become very large. This precludes the use of stationary
heads for production (as opposed to consumer) video recording. Although normal speed
operation is perfectly feasible, high shuttle speeds (100x - 200x) cannot produce pictures.

Rotary head recorders are not capable of operating over a wide range of transfer rates
where no data are lost. This is because the transport aerodynamics must be optimized for

180

one speed. Changing the transfer rate requires the scanner and capstan to change speed by
the same amount and this results in a significant change to the pumping effect of the
scanner, with consequent changes to the air film thickness and tip penetration.

The helical scan recorder is advantageous for digital video recording because the tracks are
nearly parallel to the tape edge. When the tape is driven linearly at the wrong speed, the
scanner speed is not changed in proportion and so the tracking breaks down. Despite that it
is possible to recover around 40% of data as heads cross tracks at a grazing angle.
Provided the track crossing angle is sufficiently shallow, sync blocks on the track can be
recovered and if they are uniquely addressed the data can be used to update a frame store.
A further advantage of helical scan is that the head to tape speed is dominated by the
scanner speed. As a result it is possible to maintain a reasonably constant head to tape
speed over a wide linear tape speed range simply by modulating the scanner speed. The
result is that the replay electronics will see constant frequencies and their data separators
will operate normally.

The short tracks of the transverse scan recorder are almost at right angles to the tape motion
and as a result the length of track recovered at shuttle speed is too small to allow sync
blocks to be recovered. Thus the transverse scan machine is at a disadvantage for the
production video recorder market where pictures in shuttle are mandatory.

Video recorders fitted with deflecting heads are capable of following entire tracks over a
range of speeds typically from -1 to +3. When a helical scan transport records, the tape is
wrapped around the scanner at the helix angle, which is determined by the construction of
the scanner. However, the tape is moving as the scanner rotates, and the result is that the
track angle differs from the helix angle. Thus variations in tape linear speed affect the
effective track angle, and the head must be deflected by a ramp waveform to follow. The
steepness of the ramp is proportional to the deviation from normal speed. It is possible to
use the head deflection mechanism of a rotary head recorder to increase the proportion of
data recovered during shuttle.

In instrumentation recording, incremental operation is becoming popular. In an incremental
recorder, the transport and data channel are optimized for a single data rate, and all lower
rates are implemented via a buffer memory which absorbs input data until the transport can
run at speed and record a whole block. Similarly on replay data are output at any rate from
the memory and the transport runs in bursts in order to keep the memory topped up.
Incremental recording has been seen on stationary head, transverse and helical scan
machines, but all are not equally suitable.

An bit rates near to maximum, the size of the memory is a function of the data rate and the
time taken for the transport to change mode. At high density, it is not acceptable to leave
IRGs (inter record gaps) in between increments. In practice, at the end of an increment the
transport will cease writing, stop, reverse a short way and wait. On writing the next
increment the transport will accelerate to speed (pre-roll) and read the end of its last
increment so that the new data can be appended conti guously after the old in an assemble
edit. This avoids the creation of a gap on the tape. However, the memory must be able to
absorb virtually the full data rate for the time taken to reposition and pre-roll.

At bit rates well below maximum, the transport spends only a small proportion of time
transferring data. The rest of the time it is idle or repositioning. An idle stationary head
recorder does not suffer head wear as there is no relative motion. However, rotary head
recorders must keep the scanner running in order to eliminate the lengthy acceleration
period. There is thus a potential headwear problem which can only be avoided by
unwrapping the tape from the scanner. The transport then enters a standby mode. The time

181

Q

taken to go between standby and functional modes must be added to the reposition time and
so determines the memory capacity required at low speeds.

In helical scan, unwrapping is a complex process which requires the operation of several
moving guides and which takes an appreciable time. On the other hand a transverse scan
rotary head transport can be unwrapped simply by retracting the single cupped guide which
conforms the tape to the scanner. This can be done in milliseconds with a solenoid. As a
result the transverse scan rotary head transport finds itself at an advantage in the

incremental recording application as smaller buffer memory is needed.

Size

Size means different things in different applications. In some cases it is the size of the tape
reel or cassette which is important, especially if it needs to be shipped. On the other hand it
may be that the overall size of the recorder is restricted, for example in airborne
installations.

Tape cassettes are advantageous in that they protect the tape well from handling damage
and require little skill to insert in the transport. However, cassettes are at a disadvantage for
shipping because they are volumetrically inefficient. A cassette contains two reels, but
when one is full, the other must be empty. As a result, instrumentation users will
sometimes choose to retain open reels when really large quantities of data must be shipped
on tape.

Where overall size matters, the choice of cassette or open reel becomes irrelevant as two
reels are needed by both. The stationary head transport can be made very compactly as the
head block takes up very little space. In contrast the scanner and threading mechanism in a
helical scan transport will take up appreciable space, often making the deck area double that
of the cassette. The transverse scan desi gn is appreciably more compact as the headwheel
has a much smaller diameter and the axis of rotation is parallel to the tape. The threading
mechanism is trivial and takes up little space.

Ruggedness

In harsh environments differences will be found between transport designs. The helical
scan transport is most sensitive as the large scanner has appreciable inertia and can generate
large precessive forces and timing errors in a mobile or airborne environment. It is also the
most critical on tape tension as variations cause changes in air film thickness and also result
in changes in track angle which may cause interchange problems. Humidity changes can
also affect the track angle in helical scan whereas transverse and stationary head recordings
are unaffected.

Abstractions

When a helical scan recording is played at the wrong speed, parts of the track are
recovered, allowing typically 40% of the data to be recovered. If , however, the tape s

is normal, but the scanner is driven at around twice the correct speed, then full data
recovery is possible. Sync blocks will be recovered non-sequentially, and block addressing
will be used to return the data to its correct sequence in memory. Error correction restores

182

any sync blocks that are not recovered. This is the principle of the non-tracking (NT) rotary
head recorder which clearly needs no adjustment for interchange.

In principle, an NT transport could play tapes having a variety of footprints provided the
heads were of the appropriate azimuth angle and approximately the right width.

Non-Tracking is an attractive technology as instead of requiring increasing precision to
allow narrower tracks, NT dispenses with the need for tracking altogether and, indeed
depends upon severe mistracking to allow the sync blocks to be recovered in a statistical
manner over several head sweeps. Thus an NT player can play tapes having a variety of
track angles. If azimuth recording is used, tracks of various width can also be played.
Following this argument further, it should be possible to play a stationary head multi-track
recording using a NT helical scan transport. Provided the azimuth of the heads is
appropriate, sync blocks can be recovered as the heads cross the tape tracks. Deflecting
heads could be employed to increase the proportion of data recovered on each head sweep.

The converse argument is that, subject to details such as azimuth, a stationary head
transport fitted with track following heads should in principle be able to play a helical scan
tape by deflecting the heads at an appropriate speed to replicate the helical track angle. If
several such heads are fitted, one can be resetting whilst another crosses the tape. This is a
messy arrangement and is advanced only as an introduction to a better approach.

Magneto-optical readout has primarily been addressed to disk recording where the
magneto-optic element is in the disk itself. It is, however possible to use magneto-optics to
read conventional magnetic tape. This requires that the magneto-optic element is in the
head. Briefly, a head is made having two poles and a narrow gap, but which is wide
enough to span the entire width of the tape. A given track on the tape will cause the area of
one of the poles above said track to follow the track magnetization. If polarized light is
incident on the head pole, the reflected light will have that polarization rotated. A suitable
analyzer can turn the rotation into an intensity variation which a sensor can detect.
However, the sensor is a linear sensor which develops a one dimensional image of the
cross-track magnetism. Any number or layout of tracks can be handled simply by sampling
the cross track image at the appropriate points. If the sensor is, for example, a linear CCD
element, the cross track image can be shifted out and analyzed in a software driven
process. Thus track weave of a stationary head recording can be eliminated by shifting the
sampling points in sympathy.

If, however, a helical scan recording is played, the slant tracks appear to continuously drift
across the image. As one is lost at one edge of the head, another begins at the other edge.
Again, subject to azimuth, it is possible to play a helical scan recording on a stationary head
magneto-optic transport. Although the head is physical stationary, it has virtual movement
by way of following the images of continuous slant tracks in the analysis process.

Thus in the limit, rotary head recorders can be made to play stationary head tapes and vice
versa, suggesting that the techniques are not all that different. The rotary and stationary
approaches are both complex as density rises, but the non-tracking principle may give the
edge to the rotary transport in the future, with competition from magneto-optic replay in
stationary head design.

To illustrate that nothing is new, in W.W.II a German fixed head audio tape recorder
intended for dictation was fitted with a rotary playback head so that it could reproduce
speech without pitch change over a wide range of linear tape speeds.

1. Watkinson, J.R. The Art of Data Recording, Chapters 7 and 8. Oxford: Focal Press (1994) ISBN 0 240
51309 6.

183

N95- 24123

Client/Server Data Serving for High Performance Computing 7375 7

Chris Wood -/f/' / 7

Maximum Strategy Incorporated
801 Buckeye Court, Milpitas CA. 95035
chrisw@maxstrat.com
408-383-1600
408-383-1616 (fax)
Abstract

This paper will attempt to examine the industry requirements for shared network data
storage and sustained high speed (10’s to 100’s to thousands of megabytes per second)
network data serving via the NES and FTP protocol suite. It will discuss the current
structural and architectural impediments to achieving these soris of data rates cost
effectively today on many general purpose servers and will describe an architecture and
resulting product family that addresses these problems.

The sustained performance levels that were achieved in the lab will be shown as well as a
discussion of early customer experiences utilizing both the HIPPI-IP and ATM OC3-IP
network interfaces.

Introduction:

Back in the dark ages, about the time that touch-tone telephones were coming into VOgue,
computers were simple things that read in some data and a program, processed the data
and spit out the answer. Data storage
typically consisted of small amounts of core
memory, card reader/punch machines and
maybe a tape drive. Disk storage added the
dimension of random access to data, but
was typically directly attached to the central
processor by any number of proprietary I/O
schemes'

Data sharing

Early customers in the high performance
arena often owned several processors: one
or two very large number-crunches and
several smaller machines used to prepare
the data for the large machine and/or print
the output stream generated by the number crunchers’. A typical installation might have
looked like that shown in Figure 1.

Figure 1: Traditional Supercomputer Center

Sharing of data across computing platforms was typically done by copying data located on
one processor to tape and reading it on another. Just attaching disk storage to multiple

PR 185 v
.ECEDING PAGE BLANK NOT FILMED PAGE | INTENTIONALLY BLANK

processors did not address the problem since most processors utilized different physical
and logical attachments. Even if two machines, by chance, could physically share a disk
storage device, different machines wrote and read data in different ways and could not
access each others data.

Some early solutions involved the use of black boxes that attempted to mate different
interfaces and address data format incompatibilities. The large number of interfaces and
file structures in use today (and growing!) tended to work against this type of an
interconnect solution’. In an early, and very innovative, attempt to address the problem of
incompatible file systems, the Los Alamos Lab’s created the Common File System (CFS)*
on an IBM mainframe base. Architecturally, CFS could be considered to be the first
implementation of networked data serving. It addressed the issues of data sharing amongst
heterogeneous hardware platforms, incompatible file systems (e.g. its name...Common File
System) and the problem of incompatible physical I/O attachment schemes - although this
was often accomplished via “black box” I/O mating hardware.

The ever growing complexity of the “black box” solution for heterogeneous platform
interconnect ruled this method out as a long term answer to seamless data sharing.
Alternatively, all vendors could adopt a common file system and I/O structure. This was
thought unlikely.

Client/Server to the rescue?

A little over ten years ago, a group of UNIX architects at Sun Microsystems realized that
the only way to address the data sharing problem (as well as data currency, consistency
and access) was to remove the “ownership” of the data from the compute processor (the
entity who processes the data) in a manner similar to that utilized by CFS and store it on

an independent “server” who’s only job is to store and retrieve that data when requested
to do so by the compute processor (e.g. the “client”). Most importantly, they also defined
a standard way to access the data that would be independent of any particular physical file
system and physical interconnect. Thus was born the Network File System (NES); the
original foundation of client/server computing.

Speed limit: 5 MPH.

DEC talking to IBM, SGI communing with HP, The USSR making peace with the USA!
All these things became true; unfortunately the Cold War lasted 50 years and that seems to
be how long (in a relative sense) any self respecting high performance computer seems to
have to wait for data from its “server” today. The convince of sharing data across many
platforms comes at a price - speed. NFS (and essentially any exportable file system
available today) is primarily hamstrung by three major bottlenecks:

1. The speed that the server’s disk subsystem can deliver data to the NFS server, and

2. The speed that the NFS server can process this data through its own file system and
encapsulate (packetize) this data with the UDP and IP network protocols and deliver it
to the network fabric, and

3. The finite usable speed of the fabric’.

186

Protocol Stack <
Focus should
be here!

I 6gical Voltime Menager
Virtual Memery Manager
”~ Device Driver

d Drive

[&Jﬁ = /O Bus
hog

Bus
ard
& Drive
ic
‘ Your Data is here...

Figure 2: Disk I/O protocol stack

Disk /O Subsystem /
Focus is too often here /_

LS

Slow... Fast

Block I/O (raw) I/O Sector 1/O
(~1.5 MB/Sec.) (~4 MB/Sec)) (~5 MB/Sec.)
— —— - - — > - ———

Ethernet, at 10 Mbit/second focused
everybody on item three because of its
low usable bandwidth and, after some
frustration, begat FDDI (and later HIPPI,
Fibre Channel and ATM) which was
supposed to be 10 times faster. To
everybody’s amazement, they did not get
10X the data rate, they got 2-3X the data
on a good day and often less. Adding
more FDDI rings, routers, bridges and
other network paraphernalia did not seem
to help. Just speeding up the fabric did
not seem to be the answer. Items one and
two were now the gate, but seemed to
have received less attention by industry
over the past several years than may have
been deserved®.

Figure 3: Effective data rate through a UNIX platform

The real culprits exposed!

For an NFS server to deliver data to a
client it first has to read the data off the
disk subsystem in the server. In a typical
UNIX environment the software protocol
stack would look something like that
shown in Figure two. If you measure

1/O Buffers Memory '-——Device
File System Manager Driver

actual disk data rates starting at the disk
interface and working your way towards an application (e.g. NFS server or a user
application) the effective delivered rate decreases with each step up the protocol stack.
Figure three illustrates this point graphically7. Fast disk I/0 becomes slow disk data by the
time it reaches the requesting application. A typical SCSI disk of recent vintage can
deliver about 5 megabytes a second of user data off the media. By the time the data has
traversed the protocol stack labyrinth, the sustained delivery rate has often decreased to
about 1.5 megabytes a second. Most storage subsystems' are not capable of delivering
high sustained bandwidth to the requesting application; be it the NFS server or a users
application.

Incrementalism; Disk striping, data caches and other software improvements.

Various incremental methods have been proposed and/or implemented in a limited sense to
attempt to address this problem. The most common of these is disk striping wherein the
disk device drivers and (usually) the layer of code that performs the function of the logical
volume manager are modified to break up a users data record into smaller chunks and
write (stripe) these chunks onto multiple disks simultaneously. Various RAID types may

' A “storage subsystem”, as used here, represents the complete collection of components necessary to
deliver data to the requesting application: Disk drives, /O cards, software layers, file systems, etc.

187

also be imbedded in the software to increase data availability. Some high data rates have
been achieved under laboratory conditions by using this method but they typically required
extremely large data request sizes on the order of multiple 100’s of megabytes or more

¥

ical hi AN
T:ffl:):ram::?; (2 ﬁ ////5///5%
performance 18 EIFSLN . @
workstation i & E‘%\W%/%
o g BefEin //g /
with striping 9 wlp §§M/z%// .
SCSldevice | & 1§%% 7
drivers. : i\ ?%7 /

RN

A A —.

i. N\ APPLICATION
~80%

.

RS
§\ SN
l

High Performance Storage Server

Figure 4: Software vs. Hardware striping

that are primarily sequential single
stream/single user in nature.® By definition, a
shared network server must deliver multiple
streams of data to multiple users. BEach
network request, when using the NFS
protocol, is limited to 8 kilobyte datagrams
under NFS-2 and 60 kilobyte datagrams
under NFS-3. Software disk striping, at least
as currently implemented, does not seem to
be the answer.

Massive data caching can address some of
these concerns by preemptively reading
ahead (i.e. turning small user requests into
large /O requests) multiple megabytes of
data in order to achieve high bandwidth from
the disk subsystem. Depending on the
locality of reference, sequential (or non
sequential) nature of the clients data access
patterns, caching may or may not help. In all
cases, allocating large amounts of main
memory for preemptive disk caching is not
cheap nor always possible without additional

modification to most file systems and virtual memory managers.

Striping, and optionally software RAID artifacts, tend to add significant overhead to basic
I/O operations. A 4+P RAID 5 stripe implemented on a set of generic SCSI drives and
adapters requires 5 invocations of the basic disk I/0 protocol stack (SCSI disk driver, card
driver and unique device head codes) all contending for system I/O bus bandwidth and
main memory access. Data transfer is not really parallel due to the Von Nuemann nature
of most machines; rather it is (hopefully) rapidly interleaved in such a way as to appear
parallel in nature to the requester. Sitting on top of these multiple device drivers would be
a “collection manager” who’s role in life is to re-assemble the users data records out of the
disk chunks read by the device drivers (or on a write operation perform the “chunking” of
the data records), verify correct parity and pass the re-assembled records to the user

and/or to the file system buffer space.

We have noticed that it required approximately 5% of a large UNIX servers compute
cycles to sustain a 4-5 megabyte per second data stream at the raw interface’. With the
addition of “collection manager” overhead and optionally a software RAID function, the
I/O overhead actually experienced by the user would be higher. To hypothetically sustain a
50 megabyte per second striped SCSI stream at the raw interface may consume up to 50-
60% of a typical servers available cycles; thus not leaving much for any useful work such

188

as actually delivering data to a client

application. A better way to deliver data

Client/Server..... HNefwe Systeml |t the NFS server needs to be found.
The performance Focus Here for —
conundrum Performance”” -—Blodkiterface
Physical File System The search for a better way
- — Rawiiaacs
Logical Volume Maragel | Based on what has been discussed
al Memory Manager iousl ized th ;
~Device Driver previously, we recognized that using a
.. VO Card Diver {/O Card Driver general purpose UNIX (or other OS)
B B ‘ compute platform as a “data bus” is
Adapter inefficient, costly and may never deliver
J .o the performance required to satisfy the
You k data absorption rate demanded by large
- / Your Data SOrp Dy farg
—_— HPC clients no matter what modifications
Figure 5: Disk and network protocol stacks we made to the software. Through-
memory data transfer, system bus
contention and general purpose 1O

drivers were not designed to efficiently deliver high, sustained data rates and, when used in
that capacity, deliver sub-optimal bit rates to your network clients.

Unfortunately, the worst is still to come. Assuming that the NFS server code finally gets
the data it needs from the physical file system, the disk data blocks have to be sized to the
users actual NFS request, packetized into datagrams and shipped over some fabric via IP
protocol. Please see Figure 5 for a diagram of this protocol stack. As should be no
surprise to the reader, another complete software protocol stack comes into play here
further impacting the ability of a server to deliver meaningful data rates. Imagine all those
little TP packets interrupting the /O bus all the time, the OS frantically moving bits of data
here and there through memory and the IP, UDP and LAN drivers all contending for
precious CPU cycles. Performance problems are inevitable.

To eliminate these data bottlenecks you have to re-architect and completely re-define what
a “server” is from the ground up. From our prior discussion, I think we can safely agree
that it is not a workstation with lots of disk and some LAN cards. What it must be is a
machine designed to manage and move large amounts of data efficiently and rapidly from
disk storage to a fabric. Essentially, it should connect the disk subsystem directly to the
network. It should scale (i.e. grow in usable bandwidth) as the clients and, as a second
order, the request rate grows with no loss in performance. Since we are suggesting that
many users entrust their crown jewels (i.e. data) to this machine, it should offer complete
redundancy, virtually 7X24 access to the “jewels” and a bullet proof file system and
backup scheme. A failure affects 10’s to 100’s of users, not just one or two. Since we are
addressing high speed transfer of very large files on the order of multiple megabytes to
gigabytes, file system corruption and/or physical disk storage failure could be catastrophic.

Client/Server network performance requirements definition

In order to solve the performance conundrum described above and design a file server
capable of truly utilizing high bandwidth fabrics (e.g. ATM, FCS) you have to start with a

189

set of design points far above what
has, to date, been deemed as Nomograph of File Size Bandwidth & Time
acceptable. Some of these points that W HP o e e 1ee .

we picked for our initial design were as | 5, e p fem Db s T “word

Pare oo,
follows: L@LI\J le;l - L Sk .IJ'(%)

1. Sustained data delivery rates in
excess of 50 Megabytes a second A
in order to utilize the bandwidth ol g
offered by FCS and/or multiple N
OC3 ATM links. As faster fabrics |
become available the server must

(Bits/Second)

5
W 0 6 w0’ 107 ko

;
-+ ¥ e
19 19 ¥

be designed to accommodate them Tme : ' T T ﬁ!‘s‘“‘“’
without extensive redesign of the Nen ek
architecture. '

2. A scaleable design where the Figure 6: Data Demand by pplications

servers network bandwidth grows

with the addition of more network ports vs. most current architectures where
additional network ports deliver additional connectivity and fault tolerance but not
necessarily more bandwidth'®.

3. Sufficient storage capacity to address the large data objects that graphical and “grand
challenge” type applications tend to generate coupled to enough internal bandwidth to
allow the server to access its storage subsystem fast enough to serve, for instance,
multiple 155 megabit ATM OCS3 links at rated speed.

4. 100% fault tolerance and 7x24 data availability for the reasons previously described.

Does anybody really need this?

Firstly, as sort of a reality check on the above specifications, we decided to more
accurately understand if there is really strong market demand for extremely fast NFS/FTP
servers. Earlier in this article, we discussed what was plaguing current server designs, but
we did not discuss whether the user demand was 2X, 5X, 10X or whatever. Mark Seagert
and Dale Nielsen at the Lawrence Livermore Computing Lab developed a model to
illustrate the “data demand” of various compute platforms and/or applications. A version
of that model, expressed as a Nomograph is shown in Figure 6'!.

The upper line, representing some common high performance computers aggregate data
demand is compared to the lower line representing time (e.g., how long will a user wait
for the data). Transmission speed (the middle line) can then be extrapolated from the size
of the data object and the users “patience”. We quickly realized that today’s HPC demand
is in the 100’s of megabytes a second and growing fast.

We also interviewed most of our major customers and were able to identify four basic
client/server application sets that had broad applicability in both the HPC community and
the general commercial marketplace and required high sustained data delivery rates to
perform well.

190

1. Animation: The studio standard for uncompressed, high resolution video is the D1 bit
stream at 270 Megabits a second. Failure to deliver and sustain this isochronous bit
stream will not allow for full motion playback of the digitized clip. All major studios,
post-production and special effect houses are investing heavily in animation studios.

2 Simulation codes ability to accurately predict behavior improve as the number of
points measured and the depth and width of the data stack associated with each point
increases. From data preparation on workstations through large scale computing and
eventual output display on frame buffers, massive amounts of data must flow through
the network quickly and efficiently.

3. Data Mining: The “killer app” of the Ninety’s says it all: Sifting through vast quantities
of data to extract information useful to the client. Speed of data access (e.g. time to
market) is everything.

4 Non-coded data storage and delivery; the collection of applications that concern
themselves with the processing of non-coded (e.g. Video on demand, multi media, raw
seismic data, high speed telemetry, image and pattern recognition etc.) data either deal
with extremely large objects or deal with demanding isochronous data flow or, in
many cases, both.

Based on the above and other D

ata Distribution: Massively Parallel Processin
market research we conclude

1 *Storage Server”
that a large (and .growmg) Storage Sarve .
segment of the chent/seryer MPP Todey Sweroste MPP Tomorrow "Flls Serve
market could use a very high “o.LNS) - over FEYAM

performance data server.

The MPP issue

The movement of massively
parallel MIMD machines into the
commercial sector coupled with
the expected growth of full

> FCSIATM
Fabric

motion video _ data | puarngl storage/Internal Distribution & ~ External Storage/Externai Distribution
representations virtually *. HIPPIFCS
guarantees that today’s 9 Server

Figure 7: Data serving in a MPP environment

generation of servers will not be
able to satisfy the data demand
that these new applications and parallel processors will require to operate efficiently.
Commercial applications tend to exacerbate the classic problems of delivering a large
MIMD machine enough data to the correct node on a timely basis so as to actually utilize
the massive compute power that it can bring to bear. Figure seven illustrates a conceptual
idea of how very high bandwidth data serving might address this well known problem.

We are currently working with certain MPP vendors to further refine and validate the
concept of massively parallel external data distribution.

Rising to the “grand” challenge

191

We realized that several challenges would have to be overcome to realize true high
performance NFS and FTP bandwidth. Starting at the network access side, we recognized
that we would have to provide multiple independent network ports which could be mixed
or matched in any combination due to the heterogeneous nature of most users hardware
install base. (Please see Figure 8.) HIPPI-IP, ATM-IP and Fibre Channel-IP were chosen

to be the first three network

interfaces supported for the

following reasons:

1 HIPPI, while somewhat costly

and not as flexible as ATM and
Fibre Channel, is here today,

supports 800 megabit transfer
speeds and is supported on most

,,,,, all high performance
stadat Command workstations, MPP’s and
— Flow traditional super computers.

2. ATM is rapidly developing into

Figure 8: High Speed Server data flow ... the high speed LAN/WAN of

choice and, again enjoys near
universal acceptance. While OC3 speeds of 155 megabits/second are lower that the full
rated speed of our design, most clients cannot currently absorb IP data rates even that
high. We recognized that as OC12 capable clients emerge, we would be well
positioned to support that data rate.

3. The Fibre Channel Standard (FCS) supports gigabit transfer rates, is mature in its
specifications and has been adopted publicly by IBM, HP and SUN. Other workstation
vendors have told us that they plan to support this standard, at both quarter and full
speed implementations, during 1995

We considered FDDI and 10 megabit Ethernet but decided not to directly support these
interfaces primarily because they lacked the bandwidth to support the marketplace we
were interested in addressing and interconnection to these legacy networks could be
handled by numerous vendors of routers and switches'?.

Outboard protocol processing

In order to achieve the scaleability criterion described earlier, we equipped each network
port with its own integrated protocol engine to handle the IP, TCP or UDP protocol
stacks completely within the attachment port. In addition, and modeled after some of the
seminal work performed by the National Storage Lab (NSL) and others", we recognized
the need to separate the command and control paths from the actual user data transfer
paths so as to maximize the speed and efficiency of our internal data bus while providing
for completely asynchronous and concurrent command flows.

Specifically, in the design we implemented, the outboard protocol stack engines strip the

NFS and/or FTP payloads (RPCs) out of the network IP packets and route them off for
processing by an independent dedicated filesystem processor. It is at least metaphorically

192

N R R

File metadata backstore

@ @ Data Flow and Buffering
proFILE® XL File Server

2 2 2 2
mB| | ||MB||MB MB

DSTSRC| | DSTSRC| | DSTSRC DSTSRC| ATM

.A'.' @ ! 10"

32
me

cpu || wo
Fi

ile Server
Control

youe

Storage
Control

Ethemet and
Serial VO

Command/Control Bus

T [

Hi-Speed Data Bus {200 Mbytes/sec) x2
Iy

1 .4

TYY Y
oned

Q
=
O
o
=
O
o
Z oond
(9]

Figure 9: proFILE XL Data Flow and Buffering

correct to view the server’s filesystem as a hardware file system rather than a shared
software construct. A design of this nature allows the protocol engines to scale up as
network connections are added to keep protocol handling from bogging down the server
as users add connectivity and/or clients. This implementation addresses one of problems
with today’s fully software based servers, they do not scale well with connectivity and/or
client load.

Filesystem processing and storage management

The file system processor, currently a Motorola 68060, accesses metadata (file identifier
and i-node data) from a internal 32 MB local cache backed up by dedicated mirrored
(RAID 1) metadata disks attached to both the file system processor and the storage
manager processor on a local SCSI bus that is independent of the SCSI busses used to
transfer user data. The local metadata cache is large enough to hold the metadata required
to open and access approximately 50,000 user files under normal circumstances. Internal
caching of filesystem metadata drastically reduces the time required to locate and access
the appropriate user data disk in order to fulfill a NFS transfer request.

Connected to the File System Processor over a short inter-processor VME bus is a
second, identical processor, the Storage Manager Processor, dedicated to managing the

193

physical organization of the user data and in setting up the transfers of the requested user
data from the network ports either to disk or to the small write behind (fast write) caches
located in the Device Module Controllers (DMC’s). The DMC’s are responsible for the
attachment of the physical disk subsystem and can be considered to be “hardware” device
drivers - please see Figure 9 This second processor, operating concurrently with the File
System Processor manages the internal RAID 5 organization of the disk backstore, is
responsible for management of the DMC write behind caches and controls any required
recovery/rebuild processes should there be a failure of one of the DMC’s and/or it’s
attached disks'*. The Storage Manager Processor sets up, but does not manage, all data
transfers from the DMC caches or disks to the appropriate network ports and vice versa
Over the command bus, the Storage Manager Processor instructs the DMC(s) to read or
write the required number of blocks of data on/off each DMC’s directly attached disk
drives and transfer those disk blocks directly up to the network ports over the servers
internal high speed data busses.

This function segregation between the File System Processor, The Storage Manager
Processor and the multiple Protocol Processors has allowed us to not only scale the server
as client connectivity and data demand grows but to tune each hardware process to
efficiently implement just the functions that it was designed for and no others'*. We refer
to this design methodology as “MacroRISC"™ design: “Only those functions most
needed shall be implemented on a processor and that processor shall be a RISC processor
that efficiently implements those functions.”

Internal data transfer bandwidth

The current design implements two (2) 200 megabyte/second redundant data transfer
busses attached to the network ports and the DMC’s via custom designed low latency chip
sets. The replacement of through memory data transfer by internal “third party” transfers
over 400 megabyte/second worth of hardware bandwidth eliminates another of the
performance bottlenecks experienced by software only server architectures.

Each DMC is equipped with a Motorola 68020 processor that allows it to maintain its
own queue of work and operate asychronously and concurrently with all other processes
within the server. Under ideal conditions up to 24 simultaneous SCSI lower interface data
transfer operations can be going on delivering an aggregate internal data transfer
bandwidth of over 160 megabytes a second'’. This 24-wide striped I/O subsystem allows
for 100’s of gigabytes of storage to be attached efficiently (e. g. no more than four LUNS
on a SCSI bus) and could allow for the attachment of integrated tape backup systems, if
desired, sometime in the future. Conceptually, what this distributed design does is to
connect one or more disk drives directly to the network with no intervening software
protocol stacks or memory bandwidth limitations.

Data availability
The File System Processor and the Storage Manager Processor are identical in hardware

design and are designed to back each other up. They constantly monitor each others health
and maintain mirrored metadata caches and system status latches. Should one of the two

194

processors fail, the other is capable of

Server 74

=

performing both the filesystem function and 8888
the storage manager function albeit at a 0000
significantly reduced level of performance. 0000
. - . 0ono
This takeover capability leads to increased 0000
leYels qf data availability as seen by the B_HBB
using clients. 0000
32 Bit HIPPI W/ oo

0000

A full UNIX-like system administration 8x8 Switch 0000

shell, implemented on its own
administration processor, is provided for
operational consistency with existing UNIX
servers. A GUI interface for this shell is
planned for mid ‘95 availability. Hot
pluggable disks, imbedded RAID 0,1,3,5

b R]

hardware and N+1 power with an
integrated uninterruptible power supply OC3 ATM W/Switch
(UPS) complete the data availability aspects |Figure 10: Early lab test bed

L

[ProFile XL®

of the package.
Measured performance and early customer experience:

When we set out to initially test the performance of beta level machines in our lab we
rapidly realized that the existing “industry standard” NFS test suites based on LADDIS
type workloads or the older NFS “stones” type of tests were not appropriate for this type
of server. LADDIS and “stones” type tests are oriented towards measuring short, fast
OLTP type workloads and not towards measuring sustained throughput of large files.
Additionally, since we have optimized the server towards NFS-3 large datagram
performance (although it also fully supports NFS-2 workloads) measuring short (e.g. 8K
or less) requests would not allow us to test the sustained large datagram transfer rate. FTP
performance was easier since measuring “throughput” is a simple matter of measuring how
fast files of various sizes actually are transferred to various clients.

What to measure?

What we decided to use as a metric to represent data throughput was to measure the
servers ability to deliver “N” Datagrams per Second, wherein datagrams can range in size
from 8K (NFS-2 limit) to 60K (NFS-3). Sustained Throughput is the product of N and the
datagram size.

During November and December of 1994 we were able to begin testing with beta level
hardware and code. Recognizing that we did not have any client machines fast enough to
drive the server to its limits we slightly modified one of our early servers to enable it to act
as a fast client machine (See Figure 10). All initial measurements were taken utilizing 32

195

bit HIPPI channels. A later set was taken using OC3 ATM.? The graph (Figure 11) shows
the relationship between throughput, datagram size and datagram delivery rate over a
single HIPPI-IP port configured per the test bed shown in Figure 10 above. Several
interesting items immediately come to light:

1. The server essentially has the capability to sustain a constant datagram delivery rate
regardless of the size of the datagram packet. Values ranging between 800-1000 data
delivery datagrams/second have been observed across all datagram sizes tested.

2. Because of observation one, delivered throughput is primarily a function of datagram
size.

It should be noted that these tests were performed using a modified server as a “client” so
as to remove, as much as possible, the “clients” effects on data rate. The strong
relationship between datagram size and throughput may not be as linear with more
traditional clients due to their potential inability to absorb high delivery rates of large NFS-
3 style datagrams.

The specific initialization and opening state
parameters for this test were as follows:

32 Bit HIPPI (NFS & FTP Performance)

—~70
[4]

1. The file to be accessed had been opened 5 60 | & Base @ Variance
and at least one request had been made g 50 |
so as to prime the read-ahead data | g
caches and force the caching of | & 40
necessary file and filesystem metadata.

2. Subsequent accesses were of a
sequential nature. ,

3. The files accessed were 10’s of
megabytes in size or larger. Most of the

small variances noticed are probably 8K 16K 32K 56K 60K FTP

Datagram Size
Figure 11: HIPPI-IP NFS/FTP Throughput

explained by file (request) size.

We felt that these initial state parameters were appropriate since the target use of this
server is for applications where large files are to be accessed and the amount of data that
the client requests is substantial. This test was designed to measure sustained data
throughput to a client both requiring and capable of absorbing high speed IP traffic.
Priming the data and metadata caches eliminates the initial latency of the “get attributes”
sequences and most mechanical disk effects. Where file and request sizes are large, start-
up latencies are essentially amortized over many megabytes of data transfer and become
trivial. For small requests this is not the case and different start up states should be
assumed for any kind of performance testing. We plan to perform more extensive
performance testing over a wider range of workloads during the first half of 1995.

* All results shown here should be considered preliminary due to the early levels of hardware and
code used to perform these tests. Final data will be formally published in an update to this paper in
the second quarter of 1995,

196

Animation Workstations

Figure L“Z Beta ATM Customer Installation

Silicon Graphics ATM
POWER CHALLENGE

ATM performance data is in the process of
being developed more fully. Early lab
results, obtained during December of 1994,
have demonstrated the ability to sustain
‘ 000 approximately a 12.5 megabyte/second

i, (~100 Mbits) data stream over an OC3
R XD (155 Mbits) ATM channel coupled to a
FORE Systems FORE-Runner™ ATM
switch. (See Figure 10) All switching and
| virtual circuit initializations were controlled
(XD pp | by FORE Systems SPAN S' interface code
47 T4 swich | which we have implemented in the ATM
versions of the proFILE server. The
datagram size used to obtain these results

/| Cray Research EL 90

was 56K and the initial state parameters
were similar to HIPPL

As of this date, December 1994, the maximum number of ATM channels that we have run
simultaneously at this rate is two. No measurable degradation in performance was noticed.
Both ATM channels sustained about 100 megabits/second of user data transfer. We
expect that when all ATM performance tuning is completed sometime in the second
quarter of 1995 that we will be able to saturate four OC3 ATM channels with large NFS-3
datagrams.

Early ATM Customer result:

In December of 1994 two proFILE HIPPI and ATM files servers were installed at a
customer who’s major application is various sorts of studio animation and video post
processing? The goals of this early beta site were fourfold:

1. Verify ATM-IP NFS operations when interconnected with FORE Systems products
and Silicon Graphics POWER CLALLENGE XL and Indigo™ clients via the
SPANS interface.

2. Verify HIPPI-IP (and HIPPI IPI-3) interconnect with Cray Research’s EL and J-90
series of processors.

3 Measure what sustained performance could be achieved at various datagram sizes and
application request patterns.

4. Tnsure proper operation to all clients in an NFS-2 and NFS-3 environment.

ATM & SPANS: Installing and setting up the ATM network went very smoothly. The
ATM part of the network, with the exception of the ATM boards in the proFILE server
which were designed by ourselves, was all supplied by FORE systems and operated well.
A simple point to point star configuration was used for simplicity and guaranteed

3 The results presented here are very preliminary and do not represent a production level environment;
rather they represent interim results of an ongoing experiment.

197

bandwidth to each client. We and the customer specifically avoided complex mixed vendor
fabrics due to the immature state of many ATM products and, more importantly, industry
accepted specifications.

NES-3: NFS-3, as implemented on pre-release versions of Silicon Graphics TRIX
operating system Releases 5.3x and 6.1x* had some early-on stability problems and
command/response state errors. This was not particularly surprising given that we were all
working with non-released code and a completely new version of NFS. Fortunately, many
of the NFS-3 problems were uncovered in our labs prior to install which made the
installation far less painful that it might have been. Silicon Graphics was very helpful and
responsive working with us to address any NFS-3 glitches in IRIX and our server code.
Based on our progress to date, we expect that by the second quarter of 1995, NFS-3 will
be ready for general availability and production use.

HIPPIIP and Cray “big block” NFS: Cray Research, recognizing the performance
limitations of NFS-2 years ago, implemented a proprietary Cray-to-Cray extension to
NFS-2 that allowed the use of large datagrams up to 60K. This has proved to be very
effective in speeding up interprocessor IP communication between Cray platforms. Peter
Haas, at the University of Stuttgart, has measured sustained Cray NFS traffic up to 7.5
MB/second between a Cray Y-MP/2E

Data server and a Cray C-94 client'’.

8K ~1.8 MB/sec.

16K ~3.2 MB/sec. When we initially installed the proFILE
32K ~5.4 MB/sec. server on the Cray EL, it was
56K ~5.4 MB/sec. configured as a storage server utilizing
60K ~5.4 MB/sec. the IPI-3 protocol over HIPPIL
Table 1: HIPPI NFS Performance Everything worked well, with data rates

observed in excess of 50-60
MB/second. After determining that IPI-3 disk protocol operated correctly with the EL, we
upgraded the proFILE to full file server mode and ran some initial NFS test runs at
various datagram sizes.

The following table (Table 1) shows achieved data rates as a function of datagram size.
We discovered that UNICOS 8.0 (Cray’s operating system) would not generate a packet
larger than 32K even though it was configured to do so. This problem was confined to the
EL series and has been identified and corrected by Cray. Because of this, there was no
throughput improvement above 32K datagram sizes. We plan to publish updated
performance numbers when we retest with updated proFILE and UNICOS server code in
early ‘95. We expect to see substantial improvements at that time.

ATM NFS Performance: As previously mentioned we achieved effective ATM saturation
rates of over 100 megabits/second of user data when running two proFILE platforms as
client and server respectively. (See Figure 10) When configured as per Figure 12
(proFILE to SGI Indigo) we achieved 15-18 Mbits/second sustained NFS transfer rates

* IRIX releases coded as “5.2x” support 32 bit hardware platforms. Versions coded 6.0x support 64 bit

platforms. Release 5.2 and 6.0 are at the same basic function level. The “x” represents a non released
version of the OS.

198

e pyy

per physical ATM channel using NFS-3 8K packets. IRIX 5.3x’s support of NFS-3 does
not yet support any datagram sizes larger than 8K nor the ability to configure significant
additional quantities of UDP datagram buffers. We expect this situation to be corrected in
1Q95.

Given that the proFILE server can hold a constant datagram delivery rate regardless of
datagram size and that the client seemed to be primarily gated by the virtual memory
manager, IP protocol stack and the NFS RPC interrupt handler components, we can
extrapolate performance in the range of 50-80 Mbits/sec. when IRIX fully supports large
(56K) datagram sizes and sufficient UDP buffering is available. (e.g. The OS client
components most involved in limiting datagram absorption rate will be executed far less
frequently) Updated information will be provided in a revision to this paper later in 1995.

While both we and the customer are pleased with these early results we feel that they are
not indicative of the throughput that we can achieve with production level operating
system code, some application tuning and, most importantly, experience.

Summary

The distributed, parallel server design implemented in the proFILE family of network data
servers has promise to revolutionize and make practical the concept of file serving to truly
high performance client machines. By eliminating software protocol stacks, system and
/O busses, memory accesses and operating system overheads inherent in most “servers”
today, performance levels that used to be available only on a local file system can now be
delivered (and potentially bettered) on a remote, shared file system. On the client and
network side, the full implementation of the NFS-3 protocol suite and the availability of
fast fabrics completes the picture.

For the first time, continual data starvation will become a thing of the past and the promise
of high performance Client/Server computing will become a reality.

199

Endnotes and References:

! An informal count of physical attachments in use a few years ago was on the order of 35 or more. Some
examples were: IBM BMX & ESCON, DEC Q-BUS, CI & BI BUS, Univac word channel, Boroughs A-
Series disk interface, NCR direct connect, SCSI: (1&2, Fast, Fast/Wide, differential and open ended), IPI:
(2 & 3, Voltage or Current mode and IBM’s DFCI used on the AS/400), SMD, and numerous others.

? Typical installations of this sort may have utilized an IBM 7094 for arithmetic operations and one or
more IBM 1401 processors as I/O support machines. Early CDC 6x00 installations were similar. Cray
Research users often employed large IBM and Sperry mainframes dedicated to data preparation and input
support and, more importantly, as permanent data repositories. The Los Alamos Common File System
(a.k.a. “Datatree” - in it’s commercial incarnation) was a well known example of this scenario.

* Examples of some common I/O channel to I/O channel “black boxes” were the Network Systems
Corporation (NSC) “DX” (Data eXchange) family of interconnect products and, at a higher function level,
the Ultra-1000 network hub offered by Ultra Network Technologies.

* CFS was brought up in 1979 on an IBM 370/148 processor running the MVS (Multiple Virtual
Storages) operating system. Datatree, released by General Atomics is functionally equivalent to CFS
release 56. '

* Most peer to peer LANS and WANS today employ one of two generic schemes to allocate bandwidth to
multiple users at the physical level: 1) CSMA/CD (Carrier Sense Multiple Access/Collision Detect) which
is employed by Ethernet type LANS wherein the client “listens” to the network and, if it seems to be free,
transmits its data. Obviously, collisions (and retries) are common during heavily loaded periods, or 2)
token controlled access, (Token Ring, FDDI, etc.) wherein a user must have access to a “token” to
transmit data. Controlled access fabrics rarely have collision problems, but suffer from the higher
overhead required to manage and share the token. See ANSI standard document 802.xx for further
reading.

® There was one major exception to this statement. Under the direction of Dr. Richard Watson, the
National Storage Lab (NSL) located at the Lawrence Livermore National Laboratory (LLNL) directed it’s
focus towards serving HPC platforms at very high speeds primarily via utilizing a construct called Third
Party Transfer over HIPPI networks. (Sece reference 13) All data transfer was under control of a modified
version of Unitree (NSL-Unitree) and is commercially available from IBM’s Federal Sector Division.

" SCSI data rates delivered to various points in the protocol stack (driver level, raw, and block interfaces)
were obtained via the use of an IBM tool “perfmon” running on an RS/6000 98B with AIX 3.2.5. There is
no guarantee that any user can or will obtain these results. They are presented for illustrative purposes
only. Please see IBM publications GA23-2704-00 and GA23-2708-00 for similar information concerning
achieved data rates over HIPPI channels. Interestingly, while the numbers are different, the ratios hold.

¥ Ruwart, T. M. and O’Keefe, M. T. 1993. “Performance of a 100 megabyte/second disk array” (Preprint
93-123), University of Minnesota, Minneapolis M.N.

® This approximation was developed by measuring the cycle consumption required for an IBM RS/6000
980 server to sustain a 50 MB/Second data rate over a HIPPI channel utilizing the IPI-3 protocol. It
required approximately half of the available processor cycles to achieve this rate thus allowing us to
extrapolate that every 5 MB/sec of data rate required 5% of the processor. Striped SCSI, due to the larger
number of small /O chunk requests and the need to re-assemble such chunks would require more. For
furthur reading please see:

e Arneson, D., Beth, S., Ruwart, T. and Tavakley. 1993 “A testbed for a high performance file server”
Procedings of the 12th IEEE Symposium on Mass Storage Systems, April 26-29, Monterey C.A.

s Chen, P.M. and Paterson, D.A. 1990. “Maximizing performance in a striped disk array” Proceddings
of the 1990 International Symposium on Computer Architecture, pp. 322-331.

' In certain extreme cases, the addition of additional I/O ports on UNIX workstations configured as
servers may actually have the effect of reducing the overall throughput of the server. This counter-intuitive
phenomena results from the higher multi-programming level necessary to manage the increased number
of 1/0 ports and data movement operations that result from such additions. The increased interrupt rate
across the system bus and within the OS can lead to diminished overall throughput. Data supporting this

200

observation, developed on an IBM RS/6000 980 server driving multiple HIPPI channels is available from
the author on request.

" The original Nomograph upon which the representation shown in this paper is based was developed by
Dr. Mark Seagert’s and Dr. Dale Nielsen, both at the Lawrence Livermore Computing Lab, as a method
of estimating the data demand and transfer speeds required to feed future generations of processors
envisioned at LLNL. Additional data points relating to ATM and video frame transmission were added by
the author.

12 yendors that we are aware of today who have either announced products or announced their intentions
of developing products to interface HIPPI, FC and/or ATM to existing Ethernet and FDDI networks
consist of Netstar Inc., Essential Communications, Bay Networks and FORE Systems. Additional vendors
have announced intentions to enter this market in some form or another.

'3 Hyer, R., Ruth, R. and Watson, R. 1993. “High performance direct data transfer at the National
Storage Lab” Procedings of the Twelth IEEE Symposium on Mass Storage Systems, Monterey, C.A.
April 26-29, 1993.

"“"Wood, L. C. 1994. Gen 5 Storage Server - General Information. Maximum Strategy Inc., Milpitas CA.
'S The author would like to recognize the invaluable contribution of John Lekashman, Bruce Blaylock,
Bob Ciotti, and many others at NASA-Ames for assistance in the design and validation of the specific
function splits described in this paper. Without their help in measuring and understanding the choke
points in NFS data flow we would not have been able to accomplish this project in the time frame
required.

' SPANS (Simple Protocol for ATM Network Signalling) is a proprictary API developed by FORE
Systems as a method to set up and control FORE’s family of ATM switches. The current lack of a
complete standard for ATM has led to the devclopment of several competing proprietary access and
control schemes; most of them not compatible with other vendors switch and interface hardware.

"7 Haas, P. 1994. “Optimal UDP buffering for UNICOS 8.0 NFS” University of Stuttgart, Stuttgart,
Germany. (an unpublished work)

201

N95- 24124

TS v
A Kinetic Study of Hydrolysis of Polyester Elastomer

in Magnetic Tape
P2

K.Yamamoto, H. Watanabe
SONY Corporation Sendai Technology Center
Sakuragi 3-4-1, Tagajyo-shi, Miyagi-ken, 985, Japan
kunibo@rdds.smp.sony.co.jp
Tel:+81-367-2338
Fax:4+81-367-2778

Abstract

A useful method for the kinetic study of the hydrolysis of polyester elastomer is established
which uses the number-average molecular weight. The reasonableness of this method is
confirmed and the effect of magnetic particles on hydrolysis is considered.

Introduction

Long archival lifetime is an essential property of magnetic recording tape for data storage. It
is well-known that the archival life of tape depends on various factors, all of which may be
important. This paper is a basic study on estimating the life of magnetic recording tape as
affected by degradation of the binder. Polyester elastomer is used as the binder in magnetic
recording tape, and one of the factors of tape degradation is hydrolysis of the binder.
Hydrolyzed binder is adhesive and the tape with hydrolyzed binder may be sticky.

This paper first describes a method for the kinetic study of the binder's hydrolysis.
Following that explanation, the appropriateness of this method is discussed, together with
the influence of the magnetic powder.

Method and Materials

Determination of the reaction rate is necessary for estimating the tape life. Ester hydrolysis is
a second order reversible reaction in which ester group and water are involved. Since there is
a large quantity of water in the air, it may be assumed that the amount of water in the air is
constant. Thus the rate equation of ester hydrolysis can be expressed as a function of ester
concentrations only (1).

C/Ceo=exp(-k't) N
C. : Ester concentration after storage.

C., : C. at T=0 (before storage)
k' :Rate constant.
t : Storagetime
The reaction rate is calculated using the changing rate of ester concentration, but it is difficult

to measure the ester concentration in polymers. The rate equation for this case can be
expressed using the molecular weight of polymers.

203 , g ‘
SRECFDING PAGE BLANK NOT FILMED eace 02 inrentionaLLy BLank

Defining the number of molecules in unit weight as N and ester concentration in unit weight
as C,, the relationship between N and C, may be shown as in figure 1 and represented by the
following equation (2). :

Ce=N,-N (2)
C. : Ester concentration in unit weight

N : Number of molecule in unit weight
N, : N after storage at C,=0

Combining equations (1) and (2) leads to (3).
N=N,-C,, exp(-k't) 3)

Defining the number-average molecular weight in unit weight as M, the relationship between
N and Mn may be represented by the following equation (4).

