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Abstract

This paper describes the implementation of opti-

mization techniques based on control theory for

wing and wing-body design. In previous stud-

ies [18, 19, 22] it was shown that control theory could

be used to devise an effective optimization proce-

dure for airfoils and wings in which the shape and

the surrounding body-fitted mesh are both gener-

ated analytically, and the control is the mapping

function. Recently, the method has been imple-

mented for both potential flows and flows governed

by the Euler equations using an alternative formula-

tion which employs numerically generated grids, so

that it can more easily be extended to treat general

configurations [34, 23]. Here results are presented

both for the optimization of a swept wing using an

analytic mapping, and for the optimization of wing

and wing-body configurations using a general mesh.
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symmetry plane boundary of flowfield domain

transformed flux Jacobians

coefficient of drag
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coefficient of pressure

coefficient of pressure for sonic flow

flowfield domain

total energy

components of Cartesian fluxes

f, without pressure terms

components of transformed fluxes
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JK_ _

gradient of design space

projected G into admissible space

total enthalpy

cost function

Jacobian of generalized transformation

grid transformation matrix

h" at the profile surface

grid transformation matrix

number of design points

local Mach number

Mach number at infinity

number of design variables

number of grid points

components of a unit vector normal
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desired pressure

metric terms

speed

speed at infinity

generic governing equation for flowfield

normalized arc length
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state vector scaled by J

metric term
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(',artesian surface coordinates

body fitted coordinates
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modified boundary condition for _/,

angle of attack

smoothing parameters
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Kronecker delta function

ratio of specific heats

distance along search direction

smoothing parameters

distance along search direction

cost function weighting factors

vector co-state variable

density

freestream density

Introduction

Since about 1960, there has been rapid progress in

the field of Computational Fluid Dynamics (CFD).

Especially in the last. decade, with substantial im-

provements in both computer performance and nu-

merical methods, CFD has been extensively used

together with experimental methods to aid in the

aerodynamic design process. While much research

continues in the CFD field, accurate and robust so-

lutions are now routinely obtained over complete air-

craft configurations for many flow conditions. Mod-

ern aircraft designers hope to benefit from this ca-

pacity both to refine existing designs at transonic

conditions and to develop new designs at supersonic

conditions. These highly nonlinear flow regimes re-

quire a design fidelity for which only CFD may pro-

vide the answers within practical time constraints.

Thus far however, CFD, like wind tunnel testing, has

not had much success in direct aerodynamic shape

design. Since the reception of CFD, researchers have

sought not only accurate aerodynamic prediction

methods for given configurations, but also design

methods capable of creating new optimum config-

urations. Yet, while flow analysis can now be car-

ried out over quite complex configurations using the

Navier-Stokes equations with a high degree of con-

fidence, direct ('FD based design is still limited to

very simple two-dimensional and three-dimensional

configurations, usually without the inclusion of vis-

cous effects. The CFD-based aerodynamic design

methods that do exist can be broken down into three

basic categories: inverse surface methods, inverse

field methods and numerical optimization methods.

Inverse surface methods derive their name from

the fact that they invert the goal of the flow analysis

algorithm. Instead of obtaining the surface distribu-

tion of an aerodynamic quantity, such as pressure,

for a given shape, they' calculate the shape for a

given surface distribution of an aerodynamic quan-

tity. An alternative way to obtain desirable aero-

dynamic shapes is through the use of field-based in-

verse design methods. These methods differ from

surface specification methods in that they obtain

designs based upon objectives, or constraints, im-

posed not only upon the configuration surface but

everywhere in the flow field. For transonic flows a

field-based objective can be to limit shock strength

or create shock-free designs. Most of these methods

are based on potential flow techniques, and few of

them have been extended to three-dimensions.

The common trait of all inverse methods is their

computational efficiency. Typically, transonic in-

verse methods require the equivalent of 2-10 com-

plete flow solutions in order to render a complete

design. Since obtaining a few solutions for simple

two-dimensional and three-dimensional designs can

be done in at most a few hours on modern comput-

ers systems, the computational cost of most inverse

methods is considered to be minimal. Unfortunately,

they suffer from many limitations and difficulties.

Their most glaring limitation is that the objective is

built directly into the design process and thus cannot.

be changed to an arbitrary or more appropriate ob-

jective function. The user must therefore be highly

experienced in order to be able to prescribe surface

distributions or choose initial geometries which lead

to the desired aerodynamic properties. In addition,

surface inverse methods have a tendency to fail be-

cause the target surface distribution is not necessar-

ily attainable. In general it must satisfy constraints

to permit the existence of the desired solution. On

the other hand, field inverse methods typically only

allow for the design of a single shock-free design

point, and have no means of properly addressing

off-design conditions. Furthermore, it is difficult to

formulate inverse methods that can satisfy desired

aerodynamic and geometric constraints. In essence,

inverse methods require designers to have an a pri-

ori knowledge of an optimum pressure distribution

that satisfies the geometric and aerodynamic con-

straints. This limited design capability and difficult

implementation has, to date, constrained the appli-

cability of inverse methods.

An alternative approach, which avoids some of the



difficulties of inverse methods, but only at the price

of heavy computational expense, is to use numerical

optimization methods. The essence of these meth-

ods is very simple: a numerical optimization pro-
cedure is coupled directly to an existing CFD anal-

ysis algorithm. The numerical optimization proce-

dure attempts to extremize a chosen aerodynamic

measure of merit which is evaluated by the chosen

CFD code. The configuration is systematically mod-

ified through user specified design variables. These

design variables must be chosen in such a way as

to permit the shape of the configuration to change

in a manner that allows the design objective to be

improved. Most of these optimization procedures

require gradient information in addition to evalua-

tions of the objective function. Here, the gradient

refers to changes in the objective function with re-

spect to changes in the design variables. The sim-

plest method of obtaining gradient information is by

"brute-force" finite differences. In this technique,

the gradient components are estimated by indepen-

dently perturbing each design variable with a finite

step, calculating the corresponding value of the ob-

jective function using CFD analysis, and forming

the ratio of the differences. The gradient is used
by the numerical optimization algorithm to calcu-

late a search direction using steepest descent, con-

jugate gradient, or quasi-Newton techniques. The

optimization algorithm then proceeds by estimating

the minimum or maximum of the aerodynamic ob-

jective function along the search direction using re-

peated CFD flow analyses. The entire process is re-

peated until the gradient approaches zero or further

improvement in the aerodynamic objective function

is impossible.

The use of numerical optimization for transonic

aerodynamic shape design was pioneered by Hicks,

Murman and Vanderplaats [13]. They applied the
method to two-dimensional profile design subject to

the potential flow equation. The method was quickly

extended to wing design by Hicks and Henne [11, 12].
Recently, in the work of Reuther, Cliff, Hicks and

Van Dam, the method has proven to be successful for

the design of supersonic wing/body transport config-

urations through its extension to three-dimensional

flows governed by the Euler equations [33]. in all
of these cases brute-force finite difference methods

were used to obtain the required gradient informa-
tion.