N=1/M, (C))]
Combination of equations (3) and (4),
1'M=N,-C,, exp(-k't) (5-1)
(5-1) at =0 gives (5-2)
1/M,=N,-C.,q (5-2) My, : M, at T=0 (before storage)
Eliminating N, from equation (5-1) and (5-2),
1/'My-1/M,=C,o{1-exp(-k't) } (6
Approximating exp(X) when X<<1 leads to (7).
UM,-1/Mp=Ceok't @)
Finally, redefining C.k'=k",
/M- 1/M,~k"t 6]
Equation (8) is the rate equation of ester hydrolysis expressed by number-average molecular
weight (M,) of the polymer and it is used in estimating reaction rate. Equation (8) coincides
with the empirical equation of Huisman [1].
The sample used in this study is a normal chain polyester binder and initial molecular weight
varies from 30,000 to 40,000. This simple structure is chosen for a basic study. Thin film
made from this binder is stored in accelerated aging conditions, that is, high temperature and
high relative humidity. After a few weeks' storage, the film is dissolved in tetrahydrofuran

(THF) and the molecular weight measured by gel permeation chromatography (GPC).
The conditions of GPC are as follows:

System : Waters GPC system

Columns : Waters Ultrastyragel 500 angstrom and Linear 106 angstrom
Effluent : Tetrahydrofuran (THF)

204

Detector : Differential refractometer (RI)
Results and discussion

Figure 2 shows plots of (1/M,-1/M,) vs time for storage at 30 C/90% RH, 50 degrees /90%
RH and 65 C/90% RH. These plots show that (1/M,-1/My,) is proportional to time and
confirm the rate equation (8). The reaction rate constants which are the slopes of the plots
increase as the temperature increases. Table 1 shows the rate constants at 90% RH which are
calculated from the plots of Figure 2.

Figure 3 shows the Arrhenius plot of the rate constants. An activation energy is calculated
from Arrhenius' equation and it is about 110kJ/mol. Now we can estimate the rate constants
at various temperatures when the relative humidity is constant at 90%.

Figure 4 shows Arrhenius plots in other humidities. Activation energy is not dependent on
relative humidities.

Figure 5 shows the relationship between rate constants and relative humidities at 65 C.
Relative humidities and rate constants are in proportion. The reason for this is that the sample
films are so thin that moisture diffuses rapidly. Equation (9) derives from (8) in
consideration of this effect.

(1/M,-1/M,,)/ H=k*t 9 H : Relative humidity
Rate equation (9) exhibits the effect of relative humidity.

The effects of storage temperature and humidity on the hydrolysis of polyester are clarified.
Thus we can estimate the reaction rate in every environment. Half value periods of molecular
weight can be estimated.

Table 2 shows rate constant and predicted half value periods of molecular weight. The
hydrolytic speed of 65 C/90% RH is about 1000 times that of 20 C/65% RH. For example,
half value periods of molecular weight of this sample are estimated to be about 100 days at
65 C/60% RH and 50 days at 65 C/90% RH. The number of days was confirmed by storing
until the molecular weight decreased to half value. Figure 6 and table 3 show the data.

Binder and magnetic particles are principal ingredients of the paint of magnetic tapes. We
found that the presence of magnetic particles reduced activation energy. Figure 7 shows
comparison of Arrhenius plots of polyester binder with metal particles, with oxide particles
and without particles. Activation energy decreases when magnetic particles are mixed with
polyester.Catalytic action by magnetic particles is shown by these data. This shows that ester
hydrolysis is accelerated by catalytic action of magnetic particles.

Catalytic action disappeared in the case of binder with magnetic particles covered with
adsorbate citric acid or the like, shown in figure 8. The decrease of activation energy is not
observed for the binder with magnetic particles covered with citric acid. Itis supposed that
such catalytic action occurs by interaction of activation points of the magnetic particles and
binder adsorbed at the points. Thus the catalytic action disappeared when the activation
points were covered with adsorbate.

205

N : Number of molecule in unit weight
Ce : Ester concentration in unit weight

00060

N=1, Ce=4 —| Ce=Ne-N
._. m (equation 2)
N=2, Ce=3
00000
=Ne=5, Ce=0

Fig.1 Relationship between N and Ce

- 6.0] —
,IC_,D 5,0- 65 degrees C/QO%gﬁx-"'
¥ 4.0
2 1 o
S 3.0 e
é_‘ 2.0- "
— 1.0
|
0';}‘3‘*" - T
Time (days)
Fig.2 Variation of molecular weight in 90%RH
Tablel. Rate constants at 90%RH
Temp. (degrees C) Rate constants k" (1/days)
30 5.0x10-9
50 7.6x10 -8
65 6.0x10 -7

206

k" (1/days)

k" (1/days)

10 -6
10 -7
10 -

-Od ' ' r :
10759 ™ 30 3.1 32 33 34

1/T (x10-3K)

Fig.3 Arrhenius plot of polyester binder in 90%RH

10 -5
100%RH
10 -6 7
10 7 \
10 -8 1 65 degrees C/65%RH
9 — . .

10 %59 3.0 3.1 3.2 3.3

/T (x10 -3K)
Fig.4 Arrhenius plots of polyester binder
in various humidity.

8.0 7

65 degrees C

50 60 70 8 9 100
Relative humidity (%)
Fig.5 Effect of relative humidity on rate constants (k")

207

Table2. k" k' and Half value periods of molecular weight (Mn)

Temp.| %RH| K" (1/days) k* (1/days) |Half value period (vears)
20 | 65 | 8.0x10-10 1.2x10 -11 110
60 | 4.1x10-9
30 | 90 | 49x10-9 | 5.0-7.0x10 -11 15.0-25.0
60 | 1.7x10 -8
40 | 90 | 2.0x10-8 |2.0-30x10-10 4.0-5.0
60 | 6.3x10 -8
50 | 90 | 7.6x10-8 [8.0-11.0x10-10 1.0-1.5
60 | 3.9x10 -7
65 | 90 | 59x10-7 | 6.0-7.0x10 -9 0.1-0.2
40
) .
' 65 degrees C/90%RH
o 4
= 3.0
e
. o
E 207
=
S 1.07 e
€ | A 65 degrees C/60%RH
0 20 40 60 80 100
Time(days)

Fig.6 Confirmation of half value periods

Table3. Molecular weight of binder stored until half value period

| Molecular weight (Mn)
Time (days) | 65 degrees C/60%RH {65 degrees C/90%RH

0 39041 39041
9 35847 37367
29 31667 27620

37 29975 22419
48 28495 20730
58 24909 17781
69 24002
79 21880
89 20512

208

k" (1/days)

k" (1/days)

I S with metal particles

with oxide particles

without particles

3.0 3.1 32 33 34
1/ T (x10-3K)

Fig.7 Comparison of Arrhenius plots of k" between

with

magnetic particles and without magnetic particles

107

10 61

| with magnetic particles

“~.with magnetic particles
N and adsorbate

7
1075

Fig.8

3.0 3.1 32 33 3.4
1/ T (x10-3K)

Comparison of Arrhenius plots of k" between
with adsorbate and without adsorbate

209

Conclusions

1. We established a useful method for the kinetic study of the hydrolysis of polyester
elastomers in magnetic tapes. Using number-average molecular weight (M,), the rate
equation of polyester hydrolysis led to the equation (1/M,- 1/M,,)/H=Kk*t.

2. Caualytic action by magnetic particles is demonstrated and it is supposed that such catalytic
action occurs by interaction of activation points of magnetic particles and binder adsorbed at
the points. The catalytic action disappeared when the activated points were covered with
adsorbate.

3. We make use of this method and these results to estimate the life of magnetic tape.

References

H.F.Huisman. et.al. "Aging of Magnetic Coatings" PD Magnetics B.V., Oesterhout, NLD,
16(2), 177-195(1988) [1].

210

N95- 24125

L 7376/
Digital Linear Tape (DLT)
Technology and Product Family Overview 0’)”/
v

Demetrios Lignos
Quantum Corporation
333 South Street
Shrewsbury, MA 01545
+1-508-770-3495
lignos @tdh.qntm.com

Introduction

The demand that began a couple of years ago for increased data storage capacity
continues [1]. Peripheral Strategies (a Santa Barbara, California, Storage Market
Research Firm) projects the amount of data stored on the average enterprise network
will grow by 50 percent to 100 percent per year. Furthermore, Peripheral Strategies
says that a typical mid-range workstation system containing 30GB to 50GB of storage
today will grow at the rate of 50% per year. Dan Friedlander, a Boulder, Colorado-
based consultant specializing in PC-LAN backup, says “The average NetWare LAN is
about 8GB, but there are many that have 30GB to 300GB.....”

The substantial growth of storage requirements has created various tape technologies
that seek to satisfy the needs of today’s and, especially, the next generation’s systems
and applications. There are five leading tape technologies in the market today: QIC
(Quarter Inch Cartridge), IBM 3480/90, 8mm, DAT (Digital Audio Tape) and DLT
(Digital Linear Tape). Product performance specifications and user needs have
combined to classify these technologies into low-end, mid-range, and high-end systems
applications. Although the manufacturers may try to position their products differently,
product specifications and market requirements have determined that QIC and DAT are
primarily low-end systems products while 8mm and DLT are competing for mid-range
systems applications and the high-end systems space, where IBM compatibility is not
required. The 3480/90 products seem to be used primarily in the IBM market, for
interchangeability purposes.

There are advantages and disadvantages for each of the tape technologies in the market
today. We believe that DLT technology offers a significant number of very important
features and specifications that make it extremely attractive for most current as well as
emerging new applications, such as Hierarchical Storage Management (HSM). This
paper will demonstrate why we think that the DLT technology and family of DLT
products will become the technology of choice for most new applications in the mid-
range and high-end (non-IBM) markets.

211

DLT Technology — Media, Mechanics, and Electronics for Performance
and Reliability

The choice of using Digital Linear Technology (versus analog and/or helical scan) to
develop our tape storage products was made after an in-depth analysis of the tape media
and head technologies available in the late 80’s. We decided on metal particle (MP) media
and a tape cartridge that permits the creation of several generations of DLT products [2].

The DLT engineering development team recognized the potential of MP media early on.
Products using MP technology were already using MP tape when the first DLT product
was introduced into the OEM market in December, 1991, but the origin of 8mm technology
was actually a consumer product that was already designed to use a consumer grade
version of 8mm tape. We chose MP after an exhaustive set of tests with all of the then-
available types of media, including SVHS, Barium Ferrite, Chromium Dioxide, and MP,
because our testing proved to us that MP was to become technology’s media of choice.

Initial reaction from a number of industry experts was that we had made the wrong
decision. The pending announcement of IBM’s NTP (New Tape Product) and the recent
announcement of STK’s REDWOOD product (both designed for high capacity and
performance) are solid proof that our choice of MP media for our DLT products was
correct. In addition, both the 8mm and DAT media products already depend on MP media
for their newest and future generation products.

We chose linear recording technology (vs. helical scan), because, with the hel p of Digital
Equipment Corporation system architects, we were able to foresee that transfer rate, which
was not important until the early 1992 time frame, was going to be increasingly important
in the future. We began with a 2-channel head design (using ferrite head technology) for
the first four DLT family members. It has been established that linear recording technology
allows for the increase of read/write channels with their corresponding increase in the
transfer rates. Figure 1 illustrates the transfer rate potentials for the leading 4mm/8mm
technologies versus linear recording technologies such as QIC and DLT. The graph
illustrates ability of DLT technology to continue increasing the transfer rate of subsequent
generation products by adding more parallel channels (4 channels, 8 channels, etc.).

212

MBYTES/SEC

35
30
25
20 B Uncompressed
MB/sec
15
m Compressed

10 2:1 MB/sec

5

0 -

A = 4mm, standard speed
B = 4mm, high speed

C = 8mm, 1 channel

D = 8mm, 2 channel

E = 2 channel DLT

F = 4 channel DLT

G = 8 channel DLT

H = 18 channel DLT

Figure 1: Data Transfer Rates of Competing Tape Technologies
(Based on First Generation MP Media Products)

We chose a 4” x 4” x 17 single-reel cartridge that could handle as much media as possible
in a tape drive that could fit in the 525 inch form-factor envelope. We have already
demonstrated on an earlier generation DLT product (the TZ30), that even a half-height,

5 25 inch form-factor product is possible using the DLT cartridge. The cartridge size and
the half inch tape (versus quarter inch or other sizes) ensures that whatever capacities other
technologies accomplish with new media (MP1, MP2, BaFe, ME etc.) the DLT products
can surpass from 8 to 16 times, because of the amount of physical media area available
inside the cartridge.

213

Figure 2 illustrates the capacity potential of various technologies. The bars indicate the
physical area that the media from each of the cartridge technologies would occupy, if it was
just Jaid out on a flat surface.

GIGABYTES/CARTRIDGE
80

70 M Thinner Tape

60
B Data Compressed 2:1

50
O Base Capacity

40

30

20

10
4MM 3MM DLT
Figure 2: Capacity Potential of Various Technologies

The combination of capacity per cartridge and transfer rate, coupled with industryleading
reliability and data integrity make DLT a technology ideally suited for meeting the rising
demands for data storage and the clear choice of products for the balance of this decade
and, possibly, well into the next.

The DLT’s design features illustrate its robust nature. Mechanics, electronics, and interface
have been developed to provide a platform for performance and growth.

The heart of the DLT mechanical design is the Head-Guide Assembly (HGA). The HGA is
basically the tape path, with the head mounted on a head bracket in an integrated sub- -
assembly. The tape path is comprised of six rollers, three on each side of the head. The
head bracket sits on a stepper motor lead screw that positions the head in a
horizontal/vertical motion only, allowing for random access operation. The DLT uses 128
tracks, addressed in pairs by the 2-channel ferrite head in the DLT2000 product.

214

The primary strategy for the DLT mechanical design was to create a platform capable of
multi-generation products. The original HGA design resulted in a number of patents for the
basic mechanism. To achieve the tracking margin requirements [3], the off-track error
budget elements are monitored and controlled continuously throughout the manufacturing
process and via strict parts specifications. Furthermore, a stringent off-track test is
performed on every DLT drive, prior to the“Confidence” and “Data Interchange” testing
performed in manufacturing prior to shipping the product.

Because of the superior tape tracking and positioning accuracy of the HGA (Figure 3), so
far there has been no need to introduce a closed loop servo control on any DLT product.
Instead, the positioning accuracy throughout the entire length of tape is achieved by a
combination of a pair of calibration tracks located ahead of the BOT coupled with an
extensive adaptive calibration process and a series of adaptive positioning algorithms [4].
These calibration tracks, which also serve to detect the recording density of the drive, and,
therefore, the specific DLT family member, are not pre-recorded. When a drive sees a
blank tape cartridge, it automatically lays down the calibration tracks before any other
operation takes place. From this point on, the cartridge will always indicate its recording
density, thereby identifying how it should be read or written by any other DLT family
member into which it is loaded. It is not possible to record multiple densities on the same
cartridge.

The “buckling” mechanism is a self-threading mechanism whose reliability has been
demonstrated in the over 600,000 DLT products that have shipped since 1985, spanning
two generations of DLT drives (seven DLT family members). Each generation benefits
from the experience of the previous generation, leading to perfection in this very critical
part of the design. The need for robustness in the Load/Unload Mechanism is essential to
withstand continuing punishment of the hardware in tape library environments. The DLT
Load/Unload operation is heavily assisted by a number of firmware algorithms that
guarantee the reliability of the DLT’s mechanical operations.

There are no capstans involved in the design. The tape moves in and out of the cartridge via
a precise servo control of the two reel motors. The servo control is designed to guarantee a
constant 4.5 oz. tension in front of the head. The adaptive techniques mentioned earlier,
however, can introduce automatic tension adjustments if the drive detects a soft area on the
media or other reasons that may weaken the signal amplitude and/or resolution.

The DLT family’s electronics support the design’s requirement for performance and
expansion. The read/write channel for most recent DLT family members (DLT2000 and
DLT4000) is designed using RLL (2, 7) recording technique. The bit density of the
DLT4000 is 82,500 bits per inch (bpi). The tape speed is constant at 110 Inches Per
Second (IPS) during read and write operations. The best way to describe the sophistication
of the electronics, is to discuss some of the areas of adaptive techniques in the design:
servo and tape thickness adaptation, track positioning, head media mechanics and
electronics, and data position “learning”.

215

Figure 3. Signal Trace Showing Lateral Motion of Tape (HGA Tracking)

PAGE 1S

SRIGINAL
of POOR QUALIT

216

Mechanical variation of the media (which may result from manufacturing process
tolerances, for example), if not properly compensated for, can result in operation failures
or a control system that runs at a sub-optimal performance level. If this occurs, the tape
thickness and other dimensions are actually measured by the drive. The results of these
measurements are used for the various servo optimizations.

As indicated earlier, newly-purchased tapes are completely empty of data. The drive will
detect a blank tape and write on it a pair of calibration tracks. These calibration tracks are
written only once. The drive uses these tracks (located ahead of the BOT physical hole),
much the same way as a disk drive uses its servo tracks (a detailed description of the
calibration tracks’ iocation and handling is provided in the DLT ANSI and ECMA
standards.) Accuracy in tape path design and manufacturing assembly is essential to
guarantee interchangeability without the need for additional servo information recorded
anywhere on the 1,100+ feet (DLT2000 cartridge) or 1,700 feet (DLT4000 cartridge) of

tape.

The DLT position algorithms are extremely accurate. They are able to determine the track
centerline to within 100 micro inches accuracy using extensive filtering and various
interpolation techniques.

At current DLT product densities (82.5 KBPI), any manufacturing process variation can

result in loss of signal. To minimize tolerance sensitivities and improve manufacturing
yields, our DLT design utilizes a completely adaptive channel. Every time a previously
written cartridge is loaded, the drive adjusts its read/write electronics to ensure optimum
operation. These adjustments are nota simple correction but a very complex estimation

theory based on past experience with adaptive techniques.

The following parameters are automatically adjusted: write current, operating controls
(tension, position, etc.), mechanical offsets (head adjustments, etc.), and automatic gain
controls/channel control/various responses, elc.

The DLT drive’s intelligence actually extends into “learning” the data on the tape .
Information such as “end of data” (EOD) location and Tape Mark (T M) counts allow the
DLT to find data boundaries at very fast access times by using diagonal searches. The
DLT2000 and DLT4000 drives can search for Tape Marks at 150 IPS (a 300+ Mbyte/sec.
equivalent search speed.) The Tape Mark directory is totally transparent to the user and is

maintained and updated automatically following the completion of a write operation.

The DLT calibration process completely replaces the familiar electrical and mechanical
factory adjustment that most of today’s tape drives require: There are no pots, capacitors,
head adjustments or any other fine tuning. All adjustments are done by the two on-board
microprocessors during the calibration stages.

217

One of the unique (and well patented) features of the DLT design is its superior head and
media interface implementation. The DLT’s unique head design alone deserves a sepa-
rate paper. The head is ferrite with MIG. Tt has six elements (2 x W-R-W channels op-
erating simultaneously). Figure 4 shows the head geometry configuration.

Write Heads ‘ Read Heads

A\N //

Write Heads

ToBoT \ | / / To EOT
-—
—_—
|
Vi
/[
/
Tape Edges
Tape Motion
~—g— —

Figure 4: DLT Head Geometry Configuration

The write-read-write placement of the gaps allows for “read while write” operation in
both directions. This unique design of head elements and contour combine to give the
DLT products great areal density capability as well as self-cleaning behavior. The unique
contour design virtually eliminates any separate head cleaning operation. A cleaning car-
tridge is available, but only to be used when the drive illuminates the cleaning indicator
on its front panel.

The combination of the head contour design and low tape tension results in a head life
that exceeds 10,000 hours (at 100% duty cycle). The length of DLT head life is a signifi-
cant advantage over other technologies when robustness is necessary for high duty appli-
cations. The gentleness and accuracy of the tape path design, coupled with the head con-
tour design, low tension and the quality of the MP media itself contribute to a tape du-
rability that exceeds 500,000 passes (a “pass” is defined the movement of a single seg-
ment of tape under the head). Assuming a worst case scenario, one cartridge can be used
10,000 times to completely write or read all 128 tracks (64 pairs) in the serpentine mode.

218

Our data on life and durability of the DLT tape shows that to date we have been unable to
find a measurable end of life for the tape. Our tests in environmental chambers have been
designed to simulate 10 years of actual, continuous drive operation, and the tests are still
running. The number of passes the still-readable tape has made over the head is now
approaching 1,000,000. One of the original requirements for the DLT product family, was
to implement an “Industrial Strength” class of data integrity and reliability algorithms. The
results of our design approach are an unsurpassed combination of data detection and
correction algorithms that produce a “Hard Error Rate” of 1 x 10" bits read and a

combined theoretical overall undetected error rate of 1 x 10 bits read.

219

Figure 5 shows the data format for the DLT2000 and DLT4000 products. The format
consists of multiple “entities.” An entity is comprised of 16 x 4K data blocks and 4 x 4K
ECC blocks. Within the entity, the format supports record sizes varying from 1 byte to

16 Kbytes, as Figure 5 indicates. At the end of each record (regardless of size), the drive
records a 16-bit cyclic redundancy check (CRC). At the end of each physical 4K block,
the drive records a 64-bit CRC that checks the entire 4K block with as many records as it
contains. The entity is protected by a “Block-Level Interleaved Reed-Solomon ECC”
code, that occupies the last four 4K-blocks of the entity. The ECC algorithm is capable of
correcting any four 4K-blocks at any place within the 20 block entity (including the ECC
field itself). In terms of physical tape space, it is possible to remove a half-inch section of
the tape and the drive will be able to accurately reconstruct the missing information.
There is a detailed description of the DLT format and ECC/CRC algorithms in the appli-
cable ANST and ECMA Standards documents.

1 I3 M5 —7MH9 11 H13 H 15 1 ECC1 H ECC3
21— 41— 6 — 8 10 12 N 14 (16 H ECC2 H ECC4
i c
p s c c c | o E |7 c| &
2 ; RECORD g RECORD g RECORD g ! g R 2 S
c F L T
Q

20 Block Entity: 16 Data and 4 ECC

Figure 5: DLT2000/DLT4000 Media Format

220

In addition to the ECC and CRC error detection and correction features, the DLT drives are
capable of using “track centerline offsets” (like disk drives) to attempt to recover the data as
part of the automatic hard error recovery procedure. No software intervention is needed for
the hard error recovery process to be invoked.

The Data Compression Algorithm chosen for the DLT2000 and succeeding products, is a
variant of Lempel-Ziv (LZ1). The DLT Engineering Development Group chose LZ1
(versus IBM’s IDRC), after prototyping both algorithms with identical DLT Tape Drives in
the Engineering Labs [5]. It was expected that the IDRC prototype would out-perform the
LZ1 prototype because it had, potentially, almost twice the data throughput. It was also
expected that the two competing algorithms would have roughly the same compression
ratios, with the LZ1 ratio being only slightly higher. Test results showed, however, that in
the DLT environments the LZ1 consistently exceeded the IDRC performance in both
metrics. The IDRC compression efficiency results were also confirmed by benchmarking
against other tape products that use the IDRC algorithm.

Figure 6 shows the measurements of compression ratio on VMS and UN*X systems. The
difference in compression ratio between the LZ1 and IDRC prototypes show that the LZ1
prototype had significantly higher compression ratios for all the data types that were tested.

0 IDRC
=LZ1

Bin Sys Cc Text PS tar HarGra Vallog

VMS SYSTEM ULTRIX SYSTEM

Figure 6: Operating System Compression Results

221

Figure 7 shows the SDS-3 based compression test results. The first four data types show
the LZ1 prototype averaging around 2.4:1 and the IDRC prototype around 1.5:1. For the
paintbrush bitmap file, both versions compressed at about the same efficiency.

> 30:1 Ratios
(truncatgd to fit)

5 AN

4.5

3.5

R IDRC
mLzZi

2.5

1.5 -

0.5 4

0 -

Bin Source VAXcam HarGra Paint Ones Repeat

Figure 7: SDS-3 Data Compression Results

The lab test results showed that, on average, the LZ1 efficiency was at a 2.5:1 ratio vs. the
IDRC’s 1.5:1 ratio. Quantum Corp. has a white paper available that provides the details of
these tests.

The DLT design supports both data compression and compaction. The advantage of the
compaction algorithm is that there is no loss of recording space on the tape. Even if the file
ends anywhere within a given entity (see Figure 5), the first record of a new file will begin
immediately after the end of the previous file without any loss of media space. The drive
automatically regenerates the ECC algorithm to cover the new information within the entity.

To summarize, the description of the major design areas of the DLT given above, although
brief, exemplify a product designed for maximum reliability. The very gentle head-to-media
interface (HGA design), the self-cleaning properties of the head, the extensive use of
adaptive techniques, and the very long media and head life tests under extreme
environmental conditions, all contribute to the reliability and robustness of the DLT
products. Using the “HP Method” of recording failures in the field (i.e., all types of
failures are taken into account during a power on period of 24 hours a day, seven days a
week), the DLT products are exceeding their specified mean time between failure (MTBF)
rate of 80,000 hours by 25%, independent of duty cycle. Two of the major contributors to
this field MTBF performance are the 10,000 hour head life and media durability.

222

THE DLT PRODUCT FAMILY AND APPLICATIONS

Until the last couple of years, the primary function of the tape drive has been to backup and
archive data. As data storage requirements have been increasing at an almost exponential
rate, the need for a balance of capacity and performance has become much more critical.
With 20GB of native data recorded on a single DLT4000 cartridge, the user needs to
transfer the data in the shortest time possible. That is the reason the DLT product family
emphasizes overall performance as much as capacity per cartridge. Figure 8 shows the DLT
Product Family (second generation), beginning with the DLT260, which was first
introduced in November, 1991, as a product aimed at the OEM market. The DLT260 was
followed by the DLT600 in mid-1992, and the DLT2000 (our current high volume
product), introduced in the third quarter of 1993. The DLT2000, with a capacity of 10GB
per cartridge (native) and 1.25MB/sec. (native), is today’s industry leader for this class of
products. The new DLT4000, with volume production starting early in calendar 1994,
stretches the DLT technology leadership that much further (note especially the considerable
improvements in load times)..

DLT260 DLT600 DLT2000 DLTA4000

Data Rate (MB/s, Native) .800 .800 1.25 1.5
Capacity (GB, Native) 2.6 6 10 20
Bit Density (bpi) 42,500 42,500 62,500 82,500
Track Density (tpi) 96 224 256 256
Media Type MP-1 MP-1 MP-1 MP-2
Media Length (in feet) 1100 1100 1100 1700
Recording Channels 2 2 2 2
Data Compression No No Yes Yes
Load Time (in seconds) 60 60 45 33

Figure 8: Quantum DLT Drive Product Family

223

By intent, the transition from the DLT2000 to the DLT4000 product was an evolutionary
development effort. As Figure 8 shows, the primary changes were the combination of the
thinner MP media (MP2) and a higher bit densi ty (82.5 KBPI). Minor modifications to the
head were necessary, as well as the incorporation of a flex circuit containing the read pre-
amp in much closer proximity to the head. Specif; ically, the head core geometry was
slightly changed, but the contour and all other electrical and mechanical parameters
remained fairly close to the DLT2000 configurations.

Quantum offers not only the drive itself: The DLT product family includes a 7-cartridge
loader (half-rack form-factor, for rackmount applications) and a compact 5-cartridge loader
designed for table-top applications. The desi gn concept for the two loaders has been to
enable the replacement of the drive only (inside the loaders) in the field by a skilled
technician.

In addition to loaders, a number of thi rd-party robotics companies have announced and are
shipping both large and small library confi gurations. Figure 9 shows the vendors that offer
libraries for the DLT family of products. It has become clear in the marketplace that the
primary growth in the tape industry is in these library configurations. A number of tape
manufacturers of various technology products (DAT, 8mm, 3480/90, etc.) today offer an
assortment of library products extending from 28 cartridges to 900 cartridge robots. The
library vendor differentiation is in terms of the number of cartridges in the library and the
ratio of cartridges to drives that the robot can handle. A number of additional library
vendors are developing DLT-based products, antici pating even more capacity and higher
performance DLT products.

224

COMPANY LIBRARY DLT PRODUCT DESCRIPTION CAPACITY*
Quantum DLT2500 DLT2000 5 Cart.Loader, 1 drive 50 GB
DLT2700 DLT2000 7 Cart.Loader, 1 drive 70 GB
DLT4500 DLT4000 § Cart.Loader, 1 drive 100 GB
DLT4700 DLT4000 7 Cart.Loader, 1 drive 140 GB
ATL/Odetics ACL2640 DLT2000 264 Cartridge Library, 3 264 1B
drives
Breece Hill Q7 DLT2000 28 Cartridge Library, 280 GB
Technology : 3 drives
Q47 DLT2000 60 Cartridge Library, 2 - 600 GB
4 drives
Digital StorageWorks DLT2000 264 Cartridge Library, 3 2.6 TB
Equipment drives
Corporation TL820
Overland Data DLT Multilibrary DLT2000 24 - 120 Cartridge 240 GB - 1.2
Library, 1 - 8 drives TB
DLT TA200 DLT2000 100 GB
Tape Array
Subsystem
Metrum D900 DLT2000 900 Cartridge Library, 9TB
20 drives
D360 DLT2000 360 Cartridge Library, 367TB
8 drives
D480 DLT2000 480 Cartridges
(add on to D360)
D28 DLT2000 28 Cartridge Library, 280 GB
4 drives
D60 ~DLT2000 60 Cartridge Library, 2 - 600 GB
4 drives

* All capacities are native.
Figure 9: Quantum DLT Drive-Based Tape Libraries

COMPANY LIBRARY DLT PRODUCT DESCRIPTION CAPACITY*
ADL - Media SLA-Dbase DLT2000/4000 1 - 2drives, 7 or 14 70 GB - 280 GB
Logic cartridges
SLA-Dplus DLT2000/4000 2 - 4 drives, 7/14/26 70 GB - 520 GB
cartridges
SLA-Dmax DLT2000/4000 2 - 7 drives, 7/14/26/50 70 GB-1.07TB
cartridges
ADIC N/A DLT2000 1 - 8 drives, 24 - 120 240GB - 1.2
. . . cartridges (12 cartridges B
(Aﬁ]’:gﬁdc?gg per magazine)
APP/Grau ABBA/2 DLT2000 Up to 100,000 cartridges
(mixed media
environment)
ABBA/E DLT2000 Up to 12,000 cartridges

(mixed media
environment)

* All capacities are native.

Figure 9: Quantum DLT Drive-Based Tape Libraries (Continued)

226

The increasing popularity of the DLT has led an impressive list of third-party software
vendors to support the DLT family of products and options. Figure 10 shows a partial list
of software companies that support DLT options under all the major operating systems
platforms. There is a considerable list of additional software companies who are currently
developing support for the DLT drives and options (in both Loader and Library

configurations).

Operating
System

Netware

Windows 3.1

Windows NT

DOS

0S/2

HP-UX, AIX
SCO UNIX

Apple System 7

Application Software

Avail 2.0

Cheyenne Arcserve NLM 4.02 & 5.01E
Systems Enhancement V 1.95

Novastor Novanet

Arcada HSM, Backup Exec

Palindrome Backup 3.1, Network 3.1, HSM 3.1

Cheyenne ARCsolo for Windows
Novastor Backup for Windows

Arcada Backup Exec for NT
Microsoft Backup (NT 3.5)

Cheyenne ARCsolo for DOS

Novastor Backup for DOS

Palindrome Director for DOS 3.1

Palindrome Backup Network Archivist for DOS 3.1

Novastor Backup for OS/2

Legato (SUNOS 4.1, Solaris 2.3, RS6000 AlX)

Novastor SGI/IRIS>5.X, RS6000 AIX, ATT/GIS System 5
Novastor (Sun Solaris 2.3, HP9000/400/700, SunOS 4.1,
2,.3

Cheyenne ARCserve/open 2.0 (Solaris 2.3, RS6000 AiX)

Workstation Solutions/Quick Restore
SCO STP Diriver

Dantz (Retrospect 2.1A/Retrospect DLT Driver)
Novastor NovaMac

Figure 10: DLT Software Connectivity Matrix (Partial List, Valid as of 1 1/30/94)

227

For those proprietary platforms into which DLT products have not yet been integrated by
the systems manufacturer, a number of Value Added Resellers (VARs) and Systems
Integrators have developed and offer emulations that enable the DLT products to be
attached to these proprietary busses as well.

Considering that the popularity of Hierarchical Storage Management (HSM) is increasing
(based on the premise that the data storage requirements at the system level are increasing
dramatically every year), it is probably worth discussing the DLT’s potential for making
HSM work most efficiently and economically [6].

In arecent article on HSM in the “Client/Server Today” magazine (December, 1994),
David Simpson states that “HSM has the potential to dramatically reduce storage costs and
management hassles by migrating infrequently accessed or inactive files from expensive
disk drives to less expensive storage devices.” The value of HSM is that this migration
happens automatically and is transparent to the user. To differentiate between the various
HSM packages available in the market today, Peripheral Strategies developed a set of
definitions for the five levels of HSM software. Depending on the application, a user can
select the particular HSM level that incorporates the various storage devices and/or
technologies most suited for use with the range of data.

DLT products are ideally suited to become the products of choice for HSM applications.
They offer the highest capacity and performance combination in industry today for their
class of products. In addition, a number of software companies offer HSM software
support for the DLT products. In December, 1994, Cheyenne Software, a leading supplier
of software products for all major systems platforms, announced support for the DLT2000
drives within its new HSM program in addition to on all its other software platforms via
the company’s ArcServe and ArcSolo software packages. Avail Systems, Arcada Software
Inc., Axent Technologies, Epoch Systems, Legato System Inc., Novastor Corp. and
Systems Enhancements Inc. have also announced DLT support on their HSM solutions as
well as on their other software platforms.

228

The next step in the DLT family development is another 5.25 inch form-factor product with
higher native capacity per cartridge and substantially higher native performance. This new
product will use the DLT4000 cartridge and will, of course, be read/write compatible with
the previous members of the DLT Family. This new product will be announced in the
second half of 1995.

For future family members, the DLT Development Group is planning to take advantage of
all head and media technologies that other tape manufacturers who are using smaller form-
factor cartridges are bringing to market to keep up with the constantly increasing demand
for much higher capacities and increased performance. Because of the physical dimenstions
of its cartridge and the cartridge’s designed-in ability to incorporate more tape, the DLT
engineering team can continue to offer industry-leadership storage capacity and products,
always able to embrace the advances other manufacturers make in tape media and head
technologies.

Our DLT development team plans to take advantage of thin-film-head technology for its
multi-channel head requirements. Metal Evaporated (ME) tape and/or Barium Ferrite
(BaFe) tape technologies, which are now being developed for the QIC and 8mm
applications, also show some potential for use in DLT technology. Our product map calls
for products to be developed with 100GB of native capacity per cartridge with 10-15
MB/sec. native transfer rates by the end of this decade. At this point, we intend to continue
to maintain, at a minimum, read compatibility with all prior generation DLT products.

229

Summary

DLT is a mature and robust technology that has finally been “discovered” by the computer
market because it offers the capacities, performance, and reliability that today’s systems
applications require. There is no other technology or product set available today that offers
so balanced a combination of capacity and performance with leadership in data integrity and
overall product reliability. With those strengths and their cost of ownership, these products
are the best tape storage solution in the industry.

Advancements in DLT technology guarantee that new family members will continue to be
developed for the balance of this decade and well into the next. Unless a new technology
emerges to obsolete tape media products, DLT will continue to be the tape industry leader
for this class of products.

230

References

l.

Articles (“Surveying the Highs and Lows of HSM” and “HSM Brings Back Quick
Returns,” written by David Simpson, issue of Client/Server Today, p 53, December,
1994. :

George Saliba “A Tape Drive Architecture Of A Robust Technology That Delivers Very
High Reliability and Data Integrity As Well As Very High Capacity And Performance.”
White Paper, February, 1993.

. George Saliba/Kumar Kasetty “DLT HGA Tracking Capabilities” White Paper, May,

1992
George Saliba “DLT2000 Adaptive Calibrations” White Paper, circa 1993

. David C. Cressman “Why Does the DLT2000 Tape Product use Lempel-Ziv Data

Compression?” Digital Technical Journal, 6 (1993) 62.

Fred Richardson, “Cost of Ownership in Hierarchical Storage Management,” Computer
Technology Review (Spring/Summer, 1994), p29.

231

N95- 24126

73562~
The MAMMOTH Project p_ /

Tim Gerchar
Senior Product Manager
EXABYTE, Corp.
1685 38th Street
Boulder CO 80301
Phone: +1 (303) 447-7342 FAX: +1 (303) 447-7501
e-mail: timger@exabyte.com

What is MAMMOTH?

On the surface MAMMOTH is a high performance 5.25-inch half-high 8mm helical scan
tape drive that records a native 20 Gigabytes of data on Advanced Metal Evaporated media
at a sustained throughput of 3 Megabyte per second over a high speed SCSI interface, that
is scheduled for production in the second half of 1995. But it’s much more than that.
Inside its custom designed sheet metal enclosure lies one of the greatest technical
achievements of its kind. Exabyte’s strategic direction is to increase throughput and
capacity while continuing to improve drive, data and media reliability of its products.
MAMMOTH adheres to that direction and the description of its technical advances is
described in this paper.

MAMMOTH can be broken down into four main functional assemblies: high-performance
integrated digital electronics, high-reliability tape transport mechanism, high-performance
scanner, and advanced metal evaporated media. All this technology is packaged into a
standard 5.25-inch half-high form factor that dissipates only 15 watts.

High Performance Integrated Digital Electronics

There has been some confusion in the industry over what commonality Exabyte’s 8mm
products and 8mm video technology share. The only similarity between 8mm video
technology and MAMMOTH is the cartridge shell dimensions.

MAMMOTH employs a single processor design anchored by the AMD 29200 processor.
The top-down design methodology of MAMMOTH results in a highly-integrated system
that includes seven unique custom ASICs. The low parts count lends itself to a highly
reliable system. The electronics are surface mounted onto three printed circuit boards. The
MRF (MAMMOTH Rigid Flex) is an ‘L’ shaped board that contains the processor and its
supporting circuitry. The digital data path section which contains two large digital ASICs,
RAM and its supporting circuitry are also mounted on the MRF. Also contained on the
MREF are the electronics for servo control, which include driver ICs and a custom mixed
signal ASIC. The MRC (MAMMOTH Read Channel) is a rigid board that supports the
read and write operations of the drive. It contains custom ASICs and all of the discrete
filter functions. The MAMMOTH SCSI interface offers a configuration of one of four
different SCSI variants; single ended narrow (8 bits) and wide (16 bits), differential
narrow (8 bits) and wide (16 bits).

NOr FILMED 233)
| PAGE&!NTENTIONALLY BLANK

Firmware design is accomplished by the use of ‘C’ code wherever possible. The code is
stored in EEPROM that is programmable, by the use of a code load tape, over the SCSI
interface, or with an Exabyte proprietary diagnostic program. The code is designed with an
eye towards the future; many of the SCSI 3 features already exist and the layered firmware
allows for easy migration to other interfaces such as serial SCSI and fiber channel. The
SCSI code is a special area of focus for the MAMMOTH designers. It is optimized for high
performance, minimal bus hogging and improved error recovery. This will provide for fast
average and predictable worst-case timing values.

In keeping with EXABY TE’s strategic direction of constantly improving reliability, the
engineering design criteria has been more stringent than the product specifications allow.
These criteria include such things as power supply margins, operating temperatures and
component tolerances. All this adds up to high performance, highly reliable tape drive
electronics and firmware.

High Reliability Tape Transport Mechanism

MAMMOTH’s tape transport mechanism can be broken down into three subassemblies: the
solid aluminum deck casting, the innovative capstanless design and the cartridge loading
mechanism.

Exabyte’s MAMMOTH drive uses a one-piece aluminum deck casting with a belt-drive
system to load the tape path. The one-piece deck casting affords a very high degree of
rigidity and precision tolerances for greater reliability. The belt drive tape loader mechanism
that operates the two streamlined trolleys uses an angled motor/worm shaft to optimize gear
mesh and reduce axial loads. The integrated overdrive springs eliminate any timing errors
between the trolleys. The trolleys have been designed to hold very tight tolerances by insert
molding the guide pins into the arms. The use of large 6mm tape guides and rollers aid in
producing a very simplified and low stress tape path. The tape path can be manually
unloaded without damaging the media in an emergency situation.

The innovative capstanless reel-to-reel design used in the MAMMOTH tape transport
mechanism incorporates the circuitry for the supply and take-up motor controls and a
custom motor driver chip. This is all packaged on a rigid flex mounted on a metal base
plate to minimize interconnection and electrical noise. The take up motor’s gear ratio allows
accurate speed control at low tape speed. This ratio also provides for increased efficiency
and low power consumption. The supply motor tightly maintains tape tension through a
closed loop control system. The assembly is designed to effectively handle not only
component tolerances but cartridge tolerances such as hub roundness.

The capstanless design used in MAMMOTH provides many benefits. Among those are
minimized edge damage by using fewer edge guides and lower edge forces when recording
on long thin smooth tapes such as AME, tape life is also extended by using fewer large
diameter guides. The capstanless design also provides for faster backhitches, improved
high speed search performance and faster load to ready times. By removing the capstan
debris is not pressed into the media by the pinch roller, also there is less debris generated in
the capstanless system.

Integrally mounted in the deck casting is the cartridge loader. It has been designed with a
sturdy metal frame for smooth quiet motion of the cartridge, and doesn’t allow the cartridge
to be misloaded in the drive. The cartridge loader can also be manually operated for media
removal without damage. The cartridge loader was designed for fast load/unload times

234

il
" et
e

e
an e

which are required in an automated environment. This allows for complete and simple
library integration without modification of the drive.

The deck assembly is shock mounted to the three piece sheet metal enclosure to help in
isolating the deck casting and tape path from the host system’s enclosure. The electronics
are mounted along the side and rear top of the casting to help in cooling and prevent
particulate contamination from entering the tape path. The sheet metal enclosure has been
designed to facilitate cooling while minimizing any susceptibility to external radiating
sources. The SCSI interface is easily changed by removing one screw to remove the sheet
metal cover.

All of the tape transport mechanism design features add up to provide a low stress tape
path, tight control over tape speed and a library-ready cartridge loader which in turn offers
not only a highly-reliable tape drive but one which also extends media reliability. The
design also affords a simple, reliable and predictable manufacturing process.

High Performance 8mm Rotating Scanner

With the purchase of the Grundig scanner division, now known as EMG (Exabyte
Magnetics Gmbh) Exabyte now controls another piece of the core technology required to
effectively compete in the tape drive industry. Exabyte had been working with that division
for more than two years before the acquisition to develop the high-performance scanner
used in the MAMMOTH product.

The 47mm scanner was designed to maximize the utilization of tape area. The scanner’s
rotational speed of more than 5600 RPM, along with a proprietary upper drum design,
provides precise airfilm control over the 4 dual azimuth read/write heads throughout the
scan. The high head-to-tape speed allows the drive to easily attain the 3 MB/sec.
sustainable transfer rate while reading and writing the MAMMOTH format. The 4 dual
azimuth read/write heads employ the same type of read-after-write strategy that has been an
EXABYTE trademark since the EXB-8200, Exabyte’s first product. Head design and
media characteristics combine to give the long head life Exabyte’s 8mm products have
traditionally enjoyed. The motor technology that drives the scanner is a three-phase
brushless DC motor.

One of the very innovative features of the MAMMOTH scanner is the rotary transformer.
This advanced proprietary transformer technology affords a much higher coupling
coefficient than previous designs. This coupling coefficient not only makes the high data
rates for MAMMOTH achievable but allows for easy migration to higher performance
follow-on products. The transformer configuration also allows for excellent noise isolation
to boost the SNR.

All of the design features incorporated in Exabyte’s MAMMOTH scanner will provide for
high data reliability while achieving a very high level of performance in an easy-to-
manufacture product.

Advanced Metal Evaporated Media
MAMMOTH will utilize 160 meters of a hi gh-performance advanced metal evaporated
media to store 20 Gigabytes at a rate of 3 Megabytes per second. MAMMOTH will be able

to read 8200, 8500, and the 8500c¢ formats of the 8mm Metal Particle tape recorded by
previous Exabyte 8mm tape drives.

235

The AME media is being developed by SONY Corporation in concert with the drive
mechanism. The development goal is to meet or beat all previous Exabyte reliability
specifications. In our internal testing the durability and archivability of the media are
meeting and or exceeding expectations. That results in an initial specification of at least
1500 passes, and a storage life of at least 30 years. Exabyte is very confident that the media
will meet expectations due to all of the design features built into the MAMMOTH tape
transport mechanism.

Summary

MAMMOTH accomplishes Exabyte’s strategic direction of increasing throughput,
performance, and capacity while improving reliability by utilizing design features such as
high-reliability tape transport system, high-performance digital electronics, a high-
performance scanner, and the use of AME media.

It furthers Exabyte’s commitment to the tape industry by extending 8mm technology. The
first Exabyte product, the EXB-8200, was first produced in 1987. It gave the tape industry
the shot in the arm that has brought about a multitude of new products and technological
advances in the existing technologies. Exabyte followed the 2.5GB EXB-8200, that when
released was specified at 20,000 mean time between failure hours, with the 5GB EXB-
8500 in 1990. The EXB-8500 had a transfer rate of 500 KB/s and a MTBF specification of
40,000 hours, in that same year the EXB-8200’s MTBF specification was doubled to
40,000 hours. In 1992 Exabyte introduced its second generation of products which were
half high versions of the EXB-8200 and EXB-8500. The EXB-8205/8505 were designed
in a co-developement with our deck supplier to provide additional drive and media
reliability. As a result the EXB-8205/8505 were released with double the MTBF
specification: 80,000 hours. Exabyte has recently released the ‘XL’ versions of the EXB-
8205/8505 that again double the MTBF specification to 160,000 hours, and extend the
capacity to 3 and 7 GB respectively. Along with the drive reliability specifications
doubling, the head life expectation also has been increased to at least 16,000 hours.

I equate the MAMMOTH tape drive to the EXB-8200 - - it will also cause a resurgence of
tape technology being utilized in many of the non-traditional tape applications such as
video-on-demand and hierarchical storage management systems. MAMMOTH also
establishes a new level of performance and reliability that is directly due to the
technological advances described above. It will initially have reliability of at least 200,000
hour MTBEF, and a large library population ready to upgrade to its capacity, performance
and reliability level.

236

N95- 24127

750>

0. 1%

Influence of Technology on Magnetic Tape Storage Device
Characteristics

John J. Gniewek and Stephen M. Vogel
~ IBM Corporation
9000 S. Rita Road
Tucson, Arizona 85744
(602) 799-2390
Fax: (602) 799-3665
jgniewek @vnet.ibm.com
svogel @vnet.ibm.com

Introduction

There are available today many data storage devices that serve the diverse application requirements
of the consumer, professional entertainment, and computer data processing industries. Storage
technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk,
and many varieties of magnetic tape. In some cases, devices are developed with specific
characteristics to meet specific application requirements. In other cases, an existing storage device
is modified and adapted to a different application. For magnetic tape storage devices, examples of
the former case are 3480/3490 and QIC device types developed for the hi gh end and low end
segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed
for consumer video applications, and D-1, D-2, D-3 formats developed for professional video
applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19
mm computer data storage devices derived from consumer and professional audio and video
applications.

With the conversion of the consumer and professional entertainment industries from analog to
digital storage and signal processing, there have been increasing references to the "convergence" of
the computer data processing and entertainment industry technologies. There has yet to be seen,
however, any evidence of convergence of data storage device types. There are several reasons for
this. The diversity of application requirements results in varying degrees of importance for each of
the tape storage device characteristics listed in Table 1.

237

Table 1
Tape Storage Device Characteristics

* Reliability
- Data Reliability
- Device Reliability

* Procurement Cost

* Operating and Maintenance Cost
* Access Time to Data

* Data Rate

* Automation Compatibility

* Capacity

- Cartridge Capacity

- Automation Capacity
* Write/Read Ratio

* Form Factor

This diversity of requirements has continually reinforced the need for an economical storage
hierarchy. Continuing advances in technology have enabled the development of new devices with
enhanced capabilities. The acceptance of new devices is tempered, however, by the investment
most users have in existing tape storage volumes. For removable tape storage systems, this
therefore presents a dilemma. Significant (perhaps 5-10X) rather than incremental improvements
in storage cost-performance assessments must be offered to make the conversion to a new system
attractive. However, in order to obtain order of magnitude improvements, it is usually necessary
to introduce significant changes in the technology components that may prevent direct device
compatibility with previous devices in an economical manner. In this respect, removable media
storage systems which often hold large quantities of archival data are unique compared to other
storage devices and components such as semiconductor memory or magnetic disk storage.

This paper discusses the device attributes that may be obtained by using advanced technology
components in an embodiment that is deemed most suitable for computer data storage applications
requiring high reliability, flexibility of data processing operations, economical storage costs,
economical maintenance and operations costs, and data rate parity with other members of the
storage hierarchy.

Storage Hierarchy

Storage hierarchies exist primarily for economical reasons. In the extreme limit of unbounded
advances in the price/performance characteristics of semiconductor memory or hard disk storage
and electronic data transfer network technology, it mi ght be concluded that the need for tape
storage devices and removable tape media would almost entirely disappear. In almost all cases
hard disk device characteristics would be preferred. In actual fact, however, in spite of the
advances in both semiconductor and hard disk capabilities, there are five basic reasons why tape
storage will remain an important member of the computer data storage hierarchy.

1) Magnetic tape storage will remain si gnificantly less expensive than hard disk storage.

While lower cost per storage will be a continuing trend for all technologies, it is expected that the
cost ratios will remain intact.

238

2) The volumetric density of tape storage relative to other storage technologies will, for
fundamental reasons, always be a large ratio.

3) With each advance in technology, the demand for data storage increases. Improved storage
devices enable new applications that previously were not economical and this, in turn, leads to
increased demand for additional storage.

4) Software-managed automated removable media storage libraries continue to evolve and will
be common for all applications. With this in place, optimally-designed tape storage devices will
provide a continuum of storage characteristics along with semiconductor memory, hard disk and
optical disk storage.

5) Although significant advances in electronic data transfer communication networks can be
expected in the next decade, because of band width limitations and telecommunication costs, data
interchange via physical transport of removable media volumes will remain the most economical
procedure for many applications.

Tape Storage Device Attributes

Because of the wide diversity of application requirements, there will undoubtedly continue to be
several types of devices required in order to meet all needs economically. The best a user could
hope for would be to reduce the number of types of devices that need to be supported. Setting this
as a design goal, the development objective becomes one of utilizing advanced technology
components in a design(s) that attempts to provide: 1) the greatest flexibility of uses; 2) at an
affordable price; 3) without compromising reliability objectives and at 4) performance matched to
system requirements.

The IBM 3480 technology introduced in 1985 has become the industry standard for high
performance computer data storage users. The 3480 and the 3490 and 3490E follow-on devices
have developed a well-deserved reputation for providing highly reliable operations. Those
attributes, high performance and high reliability, were responsible for its widespread industry
acceptance. In providing the technology base for the next generation of tape storage devices, it is
desirable to build upon the strengths of the 3480/3490 class of devices and enhance those factors
that are necessary to achieve the development objectives described earlier.

Analysis of the 3480/3490 device design reveals several key design features that contribute to the
performance and reliability reputation that has been achieved. These features are as follows:

1) An enclosed Cartridge System Tape (CST) that prevents accumulation of handling damage,
fingerprints, airborne debris, etc.

2) A gentle tape path and tape guiding system that minimizes or eliminates mechanical tape
damage. ‘

3) An 18 track linear recording technology using thin film ferrite heads with magneto-resistive
(MR) read elements. The 3490E utilizes serpentine linear recording at 2X track density with
second generation MR read elements and enhanced Error Correction Code (ECC). The format is
arranged such that when writing full tapes, no tape rewind is required.

4) An ECC that utilizes the advantages of multiple track recording in a track format that
minimizes the probability of concurrent track errors due to media defects.

5) A Head-Tape-Interface (HTI) that operates at low pressures ensuring low head wear rates,
yet provides the closely controlled spacing required for data reliability.

239

6) A tape media with mechanically and chemically stable polymer binder system, magnetic
particles and substrate that minimizes debris generation and provides stable tape motion.

7 Reel-to-Reel servo control for precise tension and velocity control. In combination with
the fixed head design and an electronic buffer, both start-stop and streaming data recording/reading
are supported without performance or reliability penalties.

These are laudable design features proven in almost 10 years of field operation. Incremental
improvements have been introduced during this time as the cartridge capacity increased from 200
MB to 400 MB to 800 MB, uncompressed. Additionally, IDRC compression was introduced
along with channel data rate enhancements and cost reductions. The ability to use lossless data
compression, such as IDRC, provides benefits to both effective capacity and effective data rate.
Because data compression ratios can be highly variable, it is very possible that the storage device
can be driven into start-stop mode if the channel data rate becomes the gating factor. Hence, to get
full benefit of data compression features it is highly desirable to have a storage device that operates
in both start-stop and streaming modes.

As a result of numerous discussions with numerous customers, the following items were identified
as desired improvements to the attributes of 3490E tape transports. This listing is from a diverse
group of applications and is not to be interpreted that all items correspond to a single application.
Using the 3490E experience as a base, an assessment was made of how advanced technology
components could enable the achievement of the desired improvements listed in Table 2.

Table 2
Desired Improvements Relative to 3490E Technology

1) Higher Capacity

2) Higher Data Rate

3) Lower Cost

4) Smaller Form Factor

5) Maintain or Improve Reliability

6) Higher Drive Utilization

7) Nolncrease in Rewind Time

8) Faster Access to Data

9) . Automation Compatible
10) Preservation of Automation Investment
11) Growth Path for Future Product Enhancement

Technology Factors

In discussing the influence of technology on magnetic tape storage device characteristics, it will be
helpful to analyze the end objectives from the viewpoint of both the user parameters and the
technologist/developer parameters. To this end, it is necessary to provide a translation between
device functional parameters and base technology parameters. Such an analysis enables the
developers of new devices utilizing new technology components to prioritize the required
development activity in a manner that considers the interdependence of the various technology
components. Table 3 illustrates this point.

BIPON *

jonuo)jied ade] »
uJiso(93pune)) »
uSisa(g 1opeo] 98pULE) -

RIPS *
jonuo)ed adef -
uSisag 98pune) »
uSisa(] Jopeo] Ipune) .

SOOI
/sanbruyoa], Suissaooid [eudis .
[jonuo)/Ied ade L.
BIPIJA *
SpeaH o

[onuo)yied adey «
BIPIIA »
SpesH

waysAg Suruonsod peay o
SPEaH o
BIPIIA »

sHBuOdWo) ASo[ouyoa], Aewig

s, peofur) «
Swi], purmay -
o], SFUM/PEY
S| Yoreas e

awiL], Peasy]/peoT «

Bud T BIPAN -
paadg yareas -
owil] yoJeas e
sunj, pealy]/peoT] -

uBisa(q [ILI0I[H
udisa(g [eIIURYIIN *

Annqeis [1H ¢

I 291 -
uSisaq D04 *

[PA97T 199)3(®BIPS3
widre\ UNS

S[ouURY)) JUSLINDUQY) JO JIQUINN «
(o9s/w) K3100[9 A 3de] /pesH o
(unui/nq) Ayisua(g TeautT e

apo)) 3uIplosay »
{I5udT BIPIN «
(urw/nq) Ansuaq Jedury -
(uruiz#) Ansua(q YoeLL -
(qurw/ng) Ausua([eaIV Ug

sigPwEIeq JadojPASq

aIm|re] usomioq aun], UesAl - A41LN (Q)
JOLIF UPMIg SI1Ag URII - HAEN (B)

uoneZIN() AL *

eIR(] O} QU] S§30TY o

(A9 Apqeney 3014 (4

(FggN) Lngeny ereq (e
Aniqeny

(09s/gN) 21ey ®eQ -

(go) Lipede)

Sis1aMIeIeg 1951 pud

s1ajoweIeg ASojouyda], Jodo[PAI(l PUE SIFPWEIEJ [BUONIUN] JIS() PU UMY UOY)BJSUBL],

€98l

241

The End User Parameters - Capacity, Data Rate, and Reliability - need no elaboration. Access
Time to Data and Drj ilization, however, have importance beyond the obvious. These
attributes serve as key elements in optimizing the price-performance of the complete storage
subsystem, i.e. automation plus storage devices plus media. Different applications will provide
different weighting factors to each of the sub-elements under these parameters. In the final
analysis, a device with higher throughput (for whatever reason - data rate, search speed,
load/unload time, etc.) requires fewer devices to achieve a given function. If there is not a cost
penalty for such devices, this would then result in a lower total subsystem cost, hence a better
price-performance rating. Applications such as "digital libraries" and network-attached HSM
servers will be the major beneficiaries of such characteristics.

Technology Prototypes

In what follows, we will explain the methodology of the technology development process which
began with choices for the various technology components, evolved with the assessment of their
interoperability, and culminated with building and testing of prototype devices used both to
validate the chosen operating points and to serve as an input to the product development decisions.

Technology Components

With reference to Table 3, there are a number of technology components that must be assessed and
evaluated both on a stand-alone basis and in an integrated interactive environment. We identif y the
following as the key technology elements.

A)Media

B) Heads

C) Tape Path

D) Servo Systems
E)ECC

F) Device Electronics

A brief discussion of the factors involved in assessing the merits of each of the technology
components is covered in the next section. In the following section we describe the technology
elements to be incorporated into two different technology prototype devices and their resultant
device characteristics. Finally, these characteristics are compared against the Desired
Improvements listed in Table 2.

A) Media

The laws of physics determine the ultimate areal density that a recording medium can support.
Numerous other factors influence the practical limits. Factors determining the ultimate recording
density are identical for both disk and tape recording media. Practical limits, however, are
significantly different due to significant differences in the other factors, such as track guiding, fly
height, defect mapping stability, etc.

Because capacity and data rate are directly dependent upon the areal density capability of the
recording medium, choice of the recording medium is of prime importance. Numerous
investigations have assessed the recording density capability of various types of media (17 2] [3].
It is generally agreed that a thin film medium of a few hundred Angstroms thickness with
coercivity of ~1000 Oe provides superior areal density capability compared to any single-layer
particulate recording medium. Thin film is the recording medium benchmark against which
particulate medium improvements are measured. Indeed, current high performance high density
hard disk recorders almost exclusively utilize thin film media. For saturate recording, which is

242

used in thin film disk recorders, the areal density capability is proportional to H./M;t), where Hc
is the coercive force of the medium, M; is the remanent magnetization, and t is the media thickness
[4]. Particulate tape media generally are utilized in a non-saturate recording mode where the
coating thickness is usually greater than the recording depth. The effective recording depth is
determined by the gap length of the recording head and the media coercivity. In this case, effective
areal density can still be considered to be proportional to H.M,. This explains the trend from ~350
Oe iron oxide recording media in the 1960s and 1970s to 550 Oe chromium oxide media and 900
Oe cobalt doped iron oxide media in the 1980s to 1500 Oe metal particle (MP) media in the 1990s.
In addition to the increasing use of MP media, smaller quantities of barium ferrite media have
appeared in floppy disk applications as well as thin film metal evaporated (ME) media for
consumer video applications.

It should be cautioned that within a given media type, there are many variations possible, including
many varieties of particle size, shape, and chemical composition, polymer chemical composition,
mixing and coating processes, etc. In other words, all media of a given generic name type, €.g.
MP, are not equivalent.

Another law of physics indicates that one parameter affecting the media signal-to-noise ratio (SNR)

is the number of particles (n) in the recording volume in a manner such that SNR ~ [5]. This
indicates that SNR can be improved through use of a medium with a larger number of smaller
particles. Numerous other practical factors influence the final choice of particle size to be used.

Finally, it is realized that volumetric density is directly affected by the substrate [6]. Thinner
substrates provide a higher volumetric density, however this desirable attribute must be balanced
with durability and tape guiding issues, the latter factor obviously being dependent upon the tape
path and the tape transport system.

B) Heads

Writing and reading data is accomplished via an intimate compatible relationship between the
magnetic recording media and the magnetic recording/reading head. There are numerous design
parameters that the head design engineer has at his disposal for optimizing the performance fora
given type media. The head indeed plays a central role in providing a suitable transfer function
between the write/read electronic circuits and the writing and reading of magnetic flux transitions in
the recording media. In addition to the function of writing and reading of data, head design
involves factors which influence a stable Head-Tape Interface (HTI) which is necessary for data
reliability and tribology factors involving wear (of both head and media) and friction. For
advanced recording systems, new media and head technology components are developed together
to allow for intelligent design trade-offs and optimized system performance.

Write heads utilize an inductive coil of various designs coupled with a suitable magnetic pole tip
material and write gap design that provides sufficient magnetic field strength to eff iciently write
flux reversals in the recording medium. 1BM 3480/3490 technology utilizes a nickel-zinc ferrite

~3000 Gauss) material for the recording head pole pieces. While this is suitable for
efficiently writing chromium oxide (Hc ~550 Oe) media used in 3480/3490 systems, this material
is not capable of adequately writing 1500 Oe MP media. The ability to write higher coercivity
media to get the benefits of higher areal density recording capability therefore requires the
development of a new head design employing higher saturation magnetization pole tip material. A
generic class of Metal-In-Gap (MIG) head designs has evolved for this reason. Most have been
developed for rotary head type recorders. The ability to utilize MIG-type designs in a 3480/3490-
like embodiment, i.e. stationary head, multi-track longitudinal recording, requires some unique
features in both materials and fabrication processes.

243

Read heads may employ either inductive or magnetoresistive (MR) read elements. For inductive
read elements, the signal amplitude is proportional to Nd /dt, where N is the number of turns
andd /dtis the rate of flux change. The rate of flux change is, in turn, proportional to the relative
head-tape velocity. All rotary head recorders utilize inductive read heads. Unlike inductive heads,
magnetoresistive heads provide a signal amplitude that is velocity independent. Furthermore, MR
elements can be designed to provide high output signals with little required real estate or process
complexity required for thin film inductive heads with a large number of turns. This is particularly
important for 3490-like recording technology that employs 18 read and 18 write elements in each
of the 2 modules required to make a recording head. The MR desi gn enables a simplified thin film
semiconductor-like process capable of fabricating the 36 elements per module economically. As
track densities increase, the benefits of the MR design become indispensable. MR read elements
were introduced in the 3480 product in 1985. A second generation improved MR design was
introduced in 1991 with the double track density 3490E design. A new inductive thin film write
head with third generation MR read head design was developed for the technology prototype
devices described here.

C) Tape Path / Tape Transport

Magnetic tape storage recorders are electro-mechanical devices. The reliability of electro-
mechanical devices is usually gated by the mechanical components. Hence, in order to achieve
high reliability in a high performance computer data storage device, special attention must be paid
to the mechanical portion of the tape path/tape transport design. Some of the requirements
expected of the tape transport are reviewed in [7]. Suffice it to say that a reliable tape transport
requires accurate velocity, tension, and tape guiding control while maintaining HTTI stability and
without damaging the media under repeated accesses in both write/read and high speed
search/rewind modes. Features built into longitudinal recording stationary head devices enable
highly reliable streaming or start-stop operations. These features include economical electronic
buffers of sufficient size to totally mask the acceleration/deceleration times of tape movement.

For advanced operating point devices employing higher track densities, it is necessary to further
improve the tape guiding envelope and, for interchange applications, the accuracy of the initial
alignment of the head to the recorded tracks. As the advanced media and head components allow
ever narrower tracks, the mechanical registration tolerances become the dominant issue limiting
track density. At some point it becomes economically advantageous to introduce a head servo
capability in lieu of ever more precise (and expensive) mechanical tolerances required to achieve
the goal of increased track density and hence capacity.

D) Servo Systems

Servo systems of varying function are utilized in hi gh performance tape storage devices. These
functions include velocity and tension control in reel-to-reel driven transports such as 3480/3490
type, and synchronization of scanner speed with tape velocity for accurate tracking in various
rotary head recorders. The use of a reel-to-reel tape transport servo system also enables a simple
means of obtaining high-speed search capability.

While hard disk storage devices have employed active head positioning servo systems for many
years as a means of reducing misregistration tolerances between the head and the written track,
such active head positioning servo systems have yet to be employed in longitudinal recording
format tape storage devices. Based on the discussion in the previous section, the ability to utilize
head positioning servo systems in combination with accurate guiding tape transports, enables the
attainment of higher track densities (hence higher capacities) without having to resort to longer
length media and concomitant increases in search/rewind times.

E) Error Correction Code (ECC)

Error Correction Codes are employed to provide an uplift to the data reliability achievable from
practically available media quality and device performance. Raw bit errors can be a result of a
variety of causes, including a) local media defects such as coating contaminants, b) global media
defects such as damaged edges, creases, adherent debris, c) adherent head contamination, d)
transient non-adherent particulate debris at the head/tape interface, €) clocking errors due to
velocity transients, and f) electronic noise.

The different types of error sources usually have a distinctive signature of raw errors which
includes parameters such as error length, error reproducibility, error coincidence across multiple
tracks, etc. The measured raw bit errors are of course critically dependent upon the data channels

employed and the optimization of equalization and detection schemes for the variety of defect
signals experienced.

In order to meet some end user data reliability target, the developer must first characterize and
specify the media quality in terms of both average bit error rate (ber) and error distribution (error
lengths and coincidence) as input to deciding which ECC scheme will meet the required objectives.
It is meaningless to talk in terms of an average ber only without addressing the defect spatial and
temporal distribution. A robust recorder design must also allow for possible increases in errors
during either storage or heavy use of the media in order to achieve the desired performance
objectives. Many claims that are made about corrected ber in various product advertisements do
not define what is or is not included in the claim, frequently leading to "apples and oranges"
comparisons.

The effectiveness of the ECC is intimately connected with the spatial distribution of the data format
written on tape. Multi-track recording heads enable a more robust ECC since data is distributed
laterally across the width of tape as well as linearly (temporally) along the length of tape. In
systems utilizing a large number of concurrent channels, ECC robustness is enabled by reducing
the probability of encountering extended concurrent defects of duration sufficient to defeat the
ECC. This is extremely important for reliable data recovery from marginally recorded or degraded
archive media. 3480/3490 devices utilize 18 concurrent channels. Data recovery is possible with
1 or 2 data read-back channels completely disabled. Obviously this would not be possible in 2
channel recording systems.

Thus multi-track recording formats can be used advantageously for enhancing data reliability. Itis
also apparent that performance (i.e. data rate) enhancements result from the use of multi-track
formats. This ability to obtain both reliability and performance enhancements is what has been
touted for RAID disk technology. In effect, tape storage devices have been utilizing these concepls
for many years with the paradigm shift that the "Inexpensive Device" is the recording element in
the multi-track head rather than a complete device. Indeed, because of the differences of tape
devices compared to disk devices in achieving device synchronization and the stability of defects,
we believe it is more practical to consider RAID type benefits for tape devices as occurring at the
multi-track head level rather than schemes employing multiple devices. There is of course a cost
associated with the benefits obtained by the use of multi-track recording technology. This includes
a more expensive head and the additional cost of the additional read/write channel electronics.

F) Device El .
The increased density and decreased cost per circuit for semiconductor chips during the past

decade has been nothing short of phenomenal. There is no indication that this progress will not
continue. The power of using advanced recording media and heads combined with the advanced

245

semiconductor components enables significant recording device performance improvements while
maintaining simple mechanical components (i.e. high mechanical reliability at low maintenance
costs) and similar or reduced acquisition costs. These concurrent technology advancement trends
have strongly influenced the decisions involved in the desi gn, assembly and testing of the
technology prototype devices.

Technology Prototype Devices |

I) Technology Component Selection

Based on the analyses in the previous sections, the technology development team selected and
developed the following technology components for incorporation into technology prototype
devices.

A) Media - MP (1500 Oe class)

. Metal particle type chosen for optimal balance to meet both SNR and archival
stability requirements
. Polymer binder system - uniquely developed to meet stringent

performance/reliability requirements
B) Heads - multi-track linear recording

. Third generation magnetoresistive (MR) read elements
. Inductive thin film write elements
. New thin film shield/write pole tips materials/design needed to meet write

performance and head-wear lifetime requirements

C) Tape Path - varies by technology prototype design

D) Servo Systems
. Reel-to-reel servo for velocity/tension control
. Active head positioning actuator/servo

E) ECC - Reed-Solomon
. Enhanced and scaled with areal density increases

F) Device Electronics - per performance and form factor objectives of technology prototype

Upon reviewing the eleven items listed as Desired Improvements in Table 2, it became apparent
thata single prototype design would not be able to address all the items on the list. Therefore it
was decided to build and test two different designs utilizing a common advanced technology base.
In combination, the two different desi gns are able to address all eleven items.

II) Technology Prototype I

Of paramount importance in the selection criteria for the Prototype I design was preservation of
automation investment. This requirement translated into the use of a 3480 CST type cartridge for

246

compatibility with the IBM 3494 and 3495 tape libraries. Use of a CST type cartridge would
thereby provide for coexistence of 3490 and an advanced function drive type to enable both
investment protection and migration capability to new technology.

Following this decision, it was decided to utilize the basic 3490 tape path since this design has
been proven with approximately ten years of field experience since the introduction of 3480 in
1985. To obtain maximum benefit of the field experience, it was further decided to utilize
approximately the same media thickness, and hence media length, as is utilized in the 3490E
extended length cartridge. This ensures similar media mechanical properties favoring the
establishment of a stable and reliable HTI with minimal development effort. Since the stated
objectives were to increase capacity, including track density, early investigations were made to
understand the various factors controlling the tape guiding envelope. The result of this has been to
introduce into the tape path design subtle improvements to both the 3490 tape path and cartridge
design that are designed to reduce the tape guiding excursions and therefore enable higher track
densities.

Many media types were investigated with compatible read-write head designs to assess their
storage capacity capability. Possible extensions of the 550 Oe chromium oxide media used in
3480/3490 devices were judged not to be of sufficient magnitude to lead to an attractive design
point. MP media provided the best overall capability, but led to the requirement of being able to
develop a compatible read-write head design capable of meeting all functional requirements
including low wear and long operational lifetime. This was a major development checkpoint that,
once achieved, committed the prototype design to MP media. Head and media were then co-
developed to optimize their combined performance.

With continued co-development of head and MP media technology components, it was assessed
that greater than an order of magnitude areal density improvement, relative to 3490E technology,
could be obtained without an active head positioning actuator/servo technology. However, in
order to provide for future capacity enhancements using the same cartridge, and to provide means
to ensure data integrity and protect against neighboring track overwrite encroachment at high track
densities, it was decided to incorporate servo tracks written on tape and to incorporate an active
head positioning servo system. Such a system is new to linear tape recording systems, but
borrows from the extensive technology developed for disk systems. The utilization of an active
head positioning system reduces track misregistration (TMR) errors without the need for
expensive, high precision mechanical components, and therefore enables the attainment of higher
track densities.

Given these choices and the appropriate ECC and channel electronic circuitry, a design target of
10GB cartridge capacity with OMB/sec data rate was established [8]. The 12.5X (relative to
800MB 3490E technology) capacity increase is obtained by operating at approximately 4X track
density and 3X linear density. All values are uncompressed. It is judged that enhancement of the
chosen technology components would provide for additional 2X-4X multipliers to both data rate
and capacity without compromise of data reliability. Should the constraint of using the same media
be removed, it is possible that even greater enhancements could be achieved.

Performance and capacity enhancements could always be obtained by reducing operating margins
that relate to robustness of the system data reliability. The design point chosen for Prototype I and
the expected possible extensions utilize the new technology components in a manner that does not
compromise data reliability.

A comparison of the Prototype I design point to the list of eleven desired improvements indicates
that seven of the eleven objectives are achieved. They are listed in Table 4.

247

Table 4

Functions Achieved Compared to Design Objectives

1) Higher Capacity 10GB (0.8GB)
2) Higher Data Rate O9MB/sec (3MB/sec)
5) Maintain/Improve Reliability Yes
7) Noincrease in Rewind Time Yes
9) Automation Compatible Yes

10) Preservation of Automation Investment Yes

11) Growth Path Yes

IIl) Technology Prototype I1

Items 3, 4, 6, and 8 that were not achieved by the Prototype I design became key focal points in
defining the design objectives for Technology Prototype II. The design was based on most of the
same base technology elements, including the media and head, that were used in the Prototype |
design. The major change that was made in the Prototype II design point involved the design of a
new tape cartridge and tape path. Such changes were deemed necessary to achieve the design
goals of items 3, 6, and 8. Several of the design objectives set for Prototype II are similar to those
set in an earlier development effort [9].

For many of the emerging data storage applications involving network hierarchical storage
management (HSM), digital libraries, and "parking garages on the information superhighway,"
current tape storage devices have several deficiencies. Key among the missing attributes is fast
access time for data retrieval. There are two aspects to obtaining fast access time to data. The first
is what may be termed the human factors aspect gauging user satisfaction against system response
time. The second factor involves the price-performance aspects of a storage subsystem. A fast-
response tape device with short rewind time leads to higher device utilization, i.e. the throughput
rate per device is higher. This leads to fewer devices needed to perform the storage subsystem
function and hence to overall lower storage subsystem costs.

Any tape storage device will still have orders of magnitude slower response time compared to a
disk storage device, however the storage cost for tape will have a couple orders of magnitude
advantage. This is enough incentive to employ a hierarchical storage system. The Prototype Il
design was developed to provide significant advantage over existing devices for these applications.

For both form factor reasons as well as access time and drive utilization reasons, it was desirable
to have a high areal density recording technology. This would enable high capacity on a shorter
length of media. Hence MP media, compatible head technology and active head positioning
actuator/servo become the key enablers of such a prototype design. The next key design factor
was the selection of a 2-reel cartridge with a self-contained tape path. This provided the ability to
improve access time and drive utilization by not having to extract the tape from the cartridge in
order to engage the head. Of equal importance, this design has the added benefit of improved
mechanical reliability. By defining the Logical Beginning of Tape (LBOT) at the Physical Middle
of Tape (PMOT) additional improvements are achieved in both access time and drive utilization.

A 5 1/4" form factor compliance was set as a goal, thereby setting an upper limit for the cartridge
size. Other aspects of the objectives criteria refined the constraints on cartridge size further.
Factors affecting ECC design, available electronic circuitry and data format were common with the
Prototype 1 decisions.

Table 5 summarizes which of the desired objectives listed in Table 2 were achieved in the
Prototype II design using the technology components previously described.

248

Table 5
Functions Achieved Compared to Design Objectives

1) Higher Capacity Yes 5GB (0.8GB)
2) Higher Data Rate No* 2.2MB/sec (3MB/sec)
3) Lower Cost Yes
4) Smaller Form Factor Yes
5) Maintain/Improve Reliability Yes
6) Higher Drive Utilization Yes
7) Nolncrease in Rewind Time Substantial Reduction
8 sec (30-50 sec)
8) Faster Access to Data Yes 8-10 sec (30-50 sec)
9) Automation Compatible Yes
10) Preservation of Automation Investment No®
11) Growth Path for Future Enhancements Yes

(a) Design is family compatible with higher data rate capabilities.
(b) Drive/Cartridge design enables compatibility with new high speed automation
systems.

Conclusions

Advanced technology elements indeed enable advanced tape storage device capabilities. How such
technology elements are utilized in particular device embodiments is highly dependent upon the
application solutions that are targeted. The functions achieved in the Prototype I design were
targeted to provide evolutionary, albeit saltatory, performance extensions to the 3480/3490 type
products for their historical tape processing applications. Functions achieved in the Prototype II
design are directed to providing solutions for a) cost-effective, lower performance historical
applications and b) the putative new emerging applications. Both designs utilize a common
technology base. This divergence in device designs is not unique in the storage industry. In the
disk storage business, utilization of new technology capabilities has resulted in smaller disk files
with higher capacity than their predecessor larger size disk products. The very reasons that
provided those decisions for disk products, as opposed to simply increasing capacity on a large
disk, will serve to guide the future direction of expected new tape storage devices. More than ever
before, it is necessary to incorporate into the device design objectives, the performance objectives
of the total storage subsystem rather than treating the device by itself.

249

| Acknowledgements
The activity described here clearly represents the result of a development team effort composed of

diverse technical skills. The authors acknowledge the contributions of these development team

members, too numerous to credit individually, that contributed to the design, assembly and testing
of the two prototypes.

250

References

1. Inaba, Hiroo, et al, “The Advantage of the Thin Magnetic Layer of a Metal Particulate
Tape,” IEEE Trans on Magnetics, 29 (1993) 3607.

2. Speliotis, Dennis E, “Double Layer Particulate Magnetic Recording Tapes,” IEEE Trans
on Magnetics, 29 (1993) 3613.

3. Williams, Peter, “Recent Developments in Particulate Recording Media,” IEEE Trans
on Magnetics, 24 (1988) 1876.

4. Middleton, Barry K, “The Recording and Reproducing Processes,” in Magnetic
Recording, Volume I: Technology, C. Denis Mee and Eric D Daniel, ed. (New York:
McGraw-Hill, 1987).

5.~ Jorgensen, Finn. The Complete Handbook of Magnetic Recording, p220. (Blue Ridge
Summit, PA: TAB Professional and Reference Books, 1980).

6. Goerlitz, W and Ito, A, “Substrates for Flexible Magnetic Recording Media: The Roleof
Base Films for Modern Performance requirements,” J Mag & Mag Mat, 120 (1993) 76.

7. Cannon, Max R and Seger, Paul J, “Data Storage on Tape,” in Magnetic Recording,
Volume II: Computer Data Storage, C Denis Mee and Eric D Daniel, ed. (New York:
McGraw-Hill, 1987).

8. Graves, David, “Capacity and Data Rate Advances in IBM Lon gitudinal Magnetic Tape
Recording Technology,” IEEE Symposium on Mass Storage, France (1994).

9. Doyle, William D, “A High Capacity, High Performance, Small Form Factor
Magnetic Tape Storage Subsystem,” IEEE Trans on Magnetics, 2 6 (1990) 2152. -

251

N95- 24128

APPROACHES TO 100 Gbit/in2 RECORDING DENSITY 4.5 %6 f

Mark H. Kryder
Engineering Research Center for Data Storage Systems V j/
Camnegie Mellon University ”
Pittsburgh, PA 15213-3890

A recording density of 10 Gbit/sq. in. is being pursued by a number of companies and
universities in the National Storage Industry Consortium. It is widely accepted that this
goal will be achieved in the laboratory within a few years. In this paper approaches to
achieving 100 Gbit/sq. in. storage densities are considered.

A major obstacle to continued scaling of magnetic recording to higher densities is that as
the bit size is reduced, the grain size in the magnetic media must be reduced in order that
media noise does not become so large that the signal to noise ratio (SNR) degrades
sufficiently to make detection impossible (1). At 100 Gbit/sq. in., the bit size is only
0.006 square micrometers, which, in order to achieve 30 dB SNR, requires a grain size of
about 2.5 nm. Such small grains are subject to thermal instability, and the recorded
information will degrade over time unless the magnetic anisotropy of the materials used is
increased significantly, or the media thickness is made much larger than expected on the
basis of scaling today's longitudinal media thickness.

Perpendicular recording may enable one to use larger media thicknesses and therefore
increase the volume of the grains, making it possible to overcome the thermal stability
issues. However to record at such high densities onto perpendicular media will require
that contact recording be used. Probe heads such as the Micro Flexhead(TM) components
proposed by Censtor may provide a solution to this problem (2).

Another solution may be to use structured media in which the bit cells are defined by
lithographic or otherwise created structure in the recording media. If the bit cells are
defined, then each bit can be stored on a single particle, and instead of requiring 1000
grains per bit, it is possible that 1 grain per bit would be adequate. In this case recording
densities as high as 10 Tbit/sq. in. would theoretically be thermally stable with today's
materials.

Alternatively, bits could be recorded in the form of cylindrical domains in perpendicularly
oriented, exchange-coupled magnetic media, like those used for magneto-optic recording
today. With careful design of the magnetic parameters of such media, it is possible to
balance the inward directed force of the domain wall surface tension against the outward
directed force of the demagnetizing field. This produces a magnetic domain which is
easily stabilized by moderate coercivity. Using near-field magneto-optic recording,
domains have already been written and readback at a density of 45 GBit/sq. in. in such
media (3). These domains have been shown to be thermally stable for several years in
these media.

253 - :
PRECEDING PASE WLANX NOT FILMFD fAGEMINTENﬂONALLY BLANK

Whatever form of recording media is utilized, it is likely that some form of near-field
magnetic or optical probe head will be required to record and playback the data. In order
to achieve the desired resolution, the head will likely have to operate with a head-media
spacing of less than 10 nm. Although it is too early to say for sure that such heads could
not be "flown" above the media surface on a slider, it currently appears more likely that
either the probe head would be run in contact with the media, or that some form of
active feedback would need to be used to keep the probe head in close proximity to the
media similarly to how feedback is used to control the head- media spacing in atomic force
microscopes (AFM) today. If the AFM approach is used, then some means must be
found to enable an adequate data rate. Theory and experiment indicate that, if a probe
head is used with feedback, the data rate from a single head will be limited to a few
megahertz (4).

One approach to achieving higher data rates would be to use an array of probe heads. L.
R. Carley, et al. have been micromachining arrays of probe heads, actuators and control
electronics for head positioning on a silicon wafer (5). This offers one approach to
achieving the high data rates that are required.

In conclusion, storage densities of 10 Gbit/sq. in. are likely to be achieved with
longitudinal recording; however, densities of 100 Gbit/sq. in. appear to require some
changes in approach. Perpendicular recording, structured media and exchange coupled
media all offer possible solutions to the thermal instability which is expected to result
from too small a grain size. Because of resolution requirements, some form of probe head
spaced less than 10 nm from the media is anticipated to be required.

1. Pu-Ling Lu and Stanley H. Charap, /EEE Trans. Magnet., 30 (1994) 4230.

2. H. Hamilton, R. Anderson and K. Goodson, /[EEE Trans. Magnet., 27 (1991) 4921

3. R.E. Betzig,].K. Trautman, R. Wolfe, EM. Gyorgy, P.L. Finn, M.H. Kryder and C-
H. Chang, Appl. Phys. Lett., 61 (1992) 142

4. H.J. Mamin, L.S. Fan, S. Hoen and D. Rugar, "Micromechanical Data Storage with
Ultra Low-Mass Cantilevers", Technical Digest of Solid State Sensor & Actuator
Workshop, June 13-16, 1994, p. 17.

5. L.R. Carley, "Data Storage System Based on an Array of MEMS-Activated STM
Tips" 1992-1993 DSSC Annual Report for Industry, Data Storage Systems Center,
Camegie Mellon University, 1993.

254

N95- 24129

Reproducible Direct Exposure Environmental Testing
of Metal-Based Magnetic Media

-
Paul J. Sides 3_2 /~35
Department of Chemical Engineering
Carnegie Mellon University Y36 b/

Pittsburgh, PA 15213
ps7r@andrew.cmu.edu
Tel: 412 268 3846 f ,)0

Fax: 412 268 7139
Abstract

A flow geometry and flow rate for mixed flowing gas testing is proposed. Use of an
impinging jet of humid polluted air can provide a uniform and reproducible exposure of
coupons of metal-based magnetic media. Numerical analysis of the fluid flow and mass
transfer in such as system has shown that samples confined within a distance equal to the
nozzle radius on the surface of impingement are uniformly accessible to pollutants in the
impinging gas phase. The critical factor is the nozzle height above the surface of
impingement. In particular, the uniformity of exposure is less than +/- 2% for a volumetric
flow rate of 1600 cm3/minute total flow with the following specifications: For a one inch
nozzle, the height of the nozzle opening above the stage should be 0.177 inches; for a 2
inch nozzle - 0.390 inches; for a 3 inch nozzle - 0.600 inches. The tolerance on these
specifications is 0.010 inches. Not only is the distribution uniform, but one can calculate
the maximum delivery rate of pollutants to the samples for comparison with the observed
deterioration.

Introduction

Recording density and archivability are important characteristics of any data storage
medium. Metal-based tapes such as metal particle (MP) and metal evaporated (ME) media
perform well in recording but might, however, be vulnerable to corrosion.

Direct exposure to humid polluted air is a basic test of the archivability of a medium. For
example, accelerated testing of MP media several years ago indicated some susceptibility to
corrosion [1]. Although a tape cartridge or cassette must be considered as a "system" that
affords protection of the tape by virtue of the spooling and incorporation into a package, the
most basic line of defense against deterioration is the corrosion resistance of the media
itself.

We have developed a corrosion test protocol based on the Battelle [2] flowing gas
specifications but enhanced by the additional specification of a well-defined flow geometry,
known as the "impinging jet", and flow rate. [3] We used it to expose coupons of MP [3]
and ME [4] tape to variations of a Battelle Class II environment and found that some
commercial MP media is very corrosion resistant while commercial ME media is vulnerable
to corrosion on direct exposure. Numerical modeling of the flow has shown that, under
certain circumstances to be discussed herein, the system possesses the useful property of
uniform accessibility of the pollutants to the surface. In this paper, we report on the results
of this modeling and discuss the standardization of direct exposure testing to eliminate the
lab-to-lab variations that have been reported in the literature.

255

The fluid dynamics of the impinging jet

The impinging jet configuration, a variation of the stagnation point flow geometry, appears
in Fig. 1. The incoming gas stream flows through a nozzle oriented perpendicularly to a
nearby surface. The velocity profile of the jet changes from fully developed parabolic flow
to free jet flow in the potential core, beyond which the centerline velocity of the jet
decreases at a rate inversely proportional to the distance from the nozzle. The axial fluid
velocity approaches zero in the region near the stagnation point. The flow in the body of
the jet is axisymmetric, inviscid, irrotational, and the thickness of the boundary layer is
insensitive to radial position. The flow is inviscid in the body of the jet because the
vorticity is of the order of the inlet velocity divided by the radius of the jet, which is large
with respect to the vorticity of the fluid in the boundary layer that grows from the
stagnation point outward near the surface of impingement.

Humid,
polluted air

Figure 1. A schematic diagram of the impinging jet

Previous investigators have modeled the transport in the impinging jet reactor and
experimented with it. The theoretical investigations can be divided into those that assume a
uniform inlet flow and those that assume a well-developed parabolic flow. Homann [5]
solved the one dimensional equations under the assumption of uniform accessibility. Chin
and Tsang [6] surveyed the literature on the impinging jet and developed a semiempirical
solution of an isothermal convective diffusion model in the form of an asymptotic series to
give an estimate of the mass transfer rate for Schmidt number (Sc) > 0.7. Scholtz and
Trass [7], examining mass transfer in a laminar impinging jet with a parabolic velocity
profile at the inlet, measured velocity, pressure distributions, and the evaporation of
naphthalene in a jet of air flowing at nozzle Re in the range 375 to 1970. The results of the
experiments agreed satisfactorily with their analysis of the fluid flow and mass transfer
equations under the nozzle. The rate and radial distribution were insensitive to nozzle height
in the range 0.25 to 6 nozzle diameters. The mass transfer was uniform to the surface from
the stagnation point to one fifth of the nozzle radius. The dependence of the mass transfer
on radius from the axis was a strong function of nozzle height. For nozzle heights greater
than half a radius, the mass transfer rate was a maximum at the axis and decreased radially.
The mass transfer rate at the nozzle radius was approximately 80% of the rate at the
stagnation point for nozzle heights of greater than one half the nozzle radius. For nozzle
heights less than a third of the radius, the pattern was inverted; that is, the mass transfer
rate was a minimum at the axis and increased radially. Snyder et al. [8] modeled the flow
numerically and confirmed this inversion of the radial dependence of the mass transfer.

256

We used the impinging jet design in accelerated corrosion testing of magnetic media [3,4]
because of its simple construction and high mass transfer rates but were concerned about
the uniformity of the exposure. The inversion of the mass transfer rate dependence on the
nozzle height, noticed by Scholtz and Trass [7] and illustrated in Fig. 2, presented an
opportunity to improve the uniformity of the mass transfer to the surface under the jet. We
sought to determine the radial profile of the mass transfer flux for various values of H/R
between 0.3 and 0.5 in order to explore what happens when the profile changes from the
one having a maximum at the axis to the profile having a minimum at the axis. The results
of this modeling and their relation to the uniformity and rate of mass transfer of dilute
components from a flowing mixed gas to coupons in an impinging jet chamber are
presented in this contribution. The objective of the modeling was to determine conditions
under which the uniformity of mass transfer to coupons would be optimal.

The Numerical Model of the Impinging Jet

A diagram of the domain appears in Fig. 2. A carrier gas and a reactive minor component
enter the domain with a parabolic velocity profile and the flow emanates from a nozzle six
to seven radii from the inlet. The gas impinges on a surface located at various distances
from the nozzle and it exits along the open end of the domain. For the purposes of this
study, the concentration of the minor component vanishes at the impingement surface (i.e.
mass transfer control). This specification produces the maximum rate of delivery of the
reacting species to the surface. The width of the domain was two radii. Axial symmetry in
the problem allowed two dimensional representation and sectioning of the domain.
Equations for the convective diffusion of mass and momentum in the impinging jet
geometry governed the transport in the domain [7]. The dilute solution approximation was
appropriate for this case. The boundary conditions were: (1) zero flux of mass and
momentum through the nozzle wall and the reactor wall connected to the nozzle; (2) zero
flux of momentum through the impingement surface; (3) finite concentration of the minor
component at the inlet and (4) zero concentration at the surface of impingement.

Inlet parabolicvelocity profile

0.5m

~—0.08 m—3="

Figure 2. A schematic diagram of the domain of the numerical solution.

A diagram of the chamber used in the experiments [3,4] appears in Fig. 3.

257

water inlet
water jacket 1

gas tempering coilss

gas flow space_

...Q...jﬂ.

sample holder ~_

z

sealing flange

exit holes

water outlet<+——=——
gas inlet —=——

sample stage
gas outlet

Figure 3. Detailed schematic of the impinging jet chamber

258

The program for the impinging jet reactor in this study solved the governing equations
subject to the boundary conditions using a finite volume method documented by Patanker
[9]. The FLUENT software package was used to formulate and solve the appropriate
discretization equations for the impinging jet model. Details about the grid and the solution
method can be found in Snyder et al. [8]. The physical constants and specifications used in
the simulation were the following:

Molecular diffusivity of the pollutant: 1.5E-5 m2/s
Volumetric flow rate of humid polluted air: 2.67E-5 m3/s
Density: 1.13 kg/m3
Viscosity: 1.85E-5 kg/ms
Temperature: 303K

These factors gave a Sc number of 1.09. This volumetric flow rate gave Re numbers of
82, 41, and 27 for the 1 inch, 2 inch and 3 inch tube diameters, respectively.

Results of the Numerical Modeling

The local mass transfer coefficient to the samples below the nozzle, in dimensionless form,
appears in Figures 4, 5, and 6 as a function of radial position for nozzle diameters of 1
inch, 2 inches, and 3 inches, respectively. The ordinate, expressed in physical properties,
is

R \1/2
Sh _k(p) M

Rel/2 D{2p<v>
where
on = 12
Re = 2R <pv>u
Sc=—p—%

and k is the mass transfer coefficient; R is the nozzle radius; D is the binary diffusivity of

oxidant in the air; <v> is the average velocity in the nozzle; i is the viscosity; and p is the
density of the test gas. Thus the ordinate is proportional to the local mass transfer
coefficient, k, and is therefore proportional to the ability of the mixed flowing gas to deliver
the pollutant to a particular location.

259 .

085 T T 1

T
0.84 L
2 083 F _
Y C ~ . L
% : i..-------" “:
w 082 — . |'_
[Llinch nozzle 1]
[————H/R =0.350 p
0.81 - H/R = 0.360]
08 5 i i i 1
0 0.2 04 0.6 0.8 1
/R

Figure 4. The dimensionless local mass transfer coefficient on the surface of
impingement as a function of radius from the axis of the 1 inch nozzle. In
the case of H/R = 0.35, the maximum nonuniformity is +/- 0.0085 or about
1% of the average value.

0.86 T T T T

085 F h N

0.84 | =———H/R =040 ~ LE
" A H/R = 0.38 I ¢
%) 0‘83 :_ ceeeeee- HIR = 0.39 'l- "'.' _|:'
7] =

0.82 [

081 F

0.8 C i i I 1

0 0.2 04 0.6 0.8 1
r/R

Figure 5. The dimensionless local mass transfer coefficient on the surface of
impingement as a function of radius from the axis of the 2 inch nozzle. In
the case of H/R = 0.39, the maximum nonuniformity is +/- 0.012 or about
1.5% of the average value.

260

0.87 T T T T]

L L A

0.86
" e H/R = 0.41 R
0.85 | R A SR

wews=w H/R = 0.40 e L R

go 0.84 _ coeeer- H/R = 0.39
5osf
0.82 |
0.81 [
0.8 E 1 1 | 1
0 0.2 04 0.6 0.8 i
r/R

Figure 6. The dimensionless local mass transfer coefficient on the surface of
impingement as a function of radius from the axis of the 3 inch nozzle. In
the case of H/R = 0.40, the maximum nonuniformity is +/- 0.018 or about
2% of the average value.

Note the resolution of the ordinates in Figures 4, 5, and 6. The maximum variation of the
mass transfer coefficient at the surface of impingement over the radius of the nozzle is +/-
1%, 1.5% and 2% , respectively, for the 1 inch, 2 inch, and 3 inch diameter nozzles. The
implication is that the delivery of pollutants to the surface of impingement is uniform to
within the quoted percentages under the assumption that all of the active species in the gas
phase that reach the surface are immediately and irreversibly consumed. The optimum
results for the three different nozzle sizes, plotted on a scale that reveals the essential
uniformity of the mass transfer coefficient over the radius of the nozzle, appear in Figure 7.

1 T T T T
0 ____
S %8 [T]
% F o[- 2 inch]
7] 0.4 - <eeeee-- 3 inch .
0.2 | .

0 : 1 I 1 1
0 0.2 0.4 0.6 0.8 1

/R
Figure 7. The uniformity of mass transfer to samples. Heights of the
nozzles above the sample stage: 1 inch: 0.177"; 2 inch: 0.390"; 3 inch:
0.600". The heights should be within +/- 0.010" of the indicated values.

261

The domain and boundaries appearing in Figure 2 shows that the entire surface of
impingement below the nozzle is active from the axis to the radius of the chamber. In
practical situations, one places coupons only in the area of interest below the nozzle, but
this can lead to spurious effects for the samples at the outer edge because the pollutants can
diffuse upstream and increase the exposure of the outermost samples. This situation is
depicted in Fig. 8. The dashed line corresponds to the case where the outer boundary of
the sample region ends at the radius; the dark continuous line corresponds to the situation
when the entire surface is active or when a set of buffer samples is included outside the
radius of the nozzle.

Discussion

Given the above results and the work of Scholtz and Trass [7], one can express the
dimensionless mass transfer rate as

Sh = 0.82Re935c0-36 ()

Rewriting equation (2) and multiplying by the concentration of oxidant, one can calculate
directly the mass transfer limited corrosion rate in um per day.

0.14 1/2(py
3 =No.82(.g) DO-M(“_W) ()

dt R RoT /| | Pm

Mm
——] 3

where

— = corrosion rate
dt

<v> = average flow velocity in the nozzle

R = radius of the nozzle

P = atmospheric pressure, 1 atm

Xo = mole fraction of oxidizer in the system

Rg| = gas law constant

T = temperature

N = the number of media atoms corroding per molecule of oxidant

Pm = density of magnetic material
M = molecular mass of magnetic material

Equation (3) assumes that there is a primary oxidant that is transported by diffusion and
convection to the sample surface where it is adsorbed and reacts with unit probability.
Note that the density of the magnetic medium must be its effective density. For example,
ME films contain voids, formed during the deposition process, that reduce the saturation
magnetization relative to the bulk alloy [10].

262

ooy

"

1 r T T i T :

g [
- 2.inch nozzle {]
0.96 [1]
- all active area i]
. | mw====under nozzle i]
3, 0.92 [....@- with 1 sample buffer !
; i
% 0.88 |-]
= ")
0.84 - k

0.8 C ! : : '

o 02 04 06 08 1

Figure 8. Dimensionless local mass transfer as a function of radial position
from the axis on the surface of impingement. When the entire surface
outside as well as inside the nozzle radius is active, the dependence is
identical to the performance when a buffer layer one coupon wide is
included is added to the samples. When no buffer layer is present, the mass
transfer rate increases strongly because of the availability of species to

diffuse upstream and react.

In general, the result of experiments of this type is not either the mass transfer limited
reaction rate or the reaction limited rate, but a mixed rate. The answer one wants from an
experiment such as this, for comparison to other media, is not the mixed-mode rate, but the
reaction-kinetics-limited rate that is obtained, in principle, when the flow velocity is
infinite. One can find this rate by assuming linearity of both the transport and reaction with
oxidant concentration, an assumption crucial to accelerated testing in any case, and by
expressing the kinetics as a series resistance problem. Analysis of this model reveals the
following relationship between the measured corrosion rate, the intrinsic reaction rate, and

the radius of the nozzle., i.e.

1 _ 1 3/2
@@ \a@),

dd) . e e . .
where (Ti? is the reaction kinetics-limited rate of moment loss and C is a collection of

constants related to the mass transfer part of the problem. A plot of the left side of equation
(4) versus the 3/2 power of the radius should be a straight line having the reciprocal of the

desired quantity as the intercept at the ordinate.

263

Conclusion: A Proposed Flow Geometry for Direct Exposure Testing

Using the above results and analysis, we propose the following prescription as a means of
assuring the reproducibility of direct exposure testing. Construct an isothermal chamber
having the capacity to hold a glass nozzle 1 inch, 2 inches, or 3 inches in diameter and 30
inches long. The nozzle should face a sample stage capable of holding samples at right
angles to the nozzle. The opening of the nozzle facing the samples should be flush with a
plane that extends to a radius of at least 3 inches. Provide a supply of humid polluted air to
the chamber at a total volumetric flow rate of 1600 sccm. All the other Battelle Class II
specifications remain the same. The nozzles should be suspended above the sample stage
by 0.177", 0.390", and 0.600" +/- 0.010" to assure that the delivery of pollutants to the
surface does not vary from axis to nozzle radius by more than approximately 2%. The
samples should be coplanar with the surface of impingement. We have found that coupons
5 mm square and attached by double stick tape to glass inserts in a plastic chip carrier
matrix work very well. Coupons this size generally have sufficient magnetic moment to be
measured and a number of them can be exposed at once, particularly if the 3" nozzle is
used. The thickness of the glass inserts and tape can be matched to permit the sample
coupons to be flush with the impingement surface.

There are two main advantages and one disadvantage of this specification. First, the
proposed configuration eliminates ambiguity in the flow over the samples and therefore
promotes reproducibility. Second, the laminar flow pattern can be calculated and the mass
transfer coefficients deduced to determine the relation between the amount of pollutants
delivered and the rate of corrosion of the samples. For example, one draws very different
conclusions if the measured rate is much less than-, equal to-, or much greater than the rate
of supply of pollutants to the samples. The disadvantage of the proposed approach is that
the close proximity of different samples in the sample tray under the nozzle can affect the
results if the samples have very different susceptibilities to corrosion. For example, if one
sample is very reactive and it adjoins a relatively unreactive sample, the reactive samples
will "steal" reactant from the more noble sample and the result would be that the difference
between the two samples would be accentuated. If the precise corrosion rate of a particular
sample is desired, the best solution is to do preliminary comparison testing of mixed
sample types and then do final testing of important sample types separately. This problem
could also be alleviated by a higher volumetric flow rate of gas so that the mass transfer
boundary layer thickness over the samples was much less than the dimension of the
samples.

References

1. A. Djalali, D. Seng, W. Glatfelter, H. Lambropoulos, J. S. Judge, and D. E. Speliotis,
J. Electrochem. Soc., 138, 2504 (1991).

. W. Abbott, Br. Corros. J., 24, 153 (1989).

. P. J. Sides, G. Spratt, and J. P. Kampf, I[EEE Trans. Magn. (1994).

. Kampf, J. P., P. Sides, G. Spratt, J. Electrochem. Soc. (submitted, 1994).

. Schlichting, H. Boundary Layer Theory. 1955 Pergamon Press. New York, NY.

. Chin, D.-T. and C.-H. Tsang J. Electrochem. Soc. 125: 1461, 1978.

. Scholtz, M. T. and O. Trass, AICKE J. 16: 82, 1970.

. D. Snyder, P. Sides, E. Ko, J. Crystal Growth 123 163 (1992).

9. Patanker, S. V. Numerical Heat Transfer and Fluid Flow 1980 Hemisphere Publishing
Corporation. New York.

10. S. L. Zeder, J.-F. Silvain, M. E. Re, M. H. Kryder, and C. L. Bauer, J. Appl. Phys.,
61, 3804 (1987).

WO~IANWNPLWN

264

Optical Storage Media Data Integrity Studies N95- 24130

Fernando L. Podio -
National Institute of Standards and Technology /

Building 225, Room A61 A3 6 (o

Gaithersburg, MD 20899
fernando@pegasus.ncsl.nist.gov , }
301-975-2947 f, /
301- 216-1369 (fax) '

Abstract

Optical disk-based information systems are being used in private industry and many Federal
Government agencies for on-line and long-term storage of large quantities of data. The
storage devices that are part of these systems are designed with powerful, but not unlimited,
media error correction capabilities. The integrity of data stored on optical disks does not only
depend on the life expectancy specification for the medium. Different factors, including
handling and storage conditions, may result in an increase of medium errors in size and
frequency. Monitoring the potential data degradation is crucial, especially for long term
applications. Efforts are being made by the Association for Information and Image
Management Technical Committee C21, Storage Devices and Applications, to specify
methods for monitoring and reporting to the user medium errors detected by the storage
device while writing, reading or verifying the data stored in that medium. The Computer
Systems laboratory (CSL) of the National Institute of Standards and Technology (NIST) has
a leadership role in the development of these standard techniques. In addition, CSL is
researching other data integrity issues, including the investigation of error-resilient
compression algorithms. NIST has conducted care and handling experiments on optical disk
media with the objective of identifying possible causes of degradation. NIST work in data
integrity and related standards activities is described.