These methods are very versatile, allowing any
reasonable aerodynamic quantity to be used as the

objective function. They' can be used to mimic an in-

verse method by minimizing the difference between

target and actual pressure distributions, or may in-

stead be used to maximize other aerodynamic quan-

tities of merit such a.s L/D. Geometric constraints

can be readily enforced by a proper choice of design
variahles. Aerodynamic constraints can be treated

either by adding weighted terms to the objective

function or by the use of a constrained optimization

algorithm. Unfortunately, these brute-force numer-

ical optimization methods, unlike the inverse meth-
ods, are computationaily expensive because of the

large number of flow solutions needed to determine

the gradient information for a useful number of de-

sign variables. For three-dimensional configurations,

hundreds or even thousands of design variables may

be necessary. This implies that tens of thousands

of flow analyses would be required for a complete

design.

Formulation of the design
problem as a control problem

Clearly, alternative methods must be developed

which have the flexibility and power of current nu-

merical optimization codes but do not require such

large computational resources. These new methods
must avoid the limitations and difficulties of tradi-

tional inverse methods while approaching their in-

herent computational efficiency.

One means of attaining such a design method is

by treating the design problem within the mathe-

matical theory for control of systems governed by

partial differential equations [29]. Suppose that the
boundary is defined by a function .T(b), where b is

the position vector of the design variables, and the
desired objective is measured by a cost function I.

This may, for example, measure the deviation from

a desired surface pressure distribution, but it can

also represent other measures of performance such

as the drag or the lift/drag ratio. Suppose that a

variation 6.7- in the control produces a variation 61

in the cost. 61 can be expressed to first, order as an

inner product

62 = (_, 6.7-),

where the gradient, _, of the cost function with re-

spect to the control, is independent of the particu-

lar variation 6.$'. Following control theory G can be

determined by solving an adjoint equation. If one

makes a shape change

where A is sufficiently small and positive, then

61=-A(G,_)<0 (1)

assuring a reduction in I. The method can be accel-

erated by choosing 6.7" not simply ms a multiple of

the gradient (steepest descent) but instead as a more

sophisticated search direction provided by numerical
optimization.

For flow about an airfoil or wing, the aerodynamic
properties which define the cost function are func-

tions of the flow-field variables (w), the physical lo-

cations of the mesh points within the volume (,l'),



andthephysicallocationoftheboundary(.7").Then

I = 1 (w,X,.T),

and a change in Y" results in a change

OIT oIT6 l" oIT
61 = --b-_w6_,,+ ox " + --_ 6:r , (2)

in the cost function. As pointed out by Baysal and

Eleshaky [4] each term in (2), except for 6w, can be
easily obtained, ol 01 and atow' ox y-f can be obtained di-
rectly without a flowfield evaluation since they are

partial derivatives. 6Jc is simply the surface modifi-

cation and 6X can be determined by either working
out the exact analytical values from a mapping, or

by successive grid generation for each design vari-

able, so long as this cost is significantly less then

the cost of the flow solution. For solutions requiring

a large number of mesh points where grid genera-

tion becomes expensive, an alternative method for

calculating 6,1" can be formulated using grid pertur-

bation. Brute-force methods evaluate the gradient

by making a small change in each design variable

separately, and then recalculate both the grid and

flow-field variables. This requires a number of addi-
tional flow calculations equal to the number of de-

sign variables. Using control theory, the governing

equations of the flowfield are introduced as a con-

straint, in such a way that the final expression for the

gradient does not require multiple flow solutions. In
order to achieve this result, 6w must be eliminated

from (2). The governing equation R expresses the
dependence of w, X and 5r within the fiowfield do-
main D,

R(w,,r, _-) = 0,

Thus 6w is determined from the equation

_sR= LOwj6u'+ _ 6x+ _ 65--o. (3)

Next, introducing a Lagrange Multiplier q_, we have

oIT 017" 017" 6
61 - Ou, 6u,+ ...._6'l" + _ 3v

+/oy

('.hoosing _/, to satisfy the adjoint equation

T¢ Ol
-_wJ = au----: (4)

the first term is eliminated, and we find that

t_l = _ T 6.T

where

¢ l'foP" -_Tox [yy]OR}_a'= g-_

(5)

aP [OR]+ _ff_f_ _,r -gT

(6)

The advantage is that (5) is independent of 6w, with

the result that the gradient of I with respect to
an arbitrary number of design variables can be de-
termined without the need for additional flow-field

evaluations. The main cost is in solving the ad-

joint equation (4). In general, the adjoint problem is

about as complex as a flow solution. However, if the

number of design variables is large, the cost differen-

tial between one adjoint solution and the large num-
ber offlowfield evaluations required to determine the

gradient by finite differences becomes compelling.

Once the gradient is calculated by (6) a modifica-

tion following (1) can then be made. After making
such a modification, the gradient can be recalcu-

lated and the process repeated to follow a path of

steepest descent until a minimum is reached. In or-

der to avoid violating geometric constraints, such

as a minimum acceptable wing thickness, the gra-

dient may be projected into the allowable subspace
within which the constraints are satisfied. In this

way procedures can be devised which must necessar-

ily converge at least to a local minimum. The effi-

ciency may be improved by performing line searches
to find the minimum in a search direction defined

by the negative gradient, and also by the use of

more sophisticated descent methods such as conju-

gate gradient or quasi-Newton algorithms. There
is the possibility of more than one local minimum,

but in any case the method will lead to an improve-

ment over the original design. Furthermore, unlike

the traditional inverse algorithms, any measure of

performance can be used as the cost function.

In this research, the adjoint approach is used

to permit a dramatic reduction in the computa-

tional cost of each design solution, since the gradi-

ent cost will be reduced to the cost of approximately

two flow evaluations (provided the adjoint equations

are about as computationally expensive as the flow
equations) instead of the traditional n + 1 evalua-

tions, where n is the number of design variables.

The key point is that the cost of the optimization

method is no longer proportional to the number of

design variables, which has been the limiting factor

in brute-force aerodynamic optimization methods.

Another significant advantage of this method is

its applicability to multi-point design problems. Be-

cause of its efficient use of computer resources, two

or three design points can be included in the opti-
mization procedure by solving separate adjoint prob-

lems for each design point. The resulting procedure



yieldsamethodwhichis capableofcalculatingthe
combinedgradientfromalldesignpointsfromorder
2mequivalentflowcalculations,with m being the

number of design points. Even in the case where

there is a large number of design points a signifcant

benefit is still realized when compared with brute-
force calculations where the number of solutions re-

quired is ran. The use of this approach will allow the

performance benefits at various design points to be

considered together, thus obtaining a more optimal

overall design.