Introduction

Many organizations are using optical disk-based systems for the storage and retrieval of large
sets of valuable information. One general indicator for long term storage of data is the optical
disk media life expectancy. For this indicator to be of value, a standard method to determine
life expectancy is essential. Extrapolated life expectancy values may vary greatly because they
depend on the test method used for calculating the quality parameter (e.g. the byte error rate),
the measurement approach (including areas on the disk tested, data patterns written, and
amount of data tested), the mathematical model used, and the criteria for data analysis
(including the statistical analysis used and the confidence levels), Podio [1].

If a standardized test were employed by all media manufacturers, media life expectancy could

265

be a good parameter to select media for long term applications. However, to determine a life
expectancy specification, tests are run with a small sample of disks from a population of
manufactured disks. In addition, media technological changes would require running life
expectancy tests almost continuously to test newcomers on the market, since the old data
obtained on previous life expectancy tests may not apply to new technology. In conclusion,
a life expectancy specification is useful only as a general indicator for media selection.
Individual disks will still fail at different times.

All storage devices are designed with powerful, but not unlimited, error correction
capabilities. Because of different factors which include handling and storage conditions, errors
may increase in size and frequency. If the level of errors increases beyond the maximum
capacity of the ECC (error correcting codes) in the device, data will be uncorrectable. By not
being informed of the level of error correction that is taking place in the optical disk device,
users learn about critical error events only when the data is already irretrievable. If these
types of critical errors occur on a specific unlinked data structure, this data structure may no
longer be recoverable but data degradation may not have caused extensive damage outside
the unlinked data structure. However, if data degradation at these critical levels of
unrecoverable errors occurs in any linked structure or with a compressed data entity,
substantial data losses may result.

Several approaches can be followed for improving data integrity. One approach is to monitor
data errors with time. Users can gather information to highlight trends in particular selected
disks or their entire data sets. This monitoring capability allows users to make decisions on
transferring data to new media in a timely and economic manner before data loss occurs.
Another method to increase data integrity is to use layered ECC. Although layered error
correction decreases the user data capacity, it adds error resilience.

Compressed data in the presence of errors is especially vulnerable to catastrophic data failure.
Woolley [2] emphasizes the importance of robust error control in data compression
applications. For compressed data, in addition to using media error monitoring and layered
ECC, there are other techniques to improve data integrity in the presence of errors: error
correction integrated with data compression Kobler [3], entity reduction and error-resilient
compression. NIST is currently investigating the error-resilience of these techniques.

Efforts to develop standard media error monitoring tools and techniques for optical disk
drives and NIST's involvement in the development of this standard are described. NIST
investigations on media error monitoring tools, data analysis statistical models for error
distribution, and media error visualization are also described.

Another aspect of data integrity research at NIST includes an experimental program for the
care and handling of optical disks. A series of experiments were performed using different
types of optical disks. The experiments included exposure to liquids and vapors, cleaning
agents, solvents, fire smoke, food substitutes, paint fumes and paint, temperature and
humidity cycles, heat and cold shocks, uniform pressure, static electricity, gamma rays, etc.

266

A brief description of this work is also included.
Standards for Media Error Monitoring and Reporting Techniques

In 1991, the Computer Systems Laboratory of NIST sponsored a workshop to identify the
state of the art on media error monitoring approaches for optical disks and to identify the
user's needs, Podio [4]. As a result of the workshop, a working group was formed to identify
media error monitoring techniques. The working group developed a set of procedures for
monitoring and reporting media error correction levels on optical disk devices. The results
of this activity are being used as a basis for formal standard work.

With NIST leadership, the Association for Information and Image Management (AIIM)
Committee C21 (Storage Devices and Applications) is developing the American National
Standard ANSI/ATIM MS59. ANSI/AIIM MS59 specifies media error monitoring and
reporting techniques for the verification of information stored on optical digital data disks',
AIIM C21 [S].

Parallel efforts are taking place in developing an international standard under the auspices of
the International Standards Organization (ISO) Technical Committee TC 171, Micrographics
and Optical Memories for Document and Image Recording, Storage and Use. The current
content of the proposed ISO standard is based on ANSI/AIIM MS59.

ANSI/AIIM MS509 provides a toolkit of media error monitoring and reporting techniques, any
combination of which may be employed. The standard provides two levels of media error
monitoring and reporting techniques, a functional approach and an implementation of a
selected set of Small Computer Interface (SCSI-2) commands.

The high level approach (a set of functional commands) is independent of the host operating
system (e.g. DOS, Unix, OS/2, etc) and the interface that connects the optical disk device
with the host (e.g. SCSI-2, TPI, LAN, etc). This high level interface approach is media type
and size independent. That is, it can be used with systems that use WORM (write-once read
many), rewritable or partially read-only media and optical disk drives for different media sizes
from 90 mm to 356 mm media. The implementation of a selected set of SCSI-2 commands
enables media error monitoring and reporting techniques at the device level providing direct
communication with an optical disk drive that uses the SCSI-2 interface.

1

The U. S. National Archives and Records Administration (NARA) has recently published a Technical
Information paper NARA [6]. NARA's publication provides recommendations on long-term access strategies
for Federal Agencies using digital-imaging and optical digital disk storage systems. One of NARA's
recommendations on data integrity states that users should "require that equipment conform to the proposed
national standard ANSI/ATIM MS59".

267

The media error information that can be obtained using the tools specified in the standard
include:

. A list of reallocated sectors.

. Corrections that exceed some specified media error levels.

. Warning on specified verify media error levels.

. Total number of bytes in error, number of bytes in error per sector and maximum
number of bytes in error in any sector codeword.

. The uncorrected or corrected sector content.

. Errors encountered reading header information such as the sector address, sector
marks, and synchronization signals.

. The maximum length of contiguous defective bytes.

From the user's perspective, the purpose of ANSI/AIIM MS59 is to allow users of the
standard:

. To have a better understanding of the status of their data stored on optical disks.

. To obtain media error information as directed by the system administrator.

. To enable data recovery with tools of the desired level of sophistication.

. To provide media error information allowing the user to make decisions about the

media at the present time, and also provide error information which will highlight
trends in particular selected disks or in their entire data sets.

. To make decisions about how long the media can be used without an unacceptable
risk of data loss.
. To develop more cost effective backup, recopying and data transfer policies.

The user or implementor of ANSI/AIIM MS 59 will be able to:

. Format the optical digital data disks with or without certification.

. Reallocate sectors when specified media error levels are exceeded.

. Obtain information about all the reallocated sectors and/or a defect list of initial media
defects.

. Set media error level values to obtain early warning information about the status of
the data and/or interrogate the drive to obtain the values of those set media error
levels.

The media error levels are what the optical disk drive will use for error recovery. If the ECC
level of correction exceeds one or more of the set levels and reallocation is enabled, the sector
that exceeded the media error level(s) is reallocated to a spare sector. Whether reallocation
is enabled or not, the optical disk drive reports to the host that a set level was exceeded,
indicating which one was exceeded, and whether or not the data was recovered.

The following are the media error levels specified in ANSI/AIIM MS59:

268

. Number of bytes in error per codeword

. Number of bytes in error per sector
. Number of bad sector IDs
. Number of missing resync bytes (when the drive uses resync bytes)

AIIM C21 is also developing an accompanying ANSI Technical Report, AIIM C21 [7]
describing guidelines for the use of the media error monitoring techniques documented in
ANSI/AIIM MS59. The current outline for the guidelines includes:

. A description and use of the media error monitoring and reporting techniques
documented in ANSI/AIIM MS59.

. Discussion of error management strategies.

. Methods of visualization of media error information using the techniques specified in
MS59. '

. Methods to estimate the data integrity including:

- use of sampling methods
- use of baseline media error parameters and distributions
- use of statistical models

NIST Investigation of Media Error Monitoring Tools for Optical Disks and Media
Error Visualization

Concurrently with the standardization efforts, NIST has also been conducting laboratory
work in investigating media error monitoring and reporting (MEMR) techniques, statistical
models for error distribution, and methods for error data visualization.

The MEMR techniques are used in optical disk drives for the verification of information
stored on the optical disks. These techniques allow users to obtain timely information about
the status of their data. NIST has investigated some of the MEMR techniques available in
commercial drives, and has researched possible new implementations. All of this work has
contributed to the content of the proposed ANSI/AIIM MSS59 standard and the parallel
proposed ISO standard. ‘

NIST has also developed guidelines for the use of the MEMR tools. The guidelines include
procedures that end users or system integrators can use to monitor the status of : data stored
on optical disks. These MEMR techniques for optical disk drives may be the basis of similar
MEMR techniques for other types of high density/high capacity mass storage technologies,
such as magnetic media disk/tape drives, optical tape drives and devices based on new page-
oriented memories.

NIST has looked at statistical models for media error distributions on optical disks. One

model is the modified Gilbert model, Marchant [8]. This model is based on two different
classes of defects and has been found to give an excellent fit to defect statistics on media that

269

uses the magneto-optical recording Takeda, Saito, and Itao [9]. This model takes into account
modeling non random errors (long burst defects). The Gilbert model requires two byte error
rate (BER) values and two average burst lengths. One BER is derived from microscopic
defects, the other from larger media substrate damage. The model output is the burst-length
probability distribution.

A simpler statistical model has also been developed at NIST. This model is the basis for
predicting the maximum number of errors in a sector codeword. One version of this model
assumes a uniformly random binomial distribution of errors, and uses only one byte error rate
(BER) and the number of sector interleaves as input. It produces a baseline for comparison
at different times on the status of an optical disk every time the disk is tested. The output of
this model can provide a basis for comparison with reported disk error statistics so that the
user can identify abnormal changes in the media error distribution. Figure 1 shows the model
output, a distribution of bytes in error per codeword.

1E+00
1E-01 |
1E-02 |
1E-03 |
1E-04 |
1E-05 +
1E-06 -
1E-07 |
1E-08 1
1E-09
1E-10
1E-11

Probability

Maximum Number of Bytes in Ervor per Codeword per Sector

Figure 1. For this particular disk type, the sector data field, which includes the user data
bytes, the ECC bytes, and the CRC bytes, is divided into five codewords. The maximum
number of bytes in ervor of the five codewords per sector is determined, and the probability
of occurrence of one, two or more bytes in error is plotted. The maximum number of errors
per codeword that can normally be corrected in drives that use this type of media is eight.

Depending on the different values of the expected or empirical BER, the model can also
indicate that the drive's maximum error correcting capabilities are being approached or
exceeded. The modified Gilbert model describes only error length distributions, but does not
make the connection to error correcting capabilities. This simpler model makes this link. It
uses the real disk data structure (sectors and interleaves) and assumes only a simple uniformly
random distribution of errors, such as binomial or Poisson.

Given a measured BER, the model can be used to generate a predicted distribution of the

270

number of bytes in error per codeword. If the predicted distribution is not acceptable (number
of bytes in error in any codeword exceeds certain user established number), the user may
consider retiring the media at this point. If the predicted distribution is acceptable, the user
should determine the real distribution of the number of bytes in error per codeword (using a
ANSVAIIM MS59 compliant drive or any other drive that provides this type of media error
information). If the measured distribution shows an excess in the number of bytes in error, the
user may consider retiring the disk. Because the model assumes a random distribution of
errors, if the predicted and measured distributions are significantly different, a non random
error distribution might be supected and the user may use other MEMR tools to investigate
the level and the distribution of these errors further.

NIST has also developed media error visualization tools for the byte-error statistics
retrieved via the media error reporting tools documented in the ANSI/AIIM MS59 standard.

The media error visualization tools include:

a. Line graphs depicting:

. Sector reallocations over time.

. Bad sector ID's over time.

. Byte error rate over time.

. Maximum bytes in error per codeword and per sector over time for a given disk as

shown in Figure 2.

MAX({e

W

&

Q

&

o

8

=

[

[=9

Test Number

Figure 2. This line graph shows how the maximum, or worst-case, number of bytes in error
per codeword may change over time for a given disk. The normal ECC correction limit
capability is eight bytes per codeword.

271

In Figure 2, the user-specified error level is set at a maximum of four bytes in error per
codeword.

Using ANSI/ATIM MS59 compliant drives the user can check the default level of bytes in

error per codeword that, when exceeded, would enable the reallocation of the sector. Using
this type of drive, the user can also change this error level.

b. Bar charts depicting:

. Relative frequency of maximum bytes in error per codeword and per sector.
. Maximum bytes in error per codeword per radial area of a disk.
. Maximum bytes in error per codeword per band of tracks.

The bar chart in Figure 3 shows tha maximum number of bytes in error per codeword per
band of tracks for a given disk.

MAX({ec}
w N

8 IS A0 A

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Band of Tracks

Inner
Outer

Figure 3. The maximum number of bytes in error per codeword is shown in this chart in a
different way than in Figure 2. The disk has been divided into bands of n tracks and the
maximum number of bytes in error per code word in shown for all the sectors within the
tracks specified in a particular band. Dividing the disk into bands of n tracks enables
visualization of the entire disk from the inner area to the outer area.

c. Three-dimensional histograms depicting:
. Maximum bytes in error per sector over the disk.
. Maximum bytes in error per codeword over the disk as shown in Figure 4 in a three-

dimensional histogram.

272

The media error information conveyed in this Figure may be, in many cases, sufficient for
most users. As in Figure 3, the disk has been divided into bands of n number of tracks (31
bands in this Figure).

8
6-
-3
W
(v)
x
0]
=
Y -
Band of Tracks N

Figure 4. The maximum number of bytes in error per codeword over the disk is shown in this
Figure using a three-dimensional representation. The maximum number of bytes in error
per codeword is shown for all the sectors within the tracks specified in a particular band.
Only one band shows sectors that have codewords with more than one byte in error. The
ECC correction capability for drives compatible with this type of disk is eight bytes in error
per codeword. The Figure shows a fairly healthy disk.

By using ANSI/AIIM MS59 compliant drives or other drives that provide similar media error
information, the user can typically obtain from the drive information on media errors with the
desired level of detail and sophistication.

When the user wants to analyze media errors in specific disks, media error visualization charts
can be used. However, when users want to apply media error monitoring tools to a large
number of disks, plotting error distributions or other statistics might be impractical. In this
case, the user should access the required information numerically and take the appropriate
action. For example, if the users set the media error levels, they may decide to transfer data
to another disk when these levels are exceeded. More information about these procedures or
how to use the visualization tools is provided in AIIM C21 [5] and [7].

273

Care and Handling Experiments for Optical Digital Data Disks

NIST has conducted care and handling experiments with the objective of identifying possible
causes of data degradation in optical disk media. In order to conduct these experiments NIST
developed optical disk media measurement systems capable of determining data degradation
parameters such as the byte error rate, and error distributions. Figure 4 was based on one of
these error distributions. A measurement system for mechanical characteristics of optical disk
media was developed by Nevenzel and Voogel [10].

Optical disks may deteriorate if subjected to some unusual conditions such as extreme
temperature and humidity, temperature and humidity cycles, and high energy radiation. Some
office cleaning substances and other components like tobacco smoke, liquids and food may
also produce data degradation. Such degradation effects were investigated through care and
handling experiments. The approach that was followed consisted of writing a selected number
of sectors of the disks and reading them back checking the bytes in error and the error
distribution. The information that is derived is the byte error rate (BER), which gives an
average measure of the number of bytes in error, the defect distributions, and the location of
burst errors. Some mechanical measurements were also performed. For CD media testing,
which included CD-ROMs and CD-R's (CD recordable media), a commercially available
tester was used. NIST is currently analyzing the test results.

The experiments included:

. Cleaning agents immersion tests and vapor and gas exposure.

. Fire smoke exposure and exposure to chemicals used in fire extinguishers.

. Exposure to food substitutes.

. Exposure to paint and wax fumes.

. Temperature and humidity cycles; cold and heat shocks.

. Mechanical experiments such as impact and uniform pressure.

. Human interaction such as scratches, permanent inks, hand creams and bending
experiments.

. Electromagnetic exposure such as magnetic fields, gamma-rays, X-rays and
electrostatic discharge and sun light.

. Exposure to possible harmful liquids such as gasoline and diesel.

. Read, write and erase cycles.

A complete description of the measurement procedures, the experiments conducted and the
test results are to be included in a NIST report that is currently being prepared for
publication.

Current and Future Plans

NIST will continue to investigate techniques to improve data integrity in the presence of

274 c~4

media errors. Work will continue in the development and analysis of statistical models for
error distribution and visualization tools. The work will also include the investigation of data
integrity of storage media using layered ECC, and the investigation of emerging techniques
for data compression including entity reduction and error-resilient compression. In addition,
there is interest from both users and industry in extending the work done on data integrity for
optical disks to other emerging storage device technologies.

Conclusions

A life expectancy specification for optical disks (and other types of storage media) is useful
only as a general indicator for media selection. But it cannot be the only indicator for assuring
data integrity in optical disks. Individual disks may still fail at different periods of time. Work
on standardizing media error monitoring and reporting techniques for the verification of
information stored on optical disks systems is ongoing. These techniques provide users with
a better understanding of the status of the data stored on optical disks. Users can then make
decisions about the media at the present time, identify trends and develop more cost-effective
backup, recopying and data transfer policies. Without access to media error information, the
level of media errors may increase beyond the maximum capacity of the error correcting
codes in the device. In this case, data will be uncorrectable.

The level of errors may increase because of factors such as improper handling or storage
conditions. Understanding the data integrity of data structures on a disks is important.
Compressed data, in the presence of uncorrectable errors, is especially vulnerable to
catastrophic data failure. Error-resilient algorithms and other techniques such as layered ECC
may increase the chances of data recovery in the presence of uncorrectable media errors. The
need to investigate media error monitoring and reporting techniques to verify data integrity
on optical disks and other emerging storage media technologies is apparent. Investigation of
error-resilient compression techniques is also needed.

Acknowledgements

The work described in this paper is based on the efforts of several people at NIST. I want to
acknowledge my colleagues for their input, support and work in this area. In particular, I
want to acknowledge the following individuals: Sandra Woolley and Thierry Gouverneur for
their work in media error monitoring, data visualization and sampling plans, Sam Silberstein
for the development of a statistical model for error distributions, and Stefan Leigh, James
Filliben, and other personnel from the Statistical Engineering Division of the Computing and
Applied Mathematics Laboratory of NIST for their useful advise and cooperation. Many
individuals participated in the care and handling experiments and I want to acknowledge their
participation and support in that work. I also want to acknowledge the members of AIIM C21
for their contribution to the ANSI/AIIM MS59 standard and the guidelines. Special thanks
are due to Charles Obermeyer from the U.S. National Archives and Records Administration
(NARA) and David Patton from IBM, Tucson, AZ. The work described in this paper is

275

carried out at NIST, under Interagency agreements with several U.S. Federal Government
agencies including the U.S. National Archives and Records Administration, the Social
Security Administration and the Federal Bureau of Investigation.

References

[1]

(2]

[3]

(4]

[3]

(6]

(7]

(8]

[9]

[10]

Fernando L. Podio, "Development of a Testing Methodology to Predict Optical Disk
Life Expectancy Values", NIST Special Publication 500-200, December 1991.

Sandra I. Woolley, "The Importance of Robust Error Control in Data Compression
Applications", Third NASA Goddard Conference on Mass Storage Systems and
Technologies, 1993.

Ben Kobler, "Techniques for Containing Error Propagation in
Compression/Decompression Schemes, Space and Earth Science Data Compression
Workshop, 1991.

Femando L. Podio, "Monitoring and Reporting Techniques for Error Rate and Error
Distribution in Optical Disk Systems", Results of a Workshop, NIST Special
Publication 500-198, August 1991.

AIIM Technical Committee C21, Storage Devices and Applications, Proposed ANSI
Standard ANSI/AIIM MS59: "Media Error Monitoring and Reporting techniques for
Verification of the Information Stored on Optical Digital Data Disks", Fifth Draft,
November 1994.

The National Archives and Records Administration, "Digital-Imaging and Optical
Digital Data Disk Storage Systems, Long-Term Access Strategies for Federal
Agencies", Technical Information Paper No. 12, July 1994.

AIIM Technical Committee C21, Storage Devices and Applications; Proposed ANSI
Technical Report ANSI/AIIM TR39: Guidelines for the Use of Media Error
Monitoring and Reporting techniques for Verification of the Information Stored on
Optical Digital Data Disks", Second Draft, November 1994.

Alan B. Marchant, "Optical Recording, A Technical Overview", Addison-Wesley
Publishing Company, 1990.

Takeda, T., M. Saito, and K Itao,"System Design of 90 mm Optical Microdisk
Subsystem", SPIE Proceddings, 899, 16, 1988.

Gerhard Nevenzel, Martin Voogel; "Mechanical Deformation Measurements for
Optical Data Disks", NIST IR 5208, February 1993.

276

N95- 24131

Optimizing Tertiary Storage Organization and Access
for Spatio-Temporal Datasets

Ling Tony Chen, Doron Rotem, Arie Shoshani

Mail Stop 50B/3238 \2 3-82_

Lawrence Berkeley Laboratory
Berkeley, CA 94720
Tel: (510) 486-7160; 486-5830; 486-5171 4/3 A 7
" Fax: (510) 486-4004
Email: LTChen@Ibl.gov; D_Rotem@Ibl.gov; shoshani @1bl.gov %
%

Bob Drach, Steve Louis
L-264;1-561
Lawrence Livermore National Laboratory
Livermore, CA 94550
Tel: (510)422-6512; 422-1550
Fax: (510)422-7675; 422-0435
Email: drach@cricket.llnl.gov; louisst@nersc.gov

Meridith Keating
Lawrence Livermore National Laboratory
Livermore, CA 94550
Email: mkeating@llnl.gov

Abstract

We address in this paper data management techniques for efficiently retrieving requested
subsets of large datasets stored on mass storage devices. This problem represents a major
bottleneck that can negate the benefits of fast networks, because the time to access a subset
from a large dataset stored on a mass storage system is much greater that the time to transmit
that subset over a network. This paper focuses on very large spatial and temporal datasets
generated by simulation programs in the area of climate modeling, but the techniques
developed can be applied to other applications that deal with large multidimensional datasets.
The main requirement we have addressed is the efficient access of subsets of information
contained within much larger datasets, for the purpose of analysis and interactive
visualization. We have developed data partitioning techniques that partition datasets into
"clusters" based on analysis of data access patterns and storage device characteristics. The
goal is to minimize the number of clusters read from mass storage systems when subsets are
requested. We emphasize in this paper proposed enhancements to current storage server
protocols to permit control over physical placement of data on storage devices. We also
discuss in some detail the aspects of the interface between the application programs and the
mass storage system, as well as a workbench to help scientists to design the best re-
organization of a dataset for anticipated access patterns.

1. Introduction

Large-scale scientific simulations, experiments, and observational projects, generate large
multidimensional datasets and then store them temporarily or permanently in an archival
mass storage system (MSS) until it is required to retrieve them for analysis or visualization.
For example, a single dataset (usually a collection of time-history output) from a climate
model simulation may produce from one to twenty gigabytes of data. Typically, this dataset
is stored on up to one hundred magnetic tapes, cartridges, or optical disks. These kinds of
tertiary devices (i.e., one level below magnetic disk), even if robotically controlled, are
relatively slow. Taking into account the time it takes to load, search, read, rewind, and
unload a large number oof cartridges, it can take many hours to retrieve a subset of interest
from a large dataset. :

277

An important aspect of a scientific investigation is to efficiently access the relevant
subsets of information contained within much larger datasets for analysis and interactive
visualization. Naturally, the data access depends on the method used for the initial
storage of this dataset. Because a dataset is typically stored on tertiary storage systems in
the order it is produced and not by the order in which it will be retrieved, a large portion
of the dataset needs to be read in order to extract the desired subset. This leads to long
delays (30 minutes to several hours is common) depending on the size of the dataset, the
speed of the device used, and the usage load on the mass storage system.

The main concept we pursue here is that datasets should be organized on tertiary storage
reflecting the way they are going to be accessed (i.e. anticipated queries) rather than the
way they were generated or collected. We show that in order to have an effective use of
the tertiary storage we need to enhance current storage server protocols to permit control
over physical placement of data on the storage devices. In addition, these protocols need
to be enhanced to support multiple file reads in a single request. We emphasize in this
paper the aspects of the storage server interfaces and protocols, as well as simulation and
experimental results of the effects of dataset organization for anticipated access patterns.

In order to have a practical and realistic environment, we choose to focus on developing
efficient storage and retrieval of climate modeling data generated by the Program for
Climate Model Diagnosis and Intercomparison (PCMDI). PCMDI was established at
Lawrence Livermore National Laboratory (LLNL) to mount a sustained program of
analysis and experimentation with climate models, in cooperation with the international
climate modeling community [1]. To date, PCMDI has generated over one terabyte of
data, mainly consisting of very large, spatio-temporal, multidimensional data arrays.

A similar situation exists with many scientific application areas. For example, the Earth
Observing System (EOS) currently being developed by NASA [2], is expected to produce
very large datasets (100s of gigabytes each). The total amount of data that will be
generated is expected to reach several petabytes, and thus will reside mostly on tertiary
storage devices. Such datasets are usually abstracted into so called "browse sets” that are
small enough to be stored on disk (using coarser granularity and/or summarization, such
as monthly averages). Users typically explore the browse sets at first, and eventually
focus on a subset of the dataset they are interested in. We address here this last step of
extracting the desired subsets from datasets that are large enough to be typically stored on

tape.

Future hardware technology developments will certainly help the situation. Data transfer
rates are likely to increase by as much as an order of magnitude as will tape and cartridge
capacities. However, new supercomputers and massively parallel processor technologies
will outstrip this capacity by allowing scientists to calculate ever finer resolutions and
more time steps, and thus generating much more data. Because most of the data generated
by models and experiments will still be required to reside on tertiary devices, and because
it will usually be the case that only a subset of that data is of immediate interest, effective
management of very large scientific datasets will be an ongoing concern. However, there
is an additional benefit to our approach. Even if we accept the premise that users will be

278

tolerant of long delays (i.e. placing orders that take several hours or overnight to fill), it is
still in the best interest of mass storage facilities to be able to process requests more
efficiently, by avoiding to read data not needed. This translates into savings on the
hardware needed to support an average access load.

It is not realistic to expect commercial database systems to add efficient support for
various types of tertiary storage soon. But even if such capabilities existed, we advocate
an approach that the mass storage service should be outside the data management system,
and that various software systems (including future data management systems) will
interface to this service through a standardized protocol. The IEEE is actively pursuing
such standard protocols [3] and many commercially available storage system vendors
have stated that they will help develop and support this standards effort for a variety of
tertiary devices. Another advantage to our approach is that existing software applications,
such as analysis and visualization software, can interface directly to the mass storage
service. For efficiency reasons, many applications use specialized internal data formats
and often prefer to interface to files directly rather than use a data management system.

In section 2, we describe in some detail our approach and the components modules
necessary to support it. Section 3 describes the storage system interface design for both
the write and the read processes. Section 4 contains simulation and experimental results,
and section 5 describes a workbench that was designed to help scientists in selecting the
organization of datasets that best suits their anticipated access patterns.

2. Technical Approach

The goal is to read as little data as possible from the MSS in order to satisfy the subset
request. For example, for geological fault studies the most likely access pattern is
regional (in terms of spatial coordinates) over extended time periods. For this application,
the dataset should be partitioned and stored as regional "bins" or "clusters" over time, as
opposed to the traditional way of storing data globally for one time slice. In general, the
portions of a dataset that satisfy a query may be scattered over different parts of the
dataset, or even on multiple volumes. For example, typical climate simulation programs
generate multiple files, each for a period of 5 days for all variables of the dataset. Thus,
for a query that requests a single variable (say "precipitation”) for a specific month at
ground level, the relevant parts of the dataset reside on 6 files (each for a 5 day period).
These files may be stored on multiple volumes. Further, only a subset of each file is
needed since we are only interested in a single variable and only at ground level. If we
collected all the parts relevant to a query and put them into a single file, then we would
have the ideal cluster for that query. Of course, the problem is one of striking a balance
between the requirements of all queries, and designing clusters that will be as close as
possible to the ideal cluster of each query. This idea is a common methodology used in
data management systems (called "physical database design"). However, such methods
have not been applied or investigated much in the context of mass storage systems.

In the past two years we have investigated and developed partitioning algorithms for a
specific application: simulation data generated by climate models. In that context, we

279

have identified specific access patterns which we characterized as query types. In general,
the problem is one of finding the best compromise in how to store the data for conflicting
access patterns. We have shown that although the general problem is NP-complete, it is
possible to develop effective approximate solutions using dynamic programming
techniques [4]. We only discussed below the methodology of our approach and the
software modules needed to support our approach. The details of the algorithms used are
discussed in [4].

2.1 Functional description of the components

We need to address the components necessary for both writing the reorganized dataset and
reading the desired subset. The first component, which we call the "data allocation and
storage management” is responsible for determining how to reorganize a dataset into
multiple "clusters”, and for writing the clusters into the mass storage system in the desired
order. The parts of the dataset that go into a single cluster may be originally stored in a
single file or in multiple files. The second component, which we call "data assembly and
access management” is responsible for accessing the clusters that contain relevant data for
the requested subset, and for assembling the desired subset from these clusters. One
consequence of this component is that analysis and visualization programs are handed the
desired subset, and no longer need to perform the extraction of the subset from the file.
The details of the two components are shown in Figures 1 and 2.

On the left of Figure 1, the Data Allocation Analyzer is shown. It accepts specifications
of access patterns for analysis and visualization programs, and parameters describing the
archival storage device characteristics. This module selects an optimal solution for a
given dataset and produces an Allocation Directory that describes how the
multidimensional dataset should be partitioned and stored.

280

Simulation/Experimental System

P o R

Storage Device
Characteristics

Y
Data Allocation Partitioning
Analyzer Module

Allocation
Directory

Storage Manager
(Write Process)

'

4 Enhanced Write Server N
Interface and Protocols

The storage manager controls Archival Mass Storage System

the initial placement of data A~

“clusters” using the allocation e

directory and enhanced mass -, J
.

storage system interfaces.

Figure 1: Data allocation and storage management details

The Allocation Directory is used by the File Partitioning Module. This module accepts a
multidimensional dataset, and reorganizes it into "clusters" that may be stored in
consecutive archival storage allocation spaces by the mass storage system. Each cluster is
then stored as a single file, which in most tertiary storage devices today is the basic unit of
retrieval (that is, partial file reads are not possible). The resulting clusters are passed on
to the Storage Manager Write Process. In order for the Storage Manager Write Process to
have control over the physical placement of clusters on the mass storage system,
enhancements to the protocol that defines the interface to the archival mass storage system
were developed. Unlike most current implementations that do not permit control over the
direct physical placement of data on archival storage, the enhanced protocol permits
forcing of "clusters” to be placed adjacent to each other so that reading adjacent "clusters”
can be handled more efficiently. Accordingly, the software implementing the mass

281

storage system's bitfile server and storage servers, needs to be enhanced as well. More
details on the modified protocols are given Section 3.

In Figure 2, we show the details of reading subsets from the mass storage system.

(Archival Mass Storage System

(=9 Q-

Enhanced Read Server
Interface and Protocols J

Allocation

_ I (Storage Manager Data
Directory

Subset Assembly
The storage manager controls Module

the access to data “clusters”
using the allocation directory
and sends them through the

assembly process when
requested

(Visualimtion/Analysis System

ABC

\ J

Figure 2: Data assembly and access management details

Upon request for a data subset, the Storage Manager Read Process uses the Allocation
Directory to determine the "clusters” that need to be retrieved. Thus, reading of large files
for each subset can be avoided. Here again, the bitfile server and storage server of the
mass storage system needs to be extended to support enhanced read protocols (see Section
3 for details). Once the clusters are read from the mass storage system, they are passed on
to the Subset Assembly Module. Ideally, the requested data subset resides in a single
cluster (especially for queries that have been favored by the partitioning algorithm). But,
in general, multiple clusters will have to be retrieved to satisfy a subset request, where
only part of each cluster may be needed. Still, the total amount of data read will typically
be much smaller than the entire dataset. The Subset Assembly Module is responsible for

282

accepting multiple clusters, selecting the appropriate parts from each, assembling the parts
selected into a single multidimensional subset, and passing the result to the analysis and
visualization programs.

2.3 Characterization of datasets ,queries, and hardware

The typical dataset in climate modeling applications is not composed of just a single
multidimensional file for several variables, but rather a collection of multidimensional
files, each for a subset of the variables. The granularity of the spatial and temporal
dimensions are common to all variables, but some variables may contain only a subset of
these dimensions. For example, a typical dataset may have 192 points on the X
dimension, 96 points on the Y dimension, 19 points on the Z dimension (ie. 19
elevations), and 1488 points on the T (time) dimension covering one year ((12 months) x
(31 days/month) x (4 samples/day)). This dataset may contain a "temperature” variable
for all X,Y,Z,T and a "precipitation” variable for X,Y,T only. For the "precipitation”
variable, the Z dimension is implicitly defined at the ground level. A typical dataset may
have close to a hundred of such variables, each using a different subset of all the
dimensions. Thus, the characterization of a dataset involves a description of each the
above dimensions and for each variable the dimensions that apply to it.

The characterization of queries required extensive interaction with the scientists using the
data. After studying the information provided by scientists, we have chosen to
characterize "query types", rather than single queries. A query type is a description for a
collection of queries that can be described jointly. For example, a typical query type
might be "all queries that request all X,Y (spatial) points, for a particular Z (height) one
month at a time over some fixed subset of the variables”. Thus, assuming that the dataset
covers 2 years and 20 height levels, the above query type represents a set of 480 queries
(24 months X 20 heights). It was determined that providing query types is more natural
for these applications. Further, the query type captures a large number of example
queries, and thus permits better analysis of usage patterns.

Each query type is defined as a request for a multidimensional subset of a set of variables,
where the multidimensional subset must be the same for all variables of the query type. A
query type is defined by selecting one of the following 4 parameters for each dimension:

1) All: if the entire dimension is requested by the query type.

2) One(coordinate): if exactly one point (the coordinate element) of the dimension is
requested.

3) Any: if one value along the dimension is requested for this query type. Note that it is
assumed that any one of the values within this dimension is equally likely to occur.

4) Range(low,high): if a contiguous range that starts at low and ends at high of the
dimension is requested.

All variables in our application are defined over a subset of the following seven
dimensions: X(longitude), Y(latitude), Z(height), Sample, Day, Month, Year. Note that
the Time dimension has been split into 4 dimensions that specify the sample within a day,
the day within a month, the month within a year, and the year. The splitting of the time
dimension makes it possible to specify "strides" in the time domain, such as "summer
months of each year", the "first day of each month", etc. Some variables may not have all
dimensions defined. For example, "precipitation” is defined at ground level only, and has
no height (Z) dimension.

It has been determined that for our application this query type definition encompasses
almost all possible queries that users would want in this application area. It was observed
(and verified with climatologists) that the One and Range parameters are not used as often
as the All and Any parameters. An example of a query type specification is given below:

Temperature, Pressure: All X, All'Y, One(Z,0), All S, All D, Range(M,6-8), Any Y

This query type specifies that temperatures and pressures are requested over all X,Y
positions, for Height O (ground level), but only for sample points and days in the summer
months for a single year. A query belonging to this query type can be specified for any
year. Thus, if the dataset is over 20 years, this query type represents 20 possible queries,
each being a subset of the multidimensional space.

The characterization of the tertiary storage devices should accommodate various types of
devices. We identified the following 5 parameters that are needed to characterize any
tertiary storage device for the purpose of determining the optimal partition:

1) M (MegaBytes): the capacity of each tape.

2) R (MB/second): sustained transfer rate, excluding any overhead for starting and
stopping.

3) Ts(x) (seconds): fast forward seek function. A mapping function between the distance
of the forward seck and the time it takes. For example, if it takes 10 seconds to initialize
a seek, and 20MB/s thereafter, the seek function is: Ts(x) = 10 + (x/20). In cases where it
is difficult to determine the constant value, the seek function is simply x divided by the
seek speed.

4) Tm (seconds): mount time. The time it takes to change a cartridge up to the point
where we can read the first byte out of the new cartridge. This time includes: unload
previous tape, eject previous tape, robot time to place previous tape back on shelf, robot
time to retrieve new tape from shelf, mount new tape, setup tape to be ready to read the
first byte.

5) FO (bytes): extra File Overhead. This is the overhead (in bytes) involved in breaking
one long file into two shorter files. If retrieving the long file takes T2 seconds, and

284

retrieving the two consecutive shorter files requires T1 seconds, then the file overhead FO
= (T1-T2)*R, where R is the transfer rate defined in point 2 above.

This five parameter model has proven to be sufficient to describe most removable media
systems such as robotic tape libraries or optical disk juke boxes. In the latter case, we
adjust the seck time component of our cost function to zero as it is negligible compared to
the time it takes to dismount and mount a new platter. Measurements of these parameters
for two robotic tape systems are given in the next section.

3. The Storage System Interface Design

The developmental and operational site for our work is the National Storage Laboratory
(NSL), an industry-led collaborative project [5] housed in the National Energy Research
Supercomputer Center (NERSC) at LLNL. The system integrator for the National
Storage Laboratory is the IBM Federal Sector Division in Houston. Many aspects of our
work complement the goals of the National Storage Laboratory.

The NSL provides two important functions: a site where experiments can be performed
with a variety of storage devices, and facilities necessary to support storage and access of
partitioned datasets. The first mass storage software developed at the NSL was an
enhanced version of UniTree, a system originally written in the 1980s at LLNL and later
commercially marketed by DISCOS, OpenVision, and T-mass. The enhanced NSL
system, called NSL-UniTree, features network-attached storage, dynamic storage
hierarchies, layered access to storage-system services, and new storage-system
management capabilities [6]. A commercial version of NSL-UniTree was announced late
in 1992 by IBM U.S. Federal. Work on a new storage software system, called the High
Performance Storage System (HPSS) [7], is also in progress at the NSL. A central
technical goal of the HPSS effort is to move large data files at high speed, using parallel
/O between storage devices and massively parallel computers. HPSS also seeks to
increase the efficiency of scientific and commercial data management applications by
providing an extensible set of service quality attributes that can be applied to storage
resources and devices.

NSL-UniTree manages data using a typical hierarchical file system approach compatible
with widely used operating systems such as UNIX. Access to the file system is provided
via standard FTP and NFS file transfer protocols, or via a file-oriented client application
programming interface (API). The initial interfaces developed for HPSS also support
FTP, NFS, and a Client APL. However, large scientific datasets are more efficiently
viewed as a collection of related objects, rather than as a single large file or multiple
independent files. To provide better access to such datasets, we have developed a
specification for a more suitable interface between mass storage systems and application
software to provide better control over data storage organization and placement for data
management clients, such as the data partitioner and subset assembler discussed here.
Though modifications to existing interfaces will also be required for HPSS, these will be
much smaller in scope because of the system’s better ability to classify data by service
quality.

285

3.1 The "write process"

Enhancements necessary to support this work were designed for an experimental version
of NSL-UniTree. For the Storage Manager Write Module to provide new attributes related
to physical placement of clusters on the mass storage system, modifications to the NSL-
UniTree file transfer protocols were developed. Unlike most current implementations that
do not permit control over the direct physical placement of data on archival storage, the
modified protocol provides a space allocation scheme for storing related data "clusters"
and the piece-wise writing and reading of these "clusters".

We designed a functional interface between the data partitioning engine and the mass
storage system that provides the ability to control allocation of space and physical
placement of data. The approach taken is to define several "Class of Service" (COS)
attributes associated with clusters and cluster sets and provide them to the storage system
via a modified FTP interface. These cluster-related COS attributes consist of:

1) a cluster set ID.

2) a cluster sequence number.
3) a frequency of use parameter.
4) a boundary break efficiency.

The cluster sequence number identifies the linear relationship between the clusters, and in
effect tells the storage system the desired order for storing the clusters. The frequency of
use parameter indicates the desirability of storing a cluster close to the beginning of a tape
(or to a suitable dismount area) to avoid seek overhead. The boundary break efficiency is
a measure of how desirable it is that a cluster stays adjacent to its predecessor. This
attribute is used to determine whether separation of two clusters across tape volumes
should be avoided if possible.

The COS attributes for a set of clusters are provided to the storage system prior to
delivery of the individual data clusters. In reality, they are treated as the initial cluster in a
set. This permits the storage system to assign the the rest of the clusters to tape volumes
for the desired tertiary storage device. We call an ordered collection of clusters assigned
to a single physical volume a "bundle". Thus, the last step of the partitioning process, (i.e.
the bundling of clusters such that a bundle can fit on one physical volume), is done by the
storage system. This was considered necessary for situations where precise storage system
parameters may not be known to the partitioning engine. In addition, this provides the
storage system management with an ability to override the partitioning engine's decisions
in order to prevent storage system overload or wasted space on physical volumes.

The interface design for NSL-UniTree is shown in Figure 3. As can be seen, this
mechanism allows the partitioning engine to determine what it perceives to be optimal
data layout for a given device destination. However, it gives final control to the storage
system. Data is transferred to the storage system in cluster sets with the COS attributes
sent as the first cluster. There is no strict requirement that all clusters be contained within

286

“a cluster set, but a containment relationship is necessary if the benefits of data association
are to be realized. Clusters that are provided to the storage system independently will be
stored individually (i.e., as normal files).

So as not to constrain the partitioning engine unnecessarily, no limits on cluster set size
have been established. This, however, means that a cluster set might be larger than the
available storage system disk cache. To prevent cache overflow, the clusters are organized
into sets whose sizes are manageable by the storage system.

Once the cluster set attributes are available in the storage system, the bundling function is
called to assign clusters into bundles for internal use by the storage system's migration
process. The migration server builds a bundle table and iteratively examines that table to
confirm existence of complete bundles. To provide the necessary inter-cluster cohesion,
bundles are migrated to tertiary storage levels only when complete. Note that bundles may
not necessarily represent an entire cluster set. This depends on the storage characteristics
of the targeted tertiary volume.

To ensure clusters are stored without unnecessary volume breaks (which would result in
an additional media mount penalty for the reading process), the migration server checks
destination volume space availability prior to actual bundle migration. If there is
insufficient space to store the entire bundle on the destination volume, the bundle
migration will be deferred for a finite period that can be set by storage system
management policy. The idea behind this deferral is to allow non-bundled files to be
migrated first in the hope that this results in the mounting of a new (i.e., empty) volume.
Storage system management can override deferral in situations where the system's cache
space is in danger of exhaustion. In some storage systems, a full disk cache is a fatal
condition.

3.2 The "read process"

We wish to support an object view for application programs where the objects are
multidimensional datasets and requests can be made for subsets of these datasets for a
single variable at a time. The function of the "subset assembler” is to take such a request
from the application, figure out what clusters to request from the mass storage system (if
more than one is needed to satisfy the request), and assemble the relevant parts of each
cluster into a single multidimensional file to be returned to the application. Consequently,
the application programs do not need tp deal with the data assembling details.

Multi-Dimensional
Dataset

Daasethrutmmng
Engme
/ ~ .
L N
1. Cluster set identifiers
2. Cluster sequence numnbers
cluster 3. Cluster access frequepcies

4. Boundary break efficiency

Data @
Control = = -

(Cluster Set) (cluster set information)

1
[}
[NSL-Unitree FTP Interface |

Modified
-g- - - - - - - - - -| Migration
Bundle Migration Server

Y

e e e e = = Bundle Tables

Tertiary Stores

Cache Management and
Migration Deferral Policies

NSL-Unitree Storage System

Figure 3: NSL-UniTree enhancement implementation

One of the more difficult tasks that must be accomplished to achieve the subset assembly
is the selection of relevant parts from each cluster and the transposition of the dimensions
for those parts into the order desired by the application. We decided to take advantage of
existing software to perform this function. Currently, the climate modeling files are stored
in DRS format [9]. Each file is linearized on the dimensions, and there is a description file
associated with each data file. A DRS library exists that performs selection of a part of a
multidimensional file, transposing it as desired. The DRS library tries to allocate adequate
memory to perform this function in memory. However, when the file is too large to fit in
memory, a buffer management algorithm is used to optimize the use of available buffers
for files residing on disk. One of the advantages of dealing with clusters, which are

relatively small files, is that it is more likely that enough memory can be allocated for
these files, and thus the selection and transposition operations can run efficiently.

The Storage Manager Read Module supports efficient reading of clusters. The desired
interface to the mass storage system for the read process is one which supports a single
request for multiple files corresponding to the set of clusters that the subset assembler
needs. When only a single cluster is needed to satisfy the subset request, the read module
needs to mount the proper volume, position to the cluster and read only that cluster. When
multiple clusters are needed to satisfy a subset request, the read module needs to ensure
reading of clusters in such a way that no unnecessary rewind of the volume take place.
Thus, the storage system management should treat this request as a request for an
unordered set of files; that is, disregard the specific order that the files were mentioned in
the request. It should read the files in the order that is internally most efficient, depending
on what volumes are mounted at the time of the request and the order of files on the
volume. Abilities to support this type of optimization are supported in most modern
storage systems, including NSL-UniTree. This capability was recently tested at the NSL
with an Ampex DST robotic tape system. We make use of the DRS library and the NSL-
UniTree storage management systems as shown in Figure 4.

As can be seen from Figure 4, the subset assembler accepts a request from the application
program using a specially designed API language. This request typically consists of the
name of a dataset, a variable, and range specifications for each of the dimensions that the
variable is defined on. The subset assembler consults the Allocation Directory, and
identifies which clusters are needed to satisfy the request. It then issues a request to NSL-
Unitree to stage the files representing these clusters into the cache.

289

Application
¥

: Asembler
+ API

2

Allocation
Directol?y —->CSubsezAssemb1er)

¥
¥
NSL-Unitree
4 T
data —JP»] Yy
control - - = Mass Storage System

Figure 4: Subset assembler and its interface to NSL-Unitree
and DRS library

At this point the assembler does not know in which order files (clusters) will be staged.
NSL-Unitree supports a "check status" function where the requesting program can check
if a single file was already staged to disk. Therefore, the assembler needs to issue a series
of checks to see which of its requested files has been staged. Once a positive response is
received for a specific file, the assembler issues a request to the DRS library to read the
relevant portion of the file and to transpose the data into the desired order. The
information for composing the DRS request is derived from the original application
request as well as information from the allocation directory on how each cluster is
structured.

The subset assembler places the data which are returned as a result of the DRS request
into a pre-allocated buffer space that is large enough to hold the entire subset requested by
the application. It then repeats the above process, one cluster at a time, until all clusters
have been read. For most visualization applications this subset is small enough to fit in
memory. Otherwise, it will be stored on the user's workstation disk. There is the potential
of performing these reads in parallel, but we have not concentrated on parallel disk reads,
since the major bottleneck for the application is reading files off robotic tape storage.

290

We plan to partition a commonly used dataset and use this subset assembly process for
visualization applications in the summer of 1995. We have performed several experiments
and simulations to verify the expected benefits of partitioning a dataset into clusters.
These were performed directly on the device, and do not involve the read process
described above. We expect the read process to add negligible overhead to the
measurements made, since the main component of the response time is reading data from
tertiary storage. This needs to be verified through direct use of the subset assembler. The
results of the experiments and simulations that were performed so far are given in Section
4.

3.3 HPSS interface implications

We plan to extend our work to the NSL's HPSS storage system as well. There are
significant differences between NSL-UniTree and HPSS that may improve the
effectiveness of the current mass storage system interface design.

HPSS already implements a COS capability [8] that defines a set of performance and
service quality attributes assigned to files and affects their underlying storage resources.
COS definitions are designed to help provide appropriate service levels as requested (or
demanded) by HPSS clients. In the current HPSS implementation, COS is a data structure
associated with a "bitfile", a logical abstraction of a file as managed by an HPSS Bitfile
Server. The storage resources used to store the bitfile's data are provided by HPSS Storage
Server objects. These Storage Server objects (virtual volumes, storage maps, and storage
segments) are associated with a COS-related data structure called a "storage class" that
identifies device-dependent characteristics of the type of storage provided by the objects.

Using an HPSS Client API library that currently mirrors POSIX.1 specifications,
applications such as the read and write processes described here can specify an existing
COS identifier for a file, or fill in COS "hint" and "priority" structures to describe desired
(or required) service quality attributes for the file. User-specified priorities which may be
NONE, LOW, DESIRABLE, HIGHLY_DESIRABLE, or REQUIRED, affect how the
hints will be treated by the Bitfile Server. Using these capabilities, it should be a
straightforward process to provide to HPSS with the COS attributes generated by the
dataset partitioning engine, and to have these attributes interpreted properly by the
servers.

Creating a new file through the Client API is currently performed through an
"hpss_Open" call whose input parameters can include pointers to the hint and priority
structures. The Bitfile Server will be required to locate an appropriate type of storage if
these structures are provided by an application. On the other hand, if null pointers are
passed, the Bitfile Server will be free to use a default COS definition for the new bitfile.
The hpss_Open call returns a pointer to the COS definition actually used by the Bitfile
Server so that applications may monitor the level of service they receive.

The Storage Server's storage segment object is the conventional method for obtaining and
accessing "internal" storage resources. Clients of the Storage Server (this would normally

291

be the Bitfile Server, but could be a data management application authorized to use
Storage Server APIs) are presented with storage segments of specific storage class, with
address spaces from 0 to N-1 (where N is the byte length of the segment). The Bitfile
Server, or other client, provides a storage class identifier and an allocation length during
creation of new storage segments. During the Storage Server's allocation of new physical
space, only storage maps that have proper storage class are searched. To ensure locating
free space of the appropriate type, the storage class should represent a service conforming
to the client-specified COS hints and priorities passed to the Bitfile Server when creating
new files.

The COS capability in HPSS was designed to be extensible, and additional attributes can
be implemented to exert greater influence over server actions for data cluster placement
and migration operations. A stated goal for future releases of HPSS is better integration
with large data management systems and COS attributes for controlling placement or
collocation of related data on physical media in HPSS. This will allow HPSS to be easily
used by the read and write processes described here.

Unlike NSL-UniTree, the separation of the Bitfile Server, Storage Server, and
Migration/Purge Server in HPSS is clearly defined. Modular APIs exist at each server
interface, providing different implementation choices using HPSS. One approach is to
expand the Bitfile Server's present COS definition to match the requirements of the data
partitioning engine and assembly process. The current bundling algorithm could be
implemented as added code in the Bitfile Server to ensure inter-cluster cohesion is
maintainable. Another approach is to write a new application that could entirely replace
the Bitfile Server. This application, if appropriately authorized, could access the internal
storage class metadata structures of the Storage Server, and would also be able to provide
application-specific COS attributes to interested storage consumers. As a Bitfile Server
replacement, it would be able to create its own mappings of COS to storage class, thus
explicitly controlling the actions of the Storage Server, and therefore able to enforce
external partitioning decisions at the internal device level.

4. Simulation and Experimental Results
4.1 Measurements on hardware characteristics

We have performed detailed timing measurements on an Exabyte Carousel Tape System
as well as an Ampex D2 Tape Library System, to validate our hardware model and also
collect the appropriate parameters for the model. The results of our experiments are
shown in Tablel.

Note that the file overhead for the Ampex system is quite large (11 seconds, which is the
time needed to transfer 141 MB) due to our lack of control over the behavior of the
robotic system. In contrast, the Exabyte has a relatively small file overhead. In order to
remain device independent, we treat each device as a black box and measure its
performance. Our first experimental results from the Ampex were both larger than
expected, and less consistent from file to file. We speculated that the speed of the device

292

might be high enough that a degree of inertia might be present in hardware, or that it
might be presumed in software, such that consecutive file reads at high speeds were
unattainable in our environment.

To test this hypothesis, we inserted a small pad file (1 KB) between each of the larger test
files. This resulted in much faster, and much more consistent read times for the test files.
Consequently, the average file overhead decreased from 11 to 3.25 seconds.

The effects of file overhead on query response times are discussed in the Section 4.3
below.

Capacity | Transfer Seek | Mounting File File
Rate Speed Overhead| Overhead
(MB) (MB/s) (MB/s) | (Seconds)| (seconds) MB)
Exabyte 4500 0.265 31.25 315 0.24 0.064
Ampex 25000 12.864 503.32 39 11.0 141.5
(high FO)
Ampex 25000 12.864 503.32 39 3.25 41.8
(low FO)

Table 1: Measurements of hardware characteristics
4.2 Response Time Results

Based on these hardware measurements, we were able to apply our partitioning algorithms
to an actual PCMDI dataset. We could then compare the response times of queries before
and after we apply the partitioning method. The partitioning method puts query types into
groups, such that all query types in each group have at least one variable in common.
Obviously, there is no need to consider the effect of a query type on another if they
access no variables in common. This simplifies the presentation of possible solutions to
the designer. The query types defined by the designer for the actual dataset are shown in
Table 2 along with the amount of data that each needs to access.

293

query variable and dimensions specification Megabytes
type requested
query types for group 1
1 |U,V,W for any month at ground level 76.2
2 | U,V,W for any month at all height levels 1447.5
3 | U,V,W for any day at any height level 1.6
4 | U,V,W for any month at any level forany Y 3.0
5 | U,V,W for any year at all levels for range of Y 2171.3
query types for group 2
6 | T for any month for all for all X,Y,Z 482.5
7 | T for a range of 3 months for any height level 76.2
8 | T for any sample on any height for a range of Y 0.07
query types for group 3
9 | Acloud variable forany month forall X,Y | 508

Table 2: Query types and amount of data requésted

Note that groups 1 and 2 have 5 and 3 query types, respectively, and group 3 has only one
query type. It turns out that groups with only one query type are quite common, since for
some variables there is only one predominant type of access. It is always possible to find
an optimal solution for a query type belonging to such a group, since there are no
potential conflicting query types. Therefore, we show here only one such representative

group.

Note that the amount of data requested varies from less than a megabyte to over 2
gigabytes. Queries requesting small amounts of data are typically for visualization
purposes, while those requesting large amounts of data are typically for summarization
and post processing. Queries for intermediate amounts of data are typically needed for
analysis, such as Fourier transformation. The post processing type queries are less
important to optimize since they take so long that users might as well wait for an
overnight processing.

Tables 3 and 4 show the response time for the 9 query types of Table 2. The response
times are expressed in minutes, where "original" and "new" refer to the times before and
after partitioning, respectively. The new timings on the Ampex were actual measured
times on the real system, while all other times are calculated times based on the measured
hardware model. It was impractical to run the queries before partitioning because their
response time takes several hours. We also show the optimal times, which are calculated
assuming that all the information to answer the query is in a single file, and that the file is
positioned at the beginning of a tape. Thus, the optimal time is equal to the time to mount
a single tape, plus the time to read the first file.

Query Megabytes | Optimal Original New Ratio
type requested
1 76.2 645 174.97 6.45 - 27.13

294

2 1447.5 92.85 174.97 92.85 1.88
3 1.6 1.72 30.55 4.08 7.48
4 3.0 7.35 174.97 92.85 1.88
5 2171.3 274.27 2142.60 1118.72 1.92
6 482.5 32.01 174.97 40.83 4.28
7 76.2 6.45 535.65 6.45 83.05
8 .07 3.25 30.55 3.25 9.40
9 50.8 8.44 237.30 8.44 28.12
Table 3: Exabyte carousel response times (in minutes)
Query Megabytes | Optimal Original New Ratio
type requested

1 76.2 0.75 9.80 2.73 3.59
2 1447.5 2.52 9.80 2.73 3.59
3 1.6 0.65 1.60 2.73 0.59
4 3.0 0.65 9.80 2.73 3.59
5 2171.3 3.47 117.00 29.07 403
6 482.5 1.27 9.80 10.67 0.92
7 76.2 0.75 29.30 190 | 15.42
8 .07 0.65 1.60 1.90 0.84
9 50.8 0.72 9.80 0.72 13.61

Table 4: Ampex D2 tape system response times (in minutes)

The dataset we experimented with, contained 57 variables (each defined over all or a
subset of the seven dimensions X,Y,Z,S,D,M,Y) and 62 query types. These query types
were derived after extensive interviews with scientists interested in this dataset. The
query types were partitioned into groups as explained above, and each group was analyzed
separately. The tables only show the query types that access the wind velocity vector
U,V,W, the temperature T, and one cloud variable that had only a single query type
associated with it. However, they are representative of the response times for other query
types as well. In practice, most of the variables are accessed by a single query type, and
only a few variables are accessed by 2-5 query types.

The original layout of the dataset was one where all the variables for all X,Y, and Z for a
period of 5 days was stored in a single file. Files were stored one after another according
to time, until the next file would not fit on the same tape. At this point a new tape was
used and the process continued until all the data was stored. This storage method
represents the natural order that data was generated by the climate simulation program,
which, in general, is a poor organization for typical access patterns. The original response
times were calculated on the basis of this actual storage of the dataset.

295

We note that all the new response times on the Exabyte are better than the original times.
For the Ampex tape system, the improvements in response time are not as dramatic as in
the case of the Exabyte tape system. The main reason for this is that the Ampex has a
much larger file overhead than the Exabyte tape system. The large file overhead resulted
in larger files being created by the partitioning algorithm. In the case of variables U,V,W,
each file corresponds to one month of data for all X,Y, and Z, which comes to roughly 1.5
GB of data per file. And in the case of variable T, each file corresponds to roughly two Z
levels of data for all X,Y, and T, which comes to roughly 700 MB of data per file. The
consequence is that queries that ask for a small amount of data end up reading a single
large file to answer the query. This is especially obvious for query types 3 and 8, where
the result is that the response time is even slower than with the original data organization.
As will be seen in the next section, the improvement of the file overhead from 11 seconds
to 3.25 seconds made a significant difference in the results. In addition, our algorithm can
take advantage of partial file reads (no file overhead) to further improve performance.

As expected, the partitioning for the cloud variable achieved optimal time as it was tuned
for the single query type accessing it.

4.3 Effects of the file overhead

The experiments with the Ampex robotic system were performed after it was connected
recently to NSL-UniTree. As was mentioned above, the file overhead was found to be
quite large, about 11 seconds. Consequently, the size of each cluster was relatively large
(about 200 MB), and the total number of clusters for this dataset was only 245 for a one
year dataset. For the lower file overhead (about 3.3 seconds), which was obtained later,
the size of each cluster was about 100 MB and the number of clusters about doubled. As
discussed below, the lower file overhead improved the solution results significantly. In
general, when the file overhead is small, and the number of clusters is larger, the response
times tend to be shorter, because less unnecessary data is read for a given requested subset
of the dataset.

To understand the effect of the file overhead better, we performed a simulation for the
same set of query types, assuming the lower file overhead of 3.25 seconds and no file
overhead at all. The effect of no file overhead can be achieved if the tape system permits
partial file reads; that is, the system can seek to a position on the tape and read precisely
the number of bytes requested. Thus, we can take the set of files (clusters) assigned to a
tape and store them consecutively as a single physical file. This is indeed a feature that
the Ampex system is capable of, and it will be exploited in the NSL-HPSS
implementation (mentioned in Section 3.3).

The simulation results (in minutés) for the Ampex system are shown in Table 5, along

with the original and measured response time that were shown in Table 4 for comparison
purposes.

296

Query| Original | High FO| Low FO| No FO | High FO| Low FO| NoFO

Type ratio ratio ratio
1 9.80 2.73 1.58 0.75 3.59 6.20 13.07
2 9.80 2.73 2.68 2.53 3.59 3.66 3.87
3 1.60 2.73 1.58 0.75 0.59 1.01 13.07
4 9.80 2.73 2.68 2.53 3.59 3.66 3.87
5 117.00 } 29.07 25.70 24.60 4.02 4.55 4.76
6 9.80 10.67 8.88 8.19 0.92 1.10 1.20
7 29.30 1.90 0.86 0.75 15.42 34.07 39.07
8 1.60 1.90 0.86 0.69 0.84 1.86 2.32
9 9.80 0.72 0.72 0.72 13.61 13.61 13.61

Table 5: Effects of various file overheads on response time for the Ampex D2

As can be seen, the new ratios improved for all query types, some by a factor of 4, and the
response times for all query types are better than the original times in both the case of the
low file overhead (low FO) and the case of no file overhead (no FO). These simulation
results show that systems that permit partial file reads perform better than systems that do
not support that. But, even if partial file reads are not available, the gains that can be
obtained by the partitioning algorithms are still very significant, especially in cases that
the file overhead is low.

Our experiments confirmed, as expected that the lower the file overhead the better the
results. However, we have learned from the experiments and simulations that even with a
large file overhead the overall improvement of the partitioning algorithm is very
significant. As was shown in Table 4, 6 of the 9 queries improved by a factor of 3.5 to
15, at the cost of 3 queries degrading by a small factor of less than 2. We also note that
the lower file overhead of 3.25 seconds is still large compared to the Exabyte system.
The file overhead is a function of the software that controls the tape system, and that it
should be reduced to the extent possible to accommodate scientific applications. Of
course, the best devices for this purpose are those that support partial file reads.

5. The Dataset Partitioning Workbench

Naturally, the scientist who will be using the dataset (or a database designer acting on the
behalf of multiple scientists) is in the best position to know what are the typical queries
that will be used and the frequency of their use. The dataset partitioner should optimize
the reorganization of the dataset according to this information. Initially, we thought that
letting the scientist specify a weight for each query will be a reasonable way of
representing the relative importance and/or the frequency of use of each query. However,
we found out that assigning weights is not a meaningful task for the scientists, and was
confusing in practice.

Depending on the weights assigned to queries, different partitioning solutions can be
found. The choice of a partitioning solution is very important since the process of

297

partitioning and reorganizing a large dataset is a costly one. Thus, it was important from
a practical point of view that we develop methods for facilitating the process for selecting
a solution based on intuitive measures rather than query weights. The result is an
interactive "partitioning workbench”. The goal of the workbench is to help the scientists
see the trade-offs between possible solutions based on actual times that each query will
take under a given solution.

In presenting the solutions to the scientist, we assume that all queries that belong to the
same query type will have the same response time. In reality the response times to queries
that belong to the same query type may vary somewhat depending on where the data
relevant to the query is located on tape. This approximation is reasonable since each
query that belongs to the same query type needs to access the same amount of data.

We observed that in order to make the estimates on actual times meaningful it is necessary
to present them relative to the best possible time for each query. The best possible time
(optimal time), is calculated assuming that all the information to answer the query is in a
single file, and that the file is positioned at the beginning of a tape. Thus, the optimal
time is equal to the time to mount a single tape, plus the time to read the first file. For
example, if the best possible time for a query is 30 minutes, and the solution chosen
results in 33 minutes, there is little to gain by trying to further optimize for that query.

We produce the multiple solutions presented to the designer as follows. We start by
assigning all query types the same weight, and generate multiple possible solutions based
on the permutation of the dimensions. Each solution consists of the estimates on actual
response times for all query types, as well as the optimal response times. The solutions
are ordered according to the overall response time relative to best possible times. The
best solution is presented to the user as "option 1" as shown in the left part of Figure 5
(which is actually in color, but shown in black and white here). It shows an actual
partitioning of a dataset for the Ampex robotic tape system. Six query types are
considered for this group of query types (group 2) where the narrow bars shows the
optimal times, and the thick bars the actual times for each of the six query types. As can
be seen this option achieves optimal times for the first four query types, at the expense of
the last two. Note that the user can control the scale of the display for better viewing of
details.

At this point, the user can select any query type to be viewed on the right part of the
screen for other possible options. For example, the scientist may want to optimize query
type 5, and see what the effect will be on the other query types. The scientist selects
query type 5 (by clicking on it) and all possible solution options are then displayed, as
shown on the right part of the screen of Figure 5. As can be seen, there are three options
that achieve optimal time for query type 5: options 2, 4, and 5. The scientist can now
select any of these options (by clicking on the desired option) to see the effect on other
query types. Suppose that option 2 was selected. The result is shown in Figure 6. As can
be seen in the left part of the figure, the effect of selecting option 2 is that query type 5
achieves optimal time at the expense of slowing down query types 1, 2, and 4. This may
be a preferred solution if indeed query type 5 is particularly important to optimize for.

298

The scientist can continue to explore other options and settle on the most desirable option
for his/her needs. This form of interaction is much more meaningful to scientists than
assigning weights. Seeing the trade-offs in terms of actual times makes the choice of a
solution a more straightforward process. In some cases there may be a serious conflict
between query types, in that selecting a solution that favors one query type may disfavor
another, and vice versa. When such conflicts arise the scientist needs to make a difficult
choice or resort to some duplication of data. We have not addressed so far the possibility
of data duplication. It is the subject to future research.

Select a group (2 J !8.1508] select scale

— 3.75

3.00

225

Minutes

1.50

Query Type Data Placement Option
option viewed Query Viewed

Figure 5: Display of a solution option for a group of query types

299

Selectagroup |2] [b.1508] select scale

375

3.00

225

Minutes

1.50

0.75

Optimum

R
Query Type Data Placement Option
option viewed 2 l Query Viewed

0.00

Figure 6: Display of a solution that optimizes query type 5

Once a desired solution is selected, the restructuring of the dataset into multiple clusters
and their layout on tape volumes is generated by the workbench. This information is used
by the write process to partition the dataset accordingly and to store the clusters on tapes.

The front end of the workbench was implemented using a relational database system
(ACCESS) on a PC Windows platform that presents the user with a GUL It is used to
store up to 25 tables that contain the dataset information, the hardware characteristics,
query types, and the various partitioning solutions calculated. The backend of the
workbench is a collection of C++ programs that calculate the partitioning solutions, and
the estimated response times. In addition to screens for sclecting a solution discussed
above, there are various screens developed for the scientists to enter or modify the
information on datasets, hardware characteristics and query types.

6. Concluding remarks

Scientific application that access very large datasets face a major bottleneck when they
need to access subsets of very large datasets from tertiary storage. This state of affairs has
been the main reason that scientific analysis is not currently performed on an ad-hoc basis.
Analysis cannot be spontaneous if a request for an interesting subset takes hours. Further,
if the mass storage system is sharable by many users, the access of unnecessary data when
subsets are requested, reduces the efficiency of such systems. As a result, supporting a
certain user load requires additional physical devices such as read channels or larger

robotic systems.

300

The approach we have taken is common in data management systems. To achieve higher
efficiency of data access from disks, data is often clustered according to its expected use.
We have chosen to work closely with a specific application area (climate modeling) where
this problem is affecting the productivity and quality of the analysis. This gave us a
realistic framework to understand the nature of spatio-temporal datasets and typical access
to such datasets in modeling applications.

The results so far confirm the benefits of this approach. In realistic examples, it was
possible to pinpoint typical access patterns and restructure the datasets to fit the intended
use of the data. We found it useful to provide users with estimates of response times for
making partitioning choices. Once a partitioning choice is made, users can estimate the
response time to ad-hoc queries, and decide whether they want to wait for a response.
Because many of the requests are for on-line visualization, the size of the subsets
requested are small, and thus only a few clusters need to be accessed. In such cases,
response time improved by a factor of 10-100.

There are many directions that one can take at this point. One is to consider the benefits
of duplicating some of the data. In some applications, a small percentage of duplication
can dramatically improve global response time when query types have inherent data
partitioning conflicts. Another area is to consider more general access patterns and query

types.

There is also the question of how generic such algorithms can be. We think that it will be
necessary to specialize on application domains. However, selecting broad categories of
data types, such as spatio-temporal data, or sequence data (e.g., time series), can make
such techniques generally useful. The reason that we chose to concentrate on the spatio-
temporal domain is that many disciplines are in this domain (geology, earth science,
environmental sciences, etc.) and that spatio-temporal datasets tend to be very large
(simulation data, satellite data, etc.).

Finally, it is worth mentioning that tape striping techniques are being investigated to
mitigate the slow response time of accessing data from tape systems (see, for example
[10]). In this approach no knowledge of access patterns is used; rather it is intended to
take advantage of multiple tapes that are synchronized to be read in parallel. Striped tape
systems will complement our partitioning techniques, in that clusters could now be spread
over multiple tapes for parallel reads. The main gains provided by partitioning will
continue to be important when we use such systems because they reduce the data that
needs to be read for a given request.

Acknowledgment
This work was performed by the Lawrence Livermore National Laboratory under contract
W-7405-Eng-48 and by Lawrence Berkeley Laboratory under contract DE-AC-

76SF00098, and was supported by the Office of Scientific Computing of the Office of
Energy Research, U.S. Department of Energy.

301

References

(1] Gates, W., Potter, G., Phillips, T., Cess, R., An Overview of Ongoing Studies in
Climate Model Diagnosis and Intercomparison, Energy Sciences Supercomputing 1990,
UCRL-53916, pages 14-18.

[2] EOS Reference Handbook, NASA document NP-202, March 1993.

[3] Coleman, S., Miller, S., Eds., Mass Storage System Reference Model, Version 4,
IEEE Technical Committee on Mass Storage Systems and Technology, May 1990.

[4] L.T. Chen, et al, "Efficient Organization and Access of Multi-Dimensional Datasets
on Tertiary Storage Systems", To appear in a special issue on Scientific Databases,

Information Systems Journal, Pergammon Press, Spring 1995.

[5] R. Coyne, and R. Watson, The National Storage Laboratory: Overview and Status,
Proc. Thirteenth IEEE Symposium on Mass Storage Systems, Annecy, France, June 13-16,
1994,

[6] S. Coleman, R. Watson, and R. Coyne, The Emerging Storage Management Paradigm,
Proc. Twelfth IEEE Symposium on Mass Storage Systems,
Monterey, CA, April 26-29, 1993.

[7]1 D. Teaff, R. Coyne, and R. Watson, The Architecture of the High Performance
Storage System, Fourth NASA GSFC Conference on Mass Storage Systems and
Technologies, College Park, MD, March 28-30, 1995.

[8] S. Louis, and D. Teaff, Class of Service in the High Performance Storage System,
Second International Conference on Open Distributed Processing, Brisbane, Australia,

February 21-24, 1995.

[9] R. Drach, and R. Mobley, DRS User's Guide, UCRL-MA-110369, LLNL, March,
1994,

(10] Drapeau, A., Katz, R., Striped Tape Arrays, Twelfth IEEE Symposium on Mass
Storage Systems, 1993, pages 257- 265.

302

N95- 24132

Building a COTS Archive for Satellite Data

Ken Singer, Dave Terril >
Federal Data Corporation 5-2 ‘f - 8 <
4800 Hampden Lane
Bethesda, Maryland 20814
+1-301-457-5505 4356 8

{ksinger,dterrill} @saa.noaa.gov

Jack Kelly /’ 7

L.A. Systems
9027 Greylock Street
Alexandria, Virginia 22308
+1-703-360-1000
jkelly@nesdis.noaa.gov

Cathy Nichols
NOAA/NESDIS/IPD
Federal Building 4
Suitland, MD 20746
+1-301-457-5243
cnichols@nesdis.noaa.gov

Abstract

The goal of the NOAA/NESDIS Active Archive was to provide a method of access to an
online archive of satellite data. The archive had to manage and store the data, let users
interrogate the archive, and allow users to retrieve data from the archive. Practical issues of
the system design such as implementation time, cost and operational support were
examined in addition to the technical issues. There was a fixed window of opportunity to
create an operational system, along with budget and staffing constraints. Therefore, the
technical solution had to be designed and implemented subject to constraint imposed by the
practical issues. The NOAA/NESDIS Active Archive came online in July of 1994, meeting
all of its original objectives.

Introduction

The functional requirements of the NOAA/NESDIS Active Archive were quite similar to
most other archives. The NOAA/NESDIS Active Archive had to perform the following
functions: 1) provide a means to manage and store a great number of large datasets 2) give
users access to interrogate the archive 3) give users the ability to retrieve data from the
archive. In addition, the following technical features were also desired: scalability so new
and future datasets could be included, a modular architecture to allow enhancements, and
security since the archive was intended to be accessed across the Internet. All of these
requirements and features could be implemented in a straightforward manner using
hardware, software and a support staff focused entirely on creating the archive. The
challenge faced in designing and implementing the NOAA/NESDIS Active Archive was to
successfully accomplish the same task by using existing hardware to minimize cost,
commercial off the shelf (COTS) software to minimize software development, and existing
support personnel to reduce new staffing requirements.

303

The implementation of these functions and features had to be tempered by the fact that there
was a window of opportunity to implement the archive, a limited budget, and other
everyday work still to be accomplished. The greatest potential enemy was the goal itself,
the design and implementation of the archive. If the design was too complex, it might take
too long to implement and may never actually happen. If the design did not utilize existing
hardware and software, cost might prohibit the project from moving forward. If "leading
edge" became the buzzword for too many components, then the project would be throttled
by the effort needed to bring these components into an operational state. If the skills
needed by programmers and the support staff were not available, time for the training
would extend the time needed for development. If too many changes to operational
- procedures and the "usual way of doing business" were needed, management might not
agree to the proposed changes. By considering these issues ahead of time and
understanding their implications, the solution had to avoid these "potholes” as much as
possible.

Cl teristi f Archive-St 1 Dat
The initial purpose of the NOAA/NESDIS Active Archive was to store (level 1B) datasets
from the Advanced Very High Resolution Radiometer (A VHRR) instrument flown on
NOAA's current series of polar orbiting satellites. In the future it is very likely that
additional datasets from the current satellites and new datasets from future satellites will
become candidates for inclusion. The AVHRR datasets vary in size from 50 to70
Megabytes (MB), so 60MB is used as an average for calculations. Each operational
satellite transmits approximately 45 datasets per day. Today there are 2 satellites, NOAA
12 and NOAA 14, downloading AVHRR data. So daily data volume is 5.4 Gigabytes
(estimated).

Issues Considered
The design of the NOA A/NESDIS Active Archive had to achieve a balance of the f ollowing
issues: implementation time and complexity, overall system cost, commercial availability
of hardware and software, reliability, future growth and scalability, and the mi gration path
from existing systems

Solution Approach and Architecture

The solution selected takes advantage of the strengths of two different families of
computers: the IBM mainframe and UNIX workstations. The mainframe offered high
reliability, strong I/O capabilities, established connectivity to mass storage devices and
time-proven Hierarchical Storage Management (HSM) software. UNIX workstations were
chosen for their reasonable price for performance, the availability of tools for developing
user interface programs, and strong TCP/IP performance for Internet user access and data
delivery. So the function of data management and storage would be done by the
mainframe, and the functions of interrogating the archive and retrieving the data would be
handled by the UNIX workstations.

The function of interrogating the archive is done totally by the UNIX workstations, with
no assistance from the mainframe. This was done for the following reasons. First, the
performance of interrogations of the archive would be more consistent by maintaining, on
the UNIX workstation, the database of metadata that describes each dataset. The
mainframe is heavily used by many other batch-oriented jobs and thus has many periods of
peak utilization. This could affect the response the user sees. Second, storage and
generation of the browse images is done on UNIX. To assist the user in narrowing down
the list of desired datasets, a browse image is provided on request. The underlying goal of

304

interrogating the archive is to help the user narrow down and limit the number of datasets
that are of interest. This saves the user time because only the data truly desired is obtained.
And, it helps to minimize the load on the data storage and management function because
fewer datasets are requested. Finally, reliability of the system should be higher because
each function is independent. If the archive interrogation function is not running, the data
management and storage function can continue to accept incoming data. Or if the data
management and storage function is temporarily unavailable, the user can still interrogate
the database and submit requests to retrieve data (although the request may take longer to
fulfill).

The approach described above provides scalability. One of the true strengths of the
mainframe is the attachment and throughput to storage devices. This strength will probably
continue well into the future, allowing for growth. In addition it is possible to have the
archive interrogation programs query multiple data servers, which would be another
technique to increase capacity. Modularity is also emphasized with this approach. The
user interrogation function is separate from the management and storage of data. Similarly,
retrieving the data is accomplished without the user seeing or having to understand the
storage and management of the data. These abstractions allow changes to be made to any
components of the solution without changes to the other components. For example, new
tools for interrogating the archive can be added without affecting the storage and
management of the data. Or, new data storage devices can be utilized without the user
having to worry about how the data is retrieved. Security is also provided because no user
can directly access the data storage and management function. Users only interact with
application menus on UNIX, which then cause other events to occur elsewhere in the
system.

An additional benefit of this approach is that the NOAA CEMSCS (Central Environmental
Satellite Computer System) mainframe was already there, handling the ingest of these
datasets, connected to a mass storage device, and with a knowledgeable support staff.
So, part of the needed solution was in place and functioning. Plus, the processing that
already existed on CEMSCS, such as creating other NOAA satellite data products, could
utilize the data in the active archive as well.

While the hybrid approach offers many positive features, there are some tradeoffs. There is
administrative overhead for coordinating the metadata database with the real archive. There
could be missing entries or incorrect entries, each of which would cause different
problems. Also, operational support issues are more complex maintaining a system that
spans across two different computing platforms.

Solution Overview

The description of the solution is based on the functional requirements stated earlier: the
ability to interrogate the archive, the ability to retrieve data from the archive, and dataset
management and storage. The description of interrogating the archive and retrieving data
will be in the section below labeled “Interaction with the Archive”, while the dataset
management and storage description will be in a section of the same name. Each section
will cover how the function is implemented, as well as a description of the hardware and
software used.

305

Interaction With the Archive

User Interrogation of the Archive

A user wants to see what is in the archive based on a set of criteria. For example, "Is there
any data in the archive from the month of May, 1994 over Greenland?" The metadata
provides these answers. The NOAA/NESDIS Active Archive provides access to the
metadata through an application called the Satellite Active Archive (SAA). SAA is
responsible for collecting the metadata after the dataset is available on CEMSCS. In
addition, SAA also provides a series of menus to allow the user to query the metadata and
view the results. The results are a list of identifiers that point to specific datasets in the
archive. Asa final aid to the user, SAA provides a browse image for each AVHRR dataset
in the archive. The browse image is at a lower resolution than the actual data, but should
be of great value to the user. For example, by viewing the amount of cloud coverage in a
scene, the user can further reduce the number of datasets that are of interest.

Retrieving Data From the Archive

After the user has selected some datasets of interest, now the user wants to go and get the
data. Once again, the user interacts with the SAA application. SAA presents a series of
menus to allow the user to order the datasets. The user can order the data for electronic
delivery or delivery on tape media. In addition, the user can order the complete dataset or
an extracted portion of the dataset. Presently SAA imposes a restriction on the amount of
data that can be delivered electronically to insure reasonable network performance. The
extract capability makes this possible because the user can limit the size of the delivered
data by reducing the geographic area desired or by requesting fewer channels of data.

After the user is done interacting with the SAA application, the dataset management and
storage function is finally called into action. A job is submitted to the dataset management
and storage function to retrieve the requested data. First, the hierarchical storage
management software gets the raw data wherever it may reside. Then the extract function
is performed to cut out a piece of the data and add proper headers. Finally, the SAA
application sees that the dataset management and storage function has the data ready and
waiting. Then SAA picks up the data and delivers it to the customer in the requested
manner.

UNIX Work Station Functions

The IBM RS/6000 UNIX workstation running AIX was chosen to implement the UNIX
based functions. Although most UNIX workstations could have performed the necessary
functions, the RS/6000 was chosen for three main reasons: first, an existing contractor
had strong knowledge and skills to support the RS/6000. Second, the RS/6000 offered
ESCON channel connectivity to the CEMSCS mainframe. This could be used as a highly
reliable, high performance point-to-point communication link using standard TCP/IP
applications like FTP and NFS. Finally, the original basis for the front end application
was the Global Land Information System (GLIS) from the US Geological Survey EROS
Data Center (EDC) in Sioux Falls, SD. GLIS had been ported to the RS/6000, so the local
software developers had a strong head start.

The front end application (SAA) that the user interacts with utilizes both ASCII and X-
windows based screens. The SAA screens and menus were based on GLIS. Strong
similarities can be seen between the systems today and may continue due to future
cooperation. The cooperation and help provided by the EDC staff was of invaluable
assistance in getting the SAA prototype off the ground so quickly. Similarly, the SAA
metadata database uses INFORMIX, following the recommendations of EDC.

306

The electronic data delivery capabilities of SAA were a brand new function that had to be
added since GLIS did not support electronic data delivery. The delivery functions are
designed to provide reliability and flexibility for growth. Reliability was a necessity, since
use of the NOAA/NESDIS Active Archive would probably be minimal if users could not
be confident of receiving the data they had ordered. Flexibility for growth was important
so the system could be up and running in a short time, but permit the easy addition of new
functions such as FTP push and subscriber data delivery. Also, as usage grew,
modifications may be needed to insure balanced network performance.

Work Station to Mainframe Communications

The solution architecture necessitates communications between the CEMSCS mainframe
and the UNIX workstations on two occasions. The first is to update the metadata database
and generate the browse images on the UNIX workstation. The second is to retrieve data
from the physical archive for delivery to customers.

The update of the metadata database is accomplished in the following way. The UNIX
workstation wakes up at regular intervals (presently every hour) and does a directory
listing (using NFS) of high level qualifiers where the AVHRR data resides. This list is
compared to a list of datasets already in the metadata database. The MVS naming
convention uses the Julian date, so only one day’s worth of data is examined at a time. If
any new datasets are found, they are either copied to UNIX or processed across the NFS-
mounted directory. Some datasets can be processed across the NFS-mounted directory
because only the header needs to be read. A record of the metadata information is created
and then entered into the database. At the same time, the browse image is created and
stored.

The process for retrieving data is more complex. First, the SAA application on the
workstation submits a request to the mainframe. This request is actually a JCL job that is
submitted using FTP. The recall and availability of the dataset needed is handled
transparently by the SMS (system managed storage)/HSM software on the mainframe.
The JCL job runs the extract to subset the dataset if needed. The result is placed in a
particular directory and named by the SAA order number. A suffix is added to the name to
indicate whether the job is in progress, successfully completed, or failed. Next, the SAA
application on the workstation does a directory listing from the mainframe using NFS. If a
file named with the SAA order number and the proper suffix is found, that file is copied to
the UNIX workstation from the NFS mounted directory.

At this point, the SAA Delivery Server manages the delivery of the data to the user. The
Delivery Server is a program that is modeled after a “state diagram”. Each order
corresponds to a unique entry in the order database. The Delivery Server wakes up at a
regular interval and performs a specific action on each order based on what “state” the
order is in. For instance, a job may be submitted to CEMSCS, a check is made if the
extract job is complete, the dataset is copied to UNIX, or the data is FTP’ed to the user.
The Delivery Server has the ability to retry any state a specified number of times. If a
failure is detected, a message is sent to the SAA system administrator.

Data Management and Storage

The Storage Server

The storage server used was the NOAA CEMSCS (Central Environmental Satellite
Computer System) mainframe. CEMSCS is a multisystem complex of two IBM ES/9000

307

mainframes and associated peripherals. Workload is scheduled and resources are allocated
by the IBM MVS Job Entry Subsystem (JES3). CEMSCS is used create level 1B datasets
as well as many level 2 and level 3 products based on the raw data.

Software Utilized on the Storage Server

The storage server software selected on CEMSCS is based on IBM's mainframe Systems
Managed Storage (SMS). The data archiving component of SMS is HSM, which has
matured over twenty years of intense DP growth as a COTS solution. CEMSCS had
previously elected to utilize HSM as a viable alternative to postpone and minimize
expensive DASD acquisition. Since this product had proven successful in managing data
for the CEMSCS environment, HSM was reviewed to see if it would satisfy the needs of
the NOAA/NESDIS Active Archive. The concern was not the amount of data, which is
measured in multiple terabytes, but rather the number of files retained. The number of files
is in the area of many hundred thousands. The management of this large number of
distinct files approached the limitations of HSM but recent changes addressed this concern.
SMS has allowed CEMSCS to minimize personnel requirement, standardize storage
retrieval and archiving methodologies, and isolate the installation from the ever changing
hardware enhancements.

SMS attempts to optimize placement of data, according to installation directives. This
process maximizes automation and minimizes the staffing requirements, but initially
requires a higher level of expertise. Complex issues, such as data reference patterns,
locality of reference, read to write ratios, etc., are minimized but not eliminated. Once the
directives are established, the day-to-day process requires less expertise. SMS allows
minute to minute evaluations about data to be made without requiring manual intervention
while minimizing data access time.

HSM manages the retention and migration of data, again according to installation
directives. HSM attempts to ensure that frequently referenced data is maintained on
accessible storage while less frequently referenced data is maintained on alternate, less
expensive storage media. Data may be migrated to less expensive DASD or tape media,
depending upon installation criteria, e.g. data, size, importance, or residency time. Data
compression can be optionally performed on the migrated data at either the software or
hardware level.

The retrieval of data, i.e. moving data from a lower form of the hierarchy to a higher one,
is performed with no user intervention. If the data has been migrated and it is referenced,
then HSM automatically moves it to an accessible media. If the data has to be brought back
from a non-DASD device, then a user can be notified that the retrieval may require an
"extended" amount of time. With the inclusion of tape robotics, this extended time is less
than ninety seconds..

Archive Storage Devices

Access to data must be accomplished from DASD. Once SMS has placed a file on an
appropriate DASD device, the file remains on this device until it is migrated by HSM or
deleted. Several different DASD media have been utilized at CEMSCS. DASD caching
maintains response time, especially for the larger capacity devices. SMS allowed CEMSCS
to easily create "pools" of DASD to satisfy the different requirements of the archive. In
-this context, a pool is simply a grouping of DASD for a specific purpose. As the archive
development evolved and moved into operations, so did its requirements. To date, these
changes have been easily addressed via SMS mechanisms.

308

CEMSCS created two pools of DASD for the archive. Initially the satellite data is placed in
a pool of four IBM 3390-11 and three IBM 3380-I11 where it resides for one to three days,
depending on access. If the data is migrated from this initial pool and subsequently
accessed then it is recalled to a separate pool of five IBM 3390-11. This smaller pool has a
different migration and residency criteria than the initial pool. The archive concept is that
current data is more likely to be accessed: therefore, keep it accessible and do not waste
resources migrating it. After time, data is less likely to be accessed; therefore, the data can
be migrated. If data is recalled, then the data is placed on the second pool. This method
allows recalled data not to impact the management objectives of the current data.

Cost effectiveness has convinced CEMSCS to migrate to robotic tape subsystems. Two
different vendors' robotics have been utilized, as well as two different tape media, IBM
and STK, 3480 and IBM 3490E. The 3490E media is the media of choice for HSM's
migration function. The 3490E has the capacity required for the archive and the 3490E has
the ability to locate records on tape directly. HSM "understands" and takes complete
advantage of these hardware enhancements of the 3490E device. Due to the nature of the
satellite data, the hardware compaction (IDRC) available with the 3490E does not provide
much benefit, less than three percent.

Currently SAA has captured a terabyte of data comprising 19K files. A subset of this data

resides on the two DASD pools of 16 GB. The remainder resides on 1,100 3490E
volumes.

309

N95- 24133

ASF Archive Issues: Current Status, Past History, and
Questions for the Future

Crystal A. Goula and Carl Wales
Alaska SAR Facility Di5-82.

University of Alaska

P.O. Box 757320
Fairbanks, Alaska 997757320 4396 7
email 1: crystal@dino.gi.alaska.edu

email 2: cwales@iias.images.alaska.edu / J/
Phone: (907) 474-7926 / /
Fax: (907) 474-5567

Abstract:

The Alaska SAR Facility collects, processes, archives, and distributes data from synthetic
aperture radar (SAR) satellites in support of scientific research. ASF has been in operation
since 1991 and presently has an archive of over 100 terabytes of data. ASF is performing
an analysis of its magnetic tape storage system to ensure long-term preservation of this
archive. Future satellite missions have the possibility of doubling to tripling the amount of
data that ASF acquires. ASF is examining the current data systems and the high volume
storage, and exploring future concerns and solutions.

Introduction:

Synthetic Aperture Radar (SAR) is an imaging radar technique involving the use of an
aircraft or satellite-borne antenna to obtain an artificial radar aperture effect by utilizing the
forward motion of the vehicle. Using the movement of the aircraft or satellite, the antenna
emulates a larger sized aperture antenna. The technique produces the results of a larger
aperture antenna, and is especially important when size limitations would prevent using the
physically larger antenna.

The Alaska SAR Facility (ASF) was established at the University of Alaska Fairbanks in
1986. Funded by NASA, ASF is dedicated to the collecting, archiving, processing and
distribution of SAR data. The major data-handling systems in use today at ASF were
developed by the Jet Propulsion Laboratory, and installed in Fairbanks in 1990. ASF first
began collecting data from the European Space Agency's ERS-1 satellite in August of
1991. More satellites were scheduled for later dates. ASF receives SAR data in real-time
and tape recorded transmissions from satellites, processes the data into other usable forms,
archives and distributes the data, in accordance with NASA’s international agreements.
Because of these agreements, ASF must maintain the archive of raw data for ten to fifteen
years after the end of the satellite's mission.

ASF can receive SAR data covering Alaska, eastern Siberia, the Arctic Ocean, the north
Pacific, and northwestern Canada. ASF collects large volumes of raw SAR data and
processes the data into images that scientific researchers use to study sea ice,
oceanography, geology, glaciology and botany. The processed images add to the large
data store at ASF. Data are archived at ASF for long term storage on high density magnetic

tape.

311 |
PRECEDING PAGE BLANK NOT FILMFD pagE 2 L0 INTENTIONALLY BLANK

Satellites:

ASF is currently collecting data from two satellites: ERS-1 (European Remote-Sensing
Satellite-1) and JERS-1 (Japanese Earth Resources Satellite). Incoming data from ERS-1
and JERS-1 is approximately 1.2 terabytes per month, or over 14.4 terabytes per year.

SATELLITE MISSION INFORMATION

ERS-1 JERS-1 ERS-2 RADARSAT | ADEOS
Launch Date July 17, Feb. 11, Spring, Spring, 1995 | Feb. 1996
1991 1992 1995
Mission life 3 years 2 years 3 years 5.25 years 3 years
Number of Links* |2 ** 2 2 ** 2 3
Data rate (mbps) 105 60/60 105 105/85 60/60/6
bital Period 100.47 min [95.87 min | 100.47 min | 98.594 min | 98.59 min
On-Board HDDRs | no yes no yes yes
Archive Data 10 years 10 years 10 years 15 years n/a
Beyond Mission

* X band only -- does not include S band.
** ASF only collects data from the high bit rate signal. ASF does not use the low bit rate
signal.

The ERS-1 satellite is the European Space Agency's (ESA) first remote sensing satellite.
ESA launched ERS-1 in July of 1991. ERS-1 transmits data at 105 megabits/sec (or
approximately 13 megabytes/sec). ERS-1 data passes last up to fifteen minutes and ASF
records multiple datatakes per day. The average number of data-collecting passes per day
is nine, which yields 41 minutes per day of data. ASF collects approximately 32 gigabytes
per day from ERS-1. The anticipated mission life of ERS-1 was three years. At present,
ASEF is still collecting data from ERS-1. ERS-1 will be decommissioned after ERS-2 is
operational.

The JERS-1 satellite is one of the Japanese space agency's (NASDA) Earth Resources
Satellite. JERS-1 was launched in February of 1992. The JERS-1 satellite has an on-
board tape recorder and can transfer two streams of data simultaneously. The JERS-1
satellite also has two sensors on-board, one SAR and one optical. The optical data are
recorded and sent on to NASDA for processing. The SAR data are archived at ASF and
sent to NASDA., Data are transferred at 60 megabits/sec (or 7.5 megabytes/sec), regardless
of whether the data are real-time or recorded. ASF collects on an average of four passes
per day, which averages about 19 minutes per day. ASF collects approximately 8.5
gigabytes from JERS-1 daily. The anticipated prime mission life was two years, however,
JERS-1 is in extended mission phase, which could last for seven more years.

The ASF Facility:
All the ASF components are important to the successful operation of the facility. Focusing
on how the data get to the archive and how the data are retrieved narrows the number of

departments down to those two directly involved in the physical archiving processes,
which are the Receiving Ground Station (RGS) and the SAR Processing System (SPS).

312

W

Functional Diagram - ASF Today

Receiving Geophysical Processing Archive and Interactive
Ground System Operations Almlage
Statlon (GPS) Syst AOS nalysis
(RGS) ystem (AOS) System

(11IAS)

- Archive

and
SAR Processing System g;::r?
(SPS) (ACS)

Mission
Planning
System
(MPS)

SARCOM
Near Real-Time Images

Version 0
IMS

National
Ice
Center

Calibration
Workstation

Sultland MD

QSF

RED 8/94

e

FIGURE 1 -- CURRENT ASF FUNCTIONAL DIAGRAM

Receiving Ground Station:

The RGS (Receiving Ground Station) tracks satellites with a 10 meter tracking antenna.
Using high speed, high density recorders, the RGS then receives and stores the data from
SAR satellites for later use by the processing system in support of researchers. The raw
signal data recorded and stored during this process are considered level 0. ASF records
two tape copies of the raw signal data. One tape is designated as the Archive Signal tape
and put into storage as a backup to the second tape designated as the Working Signal tape.
The Working Signal tape is used for data retrieval and processing operations.

Currently, ASF uses Honeywell HD96 and AMPEX DCRSi tape recorders to record
incoming satellite data. In the case of the ERS-1 data, the DCRSIi recorders record both the
Archive Signal tape and Working Signal tape. With JERS-1 data, the situation is slightly
different because of the on-board tape recorder. Data intended for NASDA are recorded on
HD96 recorders, while SAR data to be used at ASF are recorded on AMPEX DCRSi tapes.
For both the HD96 and DCRSI, data are recorded to the recorders in the serial mode.

The HD-96 reel tapes will hold about 15 minutes or approximately 12 gigabytes of raw
signal data. The DCRSi tapes will hold 40 to 50 minutes or 47 gigabytes of raw signal
data.

SAR Processing System:

313

The SAR Processing System (SPS) reads and decodes the raw data into image products.
Data that have been processed by the SAR processor are considered level 1 data.

The only tape recorders connected to the SPS are the AMPEX DCRSi recorders. The data
are accessed in parallel mode. ASF cannot retrieve data from the HD96 tapes unless the
data were recorded or copied on to DCRSi tapes.

Raw data can be processed into full resolution images and low resolution images. It takes
195 megabytes of raw data (approximately 15 seconds of data transfer) to make one ERS-1
full or ore low resolution image. The ERS-1 full resolution image is 8k x 8k pixels and
covers an approximate area of 100 km x 100 km. JERS-1 raw data size is slightly
smaller. The full resolution image is slightly smaller also, covering an approximate area of
100 km x 75 km. Processing the raw data into a full resolution image generates a file
approximately 64 megabytes in size. By taking an 8 x 8 average of the full resolution
image, the full resolution image can be processed into a lk x 1k pixel low resolution
image that takes up approximately one megabyte file space. To date, ASF has processed
over 100,000 full resolution images.

It takes on the average 20 minutes to process one minute of raw data. With a datatake
lasting anywhere from six to fifteen minutes, the processing of one datatake can run 120 to
300 minutes. One DCRSI tape can hold ten to twelve passes. The access time from end to
end of an AMPEX DCRSi tape is five minutes. To process one DCRSi tape would take
over twenty hours.

314

Archive:

ASF is collecting approximately 1.2 terabytes per month. ASF's archive consists of
DCRSi tapes only. Currently, there are 980 Archive signal tapes and 1162 Working signal
tapes on compact shelves at ASF. ASF also stored full resolution images on DCRSi tape.
There are 237 of these image tapes in the archive. ASF currently has approximately 96
terabytes in the archive on Archive and Working Signal tapes. With another approximate
10 terabytes of full resolution images, ASF’s current data storage totals 106 terabytes.

Along with the DCRSi main archive, ASF also has low resolution images archived on 12"
optical platters in a jukebox. Currently, ASF has over 146,000 low resolution images
stored on the optical platters, totaling about 146 gigabytes.

Use of AMPEX DCRSi Recorders at ASF:

ASF presently has six AMPEX DCRSi recorders on site. Three of the recorders are
dedicated to the RGS and three are dedicated to the SPS. A recorder can be switched
between subsystems, if needed to keep ASF operational. Two of the recorders were
delivered to ASF in January of 1989. Three other recorders were delivered around
November of 1990. The sixth recorder arrived in May of 1992. The sixth recorder is
slightly different from the other five recorders. AMPEX had made some design
modifications on the recorders by 1992. One of the new features on the sixth recorder is a
low tension tape transport. This feature lowers the tension on the tape in the recorder and
reduces the amount of stretching and fatigue on the DCRSi tape. Another one of the new
features is a wide tip scanner. This feature improves the ability of the recorder to read from
and write to the tape. The sixth recorder is currently installed on the RGS.

Figure 2 shows a simplified layout of how data are recorded on the DCRSi tapes. Two
tracks are recorded longitudinal. The control track is used by the AMPEX recorder, and
ASF does not do anything with this data. The user log and coarse address track is used by
the AMPEX recorder when searching for data to get the tape roughly to a requested
address. The user log contains information such as satellite identification, type of data, and
the satellite revolution number. The recorder uses the coarse address information to get the
tape near the specific address. The recorder will then read the transverse data to locate the
specific address. The RGS computer will record the beginning and ending scan addresses
from the DCRS;, so that the data can be retrieved later using the SPS. An example of a
coarse address is 100100, while an example of a scan address is 100112. The DCRSi

recorder has a bit error rate (BER) of 1x10-7 or better. DCRSi tapes are rated for 500
passes in low tension tape recorders, and 200 passes for high tension tape recorders.

315

Control Track

User Log and Coarse Address

4356 user [Scan Address Scan Address
bytes per Signal Signal
one scan data data
[Time Code Time Code
Signal Signal
data data
ux data Aux data

Not to Scale

HEAD 2 HEAD 1
SCAN SCAN
TAPE FLOW
>

Figure 2 -- Simplified Data Scan

Figure 3 shows a simplified diagram of the scanner head and tape assembly. The data are
written on the DCRSi tape from the scanner while both scanner and tape are moving.
Although the tape is moving, the tracks of data are written in transverse mode. The scanner
is moving fast enough that the tracks are only .1 slanted from the horizontal, and so is
considered transverse. The scanner is rotating at a speed of 512 rps. The linear tape speed
is 5.28 ips. There are six heads on the scanner. Each head will scan a track of 4374 bytes
of data onto the tape, consisting of 4356 bytes of user data and 18 bytes of addressing/time
code data. As each head will write one track of data per revolution, the recorder writes
approximately 3073 tracks per second, with an average of 582 tracks per inch of tape.

CA(]

Scanner Rotation

Not to scale

v

Tape flow

Figure 3 -- Simplified AMPEX Head/Scanner Assembly

ASF invests considerable effort to support this suite of recorders. ASF has two staff
members, trained by AMPEX, to perform standard maintenance and repairs on the DCRSi

316

recorders. Every attempt is made to standardize all measurements on the recorders. ASF
performs weekly maintenance on the DCRSi recorders, including a crossplay test. Using a
single tape, a crossplay test pattern is recorded on each recorder. The tape is then tested on
each recorder. A computer records the differences and errors in each of the test patterns.
This process shows the staff which machines require any type of head phase adjustment.
The standard crossplay testing is done in the serial mode.

ASF maintains a supply of spare parts and boards on site. There is a backup tape transport
assembly for on site replacement. If the recorder cannot be repaired because ASF's spare
is in use by another recorder, ASF must contact AMPEX to see if AMPEX has a spare part
in their supply. If AMPEX does, they will ship the part to ASF. ASF will replace the part
and send the damaged part back to AMPEX. ASF usually gets the working part in a couple
of days, so down time is minimal. If AMPEX does not have a spare part in their supply,
ASF's part must be sent to AMPEX for repair, which can take at least a month, but
typically more like two to three months. Of the six AMPEX DCRSi recorders on site, on
the average five recorders are functioning at any given time.

Since 1991, ASF has accumulated over 106 terabytes of data and has supported the
processing of over 100,000 image products for science and operations users nationally and
internationally. ASF is investigating several operational issues regarding the combination
of tape recording systems and data-handling systems, which may be helpful to other users.

Retrieval of Signal Data:

ASF is experiencing problems retrieving raw signal data from the AMPEX DCRSi tapes
after only three years of data collection. When recording satellite data, any number of
reasons during transmission could cause a data dropout on the tape. Generally, an operator
watches the RGS equipment during a download of data. In particular, the operator is
watching a spectrum analyzer to make sure a good X-band signal is being received. If the
X-band signal drops during recording, this is considered a data dropout, and is hand-noted
in the RGS log for reference later. The signal loss indicates that there could be more than
one segment of data to process. If there is a problem during processing, the RGS log is
consulted to determine if an operator noted a problem during the satellite datatake. Under
normal operations, the processor reads a Working Signal tape, finds a code indicating the
beginning of a datatake, and accesses the data until a code indicating the end of the datatake
is found.