A variety of alternative formulations of the design

problem can then be treated systematically within

the framework of the mathematical theory for con-

trol of systems governed by partial differential equa-

tions [29]. The use of this method for aerodynamic

design was first introduced by Jameson [18] who ex-

amined its application to transonic flow governed by

both the potential flow and Euler equations [19, 22].
In his work, control theory was applied directly to

the partial differential equations governing the flow

solution. Thus the adjoint equations were formed as

a system of differential equations. These adjoint dif-

ferential equations were then discretized and solved

in the same manner as the flow equations to obtain

the necessary gradient information. This approach,
often termed the continuous sensitivity analysis, was

used by Jameson in conjunction with analytic grid

mappings, to formulate directly at the differential
level, the necessary systems of equations defined by

equation (6).

Steps (2 - 6) may alternatively be applied to

the discrete equations which approximate the gov-

erning differential equations. This approach (dis-

crete sensitivity analysis) is now gaining favor in the

work of Korovi, Newman, Taylor, Hou and Jones

[30, 26, 15, 24] and also Baysal, Eleshaky and Bur-

green [3, 4, 5, 7, 2, 8, 9, 6]. The continuous and
the discrete formulations methods can be very sim-

ilar, depending upon the discretization of (4). The
method used by Jameson has an advantage in that
the discretization and iteration scheme used to solve

the flowfield system can also be applied directly to

the adjoint system. Therefore, the robust iteration

algorithms and convergence acceleration techniques

that have been matured for CFD algorithms can be
directly ported for the solution of the adjoint sys-

tem. Discrete sensitivity methods for equations (2

- 6) often resort to matrix elimination methods to

solve (4). While direct techniques to solve these

large sparse systems can be robust and reliable they

suffer when the number of points becomes large be-
cause the operation count grows as O(fi/_ 2) and the

storage goes as O(itb), where fi is the number of

unknowns and b is the bandwidth. Therefore, in or-

der to solve these large systems, alternatives such

as sophisticated matrix decomposition [28] or in-
cremental iterative methods [25] must be employed.

However, these alternatives, whether applied to the

flow solution system or, as here, to the adjoint sys-

tem, have not proven to be as efficient as meth-

ods developed for CFD. CFD approaches altogether

avoid the direct matrix elimination process by re-

laxing the system either point-by-point or line-by-

line in a pseudo-time procedure. When the num-

ber of mesh points becomes large, especially in the

case of three-dimensional problems, the O(fi) oper-

ational counts and the O(n) storage of explicit, iter-

ation schemes used in CFD can significantly reduce

the time and memory required to solve the adjoint

system. Methods that use matrix decomposition or

the Generalized Minimum Residual (GMRES) iter-

ative approach to solve the discrete sensitivity prob-

lem have shown modest improvements over standard

Gaussian elimination [28] and [37, 14]. Nevertheless,

these methods are currently still not competitive in

terms of both time and memory with mature CFD-

like algorithms. The efficiency of discrete sensitivity
methods may be improved by the introduction of in-

cremental iterative strategies for solving the matrix

elimination problem. Present work by Taylor et al.

[25] to develop such methods shows great promise.

Currently the use of continuous sensitivity analy-

sis eliminates the need for developing incremental

strategies since the existing (and presumably ma-

ture) flow solution algorithm can be used directly

for the adjoint solution.

Other applications of control theory in aerody-
namics have been explored by Pironneau for opti-

mum shape design of systems governed by elliptic

equations [31]. More recently Ta'asan, Kuruvila,

and Salas implemented a one shot approach in which
the constraint represented by the flow equations is

only required to be satisfied by the final converged
solution [36, 27]. Pironneau has also studied the use

of control theory for optimum shape design of sys-

tems governed by the Navier-Stokes equations [32].

Three-Dimensional Design

Using the Euler Equations

The application of control theory to aerodynamic

design problems is illustrated by treating the case
of three-dimensional wing design, using the inviscid

Euler equations as the mathematical model for com-

pressible flow. In this case it proves convenient to

denote the (',artesian coordinates and velocity com-

ponents by xl, x2, x3 and ut, u2, u3, and to use the
convention that sumrnation over i -- 1 to 3 is im-

plied by a repeated index i. The three-dimensional

Euler equations may be written as

Ou, OL
0--T +_ =0 in D, (7)



where

pu i pui u I + p6i 1

w = pu_ , fi = puiu2 + pbi_ (8)
pu3 puiu3 + Phi3

pF pui H

and 6ij is the Kronecker delta function. Also,

{' }P =(?- 1)p E- _(ui 2) , (9)

and

?H = ?E + p (10)

where 7 is the ratio of the specific heats. Consider

a transformation to coordinates (1, (2, _3 where

ro,,l ro, ,l
Ki.i = La(jJ d =det(H), K_I =' Laz_J

Introduce contravariant velocity components as

[;2 , = 1£ -1 u2
U3 u3

The Euler equations can now be written as

OW aN

0--T + _ = 0 in D, (ll)

with

p [ pl :i

pul I pUiul + _o.,p

_I" = J , pu 2 , , Fj = J pl:iu2 -t- o(,ox_p

pu3 pUiu3 + oxsp

p E pUi H

(12)

Assume now that designs are limited to wing and

wing-body configurations using a C-H topology

mesh. If a body is present it is assumed to exist

as part of the face containing the symmetry plane.

Thus the new computational coordinate system con-

forms to the wing in such a way that the wing surface

Bw is represented by _2 = 0 and the body and sym-

metry plane Bs conform such that (a = 0. Then
the flow is determined as the steady state solution

of equation ( 11 ) subject, to the flow tangency condi-
tions

4;2 = 0 on Bw

4:3 = 0 on Bs. (13)

At. the far field boundary Br, freestream conditions

are specified for incoming waves, as in the two-

dimensional case, while outgoing waves are deter-

mined by the solution.