When the SPS tries to read the signal data, and reports back more than one or two
segments of data, the RGS log is checked to see if there was a problem when the data was
recorded. If not, then there is a problem with retrieving the signal data. A processing data
gap occurs when the SPS loses synchronization with the scan address codes in the raw
signal datatake, meaning that the next scan address is not what the SPS was expecting.
The SPS assumes that this is the end of the segment and searches for an ending code.
Finding none, the SPS will then search for a new beginning code. Since this problem is
occurring in the middle of a data segment, the SPS will find neither codes. The SPS will
then assume that that was the end of the data, and begin processing the next section of the
data segment that the SPS can read, using the same beginning code. An operator will
manually cancel the request to retrieve this datatake with the number of segments goes
above six. Figure 4 shows what happens when the SPS loses sync with the data on the
tape. Approximately 5% of the datatakes processed to date have shown problems during
retrieval. There was no indication of physical damage to the tape, nor does any data
suggest that ASF has accessed this tape more than 200 times.

317

T ikl o

' Data Take '

Data gap
Figure 4 -- Data gaps on a single segment datatake

Normally ERS and JERS data will have no more than three planned segments per datatake,
with the typical number of segments being one or two. The sync loss problem can turn a
one or two segment datatake into a twelve segment datatake. A data gap is where the SPS
loses sync with the scan addresses. There are two ways of trying to recover the data in the
data gaps. One method involves moving the tape to another recorder and trying to access
the data there. Different tape machines will read the same tape differently. There is no
guarantee that changing drives will solve the problem, and switching drives to reprocess
the data is a time consuming operation. At one point, ASF scanned the Archive Signal tape
first to see if errors would come up in the same spot on the Archive signal tape as the
Working Signal tape. If a scan of the Archive Signal tape experiences the same errors in
the same spots, ASF assumes that a dropout in data did occur during the original recording
of the raw signal data. The most expedient and most successful method of fixing the
problem is to dub that datatake from the Archive Signal tape to another tape. Because the
process of dubbing the Archive Signal tape to another tape was so successful, ASF has
eliminated the scanning step. To date, ASF has dubbed approximately 225 datatakes.
These dubs have added an additional 22 DCRSi tapes to the archive. By using one or both
of these solutions, ASF resolves the data problem about 95% of the time. ASF has been
unable to retrieve less than .3% of the archived raw signal data.

After consulting with AMPEX about the symptoms, the problem was diagnosed as a head
phase and channel gain/equalization problem. This problem is the result of crossplay:
recording the tape on one machine and trying to play the same tape on another recorder.
One of the factors that affect the playback of a recorder is channel gain and equalization.
The channel gain and equalization settings affect the reading of the data. The channel gain
refers to the amplitude of the data signal. The channel equalization minimizes the errors in
a data signal. By adjusting these settings, the number of bit errors can be reduced.
Adjusting the channel gain and equalization settings is a way of optimizing the recorder’s
performance, but it is a time-consuming process. Another part of the problem with
crossplay is head phase. The head phase on one machine is going to be slightly different
from the head phase of another machine. This means that the timing control for a specific
head will turn the head on either before the head has reached the tape data or while the head
is in the middle of the tape data. Trying to read the tape when the head is not where it
should be results in the dropout-like error. The head phase and channel gain/equalization
are set when a scanner or transport assembly is replaced. It is not part of the weekly
maintenance to check these settings. If ASF experiences multiple data retrieval problems
with a recorder, ASF will check the gain/equalization and adjust if necessary.

318

AMPEX informed ASF that the new AMPEX DCRSi 107 should solve this problem. The
new AMPEX 107 auto adjusts play alignment to the tape. Playback alignment may
improve a high bit error rate.[6] ASF is in the process of acquiring a 107 model from
AMPEX to verify if this would indeed solve the problem. The play alignment feature
makes internal adjustments to the following: gain, equalization, clock phase, and tracking,.
The playback command is issued to the 107, but the adjusted settings are not permanent. If
the save command 1s not issued, a reset or power off will clear these settings out of the
memory and return the recorder to the original operating range.

Retrieval of Image Data:

ASF also archived the full resolution images output by the SAR processor. ASF was
having problems completing approximately 14% of the full resolution image requests. The
SPS would encounter problems when retrieving image data from an Image Archive tape.
This problem was almost exclusively an addressing problem. There are two variations of
the full resolution images addressing problem.

The JPL designed system software treats the tape drive as a disk drive, by preaddressing
the tape. The preaddressing of a tape simply involved writing sequential addresses on the
DCRSi tape. After an image was recorded on the DCRSI tape, there was the chance that
the DCRS1 would not write over the preaddressed address, causing a discontinuity between
the legitimate addresses of the images. When trying to retrieve the images, the recorder
would read one of the preaddressed addresses, which was not contiguous with the
addresses for the images. The software was not designed to handle this problem, and after
a few tries to retrieve the data, the process would stop. The result was that an image could
not be retrieved because the correct address could not be found.

The second part of the addressing problem involved potentially corrupt scan addresses.
AMPEX told ASF that there was a possibility that the scan address in the transverse data
could be corrupted. If the scan address was corrupted, the software would not be able to
find the exact address where it should be and the image retrieval process would be stopped.
This problem had the same results: the image could not be retrieved because the correct
address could not be found.

An additional problem with retrieving the image data was the bit error rate (BER). For raw
data the acceptable BER is 3x10-3. For the full image data the acceptable BER is 1x10-9.

The rated BER of the DCRSi is 1x10°7 or better. The two orders of magnitude between
the raw data and rated BER allows a margin for error in the data. Because the full image
demanded a much lower BER, the recorders would have to operate above the rated BER all
the time, which is not a reasonable expectation. Even without the preaddressing problem,
ASF believes that the full image data would have been more difficult to retrieve because of
the low tolerance for errors in the data.

Originally ASF attempted to solve the addressing problem. Changes were made in the
software to bypass the preaddressing issue, but the secondary corrupt scan address
problem persisted. A fix to the corrupt scan address problem was discussed. It would
have been possible to modify the software to allow an operator to back the tape up to a
readable address, and then skip forward the expected number of bytes between this
readable address and the requested address, however this fix would not have solved the
BER issue. Because of these problems and other constraints, ASF abandoned the archive
in August 1994. ASF decided that it would be more efficient and more successful to

319

process an image when a user requested it, rather than archive the image, use up limited
archive space, and try to retrieve the data when and if a user requested the image. ASF is
changing to a process-on-demand strategy, where signal data will be processed to image
data, delivered to the user and no longer archived. This change is being made for several
reasons, including budget constraints, space limitations, and evolution of the entire data
system. While this change in strategy “solved” the problems with the full resolution image
archive, it may introduce additional problems in the length of the archive life by increasing
the frequency of access to signal data.

Archive life:

The estimated shelf life of the AMPEX DCRSi tapes is at least fifteen years.[1,7] During
shelf life, degradation of the magnetic coating will eventually lead to unreadable tapes. To
date, no deterioration of the archive as a function of age has been detected. Reading an
archive tape will also cause degradation of the magnetic coating. As the DCRSi tapes are
rated for 500 passes in low tension machines and 200 passes in high tension machines
before suffering loss of data, increased access to the archive tapes will hasten their decline.
This is especially true since all but one of ASF’s recorders are high tension machines. ASF
is migrating to a process-on-demand strategy where each time an image is requested by a
user, the Working Signal tape will be accessed to process the image and satisfy the request.
This will put increased wear on the tapes, which could shorten their lives. In turn, the
increased wear on the Working Signal tape would also increase the frequency of
duplicating from the Archive Signal tape. Also, for long term storage, tapes should be
rewound every one to five years to relieve stresses in the pack.[1] Every access to Archive
Signal tape increases the risk of damage.

Because of the high speed access of the DCRSIi recorders, catastrophic damage to the tapes
could result in loss of all data on the tape. Catastrophic damage includes broken tape, tape
stretch, or severe crinkle in tape that could catch as the tape passes the scanner. Even the
act of dropping a tape cartridge could damage the data on the tape.[1] Minor damage, such
as minimal tape edge crinkle, could result in the loss of the information where the damage
is, but the rest of the tape should be readable. This makes the archive "fragile" in the
respect that any physical damage to the Archive Signal tape could result in loss of
irreplaceable data. Because the Archive and Working Signal tapes are stored in the same
room, any damage to the current storage area, such as fire or water leakage, could lead to
loss of data as well.

Future Focus:

The other satellites in the Satellite Mission Information chart are future data sources. The
addition of ERS-2 and RADARSAT in 1995 will at least double, if not triple, the data
volume ASF is currently handling. Because RADARSAT also carries an on-board recorder
like JERS-1, multiple data streams could also be possible, which would also affect the
incoming data volume. With the new satellites, incoming data will increase from
approximately 1.2 terabytes per month to between 2.3 to 3.3 terabytes per month.

Along with the new satellites, ASF will be archiving and processing data collected at the
McMurdo station in Antarctica. ASF anticipates that McMurdo will send approximately
800 DCRSi tapes every six months. This equals approximately 36 terabytes per shipment. .
Because these tapes are ASF's only copies, ASF will have duplicate the tapes when they
arrive to produce a Working Signal tape. The originals from McMurdo would become
ASF’s Archive Signal tape.

320

Soon ASF will add two Sony ID1 recorders to the RGS. In approximately one year, ASF
will add six more ID1 recorders and a second 11 meter tracking antenna to the RGS. The
six ID1 recorders will be part of the ADEOS satellite recording process. The two Sony ID1
recorders will replace the DCRSi recorders for ERS-1 SAR data collection. The ID1
recorders will record both the Archive Signal and Working Signal tapes. There is no
present plan to convert the existing DCRSi Archive and Working Signal tapes to ID1 tapes.
The ID1 uses a DD-1 medium tape, which holds about 40 minutes of raw signal data,
approximately 41.2 gigabytes and has an end to end access time of less than 90 seconds.

For long term planning, ASF is considering the following factors: large volumes of data,
long term archive responsibility, high download data rate, ease of operation, maintenance,
and the access and retrieval necessary to support production and distribution of data.

Solid state memory and disks have faster access times than tape, however, they are
generally not economically feasible. Although research is making progress in the high
capacity disk storage to reduce costs, beyond a certain point disk storage is still not
economically sound. Tape, either magnetic or optical, are still the most likely storage
methods for ASF.

Optical tapes tend to have a higher storage capacity than magnetic. Both tapes have similar
access speeds. Improvements in magnetic tapes have made some tapes capable of lasting
more than twenty years, but the standard for magnetic tapes still seems to be ten to fourteen
years. Durability during data reads is another factor to consider. Optical tapes seem to be
more durable. Tests on the ICI 1012 optical tape reel, have shown that the tape can
withstand 250,000 passes with no degradation of data, while magnetic tapes are typically
2,000 to 40,000 passes.[2,3] The optical tape systems have slower write speeds than
magnetic tape systems. Existing laser and media technologies achieve a write speed of
approximately 3 megabytes/second (24 megabits/second).

Robotic silos would reduce labor costs of some of ASF’s archive and data retrieval
process. The AMPEX DCRSi recorders cannot be used in a robotic silo. Robotic silos
have a range of capabilities to assist in archive and retrieval of data. The drives for
receiving and play back of satellite data could be attached to the same silo, however for
better archive protection, two separate silos, one for Working Signal tapes and one for
Archive Signal Tapes, will be investigated. The tapes could be passed between silos, and
used on different drives, so that if all the recorders in one silo are occupied, the data tape
can be passed to another silo with an available recorder. The access time in a silo involves
accessing and mounting the tape. In some cases, manufactures also include drive
preparation time. Access times range from four to eighteen seconds. The number of tapes
that a silo can store varies with manufacture. Some silos can hold 6000 tapes (such as
StorageTek Powderhomn), while others hold only 200 tapes. The type of tapes used in
silos varies as well, from VHS to IBM 3480.

For future data storage improvements, ASF will be looking at archival aspects, such as
media life and durability, volume of media, and robotic possibilities. Other factors such as
write speed and cost of the equipment to purchase, maintain, and operate will also be
important.

Summary:

As the volume of data at ASF continues to grow, the current data handling systems at ASF
will be stretched to the maximum, With the data-walume more than doubling in the next

321

few years, ASF is examining the current data handling systems. From operational
experience, ASF has a new understanding of the AMPEX DCRSi recorders and how they
function in the current data handling systems. This understanding has led to some
operational and program changes at ASF, but these changes may not be enough to
accommodate future data handling and storage requirements. Increases in data volume and
frequency of data access will affect ASF’s data handling and storage systems. Machine
cost, machine capabilities, media life expectancy and durability, archive safety, and robotic
capabilities are some of the factors that ASF will consider when planning equipment
improvements to the data storage and handling system. With careful planning, ASF will
insure the protection of the irreplaceable data collection for future scientific research.

References:

1. John Berbert, Ben Kobler, P.C. Hariharan, Jean-Jacques Bedet, and Alan M. Dwyer,
"Magnetic Media", Greenbelt, MD, August 1993,

2. John M. Howard and Mark Hewish, “Data, Data, Everywhere: Competing
Approaches to Mass Storage”, International Defense Review, vol. 25, no.6, PP 75-79,
June 1, 1992,

3. Storage Technology Contingency Plan for the ECS Project, EOSDIS Core System
Project, August 1993,

4. David Cuddy, Eugene Chu and Tim Bicknell, “Alaska SAR Facility Mass Storage,
Current System”, Third NASA Goddard Conference on Mass Storage Systems and

Technologies, Benjamin Kobler and P.C. Hariharan, eds., College Park, MD, October
1993,

5. Gunter Weller and W.F. Weeks, “The Alaska SAR Facility: An Update", Arctic
Research of the United States, vol. 2, no. 1, PP 27-31, Spring, 1988.

6. DCRSi 107 lab instruction manual, AMPEX Corporation, B5-B10, 1994,
7. DCRSi Media Archival Properties, AMPEX Corporation, 1994,

e

- AMPEX DCRSi 2471/2473 Specification Summary, AMPEX Corporation, 1994,

Acknowledgments:

We would like to acknowledge Ron Faust, Thom Reimers, Brett Delana, and Tom George
for their time and generous assistance with this paper.

322

N95- 24134

<
Architecture & Evolution g,
of Goddard Space Flight Center 1)
Distributed Active Archive Center y‘? (/7

Jean-Jacques Bedet, Lee Bodden, Wayne Rosen, Mark Sherman / -

Hughes STX
7701 Greenbelt Road, suite 400
Greenbelt, MD 20770
301-441-4285 Fax (301) 441-2392
{bedet, bodden, rosen, sherman} @daac.gsfc.nasa.gov

Phil Pease
NASA/GSFC
Greenbelt Road
Greenbelt, MD 20771
301-286-4418
pease @daac.gsfc.nasa.gov

Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has
been developed to enhance Earth Science research by improved access to remote sensor
earth science data. Building and operating an archive, even one of a moderate size (a few
Terabytes), is a challenging task. One of the critical components of this system is Unitree,
the Hierarchical File Storage Management System. Unitree, selected two years ago as the
best available solution, requires constant system administrative support. It is not always
suitable as an archive and distribution data center, and has moderate performance. The
Data Archive and Distribution System (DADS) software developed to monitor, manage,
and automate the ingestion, archive, and distribution functions turned out to be more
challenging than anticipated. Having the software and tools is not sufficient to succeed.
Human interaction within the system must be fully understood to improve efficiency and
ensure that the right tools are developed. One of the lessons learned is that the operability,
reliability, and performance aspects should be thoroughly addressed in the initial design.
However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB
per day. A backup system to archive a second copy of all data ingested is under
development. This backup system will be used not only for disaster recovery but will also
replace the main archive when it is unavailable during maintenance or hardware
replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its
organization. A Quality team has also been formed to identify quality issues and to propose
improvements. The DAAC has conducted numerous tests to benchmark the performance
of the system. These tests proved to be extremely useful in identifying bottlenecks and
deficiencies in operational procedures.

323

Introduction

The GSFC DAAC is being developed in several phases with Version 0 (VO0) being
developed to support existing and pre-Earth Observing System (EOS) Earth science data
sets, facilitate the scientific research, and test EOS Data and Information System (EOSDIS)
concepts. This paper presents the GSFC DAAC VO missions and requirements, and
describes its architecture at the software and hardware level. The ingest, archive, and
distribution processes are explained and a walk-through of these functions is presented.
Numerous tests have also been conducted to benchmark the performance of storage
devices, specific functions (e.g., ingestion), and the overall system. The tests which
helped identified deficiencies in operational procedures and software are described. The
Hierarchical File Storage Management System, Unitree, is a critical component of the
DAAC. Some major issues were discovered during the integration of Unitree with the
GSFC DAAC hardware and software, and a list of lessons learned has been compiled.
There are some issues that were identified during the development, integration, and
operational support of this system which are also discussed. Another topic presented in
this paper is the focus and pursuit of quality by the GSFC DAAC.

GSFC DAAC V0 Mission

The initial version of NASA's EOSDIS is Version 0 (V0). This system consists of eight
DAAC:s disseminated across the United States. Each DAAC is generally specialized in
Scientific disciplines. The DAAC role is to enhance and improve scientific research and
productivity by consolidating access and distribution of Earth science data. The
evolutionary approach of building a Version 0 system is intended to demonstrate the
concept of an interoperable set of distributed archive centers and to prototype various
aspects of the system prior to the first EOS satellite launch.

The Goddard DAAC has defined its mission "to maximize the investment benefit of the
Mission to Planet Earth by providing data and services to enable the realization of the
potential of global climate data by the science and education cominunities".

GSFC DAAC V0 Requirements

The GSFC DAAC is being developed in response to EOSDIS functional requirements as
well as requirements generated from Science projects such as Sea-viewing Wide Field-of-
view Sensor (SeaWiF8), Coastal Zone Color Scanner (CZCS), Total Ozone Mapping
Spectrometer (TOMS), Advanced Very High Resolution Radiometer (AVHRR), Tiros
Operational Vertical Sounder (TOVS), and Upper Atmospheric Research Satellite (UARS).

The GSFC DAAC has currently 731 GB of data archived (Table 1). This number is
expected to increase to about 18 Terabytes by FY97 [1]. In 1995 the daily ingestion
workload is estimated to be 26.4 GB/day (Table 2). All ingested data (except AVHRR) are
compressed to reduce storage needs. This results in 18.9 GB/day of data being archived
on the Metrum RSS-600 ATL (95%) and the Cygnet Jukebox (5%). The volume of data
distributed is anticipated to be 40 GB/day of SeaWiFS data and 20 GB/day of non-
SeaWiFS data, for a total of 60 GB/day. Two types of distribution orders have been
identified: standing orders and random orders. The standing orders, by definition, are
requests by users for some or all of the data as it is being received at the DAAC. The

324

random orders are interactive requests by users for data that has been previously archived
and is available for order. A significant proportion of orders are expected to be standing
orders (65%) and most of the data ordered (89%) are assumed to be distributed on physical
media (e.g., 8 mm) with the remaining being sent over the network (ftp orders). The
distribution media supported currently at the GSFC DAAC are 8mm, 4mm, 9 track- 6250
bpi. The estimated VO DAAC workload is illustrated in Figure 1.

Product

Volume

archived on
Metrum (GB)

Volume

archived on

Total volume
archived (GB)

SeaWirs L1 A (test)

Cygnet (GB)
1

1

SeaWiFS L2 (test)

1

1

AVHRR L3

111

111

UARS L3

35

35

TOMS

97

97

CZCS Level 1

345

345

4D assimilation

141

141

Total

385

346

731

Table 1 Total Volume of Data Archived as of 10-31-94

Product Volume before compression |Volume after
compression ratio compression
(GB) (GB)

SeaWiFS (regular) 2.10 0.72 1.51

SeaWIFS (reprocessing) 19.80 0.72 14.26

AVHRR 1.00 0.25 0.25

TOVS 3.00 0.80 2.40

UARS 0.30 1.00 0.30

"TOMS 0.1/ 1.00 0.17

Total 26.37 18.89

325

Table 2 Estimated 1995 Daily Ingestion Workload

() () () (sowrs) (o
4.6 GB/day

025 Gw&yn# GR/day 0.3 GB/day %21 GB/day + ‘o. 17 B/day 72.2 GB/day

9.8 @B/day FDDI Network

37.4 B/day | &.6 GB/day %,6 GB/day

42 GB/day*

| FTP Dist. P Transfer
|

|
!
l
|
47wy | |
random orders ~—
i
|
|
|
|

27.3 GB/day
standing orders

18.9 GB/day
(compressed)

14 GB/day retr. 0.7 GB/day retr. m m |
k
17.9 GB/day arch. /—\1 GB/day arch. 13.6 Cr;/day m 19-2tl;33§/da)f
I 2B |
EOSDADS EOSDADS2 | EOSDATA

* Data compressed (equivalent to 60 GB if uncompressed)
** Data compressed by AVHRR Pathfinder PGS (equivalent to 1 GB if uncompressed)

Figure 1 Estimated DAAC Workload (Volume/day)

GSFC DAAC V0 Hardware Architecture

GSFC DAAC consists of three components, a Product Generation System (PGS), an
Information Management System (IMS), and a Data Archive and Distribution System
(DADS). The PGS receives low level data products (raw data requiring processing) and
generates higher level data products. The IMS serves as a catalog of the data holdings
which can be searched and browsed by researchers to help them identify and order data of
interest. All data are archived within the DADS where they are available for on-line
retrieval to fill researchers' orders for data.

A strategy was initially developed [1] to identify the best cost effective hardware and
software configuration, and to measure the performance of the selected system [2]. Based
upon the latest requirements, and projected workloads, the GSFC DAAC Fiscal year 1995
hardware configuration for the IMS and DADS is illustrated in Figure 2. The following are
the points of the strategy.

* An SGI 4D/440 S (DADS) runs Unitree and the DADS software. To reduce the load, the
DADS software is planned to be moved to a SGI Challenge L. The Unitree cache has 40
GB of disk space.

* Near-line data are archived on either a Cygnet 1803 jukebox (1179 MB) with 2 ATG
WORM optical drives or an RSS-600 Metrum Automated Tape Library (ATL) (8700 MB)
with 4 RSP 2150 VHS drives.

» A secondary archive is planned with a Challenge S (Backup) to keep a backup copy of all
data ingested at the DAAC. The primary copy is archived by Unitree on an SGI 4D/440 S.
* The SGI Challenge L (DADS2) which has a larger number of I/O ports and fast internal
bus, has all the distribution tape drives attached to it. The GSFC DAAC has nine 8 mm

326

drives, four 4 mm drives, and two 9 track drives. Additional drives may be added to
satisfy future needs. To receive ingested data and copy data to tapes (e.g. 8mm) 40 GB
and 72 GB respectively of disk space is available. Requests for FTP transfers are kept on-
line on 40 GB of disks.

* An SGI 4D/440 VGX (DATA) computer runs the IMS software and Oracle. This
machine has also the client which provides interoperability with other DAACs through a
high-level Information Management System.

» The DAAC's distributed environment includes several ethernet Local Area Networks and
an FDDI network connected to the EOSWAN.

GSFC

LAN Ext. Data
Producers

remememe—e—- The Internet
m ----------------- EOSDIS WAN GSFC VO EOSDIS FDDI LAN

! GSFC VO EOSDIS Ethernet LAN

Ingest Distrbution
B‘d“r Staging Staging Browse
Stgngu!\g 4 GB 72 GB 2 @B Anonymous
F

FTP TP
Staging 16.8 GB
40 GB
f— -~
e

) N’
SGI 4D/440 S SGI ChalEnge s SGI Chalenge L SGI 4D/440 VGX Oracle &
128 MB Memary 64 MB Memory 256 MB Memory 256 MB Memory Databases

4 CPUs (150
Mhz)

4 CPUs (40 Mhz) 1 CPUs (150 Mhz) 4 CPUs (40 Mhz) 5 GB

UniTree
Staging _ @
0 68 BT 4 mm Tape 8 spe
Tape Drive x 2 9 Track Tape 4 Drives 9 Drives
2 Drives {(One Stacker) (Four5 tackers)
o (2 Stackers)
— (]
| —
P * 1 drhve used for secondary backup outside of UniTree
—]
>

1179 GB WORM 8700 GB Automatc

Optical JukeboxTape Cartridge System
2 Drives 5 Drives*

Figure 2 GSFC DAAC FY 95 Configuration

GSFC DADS Functional Design

This paper will now focus on the DADS and the mass storage issues. The GSFC DADS
has three main functions: Ingest & Archive, Distribution, and Management. The ingest &
archive function consists of accepting data products from outside the system, extracting or
creating metadata, validating files, storing the files in the primary and backup archives, and
updating the database. The distribution function retrieves files from archives, stages them
to a distribution staging area, reformats the data if necessary (e.g. tar is the normal format
for orders), and then writes the data to tapes or to an FTP staging disk. The DADS
management software handles the scheduling, tracks DADS activities, and controls

327

allocation and deallocation of resources. The DADS functional design is illustrated in
Figure 3.

Search Order
o
Q
3
2
ot A
8 -
[a] ©
o] - FTP
Y g » ™™ Distribution
= B
Data Io)
Transfer
‘,,
B Media
* ! Distribution |
Y
pADS [¢
Management
Random Order
—® Distribution
—— | Processing
< 'y
Archive —
Y Y

Standing order
Distribution —
Processing

Distribution
Staging

Ingest
Staging

[‘:j Non-DADS Software

Figure 3 DADS Functional Design

GSFC DADS Ingestion, Archive, and Distribution Functions
The GSFC DADS currently ingests through network interfaces or directly from media

datasets produced by the following scientific projects: AVHRR, TOVS, TOMS, 4 D
Assimilation, CZCS, and UARS. The SeaWiFs project will be added to that list after the

328

launch of its satellite scheduled in Spring/Summer of 1995. Ingestion of data over the
network is usually triggered when a scientific project invokes a client hosted on their
computer called Data Transfer Program (DTP) (Figure 4).

DADS \ < > ' Resource
‘ (DTPD) | Manager Scheduler/ Manager /
N~ N

Backup
Verify

Archive
Software

Scheduling
Software

Non-DADS
Software

Figure 4 Archive Architecture

()
NS

The transfer of data begins after DTP receives authorization from the DADS, which ensures
the availability of resources to satisfy the ingest. The migration operations between the
near-line devices (Cygnet jukebox and the Metrum ATL) are handled by the Hierarchical
File Storage Management (HFSM) Unitree. The processing schedule and the resource
allocation/deallocation are performed by the DADS modules: DADS manager, scheduler,
and resource manager. A second archive copy is generated and handled by the archive
manager, archiver, and backup verify. The ingestion and archive processes are described
in detail in Table 3. In addition, Table 4 summarizes an Ingest/Archive walk-through.

329

Process Description

DTP I-{equests Ingest staging disk space from DADS Manager
and Transfers files from the client system to the ingest
staging area

DADS Manager Sequences transfer, ingest, archive, verify, and staging
cleanup

"Scheduler Interacts with the resource manager to allocate disk space,

and Starts activities when resources are available

Resource Manager

Manages disk space in the ingest and distribution staging
areas

Ingest Manager Starts the correct processing script for each transferred file |
Script validates file, extracts metadata, and loads granule
level database tables

Archive Manager Batches archive requests
Initiates archiving activities on a size or time basis

Archiver Performs primary and backup archiving activities

Computes and stores checksum values
Exposes granules

Ingest §taging (ﬁeanup

Checks successfully archived files against standing orders
Copies files required by standing orders to distribution
staging and adds items to open standing orders

Removes successfully archived files from ingest staging
area

nﬁackup Verify

Run as chron job

Retrieves backup archives files and recomputes checksum
Compares checksum to value computed by archiver
Sends E-mail to data producer on success

Table 3 DADS Ingest/Archive Processes

330

:S_tep

ﬁescription

Transfer

1. DTP client and server establish connection

2. DTPD sends a request for disk space to Scheduler via DADS Manager

3. Scheduler, using Resource Manager, determines when to initiate the
transfer and sends message to DTPD via DADS Manager to start transfer.

4. DTP Client and Server perform transfer

5. DTPD sends file completion message to the DADS Manager as each file
completes transfer

6. DTPD sends termination message to the DADS Manager after all files
are transferred

Ingest

1. DADS Manager sends ingest request to Ingest Manager for each
transferred file

2. Ingest Manager starts appropriate processing script for each file

3. Ingest script extracts metadata, validates data, updates Data Base
granule table, and sometimes does compression

4. Ingest Manager sends ingest complete message to DADS Manager for
each file

Archive

1. DADS Manager sends archive request to Archive Manager for each
transferred file.

2. Archive Manager adds file pending archive list

3. When archive list reaches a size threshold, the Archive Manager sends a
batch archive message to the Scheduler via the DADS manager

4. The scheduler determines when to initiate the archiving activity and
sends a message to the Archive Manager via the DADS Manager to start
the Archiver

5. The Archiver copies the files to Unitree and to a backup tape, then
sends an archive complete message to the Scheduler via the Archive

Manager and the DADS.

Ingest
Staging
Cleanup

1. The DADS Manager starts the Staging (ﬁeanup process

2. Ingest Staging Cleanup determines which files need to be staged for
standing order distribution

3. Ingest Staging Cleanup requests disk space from the Resource
Manager.

4. If the distribution space is available, Ingest Staging Cleanup copies the
files and notifies the Resource Manager of the space used.

5. Ingest Staging Cleanup then adds the requested items to the standing
order request.

6. Ingest Staging Cleanup removes the successfully archived files from
the ingest staging area, notifying the Resource Manager of space made
available.

T3ackup
Verification

Runs as a chron job periodically
Retrieves backup archive files and verifies using checksum
Sends E-mail Notification to data producer that archive was successful

Table 4 DADS Ingest/Archive Steps

331

Another major function of the DADS software is the distribution of archived data to users.
New order requests are gcnerated by the user using the IMS and are then automatically
submitted by the IMS to the 1>ADS. Requests that are initially delayed are obtained later by
the DADS by scanning the database using a program called pollreq (see Figure 5). Any
known request can also be submitted manually for processing using ureproc. The staging
operations between the near-line devices (Cygnet jukebox and the Metrum ATL) are
handled by the HFSM Unitree. The processing schedule and the resource
allocation/deallocation are performed by the Scheduler, Resource Manager, and Tape
Manager. The DADS modui=s developed for the distribution function are summarized in
Table 5. To clarify the distribution process, a walk-through is described in Table 6.

Distribution
Non-DADS

S=dg @ Software

FTP to
External Systems

Figure 5 DADS Distribution Architecture

332

Process Description

'Request Poller (pollreq) Scans data base for requests that have not been initiated
Sends request ID to dadsmegr for each request found

DADS Manager (dadsmgr) Sequences archive and distribution activities

'Scheduler (schedsrvr) Maintains queues of processing activities

Interacts with resource & tape managers to allocate resources
Starts activities when resources are available

Resource Manager (rsmansrvr) | Manages disk space in msest and distribution staging areas

Tape Manager Controls allocation and deallocation of tapes
Controls automated (not manual) tape mounts for

L distribution

Tape Display Show status of all tape drives

- Prompts operators to mount/dismount tapes

Request Sever (regserver) Locates all items in request and requests disk space

Starts Stage Copy when disk resources are available
Requests tapes required for request
Starts Tape Out process when tapes are available

"Batches" Unitree staging requests

:Stage §_erver
Stage Copy

Ask Unitree to stage files, and copies staged files to
distribution staging area

Tape Out

Writes header and staged files to distribution tape

Table 5 DADS Distribution Processes

[Step

ﬁ)escru)tlon

Staging

1. IMS or GenAutoOrder generates request in database

2. IMS or pollreq sends messages to DADS Manager to start processing request
3. DADS Manager sends request to Request Server

. Request Server requests disk space from Resource Manager via DADS
manager and Scheduler

5. Scheduler, using Resource Manager, determines when to process request
[6. Scheduler sends message to Request Server via DADS Manager to start
request processing

7. Request Server stages all files not already staged and creates symbolic links
for all files

8. If no output tapes are required then Request Server signal completion of
request

[Tape Output

1. RequestﬁServer sends a message to ﬁpe Manager via DADS Manager and
Scheduler for tape drive

2. Scheduler determines when to write output tape, using Tape Manager (and
Tape Display) to mount tape

3. Scheduler sends messages to Request Server via DADS Manager to write
tape

4. Request Server creates child process to write tape header and files. Request
Server signal completion of tape to Tape Manager via DADS Manager and
Scheduler

Tape Manager and Tape Display handle dismount of tape and bar-code label
generation

Table 6 DADS Distribution Steps

333

Ingestion and Archive Functions

Files are ingested at the DAAC using DTP which incorporates a modified version of ftp.
The regular ftp is not suited for background tasks and does not return error codes. The
DAAC had to develop their own ftp that can be executed via a call routine and that returned
error codes. The overhead associated with opening a connection and getting a response
back via the DADS Manager turned out to be long (30 s). With small files (< 5 MB), the
transfer time is much smaller than the opening connection time. It is therefore necessary to
transfer a large number of small files with a single connection in order minimize overhead.

The DADS manager is a central point by which each message is received and sent. This
design adds overhead and with a heavy load, this might become a bottleneck. Another
alternative architecture would be to send messages directly to the recipient without passing
through the DADS manager.

Scheduling the DADS activities efficiently is a difficult problem. The scheduler must
dynamically schedule all the DAAC activities based on resource utilization and task
priorities and some general policies. A resource can represent, for example, disk space,
tape drives, or the number of concurrent ftp sessions. The scheduler must also prevent
deadlock situations which would halt the system. In the first phase, the DAAC has
developed its scheduler using a very simple scheme First In First Out (FIFO). This
approach works fine when the resources are abundant. However, when there are
contentions for resources, the schedule using a FIFO algorithm becomes extremely
inefficient and slow. The granularity of the task is very important. Treating each process
as a task is not a good solution because of the large number of processes involved. On the
other hand, a task such as a distribution function has several sub-tasks that are to be
scheduled separately while maintaining the order in which each subtask should be
submitted. For example, a distribution function is composed of at least of a stage
operation, a copy to the distribution area, and a copy to tape. It would be inefficient to
allocate all resources needed at the beginning of the task. For instance a distribution tape
drive should not be allocated until the data is staged to the distribution staging area. By
dividing a task in a series of sub-tasks and by scheduling each individual subtask, the
system resources can be better used and the overall performance can be improved. Each
sub-task must allocate its own resources and the predecessors and successors of each sub-
task must also be preserved. A general-purpose constraint-based scheduling engine based
on the Time Map Manager (TMM) that uses a multi-level of tasks/subtasks is being studied
for integration in the DADS software.

The DADS software was based on a client/server configuration. In the current architecture,
each main function is a server that can be distributed over several platforms. The
implementation of a client/server configuration turned out to be more complicated than
expected. It is critical in this kind of environment to capture all errors and provide a
mechanism to recover from these errors. It is also imperative to ensure that no single
message is lost and that the communication protocol is very reliable. In the early stage of
the development of the DADS software, messages were lost and processes were hanging.
This could lock valuable resources indefinitely. One of the key problems with a
client/server configuration is that when a server crashes, it takes many jobs along with it.
A one process/one job philosophy would be better. Testing client/server software can also
be a very difficult task because it is not always easy to reproduce errors that had occurred
previously. With a client/server architecture, it is also important to limit the traffic of
messages in order to achieve a good performance of the system.

334

Backup system

All VO data are archived on several copies. The primary copy is on near-line storage
(WORM platters or VHS tapes) using the HFSM Unitree. This implies that the data are
stored with the Unitree Proprietary format. Relying on a single copy is prone for disaster
sooner or later. During the first year of being operational the GSFC DAAC experienced
unrecoverable errors on VHS tapes on six occasions, even though the life expectancy of the
media was 10 years. Most of the problems were linked with a bad tape drive. In
conjunction, the firmware of the Metrum drives used at that time did not limit the number of
retries in search mode, and the media was damaged by an excessive number of passes.
Unitree does not currently provide a mechanism to detect the number of soft errors or even
the number of times a given tape is mounted/dismounted. With large archives it is
imperative to detect such soft errors in order to predict when it is time to make another copy
before the media is permanently damaged. The cost of creating a duplicate copy of a tape
that has unrecoverable I/O errors can be a very expensive and time consuming task. Some
data sets are in high demand and are used extensively. For instance one tape was mounted
more than 2000 times in one year. With each mount, there are several passes and this
exceeded the maximum number of passes (3000-6000 for the VHS tapes) provided by the
manufacturers. Whenever possible, it is recommended to keep these highly requested
datasets on magnetic disks or optical media, not only to minimize the response time but also
to prevent such media degradation. It is not always easy to predict which datasets are
going to be in high demand and the use of media such as VHS tapes must be closely
monitored for high usage of individual tapes and a procedure put in place to copy these
tapes to new tapes as needed.

Currently, the second copy of the data in the archive is done using the standard tar format
on a VHS tape. This should facilitate the migration of the data to the EOS V1 system. A
new backup system is under development. The plan is to copy all data by families (data set
and level) on a VHS tape and on a DLT tape. The DLT media seems promising. It has a
higher level of passes, stores a large volume of data and is relatively inexpensive.
However DLT is a new media and because of its low cost, the project decided to make
backup copies on both VHS and DLT until more is known about DLT drive and media
reliability. On several occasions Unitree was unavailable for several days and the
operations came to halt. The GSFC DAAC workload is going to increase several times
with the SeaWiFs data sets, and another occurrence of Unitree unavailability for a long time
would create difficulty in recovering from such long outage. To alleviate this problem, the
DAAC has a contingency plan to use the backup system as an ingestion and distribution
system. The backup is on a different machine, has its own drives and robotics, and is
being designed to handle such eventuality.

Distribution Function

After conducting tests with a heavy workload, it became clear that the number of new
distribution requests to process concurrently had to be limited (around 10). Several factors
contributed to this condition. First, with a large number of files to stage, each stage
command uses 3 processes, the maximum number of processes (500) available on the
DADS could be exceeded in some cases. Secondly, the data had to be staged to a
distribution staging area and too many concurrent nfs copies to disks resulted in severe
degradation of the nfs throughput which is notoriously slow to begin with. Some factors
contributing to the nfs poor performance were due to a maximum of eight group ids that
can be sent and an nfs feature that locks directories until the files are opened. Replacing nfs
by FTP should improve the throughput by 2 or 3 times. As with nfs, the number of

335

concurrent FTPs must be limited in order to achieve a good performance and scheduling
becomes important.

Whenever a file is requested for distribution an Oracle database is searched to determine if it
resides on the distribution staging area and to identify its physical location on the staging
area. The access to this database was causing substantial delays (minutes) and the SQL
code had to be optimized in the DADS software to achieve better performance. During the
latest tests, the SGI 4D/440 VGX computer hosting the database was CPU bound and the
DAAC is investigating the prospect of acquiring a more powerful machine as well as more
optimal ways of accessing the databases.

The Stage server role is to group files belonging to the same family so that they can be
submitted to Unitree as a single batch. This improves the overall performance of the
system by minimizing the number of mounts/dismounts, The files selected that reside on
the same tape are read with a single mount. Unitree philosophy is to have full data
transparency and the users should not be aware of the physical location of the files. This
concept may be fine with users but is completely inappropriate for system administrators,
developers, and testers. If the physical location were known the stage server could group
requests with files residing on the same media and schedule the stage from various orders
to optimize the retrieval throughput.

An important parameter in designing the architecture of the system is the volume of data to
be ingested and distributed. However it is also necessary to have good estimate on the size
of the files. A system with many small files has more overhead than a system of the same
size composed of larger files. With small files, more time can be spent searching the files
on tapes than actually reading data from tapes. The size of the orders must also be well
estimated in advance. Files belonging to the same orders are usually staged to distribution
staging area prior to being copied to media or made available for ftp transfer. If the size of
the orders are underestimated the distribution staging area may be too small creating delay
and confusion at the operation level.

Orders are placed to the GSFC DAAC via the IMS. Data can be requested to be available
over the network (ftp request) or distributed on media such as 4 mm, 8 mm, or 9 track
(media request). With an ftp request, the data are automatically staged to disks to be copied
immediately and the user is notified by E-mail. The User has 3 days to transfer the file(s)
over their computer. As the number of requests increases the space needed to stage ftp may
become so large that the 3 days policy may be cut to just a few hours and may not be long
enough for the users. Sending data to users has other problems such as security, privileges
and availability of user disk space.

Operation

One important role of the GSFC DAAC is the dissemination of the data requested to the
scientific community. With respect to SeaWiFS only, 40 GB are expected to be distributed
each day. To process this volume of data most functions have been automated by the
DADS software. However, in this environment it is not unusual for something unexpected
to occur (e.g. bad tape) and the operators must identify, and rectify these problems
manually. This can be time consuming and one lesson learned was that operators needed
more tools to be more productive. These tools are also used to monitor the system, its

336

resources and the requests. The tools must be defined by the operators and developed by
programmers. There is a tendency for developers to design software without fully
understanding the need or operation concept. This can result in a product that is too
complicated to use, too cumbersome, or does not meet the needs. Tools were part of the
preliminary designed but the scope of the task may have been underestimated. Some of
these tools are also difficult to identify until you have a real system in place. Without these
tools the overall productivity can be greatly reduced.

Another major challenge in building a system such as the GSFC VO DAAC, is to design it
from the beginning with operability, condition monitoring, error recovery, and
performance. These aspects are often neglected as a project starts with some type of
prototyping where the emphasis is on functionality.

Creating the data requested by the users is not the only task. Tapes must be labeled, tape
contents verified, documentation must accompany the order, and everything has to be
boxed and mailed. All these steps can be manual intensive, time consuming, and must be
streamlined in order to be as efficient as possible. Without the right procedures and tools,
operators can spend a lot of time performing these tasks. This could result in a degradation
in quality as less time is spent monitoring the system for unusual events. To minimize the
risk of inadvertently switching tapes for different orders, all tapes are labeled with bar
codes and scanned by bar code readers. Mailing labels are printed with identical bar codes
to insure that the correct tape is sent to the researcher.

Not all the requests are entered electronically via the IMS. Some users still need to order
datasets over the phone or need assistance. To support the users, the DAAC has a User
Support Office (USO). The interaction between USO and the operation group is important.
Lack of communication between these two groups or any other groups within the DAAC
would results in deterioration of the service provided to the Scientific community. In
addition information that are often needed by the researcher (e.g. status of order) should be
available on-line to minimize the workload of the USO staff.

The GSFC DAAC is a service oriented organization and as such has the responsibility to
provide the best product to users. To help to achieve this goal, a quality team has been
created at the DAAC. Its primary role is to identify quality issues and to suggest solutions.
A strong emphasis has been placed on quality issues that mostly impact external users.
This group was established after discovering that blank/bad tapes had been sent to users.
One of the first tasks of the quality team was to review complaints within the DAAC and by
our customers. Then, starting from the operation level, the DAAC processes have been
reevaluated to identify deficiencies and propose solutions. For example, to preclude GSFC
DAAC from sending bad/blank tapes, a directory of the tape is compiled. This solution is
time consuming because it takes the same amount of time to create the tape as to read it and
generate a directory. Other alternatives are to read only the first records or get a directory
of tapes randomly selected. Capturing I/O errors during the creation of the tape is another
way of insuring the quality of the tapes. 8mm and 4 mm have a read/verify operations after
a write operation that could guarantee the data is stored properly on the media. The problem
is that the I/O errors are reported at the bus level only and when several drives are
connected to the same bus it is not always possible to determine which drive had an I/O
error. 8 mm stackers have also been purchased to minimize human intervention and reduce
the risk of errors. As simple as these functions may be, examining the processes in details

337

has revealed that their implementation is usually too complex, inefficient and filled with
unnecessary manual steps that slows down the performance.

Testing

The GSFC DAAC has conducted numerous tests on the VO System to measure the
throughput of its peripherals running separately or concurrently. Basic functions such as
ingest, stage, ftp have also been benchmarked in order to estimate the overall performance
of the DAAC and to identify bottlenecks and limiting factors. These measurements have
been summarized in Figure 6. The numbers listed in Figure 6 represent the best values
obtained on a system that was not busy. The distribution tape drives (4mm, 8mm, and 9
tracks) transfer rates varied with the size of the files copied. Writing a large number of files
on tapes with the tar format was found to be faster than copying the same data on the same
drive using dd command. Currently, the only mechanism to transfer data in and out of the
Unitree cache is via nfs or ftp. The best throughput of a single file transferred was
measured at 1570 KB/s with ftp and 430 KB/s with nfs in local host. The ftp and nfs
throughput is a function of the number of concurrent transfers as illustrated in Figure 7 and
Figure 8 . Having too many ftps or nfs running at the same time can reduce considerably
the overall throughput. If the files reside on the same disk, there may also be some disk
contention. Compression and decompression are CPU intensive operations that may create
a bottleneck. As expected these operations are executed faster on the SGI Challenge L than
on the SGI power series (see Figure. 9). Several compressions or decompressions
running simultaneously will contend for the CPUs and potentially the disk I/Os resulting in
degradation in the overall individual compression/decompression transfer rates. A
hardware solution for compression/decompression would alleviate this problem. The
GSFC DAAC has investigated for such a hardware board, but in vain. The stage
operations have been tested using the RSS-600 Metrum Automated Tape Library (ATL). It
is difficult to measure the throughput of these operations because they depend on the size of
the files retrieved and the position of the files on the tapes. Using a large file (270 MB)
positioned at the beginning, in the middle, and at the end of the tape it was found that the
overall effective transfer rates that include all the overheads (pickup time, load time, time
for Unitree to read header, search time and read time) was respectively 545 KB/s, 604
KB/s, and 612 KB/s. These rates are roughly one third the native rates of the Metrum
drives. These tests were for a large file and reflect best case scenarios. The latest tests
conducted during several hours with 3 Metrum drives show that with 30-200 MB files the
transfer rate was around 170 KB/s per drive. Even with multiple drives (5), this can
become a bottleneck and it is important to schedule these stage operations in order to
minimize the number of mounts/dismounts and therefore maximize the overall throughput.

In addition to these individual tests, GSFC DAAC has conducted "mini-tests" each time a
new version of the DAAC was released. The initial objective of these mini-tests was to
demonstrate that the center could process 40 GB/day of SeaWiFS data. After conducting
the first mini-test it became apparent that the goals of these mini-tests should be expanded.
For instance, software bugs which could occur only when the system was under a heavy
workload, were discovered. The mini-test was in itself an extension to thorough testing
performed by an independent test team. These mini-tests also contributed to identify
deficiencies in operation procedures. This resulted in increase productivity and improved
the overall quality of the data ingested and distributed. The problem associated with these
tests is that the operations are delayed while they are conducted. However the benefits
outweigh the drawbacks.

338

Ingest Archive | f_tp Request
DADS Distribution
DATA

(o X~

oo A
I —~ =1 == ||
- T

el

o
o

ftp: 0.134 MB/ @

DADS

o [— g |

e e
i i
Mg T

Metrum
8700 GB Automatic Tape
Cartridge System

o~ Distribution
DADS

| 0.135MB/5 (27 MB)
0.604 MB/s (245 MB) ‘
8 mm

8200
distribution ¢)

ftp 1.570 MB/s (30 M%

; | stagin
Ingest .L____= UniTree [1¢ "6 430 M8/s (30 MB) ang 8 mm
staging Cache (8500)
0.241 MB/s (20 MB) 4 mm

0.567 MB/s (310 MB)

Distribution
DADS2 030“)5!5 Tape)9 track
[\

0
%
4D
g B/,
— a5 6] em
| | distribution | 0.472
charny-f Ms/s 8 mm

O O }ss00)
(O O} 4mm

0
I 1179 GB WORM Optical I 70,448
Jukeboxes 3

Figure 6 GSFC DAAC V0 Testing

339

transfer rate per file (KBls)

transfer nte perfile (KB/s)

FTP Performance on DADS machine
(Copy from Unitree Cache to Unix disks)
(3-15-94 test)

1750

1500

1250

1000 —

750

500

250 4

Y T T T T 1T T 1

I
© H N ©® + Wb v N~ © o o
Number of concurrent files (28 MB)

Figure 7 FTP Performance

NFS Performance on DADS machine
(Copy from Unitree Cache to Unix disks)
(3-10-94 test)

500

400

300

200

100

Y T T T T T T

Ll
o ~ - o © =4 > +]

Number of concurrent files (28 MB)

Figure 8 NFS Performance

340

Compression/Decompression transfer rate per file
on the DADS and DADS?2 machines

600
Q
5,

500 A\
—_ 400 —{}— compress (DADS)
w
g o Compress (DADS2)
P 300 —
g ====Q-~== Uncompress (DADS)
g 200 — -===fx---- Uncompress (DADS2)

100 —

0 T T T T T I 1 T

Number of concurrent compressions/decompressions

Figure 9 Compression and decompression performance

A 16 hour test was conducted on Tuesday, December 13, 1994. The primary objective of
this test was to demonstrate that the GSFC DAAC could distribute 40 GB of SeaWiFS
orders each day. No ingestion was processed during this test. The total number of orders
and total volume of orders processed exceeded the target goal for both standing orders and
random orders. During the test, the DADS software proved to be very robust. All the
SeaWiFs test orders were completed more than 3 hours before the end of the test. During
the test, all data copied from the Unitree cache to the distribution staging area, were
transferred at the speed of the nfs because the disks were nfs mounted This is currently the
main bottleneck in the system. However, preliminary tests have shown that by using ftp,
the transfer rates between the Unitree cache and the distribution staging area should be 2 or
3 times higher

Hardware

GSFC DAAC bought hardware peripherals (disk & tape drives) at a discount price from
third party vendors. The initial saving was not always a good investment as the DAAC
system staff had to work very hard to integrate the peripherals. This distracted the system
engineering from other urgent tasks, increasing system downtime, and generally caused
grief to developers and operators. However, because staff time and system downtime do
not get accounted directly we were able to procure significantly more disk capacity than
otherwise. Another risk associated with purchasing peripherals from small third party
vendors is that they are more prone to go out of business and with them go the warranty.

341

s

The GSFC DAAC experienced serious network throughput with its Science producers.
After some investigation, it was discovered that older routers and bridges could not handle
the load of Ethernet and FDDI, and had to be replaced.