As the first example, suppose that it is desired

to control the surface pressure by varying the wing

shape. It is convenient to retain a fixed computa-

tional domain. Variations in the shape then result

in corresponding variations in the mapping deriva-
tives defined by K. Introduce the cost function

l = -_ (p-pa)"d(ld_3,

where Pd is the desired pressure on the wing. The

design problem is now treated as a control prob-

lem where the control function is the wing shape,
which is to be chosen to minimize I subject to the

constraints defined by the flow equations (7-12). A

variation in the shape will cause a variation 6p in
the pressure and consequently a variation in the cost
function

=//_ (p-pa)6p d_ld_3. (14)61
W

Since p depends on w through the equation of

state (9-10), the variation 6p can be determined
from the variation bw. Define the Jaeobian matrices

Ai Ofi
= Ou----7,' Ci = JK_IAj. (15)

Then the equation for 6w in the steady state be-
comes

0

o¢_ (_r_) = o,

where

t O£i )

Now, multiplying by a vector co-state variable t:' and

integrating over the domain

\--_, / d(j = O,

and if q, is differentiable this may be integrated by

parts to give

\ o(, /

where hi are components of a unit vector normal to
the boundary. Thus the variation in the cost func-

tion may now be written

6I = // (p--pd)6p d_ld_3
JJB 14/

f f O_hT k

Jo

+/B (fi/_'T:Fi) d(j. (16)

On the wing surface Bw, fil = n3 = 0 and on the

body and symmetry plane Bs, fil = n,, = O. It



follows from equation

0

6F2 = J , °--_6.
Or2 r

0

0

6F3 = J, _ 6p

0

13) that

/elo_fa.

0

iol\ o_,]

0

on Bw

on Bs.

(17)

Suppose now that I/' is the steady state solution

of the adjoint equation

0¢ -T 0g,
Ot O'i _/ =0 in D. (18)

At the outer boundary incoming characteristics for

_, correspond to outgoing characteristics for 6w.

Consequently, as in the two-dimensional case, one
can choose boundary conditions for v', such that

fii t/'T Ci6w = O.

Then if the coordinate transformation is such that

(JK -]) is negligible in the far field, the only re-
maining boundary terms are

------i-/Rw t/'T6F2 d_ld_3,

- JIBs f'T6F3 d_ld_2.

Thus by letting _, satisfy the boundary conditions,

J _;'2 + 'a- + =
OX2 O.T_ /

( _ '3 0'3 O"2' _ 0 onB._, (19)J ,l,_ + " _ + _" o_-S)

we find finally that

8t = - _ \ Ozc

-i/.{ + ('0"))
w \ o,q / \ o,_] \ o=3

s " \ o=2/ \ o,51J

I'_ol

la: x,y-Plane.

I ,t

lb: ,_, r/-Plane.

Figure 1: Sheared Parabolic Mapping.

Wing Design Using Analytic
Mesh Generation

A convenient way to treat a wing is to introduce

sheared parabolic coordinates as shown in figure l

through the transformation

x = Xo(()+ _a(_ {_2_ (;1+,5,(_,())2}

y = yo(()+a((),_(r/+S(,_,())

Here x = xi, y = x2, z = xa are the (:artesian
coordinates, and c and 71+.q' correspond t,o parabolic

coordinates generated by the mapping

1(2
x+iy=xo+iyo+_ ((){(+i7/} 2

at. a fixed span station ( and q -- q + S. xo (() and

Y0 (() are the coordinates of a singular line which is

swept, to lie just inside the leading edge of a swept

wing, while a (() is a scale factor to allow for span-
wise chord variations. The surface 71= 0 is a shal-

low bump corresponding to the wing surface, with a

height ,5'(_, () determined by the equation

+ iS = _/2 (Xew + iyRw),

where XBw (z) and YBw (z) are coordinates of points

lying on the wing surface. We now treat £' (_, () as
the control.

In this case the transformation matrix _ be-
0t_

COlqles

a(_-_1S¢) --aTI A-an&
K = a (T/+ _S_) at t_ + a_5'<

0 0 1

= Y_ Yn B + Yn'b'_ ,

o o 1

where

= _ "d = x eY,_ - x, ye + 7/v



and

y,_ -x, x,B- y,.A
,I K-1 = _y_ x_ y_.A - .r_B- Jfi.¢

0 0 J

Then under a modification 6S

Thus

and

6x_ = -.(6s& +,)6&)

6x, = -a6S

6v_ = .(6s+_6&)

6y, 7 = O.

6J = 2a2f16S

.

! a6S -aB6S ]
6(JK -1)= - y_ 6x_ w

0 6J

where

W = 6y&A - 6x_B - a,:J6s - 6JS( - J6Sz
I1

Inserting these formulas in equation (20) we find

that the volume integral in el is

f // O¢'r _ .--':_b,b f2 dE dl I d(,

///Of ,T c
JdJ

+f f f Og'T6J-if-(- /3d_ d,j d;,

where S and 6S are independent of _1. Therefore,
integrating over _t, the variation in the cost function
can be reduced to a surface integral of the form

bl =// (T'(_,¢)bS - Q(_,¢)b.b'_ - 1_(_,¢)6S;)d_ d_
JJB W

Here

p = a (_,.,+ &_,3 + Of,4)p

/ 0_.,T- --if-( {&h + ,.f2 + (_A + OB) .f3}d,_

/ 0_',T- _ (fl + .%'_f2+ L'13) d,I

-- / OI/"T J dT/

= .(0i,2 + OV'3)p

01,,, T+ _ {_fl "-b of 2 -k-(_A + 0_) f3} dr]

R = J_'4P

+/of3,,=0_-71a _'4a71, (21)

where
J

c = 2_,)s< - A - to& + -.
(1

Also the shape change will be confined to a boundary

region of the _¢-( plane, so we can integrate by parts
to obtain

= +--_ 6S d(d(..
w

Thus to reduce I we can choose

6S=-A 7' + -_- + ,

where A is sufficiently small and non-negative.
In order to impose a thickness constraint we

can define a baseline surface So (_¢,() below which
S(_,ff) is not allowed to fall. Now if we take

A = A (_, () as a non-negative function such that

.9(G ¢) + 6,5' (_, <) > So (_,C).

Then the constraint is satisfied, while

or

6;=- _ _'+-b-_ + oC]
14'

d_ d( _< 0

0¢3 0n (22)0-Z
To make sure that no discontinuities are introduced

in the modified shape, smoothing can be introduced

in the update process by setting

0 0 6_ = ( --_OQ -:_OT4)

Then, integrating by parts in the _ direction gives

0 0
bl = - //Bw (fllbZ - -_fl_-:_bZ) bZ d, dll

= - fl_bZ _ + -_'-'_f12 6Z d_d_l
w

Wing-Body Design Using
a General Mesh

In order to treat a more general mesh we revert

to equations (14-20). The difficulty in using these
equations is that the variation of the metric terms

in the equations needs to be obtained in order to

construct 61 in equation (20). One way to accom-

plish this is to use finite differences to calculate the

necessary information. While this approach would

avoid the use of multiple flow solutions to determine

the gradient, it would unfortunately still require the
mesh generator to be used repeatedly. The number

of mesh solutions required would be proportional to



thenumberofdesignvariables.Thismaybeaccept-
able,sincetheflowsolutionprocessistypicallymuch
morecomputationallyexpensivethangridgenera-
tion.Suchamethodshouldthenensureasignificant
savingsoverusingfinitedifferencesforboththegrid
generationandflowsolutionprocesses.However,
forthree-dimensionaldesignswhereboththenum-
berof designvariablesandthecomputationalcost
of gridgenerationcanbehigh,this methodis ex-
cessivelyexpensive.Further,forcomplicatedthree-
dimensionalconfigurations,for whichit is still not
practicalto integratefully automaticgridgenera-
tioninto thesolutionprocess,themethodwill not
befeasible.