Unitree

To automate the migration and staging operations between the robotic devices and the
magnetic disks, the GSFC DAAC is using Unitree. At the time of the selection process,
Unitree was the only product that fulfilled some of the requirements of the version 0 GSFC
DAAC. The initial design of the DADS was to read files directly from Unitree cache and to
copy them to the distribution media selected by users. On several occasions, files that were
needed for distribution were purged from the disk cache by Unitree before they could be
copied to tape. Another problem associated with Unitree is its poor performance in getting
data in and out of its cache. The GSFC DAAC had to resort to developing and managing a
second cache (i.e., various disk staging areas) to avoid the problems listed above. The
duplicate cache increased the complexity of the DADS software and is expensive in terms
of additional disk space needed. Having an Application Program Interface (API) would
have been very useful in the development of the DADS software. Titan/Avalon recently
delivered an API for Unitree but it was too late for the project to incorporate it and be ready
for the SeaWiFs launch

One of the main drawbacks of Unitree is its lack of robustness. The GSFC DAAC has one
person dedicated to monitoring Unitree at all times. This is not unusual as we discovered
by talking to other Data Centers. This is a serious problem during the weekends as
ingestion and distribution were disrupted because of problems related to Unitree and there
is no one to monitor it. Unitree has come a long way, and its new version is more
thoroughly tested and provides added functionality. However, it has not yet reached the
maturity where it can run unattended, and it is still very expensive.

There are other issues that have been reported to the last Unitree users' group meeting held
at GSFC on November 9-10, 1994. Most of them are related to inadequate documentation,
cryptic error messages, lack of monitoring and administration tools, and no mechanism to

capture soft errors detected by the drives during a read or write operation. This latter

function is important as an increasing number of soft errors is an indication that the media
might be degrading and that a new copy of a tape should be made. Because this function is
not available, GSFC DAAC is currently monitoring the number of mounts/dismounts for
each tape and copying tapes after a set number of mounts.

The overall performance of Unitree has been measured during the numerous tests that the
DAAC conducted. In particular the stage operations were identified as a major bottleneck.
The Metrum drives were benchmarked to read at 1.6 MB/s from UNIX. The same tests
running with Unitree show a degradation of an individual Metrum drive to | MB/s in the
best case scenario. When an ATG drive from the Cygnet jukebox was doing I/O at the
same time as a Metrum drive the transfer rate of this later drive was reduced by at least half.
All these tests were conducted with a system that had no activity.

342

Conclusion

The VO System of the GSFC DAAC has gained valuable experience from building a few
terabytes archive and distribution system and has demonstrated that it is capable of
distributing 40 GB of data per day. Unitree needs to be more robust and easier to manage.
The DADS software has turned out to be a real challenge. The difficulty being primarily in
developing a reliable product that is fully automated with a good error recovery and with
good performance. The operability, reliability, and performance aspects should all be
major considerations in designing such a system. Special attention should be paid when
buying hardware from third party vendor. It is usually cheaper, but the integration may be
difficult and time consuming. Selecting the right media is very critical because of the high
cost to migrate to another media. With larger and larger archives it is imperative to monitor
media degradation and make new copies before unrecoverable I/O errors.

1. L. Bodden, P. Pease, JJ. Bedet, W. Rosen: Goddard Space Flight Center Version 0
Distributed Active Archive Center. In Third Conference on Mass Storage Systems and
Technologies. NASA CP-3262, 1993, pp. 447-453.

2. J1. Bedet, L. Bodden, A. Dwyer, PC. Hariharan, J. Berbert, B. Kobler, P. Pease:

Simulation of a Data Archival and Distributed System at GSFC. In Third Conference on
Mass Storage Systems and Technologies. NASA CP-3262, 1993, pp. 257-277.

343

N95- 24135

The Growth of the UniTree Mass Storage System at the
NASA Center for Computational Sciences:
Some Lessons Learned

Adina Tarshish ci& 7- 82~

Mass Storage and Scientific Computing Branch
NASA/Goddard Space Flight Center, Code 931
Greenbelt, MD 20771 Y397/
k3art@dirac.gsfc.nasa.gov /)
phone: (301)286-6592 / W,
fax: (301)286-1634 /A .

Ellen Salmon
Mass Storage and Scientific Computing Branch
NASA/Goddard Space Flight Center, Code 931
Greenbelt, MD 20771
xrems@dirac.gsfc.nasa.gov
phone: (301)286-7705
fax:(301)286-1634

Abstract

In October 1992, the NASA Center for Computational Sciences made its Convex-based UniTree
system generally available to users. The ensuing months saw growth in every area. Within 26
months, data under UniTree control grew from nil to over 12 terabytes, nearly all of it stored on
robotically mounted tape. HiPPI/UltraNet was added to enhance connectivity, and later
HiPPI/TCP was added as well. Disks and robotic tape silos were added to those already under
UniTree's control, and 18-track tapes were upgraded to 36-track. The primary data source for
UniTree, the facility's Cray Y-MP/4-128, first doubled its processing power and then was
replaced altogether by a C98/6-256 with nearly two-and-a-half times the Y-MP's combined peak
gigaflops. The Convex/UniTree software was upgraded from version 1.5 to 1.7.5, and then to
1.7.6. Finally, the server itself, a Convex C3240, was upgraded to a C3830 with a second 1/0
bay, doubling the C3240's memory and capacity for I/O.

This paper describes insights gained and reinforced with the burgeoning demands on the UniTree
storage system and the significant increases in performance gained from the many upgrades.

Introduction of UniTree at the NASA Center for C tational Scier

The NASA Center for Computational Sciences (NCCS) provides services to more than 1200 space
and Earth science researchers with a range of needs including supercoi..puting and satellite data
analysis. The UniTree file storage management system first arrived at the NCCS on July 6, 1992.
As UniTree was to be the primary system for mass storage management, the existing Convex
C220 was upgraded to a C3240 with four CPUs, 512 megabytes of memory, and 110 gigabytes
of disk. Also included in this initial configuration were 2.4 terabytes of robotic storage provided
by two StorageTek 4400 silos. Although UniTree supported both NFS and ftp as access methods,

345
PRECFDING PAGE BUANK NOT FILMFD PAGE&—L{—LLINTENTIONALLY BLANK

access to UniTree was permitted only through ftp in order to meet the throughput demands of
users of the NCCS's Cray Y/MP (UniTree's primary storage client), IBM ES9000, and
workstation clients.

The mass storage contract under which Convex/UniTree was obtained required that it be able to
handle 32 concurrent transfers while 132 other sessions supported users. The size of files
transferred in acceptance tests was realistically large, about 200 megabytes each. The initial
Convex UniTree system ultimately showed itself able to manage this workload, and by the third
week in September it had passed acceptance.

In those first early months, the growth in UniTree usage was steady, but manageable. There was
about 5 GB of new data being stored each day, about 10 GB a day total network traffic to and
from UniTree. Ethernet access to UniTree was slow but generally reliable. As Convex
UltraNet/HiPPI connectivity was not yet available, many users still preferred the block-mux
channel speeds supported by the MVS Cray Station and continued to use the IBM/MVS legacy
system to hold the bulk of their Cray-generated data.

In the course of the next two years we would observe repeated instances where UniTree usage
would increase sharply and components of the software and supporting operating system services
would fail under the heavy strain. We would note that upgrades to the NCCS's primary compute
server would require corresponding upgrades to the mass storage system. We would become
painfully aware of the relative immaturity of UNIX-based mass storage software in general and
UniTree in specific when compared with other types of software in their availability of tools and
ability to take advantage of high performance hardware. Nevertheless, contending with these
obstacles, the NCCS's Convex/UniTree system has evolved to one of the most active worldwide,
often transferring over 100 GB per day and over half a terabyte a week (Figure 3) while
concurrently handling repacking tape activity to free over 150 400-MB tapes per day.

MMMMMgme

With the arrival of UltraNet access for Convex/UniTree in January 1993, the UniTree usage curve
took its first sharp upward turn. It was now routine for UniTree to receive 10 GB of new data
each day, and for the total traffic to reach 20 GB a day. More and more Cray users began to use
UniTree to store their data. In February 1993 the Cray Y-MP/4-128 was upgraded to double its
previous CPU power (Figure 2), and the rate of new data stored in UniTree also doubled to 20
GB/day. By the end of the month more than 7500 silo tapes out of an available total of 10,000 had
been written with UniTree data.

Upgrade I: UltraNet and Cray Y/MP

UniTree's growing popularity soon exposed a serious impending threat— we were running out of
storage. The only production-level versions of UniTree that existed at that time did not allow for
more than 10,000 tapes to be managed by the system, but the NCCS UniTree system had
consumed three quarters that amount in its first five months of operation. At our prodding, in
early March 1993 Convex developed and installed a modification to allow for up to 100,000 tapes,
18,000 of them for robotic storage and the rest for vaulting, or deep archive. A second
modification allowing for 36,000 tapes in robotic storage was installed in mid-April. Lesson:
Find out hard-coded limits as early as possible; have them modified if necessary.

346

UniTree vaulting and repacking remained a concern. Our version of Convex UniTree 1.5 included
an executable to handle repacking, or removing the "holes" from tapes caused by deleted files, as
well as vaulting, or the copying of little-used files onto f ree-standing tape for deep archive, but
neither function worked properly at our site. It was apparent that the additional 8000 "robotic-
controlled" tapes now defined by software as the top level in the storage hierarchy would not last
for more than a couple of months; without repacking or vaulting, this newly added capacity would
merely postpone the consumption of the entire top-level hierarchy. In addition, the two UniTree
silos were nearly full: without vaulting, most of the additional 8000 tapes in the top level would
not be mounted by robotics but by human operators. On active days, that would amount to
hundreds of manual tape mounts a day to read and write users' most recent data. We did not have
the operations staff necessary for such an undertaking, nor did we want to slow users' access o
most recent files while humans located and mounted the tapes. For these reasons, the NCCS
insisted on fully functional repacking and vaulting.

By April 5, 1993, we finally had a working tape repacker for UniTree 1.5. Immediately we began
to repack in earnest, freeing hundreds of tapes for new data. By April 22,1993, we had also
succeeded in vaulting to free-standing tapes. Working with Convex, we developed utilities that
operators could invoke to write an internal UniTree label on new free-standing tapes, so that they
could be used for vaulting. Operators were soon mounting vault tapes 24 hours a day, in an effort
to keep the silos from filling. Lesson: Include tests for repacking and vaulting along with tests for
all other essential functions in initial acceptance testing.

Upgrade II: Cray C98

At the end of August 1993 the Cray YMP was replaced by a Cray C98 with six CPUs. Network
traffic to and from UniTree increased to 40 - 70 GB a day, 25 - 35 GB of which was new data.
Due to inefficiencies in tape writing, UniTree 1.5 could handle no more than 24 GB of new data in
the course of a day. As a result, by November 1994 we began (o experience periods when the
disk cache would fill and users were unable to store or retrieve any more data. A full disk cache
also meant that vaulting and repacking would come to a halt, eventually causing the silos to fill.
When UniTree ran out of eligible silo tapes for new data it would simply crash. Attempts were
made to facilitate the writing of new data to tape, thereby slowing the f illing of disk cache, by
isolating the channel paths used for writing. Patches were installed optimizing the order in which
files were migrated to tape to free disk cache space sooner. Despite these measures, UniTree had
to be scheduled unavailable to users on six separate occasions (totaling 140 hours) for standalone
migration and vaulting. The tape writing inefficiencies were not significantly improved until
UniTree+ 1.7.5 was installed in late March 1994. Lessons: In data-intensive environments with
storage systems already near maximum load, resource plans to upgrade supercomputers must
include provisions to upgrade the storage system if the supercomputer is to be used effectively.
Include performance requirements in acceptance testing.

UniTree Stresses Supporting Subsystems

Heavily used mass storage systems stress the supporting operating system services and hardware
in ways unlike those of the traditional compute-intensive applications run on the high-powered
machines now serving storage. In the NCCS's experience, networking and tape subsystems are
particularly vulnerable. Limitations in these systems have sometimes affected UniTree's ability to
write retrievable data.

347

UltraNet and HiPPI/TCP

Although it capably handled 90% of Cray-UniTree traffic when it was working well, UltraNet's
history at the NCCS was troubled. Testing it after it first arrived, we discovered several serious
bugs and had to wait for microcode fixes and software patches. (Initially the UltraNet native path
was limited to 16 concurrent transfers: use of the host-stack path would crash the Convex; and the
Convex would hang if UltraNet executables were used for Ethernet transf ers.) While waiting for a
patch to fix the latter problem, Ethernet access was disallowed on the port used by the UltraNet
executables, and Ethernet transfers were given a separate port. After these initial bugs were fixed,
a subtle timing problem between Cray and Convex UltraNet transfers intermittently afflicted
transfers, sometimes affecting over a thousand connections a day. None of the vendors involved
had experienced these failures between machines on their own floors. Concerted eff forts by Cray
and Convex staff resulted in an improved, but not cured, situation. Lesson: A high-performance
product that works well in the homogeneous environment on your vendor's floor won't
necessarily work well in your heterogeneous shop.

Under UniTree+ 1.7.5 we discovered that an abrupt abort of a single Cray UltraNet transfer would
cause all other UniTree transfers to hang. Such an abort was regularly caused by a Cray user's
deleting an NQS job that was actively transferring to UniTree. Attempts were made to have NQS
Jjob deletion and the "kill" command terminate processes less abruptly on the Cray, but with mixed
results. Again Cray and Convex staff worked together to mitigate the problem, but their efforts
were impeded by the difficulty in finding expertise from CNT/UltraNet. The problem was
encountered during a period of financial uncertainty for the UltraNet corporation, before its
acquisition by CNT, and many key UltraNet experts had left the company. Lesson: Especially for
relatively small markets and exotic architecture's, your vendor's company or critical staff may go
away; encourage interoperating/dependent vendors to present alternatives.

UltraNet interoperability problems were not limited to Cray/Convex transfers. The UltraNet hub
adaptor repeatedly "autodowned" whenever transfers over a certain size were attempted from the
IBM/MVS mainframe. This and related MVS/UltraNet problems were severe enough that the
planned transfer via UltraNet of over 500 GB of data from the legacy MVS/HSM system to
UniTree was instead detoured via the Cray. Block-mux Cray station transfers moved MVS data
sets from IBM/MVS to Cray disk, then the legacy files were transferred via HiPPI to
Convex/UniTree. While this was not the preferred use for the costly Cray disk, the duration of
this workaround was limited and use of these C98 resources was favored over burdening an
already saturated Ethernet with an additional 500 GB in transfers. UltraNet connections on the
Convex and Cray were ultimately replaced with a HiPPI/TCP connection to an 8 x 8 HiPPI switch
in September 1994. Lesson: Significant systems problems sometimes require creative short-term
contingency plans that use resources in unconventional ways.

Initial experiences with a point-to-point HiPPI connection between Cray and Convex were also
inauspicious. These initial problems were resolved after it was determined that the two vendors
had been adhering to different parts of the standard. Lesson: Despite acceptance of standards,
interoperability between vendors cannot be taken Jfor granted because the standards are subject to
interpretation.

348

Network Resource Allocation

Difficulties also arose when, to add a point-to-point HiPPI connection between the Cray and
Convex, we upgraded the ConvexOS operating system from release 10.2 to 11.0. Aiming to
maximize network performance, we increased certain UniTree networking parameters to values
that had produced best results in testing at Convex, and noted promising performance during
testing. Running with these parameters in production mode, we began to see numerous
networking allocation failures, a phenomenon not observed during the HiPPI point-to-point stress
testing. In addition, some users reported discovery of certain UniTree files that had been
corrupted. We immediately reduced the networking parameters values to minimize the occurrence
of the allocation failures. “Convex staff identified the problem as a mishandling of the allocation
failures and worked steadily on a patch to prevent the data corruption when these failures recurred.
Evidence pointed to heavy Ethernet traffic as a primary factor in the allocation failures, as the
slower Ethernet transfers tie up resources for a longer period of time than do HiPPI transfers.
After painstaking analysis of the UniTree log files, the NCCS identified and published the list of
all files at risk of having been corrupted by the problem. We installed and tested the ConvexOS
patch as soon as it was available, and, although network allocations continue to fail under heavy
Ethernet loads, the failures are now handled properly with no further data corruption. However,
periods of these network allocation failures result in some user transfers failing, migration and
repacking slowing to a crawl, and the annoying inability to use UNIX pipes and sockets. Lesson:
Stress tests aimed at pushing high-speed interfaces won't catch all systems problems; include
stress tests with lower-performance interfaces in your test suites and add tests for new potentially
concealed problems ("gotchas")as you find them.

Tape Driver Travails

In February 1994, the discovery was made that a flawed Tape Library Interface (TLI) driver was
causing thousands of consecutive tape marks to be imbedded within UniTree data files, making
those files irretrievable by UniTree. Detection and resolution of the problem was belated because
this behavior apparently occurred only with UniTree 1.5, and not with any other application. The
workaround for the excessive-tape-mark problem was a Convex-written utility designed to wade
through the reading of up to half a tape's worth of tape marks before reading data. Attempts to add
this tolerance to UniTree's tape system failed because other UniTree processes still timed-out
waiting for the files to be read. The suspect driver also caused some internal tape labels to be
overwritten by tape marks after the tapes had been written with data. Some of these tapes were
recoverable simply by re-labeling them (sans end-of-tape mark), but large blank areas following
initial tapemarks on other tapes made the data beyond unreadable. With assistance from Convex,
we copied and reconstructed these tapes manually. Installation of the patched tape driver, when it
became available, ensured that no new tapes would be written with either of these problems.
Lesson: Mass storage applications may reveal system flaws not exposed by other testing;
encourage vendors to include characteristics of mass storage systems under load in their system
quality assurance test suites.

Also troublesome were problems eventually attributed to the interaction between an older Convex
TLI driver and our freestanding Memorex tape drives, which were used to write least recently used
files to operator-mounted tapes. 7.5 percent of tapes written on the Memorex drives with this
older version of the TLI driver were discovered to have one or more "null bytes" prepended to the
beginning of data blocks. The additional imbedded bytes prevented UniTree's retrieving many
files on tapes with this problem. The Convex-written utility that enabled the retrieval of files with
embedded multiple tape marks included provisions to retrieve files with "null bytes" as well. This
transparent handling of spurious prepended null bytes was successfully added to a customized-for-
NCCS version of UniTree tape executables. While the exact cause of the extra null bytes has not

349

been pinpointed, evidence suggests that differences in interpretation of the FIPS-60 standard was a
factor. A more serious problem with no known cause occurred on 199 of 27,000 Memorex-
written tapes (i.e., fewer than 1 in 1000): entire blocks of data were missing. UniTree retries
unsuccessful writes (on a new tape, if necessary); apparently the driver had not notified UniTree of
some unsuccessful block writes. Affected files could not be recovered at all; if a driver problem
had caused something extra to be written to UniTree tape, a method could be devised to reconstruct
users' files. But there was no way to reconstruct missing data blocks that had no copy on disk.

The Tape daemon/ACSLS silo software saga

As the data under UniTree's control increased, so did the number of requests to retrieve data from
UniTree tape. The Convex's tape daemon, used to allocate and deallocate tape drives, was
frequently overwhelmed by the load, and communication timeouts and failures between it and the
STK ACSLS silo-control software abounded. UniTree 1.5 aggravated the situation considerably
by re-requesting the entire list of unsatisfied tape mounts every 2 minutes. There was some
discussion about differences in packet addresses and versions being used by the two vendors, and
engineers made numerous modifications to both ACSLS silo software and the tape daemon in an
effort to mitigate this problem. Inaddition, the Sun server running the ACSLS silo software was
also isolated on a private subnet to eliminate effects of extraneous network traffic on tape
daemon/ACSLS communications. Ultimately we were forced to disallow the UniTree "stage"
subcommand, which users had been using (and abusing) to request scores of tape mounts
simultaneously.

The measures above have significantly reduced the frequency of severe tape daemon/ACSLS
communications failures, but another intermittent tape daemon problem persists. Several times a
week the tape daecmon exhausts its available file descriptors and must be killed and restarted,
causing loss of the state of current tape drive allocation and often requiring careful monitoring to
restore normal tape allocations while ensuring minimal impact on UniTree. The problem's cause
remains elusive after some investigation, and Convex has elected to use its resources to work on
the ConvexTMR system which will replace the tape daemon instead of pursuing the file descriptor
problem. Delivery of the TMR replacement has been delayed, resulting in some frustration at the
prolonged exposure to tape daemon shortcomings— but also some solace in knowing these
resources are being applied to resolve remaining TMR problems before its insertion into a
production environment.

Science User-Driven Storage System Performance Requirements

In early summer 1993, the NCCS UniTree system was handling about 20 GB new data per day,
with some effort. We anticipated delivery of a Cray C98 with more than twice the CPU power of
the Cray Y/MP at the end of the summer. The NCCS's users and staff expressed concern about
the ability of the UniTree system to handle the additional storage load from the C98. Convex
asserted that with the right hardware and software configuration, the NCCS would be able to meet
the users' requirements. Science users were canvassed to determine specific mass storage needs
for the foreseeable future (in essence, until augmentation or replacement of the C98). Their
responses formed the basis of our acceptance requirements (Table 1) for the upgrades proposed by
Convex and the project integrator, FDC Technologies. Although performance requirements

350

appeared strenuous compared to production traffic in summer 1993, we have subsequently scen
many instances where production usage approaches the peak loads artificially sustained during
acceptance testing.

Reliability:

» The Convex/UniTree system must be available 95% of the total scheduled time as
well as 95% of the prime shift

¢ Nodataloss is acceptable

e Performance and reliability requirements must be measurable within a normal
production environment

Table 1a: Acceptance Requirements— Reliability

Performance (Phase 1):

« Store (put) and migrate 85 GB/day; retrieve (get) 300 GB/day from disk and tape, and
free 85 GB/day through repacking and vaulting, all operations simultancously
occurring

» Demonstrate 96 concurrent transfers of 32 MB each plus 64 "idle" sessions (doing a
lldirll or llpwd")

Sustain an average aggregate transfer rate of 9.75 MB/sec
Demonstrate a migration rate of .98 MB/sec

Table 1b: Acceptance Requirements— Performance (Phase 1)

Performance (Phase 2):

» Store and migrate 100 GB/day, retrieve 300 GB/day, and free 100 GB/day through
repacking and vaulting, all operations occurring simultaneously

* Sustain an average aggregate transfer rate of 13 MB/sec

* Demonstrate a migration rate of 1.32 MB/sec

Table Ic: Acceptance Requirements— Performance (Phase 2)

Acceptance Testing

The proposed configuration included a Convex C3800 series machine running Convex/Unitree+
1.7.5. It became clear that peripheral hardware resources required for acceptance testing
(UltraNet/HiPPI or HiPPI/TCP connections to the Cray C98, multiple robotic tape drives and
controllers) were only available in the NCCS production environment. The NCCS user
community was briefed on the need to make the UniTree production system unavailable during
acceptance testing; although they preferred 24-hour/7-days-a-week access to UniTree, they
recognized the sacrifice would result in longer-term benefits. Testing progressed more slowly than
anticipated, complicated by the critically saturated UniTree 1.5 production system and problems
discovered in then-Beta UniTree+ 1.7.5 software. Acceptance tests completed in early June,
1994, using production-released Convex/UniTree+ 1.7.6. Performance results are shown in
Tables 2 through 5.

351

Test 1 1.5 Production| Phase 1 UniTree+ Phase 2
Observed Requirements | 1.7.6 Testing | Requirements
ftp "puts" 58.3 GB/day 85.0 GB/day 1.183 MB/sec 100 GB/day
(stores) (0.691 MB/sec) | (1.007 MB/sec) (1.185 MB/sec)
migration rate 36.0 GB/day 85.0 GB/day 1.016 MB/sec 100 GB/day
(0.427 MB/sec) | (1.007 MB/sec) (1.185 MB/sec)
ftp "gets" 34.1 GB/day 300 GB/day 11.558 MB/sec 300 GB/day
(retrieves) (0.404 MB/sec) | (3.56 MB/sec) (3.56 MB/sec)
vault./repack 20 GB/day 85.0 GB/day 1.0528 MB/sec 100 GB/day
rate (0.237 MB/sec) (1.007 MB/sec) (1.185 MB/sec)
Table 2: Performance test #1
Test 2 1.5 Production Phase 1 UniTree+ Phase 2
Observed Requirements | 1.7.6 Testing | Requirements
total ftp 128 160 168
sessions
32 96 100 none
ftp transfer
sessions
96 64 68
"idle" ftp
sessions
Table 3: Performance test #2
Test 3 1.5 Production Phase 1 UniTree+ Phase 2
o Observed | Requirements | 1.7.6 Testing | Requirements
aggregate 6.5 MB/sec 9.75 MB/sec 12.7417 MB/sec 13.0 MB/sec
network (150% of (200% of
transfer observed 1.5 observed 1.5
rate baseline; test baseline;test
system must system must
include tape include tape
_activity) activity)

Table 4: Performance test #3

352

1.5 Phase 1 UniTree+ | Unilree+ Phase 2
Test 4 Production | Requirement 1.7.5 1.7.6 Requirement
Observed S Testing Testing 5
migration | 0.658 MB/sec | 0.98 MB/sec | 1.33 MB/sec | 1.016 MB/sec | 1.32 MB/sec
rate observed on a (150% of (200% of
quiet system | observed 1.5 observed 1.5
baseline) baseline)

Table 5: Performance test #4

The machine that completed acceptance was a 3-CPU Convex C3800 configured with 2 I/O bays.
The C3830 has double the memory of the C3240 and more than twice the I/O bandwidth. The
addition of the second 1/O bay increased the maximum number of channel control units (CCUs)
from 8 to 16; 12 CCUs are currently installed, including 2 enabling HiPPI/TCP connections to the
Cray C98. Figure 1 shows this storage configuration.

UniTree disk cache has increased from the initial 50 GB to 155 GB for user data. We also obtained
40 GB of disk for RAID, after experiencing disk failures that caused repeated disk process crashes
days later, during attempts to access a file with a fragment on the failed disk. Lesson: RAID has
successfully protected user files from disk hardware problems on a number of occasions, and has

proven a valuable investment we consider to be worth the reduction in space available for user
files.

NCCS robotic storage has increased to 5 STK 4400 silos with 24 transports. Eight operator-
mounted tape drives have been added for vaulting of least-recently-used files. 28 of these 32
transports have been upgraded from 18-track to 36-track. In addition, 22,000 cartridges of 3480
and 3490 tapes are being replaced by 3490E cartridges, which hold approximately 800 MB per
tape. Movement of existing files to denser media is accomplished by creative use of repacking.

353

Cray - Convex/UniTree System

StorageTek ACS
4 4410 silos
1 9310 Powderhom silo
! 24 cartridge tape drives (3490)

Convex C3830
3 CPUs, 120 MIPs per processor
2 gigabyte memory
1 exgangion I/O bay

4.5 MB/sec x 8
330 gigabytes disk (formatted)
40 MB/sec x 4 e

10 MB/sec

4 StorageTek 3490 freestanding

HiPPI/TCP cartridge drives

100 MB/sec

T

Ethernet

1 MB/sec
i,
100 MB/sec —— HiPPI switch
~ 8X8
Cray C98
6 CPUs, 1 gigaflop per processor

256 megawords central memory
512 megawords SSD

Figure I: Cray - Convex/UniTree Configuration

Conclusion

The Convex UniTree system in production use at the NCCS today has seen significant
improvements since its installation in 1992, and today meets or satisfies most of our expectations,
and most of our users' current needs. From a system that could comfortably handle only 25 GB in
transfers a day in early 1994, we now routinely handle over 100 GB/day with a high degree of
user confidence. Robotic storage capacity has increased an order of magnitude, from 2.4 to 24
terabytes, with minimal down time due to problems. We are now beta-testing a release of UniTree
with features that anticipate our future requirements. unlike 12 months prior when we anxiously

354

awaited a release that would meet our current needs. The process of reaching this current state,
however, was not without considerable problems and frustrations. From experiences gathered
during the last two years, three themes seem to dominate:

o Users' input can be a valuable resource. Their input on future requirements is essential for
planning and justifying future acquisitions and for performance requirements in acceptance
testing. Our users' feedback and cooperation during critical load times and acceptance testing
was crucial to the evolution of performance and capacity improvements on our floor today.

o Standards don't guarantee interoperability. At least four problems cited above resulted from
several vendors' different interpretations of standards. The standards/interoperability issue
also applies to the mass storage software itself. UniTree was among the first UNIX-based
mass storage systems to be ported and licensed on a wide variety of platforms. In light of
delays on bugfixes and new releases from the previous UniTree originator, and demands for
improvement from their customers, individual vendors have made significant modifications to
UniTree. Some of these modifications affect a site's ability to move their UniTree tapes and
databases to a different vendor's platform. Leveraging strength in numbers, the UniTree
Users' Group has gotten vendors and the new originator of UniTree to agree to work together
to resolve portability issues.

o Stress testing: Include high performance and low performance interfaces in stress testing, and
add tests for "gotchas" to the suite as new problems are discovered. If it's possible in your
environment, have vendors run acceptance testing with your equipment on your own floor,
because it's virtually impossible for vendors to duplicate your environment. If practical, set up
a test instance of your mass storage system and Beta/stress test new releases so that problems
are detected and resolved before the product is installed on your production system.

The NCCS's science users project the need to transfer 2 terabytes a day by 1999. Up-and-coming
high performance media, networks, and the like will achieve the rates required by our high-
performance computing users, although the lag between the introduction of new hardware and the
operating system and mass storage software's full utilization of its capabilities remains a concern.
Our current beta test of Convex UniTree+ 2.0, which better exploits hardware via its enhanced
tape resource configurability and multiple migration writes, should provide some insights on
system behavior with higher-performance peripherals. But the increased sharing of data fostered
by national and global information infrastructure efforts is already broadening the needs and the
nature of the NCCS user community. Consequently, the NCCS is investigating interim methods
to accommodate the "long haul," lower-speed needs of numerous remote users while sustaining
high levels of service to local high-performance computers, although we anticipate researchers'
and vendors' eventual development of more elegant means to handle these divergent needs.
Current NCCS study involves creative use of UniTree families, tape types, and callout scripts to
control the impact of many simultaneous remote sessions on high-demand needs of Cray
processing. Our storage system progress to date, although not without its turbulence, induces
great optimism about our future ability to meet the needs of both our lower-speed and high-
performance science users, whose research activities drive one of the most active mass storage
sites world-wide.

355

Total UniTree Terabytes

Terabytes offline

B Total terabytes

N N fjau ® @ 9 o oY ¢ o o

2 olo 9 9 Qo o ol 2 9 o0 o O

o w]Jo a = ¢l o % o]la = £ o % ©

S R|lo ©o 2 31 3 2 olo @ 3 3 2 @ AT EMS- 1695
<« O'o u <« 5« O olu <« » « O A '

upgrade to UniTree 1.7.5

[4]

upgrade to Cray Y-MP

upgrade to Cray C98/6-256 and Convex C3800 Average file size = 14.0462 MB

Figure 2: UniTree storage growth at the NCCS

356

. retrieved

stored

Weekly UniTree Traffic

o)
o o

o 0.3

sajAqel

}

- 1/6/95

ART

avg retrieved: 31.03 GB/day (averages since 10/1/94)

Avg stored: 43.63 GB/day

Figure 3: UniTree weekly network activity

357

e

N95- 24136

NSSDC Provides Network Access to Key Data via NDADS

Jeanne Behnke and Joseph King
National Space Science Data Center
NASA/GSFC/Code 633 6,)2 6-&2-
Greenbelt, Md 20771
behnke@nssdca.gsfc.nasa.gov

king@nssdca.gsfc.nasa.gov 4)? 7} 7

Ve
Abstract:

The National Space Science Data Center (NSSDC) is making a growing fraction of its most
customer-desirable data electronically accessible via both the local and wide area networks.
NSSDC is witnessing a great increase in its data dissemination owing to this network
accessibility. To provide its customers the best data accessibility, the NSSDC makes data
available from a nearline, mass storage system, the NSSDC Data Archive and
Dissemination Service (NDADS). The NDADS, the initial version was made available in
January 1992, is a customized system of hardware and software that provides users access
to the nearline data via ANONYMOUS FTP, an e-mail interface (ARMS), and a C-based
software library. In January 1992, the NDADS registered 416 requests for 1,957 files.
By December of 1994, NDADS had been populated with 800 gigabytes of electronically
accessible data and had registered 1458 requests for 20,887 files.

In this report, we describe the NDADS system, both hardware and software. Later in the
report, we discuss some of the lessons that were learned as a result of operating NDADS,
particularly in the area of ingest and dissemination.

1. Introduction

The focal point of the NDADS is the mass storage components of two Cygnet jukeboxes,
each configured with two SONY 6.5 gigabyte optical disk drives. The two jukeboxes
provide the NSSDC 1.2 terabytes of nearline optical disk storage. A VAX cluster
computer configuration drives the two jukeboxes, as well as providing network
connections to the NASA science community including NSI-DECnet, Internet and US
SprintNet. Although the numbers of data sets in the space physics and astrophysics areas
are comparable, about 90% of the NDADS data, by byte count, are astrophysics data.
These data include a mix of data currently arriving at NSSDC, plus selected data being
promoted from NSSDC's offline archives to NDADS. To date, NSSDC has focused on
loading space physics and astrophysics data to NDADS. Key space physics data sets
presently available from NDADS come from the IMP-8, ISEE-3, DE-1 and 2, Hawkeye,
Yohkoh, and Skylab missions. Key NDADS-accessible astrophysics data sets typically
include the basic observation data files and accompanying ancillary files (calibration, etc.).
The astrophysics missions with data in NDADS are IUE, ROSAT, IRAS, Ginga,
VELASB, HEAO-1 and 2, OAO-3 and the Astronomical Data Center Source Catalogs.

The NSSDC developed the NDADS to support the following requirements:
(1) the loading of data files to nearline storage and of associated metadata files to an
inventory database;
(2) user access to the (relational) inventory database;
(3) user access to and retrieval of data;
(4) data security; :

359 5:/ i
Y BLANK
PRECEDING PAGE WLANK NOT FILMED paGESD 1 INTENTIONALL

(5) user understanding of the system (through online user guides, etc.);
(6) aggregation of files according to individual project needs;
(7) capability to support additional types of mass storage devices as acquired.

Item 6 on file aggregation is a special concept, whereby related files are grouped into
predefined "granules" or "entries." Users are thereby able to request, for example, an
astrophysical observation by unique granule/entry ID, and have the system retrieve and
stage all the relevant files without the user having to specify each one. This feature makes
NDADS more than a typical "file server" system.

The NSSDC must meet several obligations as part of its mission as an archive. One of the
primary obligations is that the data must be kept safe and secure. Data integrity is an
important requirement as well. Of equal importance is our obligation to disseminate data
from the archive. For its own sake, the NSSDC must determine ways to archive the data
that are scalable and cost effective. It is important to emphasize that the NDADS is much
more than a file server, and hence the reason for the development of the specialized
software system, discussed in section 2. Functionally and operationally, NDADS can be
divided into two NSSDC activities, ingest and disseminate. In sections 3 and 4, we
discuss some of the characteristics and lessons of the ingest and disseminate functions.

2. NDADS Software System

NSSDC developed a specialized software system to manage storing and locating data on
NDADS. The NSSDC Storage System (NSS) software was prototyped in mid-1991 and
experienced a highly successful two year "experimental" public access period resulting in a
second version of the software system completed in 1993. The NSSDC required a system
that would support data stored on multiple platforms (UNIX-like) as well as the
VAX/VMS™ system platform used in the initial system. The resulting NDADS must also
support migrations from the current given hardware and software platforms and mass
storage systems. The current NSS software is written fora VAX VMS™ 6.1 platform
and uses two commercial-off-the-shelf software packages; the SYBASE relational database
management system and CYGNET Jukebox Information Management System (JIMS). It
also uses the Software for Optical Archiving and Retrieval (SOAR) for formatting the
WORM optical platters, a package that was developed at NASA and available through
COSMIC. The modular NSS software is written in C Language to provide us a measure of
portability. A client/server approach was used in the development of NSS, allowing a
client located on a system outside the NDADS facility to access the NSS server on the
NDADS host. The NSSDC also requires a direct applications interface to the NDADS
giving the staff better access and control over the system to increase data ingest throughput.
The NSS direct applications interface is available through a command line interface and C
Call routines.

Animportant feature of the NDADS is a high level of security and recovery applied to the
storing and staging of data from storage devices. The core NSS software processes the
data to be stored as part of the transaction management features of the SYBASE. The
'store' transaction is performed in a sequential, 'batch' mode, first storing the pointer to the
data on the mass storage system in the database and then actually storing the data on the
mass storage device. Since the data is 'stored' as a transaction, any failure that occurs
during the store process will trigger the operation to exit and notify the ingest team. Data
granules can be tagged as non-proprietary or proprietary, thus restricting access to certain
individual user accounts. Proprietary data is that data which has not been granted access to
the general public. A complex 'logging' mechanism has been created to track all NSS steps
and are used to monitor problems and performance.

360

The modular design of the NSSDC storage system allows device specific modules
(*fetchers") for new storage devices to be integrated into the system quickly and with
minimal impact on the rest of the code. Each fetcher module is expected to provide a
certain small set of critical services to the "master fetcher", such as mounting a volume,
copying a file onto the device, copying a file out of the device, etc. The system is designed
to enable the NSSDC to add additional storage devices transparently to the external users
without modification of the base software system. Currently, the NSSDC has fetchers for
the Cygnet-SONY WORM jukebox, online magnetic disk devices and there are plans to
include several other mass storage devices. The NSSDC recently augmented the NDADS
with a Digital Linear Tape jukebox connected to an SGI Indigo 2/IRIX workstation (1/95).
Figure 1 shows a conceptual design of the NSS system.

3. Ingest Lessons

The NSSDC expects to receive and ingest close to a terabyte of data per year beginning in
1996. To meet ingest requirements, the NSSDC has been studying ways to improve ingest
rates. The NDADS ingest process is influenced most by the fact that the nearline system
has been WORM disk-based. This fact results in many idiosyncrasies that drive NSSDC
processes, for example, the slow transfer rates of the disks, the permanence of the write
operation, and the limitation of the number of drives. The ingest process is composed of
more steps than was described in the section 2 as part of the NSS software system.
Typically, the ingest steps are:

1) assemble the data and determine data staging requirements

2) verify the data (check headers, gross bounds checking,...)

3) archive the data to nearline devices using the NSS software
Ingest is differentiated at the NSSDC by whether the dataset is current and arriving directly
(electronically) from a NASA project or if it has been a resident of the NSSDC offline
archive.

3.1 Offline Data

If the data is already in the NSSDC, it is typically one of 80,000+ 9-track 'legacy' tapes in
the archive. In most cases, the data must be converted to files before it is placed in
NDADS. Although this step requires customized software, the NSSDC reuses many
software modules for the data conversion elements. This step can be time consuming
based on the number of errors that are encountered in the dataset conversion process. Data
in the archive has several common characteristics:

. it is always an 'old' dataset, often with limited documentation

. a dataset is typically all on the same media and has a finite size

. responsibility for the dataset is completely the NSSDC's

. it is difficult to predict how popular the dataset will be for electronic
dissemination

. requires a high degree of human interaction to move the data into the archive

In the case of offline data, the NSSDC uses techniques learned from previous data
restoration tasks. Itis important to:
1) peer review these legacy datasets before selecting them for placement in the
NDADS
2) vigilantly maintain a schedule for transferring the data to NDADS
3) select datasets that have good documentation to support the dataset
4) pre-determine the amount of verification required for storing the datasets

361

IV9ABNTD Nﬂb WIOM JeublD AJOJUBAUT SATUOIE 0T
—— —— seTTd SSTAEL ASVEAS
= ooTIeInbTIuoD
—]
C = > v
< - >

L | 4 N

[N\ /

Io <) 2o
nquw uwﬁwmu Ioyo3ey < > z06RUCH uwmwwmw - TTT30f
AS8TPOEH | xoqeynp sdAjejeq 1o0efoxdg dSVEAS

Juswsbeurur eled

‘/ eneD ontm
/ - MIOLSA \

e3ep pesx

- FOVLSA

JusweHeuew vlepeIlIoN

—

Figure 1

——] ubTtseq axemijzos
I8ATOS IS4 (savaN) sotaxeg
3TY TOOL uoTiwoTTdd AHO.MU.B._...HUQ.MQ
pPu® SATUOIVY Bled DASSN
we8As

880TAISS wo3sks (SWYV) swe3lsks

WQ‘QQMA °u3 jouxsjur| |°90®IFIS9]UI 8OT8AYd e3ed TeasTI3oy

utsn /MMM | |®oedg ®AT3dRISqUI so18igdoxss 1TeN peilewojny

gooeJIoquUI I88]

362

5) pre-determine the amount of error correction required before the data is stored
The NSSDC must consider the 'setup' time associated with the above steps as well as the
time spent preparing custom programs for reformatting tape data and data verification. We
have discovered that a significant portion of manpower resources can be absorbed in these
steps.

The NSSDC has reviewed different scenarios involved in ingesting different types of tape-
based data to NDADS. Principally, 4mm, 8mm and 9 track offline tapes have been studied
to determine the length of time involved in ingest. On the VAX cluster, our evaluation
shows that 4mm and 8mm tapes are slower to physically ingest then the 9-track tapes.
However, the set-up time for 9-track tapes is almost 4 times longer than that of 8mm and
4mm tape. The shorter set-up time is in partly due to the fact that the data on the 4mm and
8mm's is newer data and in some type of standardized format. The use of standards such
as FITS, CDF, and SFDU simplifies the data verification phase as well as accelerates the
step of converting to disk files.

3.2 Electronically Delivered Data

The NSSDC has been receiving newer datasets via the network. In these cases, the
projects are still actively collecting data and transfer a processed dataset on a regular basis
into NSSDC disks. If the dataset is delivered electronically, the NSSDC typically is only
required to do basic checks of the data and then copy the data into the nearline system.
Several characteristics make these datasets both easier for the NSSDC to work with and
more difficult to control, for example:

. the NSSDC can review and affect formats of the data prior to their delivery

. both the NSSDC and the project share responsibility for the data

. easier to predict the popularity of a dataset and its eventual electronic
retrieval

. software can be written to completely automate the ingest process, requiring
little human intervention

. difficult to predict the quantity of data that will be delivered to the

receiving/staging disk, thereby making it difficult to cost effectively
determine the size of the disk

As part of the delivery function, the NSSDC contracts with each project a formal
arrangement of delivering a list of what was transferred. These transfer lists are commonly
referred to as Bills of Lading (or BOLs). In 1992, the NSSDC devised a BOL format that
has served as a model for data delivered by other projects. The use of BOLs simplifies the
NSSDC's the ability to cross check data delivered electronically by use of routine code.
This permits us more accuracy and faster ingest into the nearline system.

The NSSDC does rudimentary verification and validation of the datasets before they are
committed to the nearline system. Verification software is written in several programming
languages, usually reusing existing code and often supplied by the data provider. The
minimum set of tests is applied to newer datasets; i.e. check the filenames and header
information, etc... The NSSDC will be working on ways to automate this aspect of data
ingestion during this fiscal year. It is becoming increasingly clear that electronically
delivered data must be spot checked rather than systematically checked given the large
quantities received and the turnover rate from disk to nearline. It is difficult to find the
CPU cycles to review all data received electronically.

The NSSDC staff has experimented with several different ways to schedule ingest and it
remains are most difficult problem. Problems are routinely encountered in receiving

363

electronically delivered datasets, either due to system problems for both the project and the
NDADS or due to network transfer delays. The data flow problem is compounded by
difficulties in scheduling frce staging disk space. Electronically delivered data tends to vary
in size delivery-to-delivery. To alleviate these problems, it is important to get as much
information on delivery plans from the project and to maintain close communications. The
NDADS ingest staging space is planned to have available three times the maximum size of a
delivery, this allows for potential hardware delays and unforeseen difficulties on NDADS.
Along with scheduling of the ingest staging disks, we have in the past tried to manually
map out the use of the optical drives to least impact the users who are retrieving data. This
way we could insure that all of the drives in a single jukebox were not committed to ingest,
thereby prohibiting access to the data for retrieval. This past year, we have developed
selected batch queues controlled by the operating system to eliminate the manual
intervention. This has improved our ingest throughput without affecting retrieval rates.

Many of the processes used to move the data through ingest pipeline are manually executed
and monitored. An ingest team member will manually start one of the steps and monitor to
completion. Following successful completion, another job is started and in some cases the
jobs are performed in the batch queue. In our evaluation, manual pipeline processing
nominally requires at least 4 hours per dataset. By eliminating manual pipeline processing
for several electronically delivered datasets, we have increased the ingest throughput
without affecting the quality of the load. The steps used for automated ingest of the data
are often similar from project to project. The NSSDC is collecting these common steps into
a generic ingest software system that can be customized with appropriate configuration files
and used on any new dataset to be ingested into NDADS. Because of these measures, the
NSSDC shows an increase in ingest rates in 1994, see Table 1.

1994 INGEST RATE IN GB

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

9.6 10.2 3.5 182 44 153 213 352 11.5 172 324 85

TABLE 1.

4. Disseminate Lessons

The NSSDC is committed to providing its users, both in-house and outside community,
four ways to access the NDADS archive:

1) viacommand line interface

2) via C callable routines

3) via FTP service

4) viaan E-mail interface
The first two methods are used principally in-house to directly manipulate the nearline
mass-storage systems for better management of ingest and disseminate functions on the
NSSDC's behalf. Methods 3 and 4 are provided principally for the outside community.
The NSSDC Automated Retrieval Mail System (ARMS) provides an E-mail interface to the
NDADS archive. Users send an E-mail request to the account
archives@nssdca.gsfc.nasa.gov. Within the message, users specify the need for
information or data files by adhering to a fixed protocol for the content of the E-mail SUBJ
line and, for data requests, by specifying granule ids in the body of the E-mail message.
The ARMS Users Manual, detailing the protocols, may be obtained by specifying
MANUAL as the subject of the message and leaving the message body blank. The E-mail
system is very popular and has supported the distribution of over 260 GBytes of NDADS

364

data. In 1995, we will be working on providing a more fault-tolerant and modular ARMS
system to our customer community.

The E-mail system has to its advantage a simplistic interface, but it also requires users to
understand the NDADS granule-naming conventions and the granule-file hierarchy.
Because of this requirement the NSSDC developed an FTP server to NDADS that makes
the full NDADS archive appear to users as a massive FTP-accessible disk farm. The FTP
interface allows the NSSDC more versatility in connecting to client/server based user
interfaces. One advantage of the FTP service is that NDADS files now have Uniform
Resource Locators (URLs). The FTP service incorporates well into World Wide Web
pages developed at the NSSDC by space physics and astrophysics disciplines. These Web
pages allow retrieval of NDADS data without specifically knowing granule names.

§. Conclusion

The NDADS has been developed to serve the specific needs of the NASA science
community. It combines specialized hardware with customized software to signif icantly
enhance the power of the NSSDC scientific database system. The success of this facility
can be measured in several ways: the number of requests for data, the turnaround time,
capacity, and convenience to the community. Available 24 hours a day every day, NDADS
currently satisfies in excess of 1000 requests per month in an average of less than ten
minutes. The NDADS service represents three-quarters of all NSSDC data requests.
NSSDC believes its NDADS nearline data management environment is evolvable to exploit
future changes in both hardware and software. By providing a well-constructed and secure
infra-structure, NSSDC will be able to meet the future requirements of managing terabytes
of data, cooperatively supporting NASA missions and supporting user interfaces that
rapidly change to best meet the needs of scientists and others on the information
superhighway.

In the future, the NSSDC expects to need additional storage devices to support the growing
archive. The inclusion of the data and storage devices in use at the HEASARC, Compton-
Gamma Ray Observatory and other related archives will be of primary importance to the
NSSDC as well as intriguing in its possibilities of resource sharing across organizations.
Careful planning and consideration will be required to phase-in the future computing
requirements of the data center and not disrupt existing capabilities. The NSSDC will also
consider improved access to the NSSDC data through Wide Area Information Service
(WAIS), World Wide Web (WWW) and related network-based services as well as
software application systems used in-house.

365

(} —_ —
N95- 24137
Analysis of the Request Patterns to the NSSDC On-line Archive' y
B4 73

Theodore Johnson

ted@cis.ufl.edu {
P/

Code 630 Dept. of CIS
NASA Goddard Space Flight Center University of Florida
Greenbelt MD 20771 Gainesville, Fl 32611-2024
Abstract

NASA missions, both for earth science and for space science, collect huge amounts
of data, and the rate at which data is being gathered is increasing. For example, the
EOSDIS project is expected to collect petabytes per year. In addition, these archives
are being made available to remote users over the Internet. The ability to manage the
growth of the size and request activity of scientific archives depends on an understanding
of the of the access patterns of scientific users.

The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight
Center has run their on-line mass storage archive of space data, the National Data
Archive and Distribution Service (NDADS), since November 1991. A large world-wide
space research community makes use of NSSDC, requesting more than 20,000 files per
month. Since the initiation of their service, they have maintained log files which record
all accesses the archive.

In this report, we present an analysis of the NDADS log files. We analyze the log
files, and discuss several issues, including caching, reference patterns, clustering, and
system loading.

1 Introduction

On-line scientific archives are an increasingly important tool for performing data-intensive
research. Building a large-scale archive is an expensive proposition, however, and system
resources need to be carefully managed. To date, there has been little published research
that studies the performance of on-line scientific archives.

The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight Cen-
ter has run their on-line mass storage archive of space data, the National Data Archive and
Distribution Service (NDADS), since November 1991. A large world-wide space research
community makes use of NSSDC, requesting more than 350,000 files in 1994. Since the
initiation of their service, they have maintained log files which record all accesses to the
archive.

In this paper, we present an analysis of access patterns to the NDADS. These analyses
are based on the information contained in the log files. We discuss several aspects of sys-
tem performance, including the performance of several caching algorithms on the recorded
request stream, and the effectiveness of the data clustering used by NDADS. We show that
the request for a file are bursty, and that user requests are bursty. Finally, we present an
analysis of the system load.

Several studies on the reference patterns to mass storage systems have been published.
Smith [12] analyzes file migration patterns in hierarchical storage management system.
This analysis was used to design several HSM caching algorithms [13]. Lawrie, Randal, and
Burton [7] compare the performance of several file caching algorithms. Miller and Katz

! This work was performed while Theodore Johnson was an ASEE Summer Faculty Fellow at GSFC. This
research is partially supported by grant from NASA through USRA, #5555-19

367
PRECZDING PAGE BLANK NOT FILMED PA&Q&L(/-WWWY BLANK

have made two studies on the I/O pattern of supercomputer applications. In [9], they find
that much of the I/O activity in a supercomputer system is due to checkpointing, and thus
is very bursty. They make the observation that much of the data that is written is never
subsequently read, or is only read once. In [10], they analyze file migration activity. They
find a bursty reference pattern, both in system load and in references to a file. Additional
studies have been made by Jensen and Reed [5], Strange [14], Arnold and Nelson [1], Ewing
and Peskin [3], Henderson and Poston [4], Tarshish and Salmon [15], and by Thanhardt and
Harano [16]. However, all of these studies apply to supercomputer environments, which can
be expected to have access patterns different from those of a scientific archive.