Thismotivatestheneedto finda methodwhich
by-passesthesedifficulties. In order to remove
thecostof thesuccessivegridgenerationfromthe
gradientcalculation,a successivegridperturbation
methodis thereforeused.In this approach,which
wasalsousedbyBurgreenandBaysal[7],aninitial
structuredcurvilinearbody-fittedgridoverthe ini-
tial configurationiscreatedbyanygridgeneration
processbeforeoptimization.Thenthegeometryas
wellasthegridbecomeinputsto theoptimization
process.Newgrids,whichconformto thesurface
asit ismodified,canthenbegeneratedbyshifting
thegridpointsalongeachgridindexlineprojecting
fromthesurfacebyanamountwhichisattenuated
asthearclengthfromthesurfaceincreases.If the
outerboundaryof thegriddomainis heldconstant
themodificationto thegrid hastheform

X i • Jr- _ s, s, i ,

where x, represents the volume grid points, xs, rep-

resents the surface grid points and S represents the

arclength along the radial mesh line measured from
the outer domain, normalized so that S = 1 at the

inner surface. The required variations in the met-
ric terms can then be obtained in terms of surface

perturbations since,

and

6Xi = s°td6Xs,.

Ox, = So%SOz,, (24)

We introduce,

G,j = J K,_'

ynz ( -- yCz, 7
: y_z¢ -- y_z_

y_z n -- y,]z_

xcz, 7 -- xnz ( x,Tyi -- xCy v

xnz _ -- x_z n x_Yn -- x,Ty _

Now it is convenient to rewrite equation (20) after
integration by parts as

M=+_¢T_(_G,,f.,)d_k

- flow }pd(ld_3

,

g t

(25)

where fj represent the flux components f_ with the
pressure terms dropped. From the definition of (;ij
we have, for example,

= s °'" [_ (y,.) _ + _ (z,) y, - _ (y_.) z, - _ (_,.) y_].

(26)

Substituting these expressions into equation (25) al-

lows us to integrate along the index direction pro-

jecting from the configuration surface without any

dependence on particular design variables, since the

metric variations are fully determined by the surface

perturbations. Thus, the expression for the varia-
tion in the cost function can be reduced to surface

integrals only.

While this type of grid perturbation method does

not guarantee that grid lines will not eventually

cross if the perturbations are large, this point is

irrelevant for gradient calculations since only ana-

lytic grid derivative information is needed. However,

since we employ a numerical optimization algorithm

with line searches along a descent direction, true re-

gridding is also necessary. For these line search cal-

culations the grid perturbation algorithm is used so

long as negative cell volumes are not created. If sin-

gu[arities begin to develop in the grid, the original

grid generator can be used to create a new grid and
the process restarted. In this work a modified ver-

sion of WBGRID is used for automatic generation
of the base grid, and subsequent reinitializations of

the grid if needed.

After substitution of (26), the resulting expres-

sion for 61 is reduced to surface integrals in which

the remaining unknowns are the grid metrics. These

surface grid metrics can be easily determined for

any modification in the surface by direct evalua-

tion. This suggests choosing a set of design variables

which smoothly modifies the original shape, say hi.

The gradient can then be defined with respect to
these design variables as

6I

G(b,) = 6b---i' (_7)

where bl is calculated by (25) with each term b,
being independently perturbed by a finite step.

Therefore, to construct (/, a basis space of inde-

pendent perturbation fimctions b,, _ = 1,2 ..... n

(n = number of design variables) should be cho-

sen that allows for the needed freedom of the design

space. In this work design variables have been cho-

sen with the following chordwise form, suggested by

Hicks and Henne [11, 12]:

b(x) = sin _rx'o*,o(',, )



where tt and t2 control the center and width of the

perturbation and _ is the normalized chord length.

When distributed over the entire chord on both up-

per and lower surfaces these analytic perturbation

functions admit a large design space for each wing

defining station. Then, by choosing a number of

defining stations which reflects a practical design

and linearly lofting the spanwise variations, the en-

tire wing may be designed. An additional twist de-

sign variable is also included at each station to allow

for washout that may be needed. These design vari-

ables have the advantage of being space-based func-

tions, as opposed to frequency-based functions, and

thus they allow for local control of the design. They
can be chosen such that symmetry, thickness, or vol-

ume can be implicitly constrained. Further, partic-
ular choices of these variables will concentrate the

design effort in regions where refinement is needed,

while leaving the rest of the wing virtually undis-

turbed. The disadvantage of these functions is that

they do not necessarily form a complete basis space

when their number is increased, nor are they orthog-

onal. Thus, they do not guarantee that a solution,
for example, of the inverse problem for a realizable

target pressure distribution will necessarily be at-
tained. Here, they are employed for their ease of

use and ability to produce a wide variation of shapes

with a limited number of design variables. Note that

this limited set of design variables does not allow

for planform modifications. However, here the in-
terest is focused on Aerodynamic optimization and

not on true Multi-Disciplinary optimization. In or-

der to accomplish realistic planform design a true

multi-point multi-disciplinary design method incor-

porating all aspects of aircraft direct operating cost

would have to be used, because of trade-offs such as

that between wing span and weight. Here the prob-

lem focuses on squeezing the most performance from

a given planform.

Implementation of the Euler based

design methods

Both of the design methods have been successfully

implemented. The two techniques share many com-
mon features such as the flow and adjoint solution

algorithms. The procedures can be summarized as
follows.

i. Solve the flow equations (7-12) for p, ui, p, E,
H, and Ui.

2. Smooth the cost function if necessary by (23).

3. Solve the adjoint equations (18) for (J snbject
to tbe boundary conditions (19).

4. Either calculate T', Q and R, by (21), from the

variation in the control S ((, (), or evaluate the

surface independent terms in equation (26).

5. Evaluate _ by equation (22) or (27).

6, Then either correct the mapping ,5'(_, () or up-

date the design variables bi based oil the direc-
tion from steepest descent

6S(5,() = -AG or 6bi = -AG

or as an alternative a quasi-Newton method.

7. Return to I.

In practice these methods resemble those used by

Hicks, Reuther et al. [35, 13, 33] with control the-
ory replacing the brute-force, finite difference gradi-

ent calculation. Unlike the earlier procedures, the

current methods' computational costs do not hinge

upon the number of design variables, which in these

cases is either the number of surface mesh points

used to represent S (_, (), or the number of perturba-
tion functions b,. Thus, with the three-dimensional

implementation in hand, nonlinear aerodynamic de-

sign of complete aircraft can be brought into the

realm of computational feasibility. The method also

has the advantage of being quite general in that ar-

bitrary choices for both the design variables and op-

timization technique are admitted.

The practical implementation of the design meth-
ods rely heavily upon fast and accurate solvers for

both the state (w) and co-state (¢) fields. Fur-
ther, to improve the speed and realizability of the

methods, a robust choice of the optimization algo-

rithm must be made. In the present case the sec-

ond author's FLO87 computer program has been

used as the basis of the design method. FLO87

solves the three-dimensional Euler equations with
a cell-centered finite volume scheme, and uses resid-

ual averaging and multigrid acceleration to obtain
very rapid steady state solutions, usually in 25 to

50 multigrid cycles [16, 17]. Upwind biasing is used

to produce nonoscillatory solutions, and assure the

clean capture of shock waves. This is introduced

through the addition of carefully controlled numeri-

cal diffusion terms, with a magnitude of order Ax 3

in smooth parts of the flow. The adjoint equations

are treated in the same way as the flow equations.
The fluxes are first estimated by central differences,

and then modified by downwind biasing through nu-

merical diffusive terms. These are supplied by the

same subroutines as are used for the flow equations.

In the implementation with analytic mapping, a

gradient procedure is used as the optimization pro-

cess. However, to preserve the smoothness of the

profile the gradient is smoothed at each step. Thus

the change in the shape function .5'(_,() is defined

10



bysolving

/9 cO

where L_ is a smoothing parameter. Then, to first

order, the variation in the cost is

= - S (sS2 + _ (5s d_

< O.

Thus an improvement is still asured when smoothing

is used. For the implementation on arbitrary meshes

a quasi-Newton optimization method is employed.

For this purpose the QNMDIF program developed

by Gill, Murray and Wright [10] is used.

The option to minimize the pressure drag coeffi-

cient is realized in both methods by redefining the
cost function as

I =CD - 1 _ pG21d_td_3
5P_aqmSref w

+ I 2 pG31d_ld(2
5P_qooSref s

where Sre f is the reference area. To prevent the pro-
cedure from trying to reduce drag by reducing the

profile to a non-lifting flat plate a target pressure dis-
tribution can be retained in the cost function, which

becomes

l = _ 1 (P- pd) _P d(td(3 + f_2(-Td,
w

where f_l and f2_ are weighting parameters. Similar

constructions are employed for other cost functions

such as

Numerical tests of the

Three-Dimensional Method

Using an Analytic Mapping

The analytic grid generation method has been tested

for the optimization of a swept, wing [22, 21]. Two

examples are presented here. In each the planform

was fixed while the wing sections were free to be

changed arbitrarily by the design method.

In the first example the wing has a unit-semi-

span, with 36 degrees leading edge sweep. It has

a compound trapezoidal planform, with straight ta-
per from a root chord of 0.38 to a chord of 0.26 at

the 30 percent span station, and straight taper from

there to a chord of 0.12 at the tip, with an aspect

ratio of 8.7. The initial wing sections were based

on the Korn airfoil, which was designed for shock
free flow at Mach 0.75 with a lift coefficient of 0.63,

and has a thickness to chord ratio of 11.5 percent

[1]. The thickness to chord ratio was increased by
a factor of 1.2 at the root and decreased by a ratio

of 0.8 at the tip, with a linear variation across the

span. The inboard sections were rotated upwards to

give 3.5 degrees twist across the span.
The two-dimensional pressure distribution of the

Korn airfoil at its design point was introduced as

a target pressure distribution uniformly across the

span. This target is presumably not realizable since

it would imply a lifting wing with zero vortex drag,
but it serves to favor the establishment of a rela-

tively benign pressure distribution. The total invis-

cid drag coefficient, due to the combination of vortex
and shock wave drag, was also included in the cost

function. Calculations were performed with the lift

coefficient forced to approach a fixed value by ad-

justing the angle of attack every fifth iteration of

the flow solution. A grid with 192x32x48 = 294,912

points was used, and the wing shape was determined

by 133 sections each with 128 mesh points for a to-

tal of 4,224 design variables. It was found that the

computational costs can be reduced by using only

15 multigrid cycles in each flow solution, and in each

adjoint solution. Although this is not enough for full

convergence, it proves sufficient to provide a shape

modification which leads to an improvement. Fig-
ures 2, 3, and 4 shows the result of a calculation at
Mach number of 0.82, with the lift coefficient forced

to approach a value of 0.5. The plots show the initial

wing geometry and pressure distribution, and the

modified geometry and pressure distribution after 8

design cycles. The total inviscid drag was reduced

from 0.0185 to 0.0118. The initial design exhibits a

very strong shock wave in the inboard region. It can
be seen that this is completely eliminated, leaving a

very weak shock wave in the outboard region.

To verify the solution, the final geometry, after 8

design cycles, was analyzed with another method,

using the computer program FLO67. This program
uses a cell-vertex formulation, and has recently been

modified to incorporate a local extremurn diminish-

ing (LED) algorithm with a very low level of numer-

ical diffusion [20]. When run to full convergence it
was found that the initial wing has a drag coeffi-
cient of 0.0171 at Mach 0.82 and a lift coefficient of

0.496, with a corresponding lift to drag ratio of 29.

The result is illustrated m Figure 5. The final wing,

shown in Figure 6, has a drag coefficient of 0.0107

with a lift coefficient of 0.497, giving a lift to drag
ratio of 47 at the same Mach number. A calculation

at. Mach 0.50 shows a drag coefficient of 0.0100 for
a lift, coefficient of 0.500. Since in this case the flow

is entirely subsonic, this provides an estimate of the

vortex drag for this planform and lift distribution.

II



Thusthedesignmethodhasreducedtheshockwave
dragcoefficientto about0.0007.