1.1 Log Files

The National Space Science Data Center is the primary archive for all space data collected
by NASA. The NSSDC distributes its data using a variety of methods and media. For
example, one can request photographs, CD-ROMs and tapes from the NSSDC. Manually
filling orders for data is labor intensive and hence expensive. In addition, service is slow. To
reduce data distribution costs and to improve service to the user community, the NSSDC
created the National Data Archive and Distribution Service to store electronic images and
data, and serve the data electronically. -

The archive consists of a two jukeboxes storing WORM magneto-optic disks, one with
a capacity of 334 GB, the other with a capacity of 858 GB. A user submits a request by
naming a project, and the files of the project. Request submission is most often done by
email, but can also be done using a program on the host computer, and through a new
World Wide Web service. NDADS will fetch the requested files from nearline storage, place
the requested files on magnetic disk, then notify the user that the files are available for
transfer via ftp (alternatively, the files can be ftp'ed automatically). More information
about NDADS can be found by sending an email message to archives@nssdc.gsfc.nasa.gov
with a subject line of “help”.

A user specifies the files of interest by naming them explicitly. In general, specifying files
by predicate matching is not possible (although this capability is being developed).

NDADS is an evolving system, and log file collection is part of the evolution. Version
1 logs were recorded between November, 1991 and December, 1993. These logs record the
files requested, the start and stop times of request service, and the name of the requester.
Unfortunately, these log files do not include the file sizes or the name of the media from
which the file was fetched. These log files were intended to aid in monitoring and debugging
the system, not for performance modeling. Many of the deficiencies of the version 1 logs
were fixed in version 2. The version 2.1 and 2.2 logs were collected between January, 1994
to mid-July, 1994. These logs include file size and media name information, permitting a
much more detailed analysis. Version 2.3 logs start in mid-July, 1994 and are still being
collected at the time of this writing (January 1995). These logs include information about
ingest as well as request activity.

2 Caching

When a user requests a file, the file is fetched from tertiary storage into secondary storage
and made available to the requester. The file typically has a minimum residency requirement
(three days in NDADS) to give the requester time to access the file. The archive systems
needs to have enough disk storage to satisfy the minimum residency requirement.

368
Cc-5

While the file is disk-resident, a second request for the file can be satisfied without fetching
the file from tertiary storage. These cache hits can reduce the load on the tertiary storage
system, and also improve response times.

A large body of caching literature exists when all cached objects are of the same size.
The Least Recently Used (LRU) replacement algorithm is widely recognized as having good
performance in practice, although statistical algorithms with better performance have been
proposed recently [6, 11].

Caching objects of widely varying sizes is somewhat more complicated, and has not
received the same amount of attention. If one wants to minimize the number of cache
misses, then it is much better to choose large files than small files for replacement, because
removing large files frees up more space. The optimal replacement algorithm for variable
size objects, with respect to cache misses, is the GOPT algorithm [2]: Let F be the set of
cached files, and for file f € F, let Ny be the time until the next reference to f and let Sy
be the size of f. Choose for replacement the f € F whose product Nz * Sy is the largest.

The GOPT algorithm cannot be implemented (because it requires knowledge of future
events), but it can be approximated. The Space-Time Working Set (STWS) algorithm [13]
approximates GOPT be substituting Py, the time since the last reference to f, for Ny.

While STWS can be implemented, it also requires a great deal of computation. For this
reason, STWS is often approximated by what we call the STbin algorithm [8]: A file is put
into a bin based on its size. The files in a bin are sorted in a list using LRU. To choose a
file for replacement, look at the file at the tail of each bin and compute its P; xSy product.
Choose for replacement the file with the largest space-time product.

In our caching analysis, we use the LRU, STWS, and STbin algorithms. We assume a
disk block size of 1024 bytes, and set a limit on the number of disk blocks that are available
for caching. We trigger replacement when fetching a new file will cause the space limit to
be exceeded, and we remove files until the space limit will not be exceeded. For the STbin
algorithm, bin i holds files that use between 2' and 2'*! — 1 blocks.

We execute the caching algorithms on traces generated from the 1994 log files (which
have size information attached). We divide the logs into three month periods, to make the
logs large enough to capture the steady-state hit rates, but also indicate changes in the
access patterns.

The hit rate information is summarized in Table 1. The STWS and STbin algorithms
have much better performance than the LRU algorithm. The STbin algorithm usually
has performance comparable to that to the STWS algorithm, and sometimes has better
performance. One surprising result is the high hit rate (up to 50%) that is possible with a
moderate sized (5 Gb) cache. Given the nature of the archived data, hit rates were expected
to be much lower.]

When a file is fetched from tertiary storage, it remains on magnetic disk for at least three
days. For a comparison, we present the disk storage requirements and the hit rates if an
3-day residency is observed, in Table 2. As the table shows, considerable more than 5 Gb
of disk storage is required to satisfy the minimum residency requirement.

The resources required to fetch a file depend on the size of the file. For this reason,
STWS is suboptimal is practice. Most vendors allow the user to tune the caching algorithm
to reduce the penalty paid by very large files. A common technique is to assign to each
file a weight computed as Py * S"} for a constant ¢ < 1. In Table 3, we list the number
of bytes transferred by each of the caching algorithms. LRU generally transfers the fewest
bytes, closely followed by STWS. In these log files, STbin requires the transfer of many
bytes (STWS transfers fewer bytes than STbin because it has a lower miss rate).

369

AW

Disk Blocks Hit Rate Hit Rate
(1k bytes) || LRU | STWS | STbin LRU | STWS | STbin
January, 1994 - March 1994 April, 1994 - June 1994
1048576 .144 234 .195 155 235 .189
2097152 .243 314 .267 202 313 194
3145728 .288 341 337 272 362 286
4194304 .309 .355 .349 .292 423 448
5242880 320 .364 .360 .304 471 500
July, 1994 - September 1994 | October, 1994 - December 1994
1048576 173 270 205 127 215 .198
2097152 .248 .308 .259 155 .243 222
3145728 271 .328 309 181 .266 245
[4194304 || .302 | .340 .340 219 | .291 256
5242880 327 .366 377 .252 311 287

Table 1: Hit rates for different cache replacement algorithms.

1/94 - 3/94 4/94-6/94 7/94- 9/94

10/94 - 12/94

hit rate

175

183

193 129

“Storage

7.2 Gb

8.

4 Gb

14.0 Gb 11.0 Gb

Table 2: Disk storage and hit rates for 3-day residency.

Hit Rate Hit Rate
Disk Blocks | LRU | STWS | STbin | LRU | STWS| SThin |
— i January, 1994 - March 1994 April, 1994 - June 1994
1048576 |/ 35.0 Gb | 34.9 36.7 43.2 [434 44.8
2097152 30.1 32.1 34.9 41.2 | 411 44.6
3145728 29.1 30.8 31.8 39.1 | 39.6 42.6
4194304 28.4 208 | 30.7 38.0 | 38.1 38.8
5242880 27.8 29.1 29.9 372 | 36.6 36.6
July, 1994 - September 1994 | October, 1994 - December 1994
1048576 56.7 57.7 61.0 35.4 | 35.9 37.3
2097152 52.7 55.1 59.6 327 | 3438 36.2
3145728 50.1 53.3 57.9 31.7 | 335 35.2
4194304 47.4 52.2 55.8 290.2 | 31.6 34.3
5242880 || 46.3 | 50.0 527 || 283 | 29.8 32.1

Table 3: Disk blocks moved for different cache replacement algorithms.

370

Jan. - March April - June July - Sept. Oct. - Dec.
Year | total unique | total unique | total wunique | total unique
1992 | 12806 73% | 28899 61% 41296 67% | 53253 65%
1993 | 47046 66 31513 69 49058 65 26106 61
1994 | 77415 62 92325 45 113594 55 74606 67

Table 4: Total and unique references (in percentage) to NDADS.

2.1 File Access Pattern Analysis

The success of caching depends on the access patterns. In this section we examine some
aspects of the access patterns.

The number of possible cache hits depends on the number of duplicate references in
the reference stream. In Table 4, we show the number of references and the number of
unique references by three month period. The 1994 data shows that the STWS and STbin
algorithm are getting close to the best possible hit rates.

The effectiveness of caching also depends on the average time between references to a
file (the inter-reference time). In Figure 1, we plot the distribution of inter-reference times
during 1994. To generate this plot, we scanned through all file accesses and searched for
repeat accesses. Whenever a repeated reference was found, we incremented a histogram
based on the number of days since the last reference. The plot shows that most repeat
references occur shortly after an initial access, but that the inter-reference time distribution
has a long tail. The average number of days between an access to a file, given that the file
is accessed at least twice in 1994, is 27.5 days. There is a sharp peak at 3 days that does
not fit well with the curve. We speculate that this is a side effect of the three-day residence
period (users re-submit their request when they find that the files have been removed from
disk storage area).

The effectiveness of STWS also depends on the distribution of file sizes. In Figure 2, we
plot the distribution of sizes of the files accessed in 1994. The average size of a file accessed
in 1994 is 560 Kbytes. Because of the wide range of sizes, we created the histogram by
binning on the base two logarithm of the file size. Most of the files accessed in this archive
are between 128 Kbytes and 1Mbyte in size. Few files larger than 2 Mbytes are accessed,
but this number does not go to zero. Figure 3 shows the file access rate weighted by the
file size. When we examine the number of bytes moved, files larger than 2 Mbytes account
for a significant fraction of the system activity.

Finally, we look at the rate at which files of different sizes are re-accessed. In Figure 4,
we plot the percentage of file accesses which are repeat accesses, binned on file size. This
plot shows that small files (except for the very smallest) have a low re-access rate, and
that the very large files have a high re-access rate. If the cost of transferring large files is
significant, then STWS is a distinctly suboptimal caching policy. Because STWS strongly
discriminates against very large files, it will often incur the cost of their transfer.

3 User Access Analysis

A model of request to the archive depends on the users of the system. In the accumulated
log files, we have notices that the user population is growing. We first note that the user

371

File intfer-reference time

frequency
0.2

D15

O

005 -

0O 5§ 10 15 20 25 30 35 40 45 80 55 60+

O " reererinryrat T L]

days between access

Figure 1: Distribution of file inter-reference times.

Number of accesses vs. file size

frequency

0.3

01234567 89101112131415161718 19+
Log file slze (in kilobytes)

Figure 2: Distribution of file sizes.

372

Blocks accessed vs. file size

frequency
0.35

0.3 +

0.25 4

0.2 1

0.15 4

0.1

0.05

01234567 89101112131415161718 19+
Log file size (In kilobytes)

Figure 3: Distribution of file sizes, weighted by number of blocks.

Probability of re-access vs. file size

frequency
1

08 _lmaw oo I

oo ... | PR

csMEBEE -

0.2

0 1
01234567 89101112131415161718 19+

Log file size (in kilobytes)

Figure 4: Probability of re-referenceing a file, by file size.

373

Number of users
vear | Jan. - March April - June July - Sept. Oct. - Dec.

1992 153 185 230 300
1993 430 552 677 607
1994 678 689 692 670

Table 5: Growth in the user population.

Number of requests per user in a month

frequency
0.5

0.4 B . e

0.3 I ..

0.2 4 - e

0.1 4 . L e .
0 _——!J

1 2 3 4 5 & 7 8 9+
Number of user requests

Figure 5: Requests per user.

population is growing, as is indicated by Table 5.

Most users make only a few requests to the archive. Figure 5 plots a histogram of the
percentage of users that make different numbers of requests to the archive in a single month.
This plot also shows that there is a moderate size core of users who make make requests.
The top ten heaviest users make an average of 30 to 50 requests per month.

Finally, we plot the time between requests from a user in Figure 6. This plot shows that
user activity is very bursty, as more than 80% of repeat requests occur within 3 days of the
previous request.

We found that a large fraction of repeat requests for a file are due to the user that
previously requested the file. The fraction of repeat request due to the same user is plotted
in Figure 7, binned on the number of days since the last reference.

4 Clustering

The efficiency of a tertiary storage system depends in large part on how well the data in
the archive is clustered with respect to the average request. The throughput of a drive in
the tertiary storage device is zero while new platters are being loaded, or while the drive is
seeking the file on the media. If the files of a single request are scattered throughout many
media, and at widely varying locations in the media, the throughput of the tertiary storage
device will be much lower than its potential.

The NDADS system is built over WORM storage, which has short seek times. Therefore,

374

Days between requests from a user

frequency

llllllIIIIIIIIIHIIIIIIIlI!IIIIIHIllIHlIIIIIIIIIIII!

0 & 10 15 20 25 30 35 40 45 50 55 60+
days between requests

Figure 6: Time between repeat requests from a user.

Probability that a re-access is
due to the original requester

frequency

i; , ‘L .
i)
S i ll

|1|'~l rluu
5 10 15 20 25 30 35 40 45 50 55 60+
days since last access

Figure 7: Fraction of repeat accesses from the original user.

375

35 T T T ¥ ¥
o
30 - B
o
25 © o .
o o
] o
] o
% 20} E
a
° ® oo
g | o
€ 15[o -
g o o [
1= L el
a Q q
= T TE B o o ® o
1 F 1 1 i L 1
0 200 400 600 800 1000 1200 1400 1600 1800

number of files

Figure 8: Scatter plot of platters per request vs. files per request. The data is was collected
between July and September 1994.

the most expensive overhead occurs when a new platter has to be loaded to fetch a file.
Also, the 1994 log files contain the platter on which each file is stored, but not the tracks
on the platter.

Files in NDADS are divided into projects (i.e., the satellite that generated the images
contained in the file). An optical platter contains files for only one project, (but a project
may be spread over many platters) to simplify the management of the platters. This policy
actually aids in clustering, because all files in a request must be from the same project.
If a project generates enough data to require several platters, the files are assigned to the
platters in a way that is hoped to reduce the number of platters that must be accessed to
satlisfy a typical access. This method of placement depends on the project and the expected
type of access.

For every user request, we collected the number of files requested and the number of
platters needed to satisfy the request. We found that the NDADS clustering of files onto
platters is effective, as the average request asks for about 27 files, spread across about 2
platters. The number of platters required to satisfy a request is not correlated with the
number of files in the request. This property is illustrated in Figure 8, which is a scatter plot
of the number of platters to satisfy a request versus the number of files in the request. The
data in this plot is taken from the period July 1994 to September 1994, but is typical of the
total data. Most of the points in the plot are close to either the X or Y axis. The shape of
the plot indicates that the clustering is appropriate for most requests, but a small fraction
of the requests require a completely different clustering pattern (as is to be expected).

We also noted that some platters are accessed much more frequently than others. In
Figure 9, we plot the number of platters that have different numbers of references. The
plot shows that many of the platters receive only a few references, but that the distribution
has a long tail. Eighty four of the platters are very hot, serving more than 500 files during
1994. The hottest platter served 112646 files.

376

Requests to a platter

number of platters

100

80

60

40

20

10 50 100 150 200 250 300 350 400 450 500+
Number of requests

Figure 9: Number of platters receiving different numbers of references.

5 System load

We computed the system load by summing up the number of seconds required to service all
request submitted during a period of time, then dividing by the number of seconds of the
observed period. We plot the system load per month for 1993, 1993, and 1994 in Figure 10.
While the month to month load shows great variability, the load per month does not follow
a pattern that is strongly adhered to in all three years of the observation. However, we can
note that there is a usage peak in March-April, another in July-August, and low demand
in January.

We next plot the system load per day of the week in Figure 11. Here, we can find a
strong trend, that people tend to submit requests on weekdays instead of weekends.

Finally, we plot the system load per hour of the day. We again see that people tend to
submit requests during normal working hours. The strong peak in load during (Greenbelt)
working hours also indicated that most users of NDADS work in the western hemisphere.
We note that a survey of the email addresses of user requests shows international use of
NDADS.

We have also recorded the system load due to ingest. Ingest contributes about .16 to the
system load, and shows a pattern that varies in time that is similar to that of file requests.

6 Conclusions

We have studied the access characteristics of the access requests to the National Data
Archive and Distribution Service (NDADS) of the National Space Science Data Center
(NSSDC), of NASA’s Goddard Space Flight Center. Much of NASA’s electronic science
data is available on through the NDADS archive. The log files present an opportunity to
understand the access patters of requests to scientific archives.

377

System load by month

fraction of time busy

- 1992
+1993
* 1994

Figure 10: Average load per month. 1 is January and 12 is December.

System load by day

fraction of time busy
0.25

0.2

0.15 - 1992

+ 1993

0.1 4 * 1994

O] 1 1 T 1
1 2 3 4 5 6 7

day of the week

Figure 1. Average load per day of the week. 1is Sunday and 7 is Saturday.

378

System load by hour

fraction of time busy

0.4

- 1992
+ 1993
* 1994

T T T 1 T 7 T T 1 T 1 1 T°7 T i t

T
0 6 9 12 15 18 21 23
hour of the day

Figure 12: Average load per hour of the day.

We can make the following observations about the user request pattern:

e Caching can be effective. 59:4% of all files requested in 1994 had been requested
previously in 1994. High hit rates (30% to 50%) can be achieved by using a space-
time working set algorithm.

— Many of the repeat requests are due to the same user. The high proportion of
short-term repeat requests from the same user indicates some users are uncertain
of whether their request was received. The high proportion of long-term repeat
request from the same user indicates that NDADS is being used as a substitute
for local storage.

— While very large files constitute a small proportion of the total number of re-
quests, they constitute a moderately large proportion of all bytes fetched from
tertiary storage. Very large files tend to have a high repeat access rate. These
two facts indicate that a caching algorithm should not discriminate too strongly
against large files.

— Access to a file is bursty. A large proportion of repeat accesses occur within 4
days of the previous access. The distribution of the time to the next access also
has a long tail. These two facts suggest that a model of file access rates should
have steady-state component and a bursty component triggered by an access.

e User request patterns tend to be very bursty. This fact combined with the high
proportion of repeat requests that are due to the same user explains some of the
bursty nature of file accesses.

o Access to NDADS tends to follow normal working hours. There is an increase of
activity preceding important scientific events.

379

e The user community grew rapidly during the first year of operation, then grew at a
slower pace during 1993 and 1994. The intensity of use by each user grew from 1993
to 1994.

e File access shows a great deal of clustering.

— Most requests are satisfied by a few one or two platters. There is little correlation
between the number of files requested and the number of platters required to
service the request.

— Clustering is important for performance. Although the average system utilization
is low, the system load increases significantly during working hours and during
certain months. If the time required to service a request doubled, NDADS would
have difficulty in meeting peak demand.

— Some data volumes are much more popular than others. During 1994, there were
84 very hot platters (i.e., served more than 500 files) and 28 very cold platters
(i.e., served 1-10 files).

Acknowledgements

We’d like to thank Jeanne Behnke, Joe King, and Michael Van Steenberg for their help
with this project.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

E.R. Arnold and M.E. Nelson. Automatic Unix backup in a mass storage environment.
In Useniz - Winter 1988, pages 131-136, 1988.

P.J. Denning and D.R. Sluts. Generalized working sets for segment reference strings.
Communications of the ACM, 21(9):750-759, 1978.

C.W. Ewing and A.M. Peskin. The masstor mass storage product at brookhaven
national laboratory. Computer, pages 57-66, 1982.

R.L. Henderson and A. Poston. MSS II and RASH: A mainframe unix based mass
storage system with a rapid access storage heirarch file mamangement system. In
USENIX - Winter 1989, pages 65-84, 1989.

D.W. Jensen and D.A. Reed. File archive activity in a supercomputing environment.
Technical Report UTUCDCS-R-91-1672, University of Illinois at Urbana-Chanpaign,
1991.

T. Johnson and D. Shasha. 2Q: a low overhead high performance buffer management
replacement algorithm. In Proc. of the 20th Int’l Conf. on Very Large Databases, pages
439-450, 1994.

D.H. Lawrie, J.M. Randal, and R.R. Barton. Experiments with automatic file migra-
tion. Computer, pages 45-55, 1982.

E. Miller, 1994. Provate communication. Thanks also to comp.arch.storage.

380

[9]

[10]

(11]

[16]

E.L. Miller and R.H. Katz. Analyzing the i/o behavior of supercomputing applications.
In Supercomputing 91, pages 557-577, 1991.

E.L. Miller and R.H. Katz. An analysis of file migration in a unix supercomputing
environment. In USENIX - Winter 1988, 1993.

E.J. O'Neil, P.E. O'Neil, and G. Weikum. The lru-k page replacement algorithm
for database disk buffering. In Proceedings of the 1993 ACM Sigmod International
Conference on Management of Data, pages 297-306, 1993.

A.J. Smith. Analysis of long-term reference patterns for application to file migration
algorithms. IEEE Trans. on Software Engineering, SE-7(4):403-417, 1981.

A.J. Smith. Long term file migration: Development and evaluation of algorithms.
Communications of the ACM, 24(8):521-532, 1981.

S. Strange. Analysis of long-term unix file access patterns for application to automatic
file migration strategies. Technical Report UCB/CSD 92/700, University of California,
Berkeley, 1992,

A. Tarshish and E. Salmon. The growth of the UniTree mass storage system at the
NASA Center for the Computational Sciences. In Third NASA Goddard Conf. on Mass
Storage Systems and Technologies, pages 179-185, 1993.

E. Thanhardt and G. Harano. File migration in the ncar mass storage system. In Mass
Storage Systems Symposium, pages 114-121, 1988.

381

N95- 24138

Evaluating the Effect of Online Data,
Compression on the Disk Cache of a Mass

Storage System

Odysseas I. Pentakalos! and Yelena Yesha?
Computer Science Department
University of Maryland Baltimore County
Baltimore, Maryland 21228
and

5}0-—52—
Y2y7y

A0

Center of Excellence in Space Data and Information Sciences
Goddard Space Flight Center
Greenbelt, Maryland 20771

APPENDIX

A trace driven simulation of the disk cache of a
mass storage system was used to evaluate the ef-
fect of an online compression algorithm on various
performance measures. Traces from the system at
NASA’s Center for Computational Sciences were
used to run the simulation and disk cache hit ra-
tios, number of files and bytes migrating to ter-
tiary storage were measured. The measurements
were performed for both an LRU and a size based
migration algorithm. In addition to seeing the ef-
fect of online data compression on the disk cache
performance measure, the simulation provided in-
sight into the characteristics of the interactive ref-
erences, suggesting that hint based prefetching al-
gorithms are the only alternative for any future
improvements to the disk cache hit ratio.

I. Introduction

Mass storage systems are used in research envi-
ronments for storing data generated by scientific
simulations and satellite observations in amounts
on the order of terabytes. The cost of storage de-
vices of that capacity is still very high while the
rate of increase in disk space requirements by the
users grows continuously. This problem is espe-
cially evident in scientific research centers where
enormous amounts of data are generated on a daily
basis which must be archived so that they can be
analyzed at a later time [1], [2].

In this study the actual system under consider-

YEmail: odysseas@cs.umbc.edu
2Email: yeyesha@cs.umbc.edu

PRECEDING PAGE BLANK NOT FILMED

383

ation is the Unitree Mass Storage System (UMSS)
used at NASA’s Center for Computational Sci-
ences (NCCS). The system administrators are ex-
periencing a situation where they constantly need
to purchase additional storage devices which are
filled to capacity in a decreasing amount of time.
The main resource whose utilization must be op-
timized in this case is storage capacity. Re-
moving the redundancy in the data stored in
the file system, by inserting an online compres-
sion/decompression module, is one method of in-
creasing the effective capacity of the system with-
out the addition of expensive hardware devices.

After considering various alternative locations in
the system at which the compression algorithm
could be placed we determined that the user in-
terface would be the best choice. Some of the ad-
vantages of placing compression at the user inter-
face are: a) does not impose an additional load on
the storage servers CPU, b) reduces the amount of
data that flows through the network, and c) does
not require modifications to the Unitree code.

To evaluate the performance of compression on
the specific data stored at NCCS, the ftp clients
were modified to implement Ziv-Lempel and LZW
compression transparently [3], [4], [5]. Sequential
and pipelined implementations were tested against
two sets of files and the performance of each im-
plementation was compared based on file compres-
sion ratio and compression rate. An earlier paper
describes the implementations and the results in

detail [6].

Pﬁﬁi?:tmunmv BLANK

In this study we examine the effect of compres-
sion on the disk cache of the mass storage sys-
tem. A simulation is used to determine the effect
of compressing data on the hit-ratio of the disk
cache, the number of migrations of files from the
disk cache to robotic storage, and the total number
of bytes migrating to robotic storage. We also look
at two different migration algorithms and their ef-
fect on the hit ratio and the file migrations.

Section two gives a description of the system
under consideration and reviews terminology that
will be used throughout the rest of the paper. Sec-
tion three describes the simulation used in this
study. Section four describes the simulations per-
formed and analyzes the results. Section five con-
cludes the paper and discusses future work.

II. System Overview

The UMSS is a hierarchical mass storage man-
agement system which runs as a centralized ap-
plication program on top of the Unix operating
system and manages a hierarchical mass storage
file system. The specific installation offers three
levels in the storage hierarchy. Figure 1 shows the
typical storage pyramid provided by most hierar-
chical mass storage systems. At the higher level
it provides a disk array, with a total capacity of
150 GBs, which serves mainly as a cache for the
lower levels. The second level has a capacity of 4.8
terabytes provided by four near-line robotic tape
storage units. The third level is the off-line storage
vault which has the slowest transfer rate serving
as the long-term repository.

Users access files stored in the UMSS using the
ftp protocol from their local workstations via a
local area network. In addition to the ftp proto-
col, UMSS also provides an NFS interface to the
file system but due to performance and security
reasons the NFS protocol is not used by many in-
stallations including the one at NCCS. The UMSS
was designed in a modular fashion in order to
make possible its distribution over multiple host
machines. Figure 2 shows a block diagram of the
UMSS components [7).

Each of the components shown in figure 2 is rep-
resented by one or more independent daemon pro-
cesses and is responsible for certain tasks. The
“Name Server” resolves string file names used by

the users, into unique integer identifiers, used in-
ternally by all the other components of the UMSS.
The “Disk Server” keeps track of the files stored
in the disk cache, providing the view of a Unix
file system to the user. The “Disk Mover” is re-
sponsible for all transfers to and from the disk
cache. The “Migration Server” controls the migra-
tion of files from the disk cache to lower levels in
the disk hierarchy to ensure that the disk cache al-
ways has sufficient free space to operate efliciently.
The “Tape Server” keeps track of the files stored in
the tape storage units whether online or off-line.
The “Tape Mover” performs all file transfers to
and from a tape device. The physical device man-
ager is responsible for managing the tape mounts,
scheduling them in an order which maximizes the
utilization of the system resources. Finally, the
“Physical Volume Repository” is responsible for
mounting and dismounting both automated on-
line and off-line storage physical volumes [8]. Any
files retrieved from the UMSS are first placed in
the disk cache, if they are not already there, and
then are transferred to the user. Likewise, any files
stored into the UMSS are first stored in the disk
cache and then they are moved to a lower level of
the hierarchy through migration.

In an earlier paper we investigated the effec-
tiveness of an online data compression algorithm
placed at the user interface of a mass storage sys-
tem [6]. For a sequential implementation the fol-
lowing inequality describes the trade-off in time of
compressing the data online.

S S SA-r)

R RTTH

1 1 1—-r.

R~ R R

R, < r.R. (1)

where S is the size of the file, R; is the file trans-
fer rate, R, is the compression rate and r. is the
compression ratio normalized to the range [0,1].
The left hand side is the time it takes to transfer
the file without compression and the left side with
compression. If the compression rate of the com-
pression algorithm used is faster than the transfer
rate of the network between the client and the
server then the embedded compression increases
the effective capacity of the storage server at no
384

additional cost. Note that by cost here we mean
the amount of time it takes to store a file into the
mass storage system. If this inequality does not
hold, the online compression algorithm increases
the effective capacity of the system at the ex-
pense of added time when storing the file. The
above inequality applies only to the sequential im-
plementation. Assuming that the communication
time between the parent and child processes is
negligible we can derive a similar relation for the
pipelined implementation as shown in inequality 2.

S

R,

> max{i, _S’_(I_I;Lc)
t

2
7)
The total time of the pipeline is bounded by the
maximum of each of its components. Which of
the two components prevails will depend on the
particular client making the request and on the
network topology. If the client is connected locally
relative to the server but is a slow machine then
the compression component will prevail whereas
on a fast machine which is a few hops from the
server the transmission component will prevail.

I11. Disi(Cache Simulation

A trace-driven simulation of the disk cache was
used to ascertain the effect on the hit ratio and on
the migration of files caused by file compression
and migration algorithm. A discrete event simu-
lator was developed using the ftp request traces to
drive the simulation. The disk cache size was var-
ied from 150GB, which is the actual disk cache size
at the NCCS site, to 250GB. Initially the cache
was assumed to be empty. The disk cache was
represented by a doubly linked list of structures
which described each file entry. The information
stored for each file were a unique file identifier, the
file size, a timestamp of the time the file entered
the disk cache, and an indicator of whether the file
is stored in the disk cache or in the lower levels of
the hierarchy.

Put requests were placed in the disk cache. If
the file already resided in the cache or lower in
the hierarchy the operation was processed as an
update, ensuring that only one copy of the file
existed in the entire mass storage system. For get
requests, if the file existed in the disk cache then
the request was considered a hit. If the file existed

lower in the hierarchy it was staged in the disk
cache. If the file requested did not exist in the
hierarchy, it was processed as if it was in the lower
levels of the hierarchy and a new entry was created
for the file in the disk cache.

Migration in simulated time was performed us-
ing a high water mark as in the UCFM. If the
amount of free space in the cache went below the
high water mark of 75% the total disk cache ca-
pacity, files were migrated to the lower levels of
the hierarchy to create more space. Two different
migration algorithms were tested. The first one,
was LRU based, selecting files to migrate which
had resided in the cache the longest without be-
ing referenced. The second algorithm was based
on the file size, migrating larger files first.

Since it would be impractical to collect the com-
pression ratios for each of the files in the mass stor-
age system each simulation run used a fixed com-
pression ratio. The simulation was run for various
compression ratios ranging from 0% to 60% com-
pression.

IV. RESULTS

The ftp interactive request logs for a period of
three months were used to run the simulation. The
total number of references in that three month pe-
riod was approximately 106,000. The references
from the first two months were used for bringing
the disk cache to a warm state. Then the number
of hits, the hit ratio, the number of files migrating
to tertiary storage, and the total number of bytes
migrated were measured for fixed values of com-
pression ratio. The simulation was run also for
two different migration algorithms. The first mi-
gration algorithm, which selected files to migrate
if they had resided on the disk cache the longest
without being referenced, will be referred to as
the LRU based algorithm. The second algorithm
which selected files to migrate based on their file
size will be referred to as the Size based algorithm.
The hit ratio was computed as the number of hits
per day over the number of get requests on that
specific day.

One important observation that was made about
the reference patterns used in this mass storage
system was that the requests do not exhibit sig-

nificant temporal locality. Users do not tend to
385

re-use their files very frequently as in a typical file
system. This implies that this specific mass stor-
age system is used more as an archive than as a
typical file system. Since the working set of the
get request stream continuously changes, only low
hit ratios are possible regardless of size increases
to the disk cache.

In order to be able to compare the hit ratios
measured with some sort of an optimal hit ratio
we run the simulation on the same trace data set-
ting the compression ratio to a value very close to
zero. This allowed all the files to fit within the disk
cache, imitating a disk cache of an enormous size,
generating no migrations. This experiment was
used to generate the optimal (OPT) disk cache
hit ratios. The same method was used to com-
pute the hit ratio of this cache as in the other
cases. Table I summarizes the effect of compres-
sion on the number of hits for each of the exper-
iments. The table is divided in three major col-
umn groups for each of the migration algorithms.
The first column group shows the results for the
LRU based migration algorithm, the second col-
umn group for the Size based migration algorithm,
and the last column shows the results for the OPT
disk cache. The first two column groups consist
of three columns, one for each of three different
compression ratios attempted. Comparing the re-
sults from the two migration algorithms against
the results under OPT we see that the number of
hits for both algorithms are very close to the op-
timal. Compression does not affect the hit ratio
very much and this is because the disk cache is
large enough to support the hits in the reference
patterns. It should be noted that the LRU based
algorithm exhibits the inclusion property as ex-
pected since the number of hits is non-decreasing
with increases in the disk cache size. On the other
hand, the size based algorithm in certain cases de-
creases with a larger effective disk cache size.

The hit ratios were also plotted in figure 3 for
various compression ratios. The plot on the top
shows the hit ratio variation with respect to the
compression ratio for the size based migration al-
gorithm and the bottom plot shows the variation
for the LRU based migration algorithm. It is ap-
parent from these figures that size based migration
provides higher hit ratios than the LRU based a1-3

gorithm. The variation in compression ratio does
not have significant effect on the hit ratio and the
reason for this is the same as discussed in the pre-
vious paragraph. This implies that adding addi-
tional disks to the disk cache will not have any
effect on the hit ratio based on the references an-
alyzed. Also any further effort in improving the
hit ratio by varying the migration algorithm will
not generate any significant improvement on the
hit ratio. The only possible method of increas-
ing the hit ratio would be to develop a prefetching
algorithm that is based on hints provided by the
user.

The second part of the simulation analysis fo-
cused on the migrations. Since migration involves
the use of tape drives from the robotic silos it is
an expensive operation. Thus, reducing the num-
ber of migrations or the total number of bytes mi-
grating to the tape will improve the mass storage
system’s performance. Figure 4 shows the number
of files migrating versus compression ratio for the
two migration algorithms. The LRU based algo-
rithm maintains a consistent number of migrations
and tends to smooth the migration operations over
time. It appears that the effect of file compres-
sion is minimal. Looking at the peaks in the LRU
based algorithm it appears that compression sim-
ply shifts the migration effects but does not reduce
their number. The size based migration algorithm
decreases significantly the number of migrations
but it has the negative effect of generating on cer-
tain days tremendous migration traffic. Analyz-
ing the file sizes for both get and put requests
we found that the mean file size of files stored in
the storage system is an order of magnitude larger
than the mean file size of files retrieved. Since
the size based algorithm removes larger files first,
eventually it runs out of large files and it has to
remove a huge number of small files to free space
in the disk cache.

Figure 5 shows the number of bytes migrating
to robotic storage for various compression ratios.
It is apparent that for both migration algorithms
the higher compression ratio provides significant
reduction in the number of bytes that need to mi-
grate. The size based migration algorithm pro-
vides better performance throughout the simula-

8gion period. The time it takes the system to pro-

TABLE I
Number of Cache Hits over Compression Ratio

LRU Based Size Based
Te 0.0 0.2 04 0.0 0.2 0.4 | OPT
1 285 | 285 | 286 | 285 | 286 | 286 286
2 87 87 87| 104 | 104 | 104 105
3 186 | 186 | 186 | 186 | 186 | 186 202
4 342 | 342 | 342 | 343 | 343 | 343 352
5 235 1 241 | 242 | 435 | 435 435 493
6 | 1086 | 1087 | 1083 | 1089 | 1088 | 1087 | 1130
7 11323 [1323 1 1323 | 1500 | 1500 | 1500 | 1698
8 143 | 143 | 143 | 145 145 145 153
9 60 60 60 63 63 61 63
10 | 250] 250 | 250 | 248] 248 | 248 252
111 321 321 321} 317 | 317 | 318 324
121 422 422 | 422 434 | 434 434 464
131 3N 371 371 | 3541 355 | 335 409
14| 376] 381 381 | 376 | 376 | 377 436
15 | 1249 | 1249 | 1251 | 1244 | 1243 | 1244 | 1256

cess a migration involves an overhead time and a
data transfer time. The overhead time consists of
mounting the tape on a tape drive, a seek time to
place the tape drive heads at the proper location, a
rewind time after the data have been written, and
an unmount time. Reducing the number of migra-
tions from the disk cache affects the overhead time
while reducing the number of bytes migrating to
robotic storage reduces the data transfer time.

V. Conclusion

We evaluated the performance of an online com-
pression algorithm on the disk cache of a mass
storage system. A trace driven simulation of the
disk cache was used for the evaluation. The traces
used to drive the simulator were collected from the
ftp logs of the system. The simulation was config-
ured to match the disk space and migration algo-
rithm of the system at NCCS. The effect of com-
pression was simulated by uniformly reducing the
file size of the get and put requests. Various com-
pression ratios were used in the simulation. The
simulation also evaluated two different migration
algorithms, specifically an LRU based and a size
based algorithm.

One important observation that was made about *

the references at this mass storage system was that
the working set continuously changes. This im-
plies that the disk cache hit ratio cannot be im-
proved significantly by increasing the disk cache
size since get operations are usually to files that
were stored in the mass storage system a very
long time in the past. This effect was evident by
comparing the two migration algorithms against
a disk cache which was large enough to store all
files stored during the three month evaluation pe-
riod. As a result both algorithms attained hit ra-
tios very close to the optimal hit ratios of the huge
cache. Comparing the two migration algorithms
we found that the size based algorithm decreases
the total number of bytes migrating to tertiary
storage at the expense of causing occasional peaks
in the number of files migrating. Both algorithms
were not affected by the compression ratio due to
the fact that the disk cache is of large enough size
to cover the intereference pattern of the requests.

Future work will focus on evaluating various
prefetching algorithms. The current simulation
suggested that only the use of user hints and an
appropriate prefetching algorithm can improve the
hit ratio of this system. The use of transparent
injormed prefetching could be applied to improve

387

the hit ratio of the disk cache by exploiting ap-
plication level hints about future file accesses [9].
Another area of future research is the implementa-
tion and evaluation of migration algorithms based
on a combination of file size and cache residency
time as described in [10], [11]. This simulation
analysis showed that size based migration reduces
the number of bytes that migrate to tertiary stor-
age but occasionally it produces a large number of
migration loads. By using a migration algorithm
based on the space time product we expect that
the migration peaks will disappear, while main-
taining the lower number of bytes migrating.

Acknowledgements

We would like to thank Adina Tarshish, Ellen
Salmon and George Rumney from NASA’s Cen-
ter for Computational Sciences at Goddard Space
Flight Center for providing the ftp traces and the
NCCS file set used for testing our ideas.

REFERENCES

[1] Randy H. Katz, Thomas E. Anderson, John K. Ouster-
- hout, and David A. Patterson, “Robo-line Storage: Low
Latency, High Capacity Storage Systems over Geographi-
cally Distributed Networks”, Tech. Rep. UCB/S2K-91-3,
University of California, Berkeley, March 1994.

{2] Ethan L. Miller and Randy H. Katz, “An Analysis of File
Migration in a Unix Supercomputing Environment”, Tech.
Rep. UCB/CSD-92-712, University of California, Berkeley,
March 1993.

[3] J.Ziv and A. Lempel, “A Universal Algorithm for Sequen-
tial Data Compression”, IEEE Transactions on Informa-
tion Theory, vol. 23, no. 3, pp. 337-343, 1977.

[4] Debra A. Lelewer and Daniel S. Hirschberg, “Data Com-
pression”, ACM Computing Surveys, vol. 19, no. 3, pp.
261-296, September 1987.

[5] Terry A. Welch, “A Technique for High-Performance Data
Compression”, IEEE Computer, vol. 17, no. 6, pp. 8-19,
June 1984.

[6] Odysseas I. Pentakalos and Yelena Yesha, “Online Data
Compression for Mass Storage File Systems”, manuscript
available from the author, July 1994.

[7] Adina Tarshish and Ellen Salmon, “The Growth of the
Unitree Mass Storage System at the NASA Center for
Computational Sciences”, in 8rd NASA GSFC Conference
on Mass Storage Systems and Technologies, College Park,
Maryland, October 1993, pp. 19-21.

[8] Convex Computer Corporation, Unitree++ System Ad-
ministration Guide, First Edition, Convex Press, Richard-
son, Texas, 1993.

[9) Hugo R. Patterson, Garth A. Gibson, and M. Satya-

narayanan, “A Status Report on Research in Transparent

Informed Prefetching®, Operating Systems Review, vol. 27,

no. 2, pp. 21-34, April 1993.

Alan Jay Smith, “Analysis of Long Term File Reference

Patterns for Application to File Migration Algorithms”,

IEEE Transactions on Software Engineering, vol. SE-T, no.

4, pp- 403-417, July 1981.

(10]

[11] Alan Jay Smith, “Long Term File Migration: Development
and Evaluation of Algorithms”, Communications of the
ACM, vol. 24, no. 8, pp. 521-532, August 1981,

388

Robotic
Storage

Offline
Storage

Fig. 1. Hierarchical Storage Pyramid

)

Name
Server

=

pisk
Server

pisk
Mover

Physical
volunme
Repomitor

Fig. 2. UMSS Block Diagram

389

Size Based Migration

1.0 T T 5 T -
—
—--04
08 —— Optimal p

LRU Based Migration

1.0 — ~ T — .
E 0.0
0.4

08} ——— Optimal]

Fig. 3. Hit-Ratio versus Compression Ratio

Size Based Migration
16000.0 - : :

| =703

—--04

12000.0

8000.0

4000.0

oo L&
0

LRU Based Migration

16000.0 : .
— 0.0
.......... 0.2
120000 | e L1
8000.0 -]

4000.0

0.0

Fig. 4. Number of Migrations versus Compression Ratio

360

Size Based Migration

6e+07 T T
—— 0.0
—--04
4e+07 E

2e+07

LRU Based Migration
6e+07 T T

— 0.0

4e+07

2e+07 -

0 10 20 30

Fig. 5. Bytes Migrated versus Compression Ratio

391

N95-24139

43475
John C. Webber Iﬂ) Q/

A Terabyte Linear Tape Recorder

Interferometrics Inc.
8150 Leesburg Pike
Vienna, VA 22182
(703) 790-8500
webber @interf.com

A plan has been formulated and selected for a NASA Phase IT SBIR award for
using the VLBA tape recorder for recording general data. The VLBA tape recorder is a
high-speed, high-density linear tape recorder developed for Very Long Baseline
Interferometry (VLBI) which is presently capable of recording at rates up to 2 Gbit/sec and
holding up to 1 Terabyte of data on one tape, using a special interface and not employing -
error correction. A general-purpose interface and error correction will be added so that the
recorder can be used in other high-speed, high-capacity applications.

The VLBA recorder was developed specifically for recording VLBI data using the
Very Long Baseline Array of radio astronomy antennas built by the National Radio
Astronomy Observatory. It is an evolution of the technology developed for the NASA
Mark I1I1A VLBI recording system at MIT Haystack Observatory. Its characteristics may
be summarized as follows:

Recording medium: 1-inch-wide D1-equivalent 16 m thick tape

Head type: 38 pm width, single-crystal ferrite

Bit density: 56,000 flux transitions per inch

Format: continuous linear tracks, NRZM, magnetic saturation

Tape speed: For 9 Mbit/sec data, 160 inches per second

MTBF: 10,000 hours typical

Head life: 5,000-20,000 hours depending on environment

Head replacement cost: ~ $1/hour

Maintenance: headstack and tape path cleaned with a cotton swab
at each tape change.

A single headstack writes and reads 34 data tracks at a time. The heads are 38 pum
wide and are separated by 698.5 um, so that potentially 698.5/38 = 18.38 passes could be
written on the tape. However, some allowance for guard bands between tracks must be
made, since the magnetic gap is exactly perpendicular to the direction of tape motion and
there must be no crosstalk betweén tracks. A practical limit is 16 passes, which gives a
track spacing of 43.7 um with a guard band of about 5 um. There are thus 544 data tracks
on the tape. Future improvements in tapes and heads are expected to increase this number.

The tape is a D1- or S-VHS equivalent tape available from both 3Mand Sony. This
tape is 16 m thick, and 20,500 usable feet are contained on a 16-inch reel (only 14-inch
reels are currently used). The bit density supportable on this tape is 60,000 bits per inch,
so each track contains 14.4 Gigabits. The whole tape with 544 tracks then holds about
8.03 Terabits, or one Terabyte. Using the error-correcting format to be developed, this
becomes 788 Gbytes of user data. The cost of one reel of this tape is presently about

o page=2 I D wrenmonaLy sLan

PRECFDING PAGE BLANK NOT FILMED

$1500, or $1.90 per Gigabyte. At the maximum user data rate supported by one
headstack, namely 69.44 Mbyte/sec, one tape lasts approximately 192 minutes. Up to 4
headstacks may be mounted on one transport, yielding an aggregate recording rate of 278
Mbyte/sec with a recording time of 48 minutes. This is also the time required to duplicate a

tape.

Typical tape life is several hundred read-write cycles including shipping once per
month in uncontrolled conditions.

INTERFACES

The data interface in the present VLBA recorder is a set of parallel data lines, each
supplying data directly to a single head in the headstack. Formatting of the user data
consists of adding synchronization words, time codes, identification data, and parity bits in
an external formatter. These bits are simply transferred directly to tape. On playback, the
signals from each head are amplified, equalized, and routed to bit synchronizers which
recover the clocks from each data stream. All further processing is performed in an
external unit which recovers the synchronization codes, de-skews the tracks, and combines
the data into a desired format.

In the system under development, the recorder will be responsible for all functions
of formatting and deformatting. The user will supply data over a standard interface and
recover data from the recorder over the same interface.

For the data rates of concern, there is a prime “standard” interface, namely the
High-Performance Parallel Interface, or HIPPI, defined in ANSI X3.183-1991, as defined
by the ANSI Task Group X3T9.3. We have adopted this interface as the standard recorder
data interface for both record and playback for all applications. The HIPPI channel
consists of 32 balanced ECL signals with a common 25 MHz clock and a transfer protocol
allowing bursty transmissions. For applications requiring less than the full channel
capacity, the recording speed may be varied or the data padded with dummy data to be
stripped at playback time.

The HIPPI channel is a one-way device, so two HIPPI channels are needed in
order to accommodate both record and playback functions. Commercially available chips
provide a single 100 Mbyte/sec HIPPI interface. In the prototype system, two headstacks
will be employed, enabling a maximum of 138.88 Mbyte/sec to be recorded. Since the
recorder speed can be set with very fine resolution, it will be chosen such that the bit
density remains at 60,000 bits per inch.

Since other high-speed protocols and fiber optic interfaces such as advanced ATM
are coming into use, it is essential that the recorder be expandable to accommodate them.
The plan is to add, for example, an ATM-to-HIPPI interface and continue to operate the
recorder exclusively from the HIPPI interface. This simplifies the interfacing problem by
placing it outside the recorder proper.

A single low-speed interface will suffice to set the recording mode and control the

playback process. This is envisioned to be a 9600 baud RS-232C interface, permitting
operation by any computer.

394

ERROR CORRECTION

For an individual tape track, which is the minimal recording sub-channel, the
important characteristics for the VLBA recorder as it is presently used are as follows:

Random errors: Bit Error Rate (BER) <3 x 104 with 10-year-old tape;
typically 3 x 106 with new tape, 3 x 105 with 3-year-old tape

Burst errors: Typical length 100-1000 bits; typical rate 1 burstin 107 bits;
bursts usually cause loss of bit synchronization

Random errors are caused by low signal-to-noise ratio (SNR), imperfect
equalization, and imperfect bit synchronization. Burst errors are caused primarily by tape
defects and are consequently highly dependent on the particular tape in use; any system of
error correction must accommodate the worst-case tape. In order to minimize the data lost
to dropouts, the distance between sync words should be comparable to the size of the
dropouts.

For typical imaging data, a bit error rate better than 1 x 109 is required. Other
applications require bit error rates as low as 1x 10-13,

Recently, VLSI chip sets which implement Reed-Solomon error correction
algorithms have become available, and some can run at the data rates in which we are
interested. Such chips are available from such manufacturers as LS] Logic and CNR, Inc.
It appears that suitable devices for this application are available from Advanced Hardware
Architectures (AHA). In particular, the AHA4010 device is attractive because of the
following:

Input data format: 8-bit parallel (byte organization)

Data rate: 10 Mbyte/sec (80 Mbit/sec)

Max block length: 255 bytes (programmable)

Max errors correctable: 10 per block (or 20 erasures)

Other features: No external buffers or control required
Cost: $30 each in large quantities

Data will first be coded into data blocks of length 235 bytes. For each such block,
we will program the AHA4010 to add 20 error correction bytes to make the total block
length 255. This is an overhead of 8.5%.

This scheme will permit correction of up to 10 errors or 20 erasures (or a linear
combination of both). Even with a raw bit error rate of 1 x 104, the corrected code block

error rate is predicted to be 7 x 10-15, which satisfies our requirements. The errors will be
decorrelated by interleaving the data over a distance long enough so that only one or two
bytes from each code block are contained within a single error burst.

CONFIGURATION

The VLBA recorder uses a Metrum Model 96 tape transport, which is a full-size
rack of hardware. In the new configuration, it will contain:

VME-based control computer
HIPPI interfaces with buffers
Error correction/formatting boards

395

Analog write drivers

Analog playback amplifiers/equalizers
Clock recovery (bit sync) boards
Deskewing buffers

Transport and headstack motion controllers
Power supplies

The prototype system will be equipped with two headstacks and so will be capable
of recording up to about 138 Mbyte/sec of user data.

RECORDING AND PLAYBACK PROCESS

In addition to error correction, some formatting must be introduced in the form of
synchronization words, modulation, and longitudinal parity. Sync words are absolute
identifiers of tape block start points. Data modulation by a pseudo-random sequence will
guarantee roughly equal numbers of ones and zeroes in the data regardless of content. The
addition of longitudinal parity bits on each track will force sufficient transitions in the
NRZM format so that good bit synchronizer performance can be maintained.

Upon playback, the parity, modulation, sync, and other formatting information
must be undone and stripped out, and the error correction bytes used to restore the original
user data. This data must then be reformatted so that it can be transmitted over the HIPPI
interface back to the user. A summary of the recording and playback process is shown as
Figure 1.

== =
e Am , =l)

AECOVER I__) SYNC, D,
—>] DE-OKEW PARITY

- v

PLA (——' WRTE
% @ =

Figure 1. Data flow to and from the recorder

In much of the recording and playback electronics, the same circuitry can be used to
perform both the recording and playback processing.

396

REFERENCES

“A High Data Rate Recorder for Astronomy”, H. F. Hinteregger, A. E. E. Rogers, R. J.
Cappallo, J. C. Webber, W. T. Petrachenko, and H. Allen, IEEE Transactions on
Magnetics, 27, No. 3, p-3455 (1991).

“Very Long Baseline Radio Interferometry: The Mark 111 System for Geodesy,
Astrometry, and Aperture Synthesis”, A. E. E. Rogers e al., Science, 219, p.51 (1983).

397