Tilesecondexampleisadesignat a higherMath
numberof0.85,withatargetlift coefficientof 0.55.
This is a moreseveretestof the method,anda
highersweepbackangleof38degreesat theleading
edgewasused.Thewinghasamodifiedtrapezoidal
planform,withstraighttaperfroma rootchordof
0.38,anda curvedtrailingedgein theinboardre-
gionblendingintostraighttaperoutboardofthe30
percentspanstationto a tip chordof 0.10,withan
aspectrationof 9.0.Theinitial wingsectionswere
basedonasectionspeciallydesignedbythesecond
author'stwodimensionaldesignmethod[18]togive
shockfreeflowat Mach0.78with a lift coefficient
of 0.6.Thissection,whichhasa thicknessto chord
ratioof9.5percent,wasusedatthetip. Similarsec-
tionswithanincreasedthicknesswereusedinboard.
Thevariationofthicknesswasnonlinearwithamore
rapidincreaseneartheroot,wherethethickness to

chord ratio of the basic section was multiplied by
a factor of 1.47. The inboard sections were rotated

upwards to give the initial wing 3 degrees of twist

front root to tip. The two dimensional pressure dis-

tribution of the basic wing section at its design point
again was introduced as a target pressure distribu-

tion uniformly across the span. Figures 7 and 8

show the result of the optimization. The total in-

viscid drag coefficient was reduced from 0.0243 to

0.0144. The results of this optimization were also

verified by calculations with FLO67, using a high

resolution LED algorithm. Figures 9 and 10 show

that. when the solutions were fully converged the
drag coefficient was reduced from 0.0236 to 0.0119,

with an improvement in lift to drag ratio from 23 to
46. The result is illustrated in figure 10. A subsonic

calculation at Mach 0.50 shows a drag coefficient of
0.0109 for the same lift coefficient of 0.55. Thus in

this case the shock wave drag coefficient is about
0.0010.

Numerical tests of the

Three-Dimensional Method

for Wing and Wing-Body

Configurations Using a
General Mesh

The first design case involving the arbitrary mesh

implementation is an inverse design to obtain the

ONERA-M6 wing at M = 0.84 and a = 3.06 o. The

fixed alpha design starts from the ONERA-M6 plan-
form but has NACA 0012 airfoil sections instead of

the original sections. The goal is thus to recover the

original ONERA-M6 sections by prescribing its ac-
tual pressure distribution at the desired conditions

as the target. Design variables are specified at 6

defining stations which are then lofted in the span-

wise direction. Twenty-five design variables are used

at each defining station, for a total of 150. They are
specified such that only thickness as a function of

can be adjusted. This choice reflects the fact that

both the initial and final designs are characterized

by symmetrical sections. The pressure distributions
and airfoil sections for both the initial condition and

the target are shown in Figure 11. Figure 12 displays

the solution after 19 design iterations. The target
pressure distribution is almost obtained over most

of the wing, with small discrepancies occurring close

to the leading edge. There are no discernible differ-

ences between the final airfoils and their targets, it

is possible that there are not enough basis functions

to allow exact recovery of the target pressure. How-

ever, the discrepancies may also result simply from

the fact that it would take a considerably greater
number of design iterations to obtain better con-

vergence to a more precise minimum. The design
process was stopped when the rate of reduction in

the cost function between design iterations slowed

considerably.

To explore the wing-body design capability of the

general mesh formulation, a DC-9-30 planform is
used as a testbed. The DC-9-30 is characterized

by a straight tapered wing with an aspect, ratio of

8.7, _l chord sweep of 24.5 °, washout of 4.50 and a

taper ratio of 0.203. The fuselage has a diameter of

11.2 ft and a length of 107.6 ft. Figure 13 shows the
surface mesh generated by WBGRID for the DC-9.

Although the DC-9 cruises at a variety of different

altitudes and Mach numbers its high speed cruise is
M = 0.78.

In our first attempt to redesign the wing con-

tours for the DC-9-30, our starting point uses NA(',A
64A410 airfoil defined at 9 stations across the span
and scaled to 12.6 % thick at the root and 9.4 %

thick at the tip. Even though we are using a rel-

atively fine 161x41x41 mesh, a glance at Figure 13

shows that the body mesh is still relatively coarse.

But since body drag should stay essentially negligi-

ble for inviscid calculations, the inverse of wzng L/D

was used a.s the cost function. This amounts to wing

optimization in the presence of the body. Both air-
foil sections and pressure distributions for the ini-

tial condition are shown in Figure 14. The NA(IA

64A410 airfoil sections cause a strong shock across
the entire upper surface of the wing since it was
never intended for transonic use. A total of 117 de-

sign variables are used to modify the wing. Nine de-

sign variables adjust the twist at each wing defining
station, while 54 design variables modify" the leading

edge shape and another 54 design variables alter the
camber. The use of such a mix of variables demon-

strates the flexibility of our choice of basis functions.

The current choice fixes the planform and maximum

thickness distribution but allows for a large range of

wing shapes. Further, since the majority of the wing
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isdesignedviavariablesthataltercamber and twist,

no prescribed pressure distributions were necessary
to retain thickness.

The wing was optimized in the constant CL mode

and after 16 design iterations it is shown in Figure
15. The pressure distributions demonstrate that a

significant reduction in the shock strength has been

realized at the same time that the leading edge of the

wing has been properly loaded. The wing drag coef-
ficient has been reduced from 0.0248 to 0.0155 while

the wing LID has increased from 18.28 to 28.87.

As in the case for the analytic mesh wing designs,

a subsonic case was analyzed to determine the level

of induced drag present in the configuration. These

calculations revealed that the configuration contains

149 counts of induced drag on the wing; thus the

approximate wave drag coefficient for the optimized
design is 0.0006.

This calculation used 4.8 hours of Cray C-90 single

processor time including all flow and adjoint calcu-
lations. An estimate of the comparable calculation

using finite differences for the gradient calculations
is 160 hours. The calculation therefore shows a fac-

tor of 33 savings in CPU time through the use of
continuous sensitivities.

A second attempt to redesign the DC-9 wing at
a Mach number of 0.80 represents a more difficult

challenge since it pushes the 24.5 ° swept wing well

past its design conditions. Again 117 design vari-

ables were specified such that twist, leading edge
shape, and camber could be modified. The initial

NACA 64A410 airfoil sections and pressure distri-

butions are shown in Figure 16. Figure 17 shows

the result after 15 design iterations where (-TDw has

been reduced from 0.0315 to 0.0167 and the wing lift

to drag ratio has been increased from 14.44 to 26.86.

The remaining component of the coefficient of drag

due to shock waves for this design is about 0.0018.
While this shows a dramatic performance improve-

ment over the original wing it is still not quite as

good ms the wing designed at M = 0.78. This indi-

cates that it may be difficult to obtain a very good

design at this higher Mach number without allowing

a change in thickness, a change in sweep, or a reduc-
tion in the operating lift coefficient. An examination

of the pressures reveals that this design is probably

incurring the additional drag because of a stronger

shock wave that traverses the span.

Conclusions and Recommendations

in the period since this approach to optimal shape

design was first proposed by the author [18], the

method has been verified by numerical implementa-

tion for both potential flow and flows modeled by

the Euler equations [19, 34, 23]. It has been demon-
strated that it can be successfully used with a finite

volume formulation to perform calculations with ar-

bitrary numerically generated grids [34, 23]. Here
results are presented for three-dimensional calcula-

tions using both the analytic mapping and general

finite volume implementations. The design of both

wing and wing-body configurations indicates that

this approach has matured to the extent that it can

be a useful tool for the design of new aircraft. A

factor of 33 savings in CPU time has been accom-

plished through the use of the adjoint formulation.
The clear limitation in these current results is the

reliance on a single structured block for both the

state and co-state fields. In the future our group in-
tends not only to extend the method to treat both

multiblock and unstructured meshes, but also to im-

plement a Navier-Stokes version.
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2a: Initial Wing

= 2b: 8 Design Iterations
('t 0.5001, ('d = 0.0185, c, = _0.958 o Cl=0"4929'('e=0"0118, c'=0.172 °

Figure 2: Lifting Design Case, M = 0.82, Fixed lift Mode.
Drag Reduction
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

Figure 3: Lifting Design Case, M : 0.82, Fixed Lift Mode.

Initial Wing: Modfied Korn
("L = 0.5001, CD = 0.0185, oL = --0.958 °

Drag Reduction
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

Figure 4: Lifting Design Case, M = 0.82, Fixed Lift Mode.

Design after 8 cycles
CL = 0.4929, ('-:D = 0.0118, a = 0.1720

Drag Reduction
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5a: span station z = 0.00

j/- .........

|

5b: span station z = 0.25

.*u ••

!/I-- ...........

5c: span station z -- 0.50

**%

!/P- ............"...

5d: span station z = 0.75

Figure 5:FL067 check on initial wing.

M = 0.82, CL = 0.4959, CD = 0.0171, a = --1.080 °
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6a: span station z = 0.00

o,

6b: span station z -- 0.25

/
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I

6c: span station z = 0.50

/

C

6d: span station z -- 0.75

Figure 6:FLO67 check on redesigned wing.

Al = 0.82, C'L = 0.4975, (';D ----0.0107, C_= 0.200 °
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7a: Initial Wing

('l = 0.5500, Cd = 0.0243, c_ = --0.9620

7b: 10 Design Iterations

(,'l = 0.5500, C'd = 0.0144, _= 0.:274 o

Figure 7: LiftingDesign Case, M = 0.85, Fixed LiftMode.

Drag Reduction



UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

8a: Initial Wing

Lifting Design Case, M = 0.85, Fixed Lift Mode.

('L TM 0.5500, CD = 0.0243, ¢_ = --0.962 °

Drag Reduction

8b: 10 Design Iterations

Lifting Design Case, M = 0.85, Fixed Lift Mode.

(:L : 0.5500, (:D : 0.0144, _ = 0.274 °

Drag Reduction

Figure 8: Lifting Design Case, M -- 0.85, Fixed Lift Mode.

Drag Reduction
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9a: span station : = 0.00

°

!

..if--..........._

9b: span station z = 0.312

•f ÷***o..o,-*•****•*

t

i

9c: span station z = 0.625

t

9d: span station z = 0.93T

Figure 9:FL067 check on initial wing

M = 0.85, (:L = 0.5506, ('D = 0.0236, (_ = --1.260 °
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lOa: span station z = 0.00
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lOb: span station : = 0.312

°°°***o Oo
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I
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lOc: span station z = 0.625

8
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***. ...... .._Oo

°_ "_l,_• •

I

lOd: span station z = 0.937

Figure 10:FL067 check on redesigned wing

,%_'= 0.85, ('L ----0.5500, ('D ----O.O119, c_= 0.2100
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11a span station z = 0.021

• _l _'''_'_'_'_''_'_"

S" ...................... ":

.......... ::::::..

11b: span station z = 0.312

g

• _ **°o** *t**

• ..o* * **%

J,

1

5

11c: span station z = 0.604

:%

,•

• • .,. .... ,. _+Itf_||_f

l

1

11d: span station : = 0.896

Figure 11: Initial condition for ONERA-M6 design.

M = 0.84, (_'L : 0.1723, ('D = 0.0122, c_ = 3.0600

-- × Initial Wing: NACA 0012.

- - -, + Target (,'p: ONERA-M6.

150 Design Variables, 161x41x41 Mesh, Euler Wing/Body Solution

Inverse Design
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12a: span station z = 0.021 12b: span station z -- 0.312

":1, t

/,f. '":"x **
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12c: span station _---- 0.(304

.i.,_ .........'::::-.,,,,.,,,,,_.._

|
!

12d: span station : -----0.896

Figure 12: Solution after 19 iterations for ONERA-M6 design.

M = 0,84, C'L = 0.1651, CD = 0.0078, _ = 3.060 ° .

-- x Initial Wing: NACA 0012.

- - -, + Target (-;v: ONERA-M6.

150 Design Variables, 161x41x41 Mesh, Euler Wing/Body Solution

Inverse Design
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Figure 13:DC-9-30 Planform and Wing-Body mesh

16Zx41x41 C-H Topology
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=

14a: span station z = 5.85 ft. 14b span station z -- ]8.02 ft

.=

.=

• ••= •

(

14c: span station z -- 30.19 ft,

&

&

• •, ........ =._

i

14d: span station z = 42.36 ft.

Figure 14: Initial condition for DC-9-30 design, M -- 0.78

('L = 0.500, CL_ = 0.4535, C'D_ = 0.0248, c_ = --3.7690

117 Design Variables, 161x41x41 Mesh, Euler Wing/Body Solution

Drag Minimization.
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I

15a: span station z = 5.85 ft.

5_

:

C ..................

15b: span station z = 18.02 ft.

15c: span station z -- 30.19 ft.

o

I

15d: span station z -- 42.36 ft

Figure 15:DC-9-30 design after 16 iterations, M = 0.78

CL = 0.500, (;L_ = 0.4478, CD_ = 0.0155, _ = --2.1776 °

117 Design Variables, 151x41x41 Mesh, Euler Wing/Body Solution

Drag Minimization.
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15a: span station z = 5.85 ft. 16b: span station z = ]8.02 ft.

16c: span station z = 30.19 ft.

J- ....... _ _ ._ .

16d: span station z = 42.36 ft_

Figure 161 Initial condition for DC-9-30 design, M = 0,80

CL = 0.500, (:L_ = 0.4556, C'D_ = 0.0315, _ = --3.9600

117 Design Variables, 161x41x41 Mesh, Euler Wing/Body Solution

Drag Minimization.
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17a: span station ; = 5.85 ft. 17b: span station : = 18.02 ft,

• _,,••_• "_••• •_•'i _

17c: span station z = 30.19 ft

• %•

lYd: span station z -- 42.36 ft

Figure 1l: DC-9-30 design after 15 iterations M = 0.80

CL = 0.500, CL_ = 0.4475, C'o_ = 0.0167, c_ = -1.8374 °

117 Design Variables, 151x41x41 Mesh, Euler Wing/Body Solution

Drag Minimization.
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