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Abstract

The nonlinear evolution of long wavdength non-stationary cross-flow vortices in a

compressible boundary layer is investigated and the work extends that of Gajjar (1994) to

flows involving multiple critical layers. The basic flow profile considered in this paper is

that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and

with wall heating or cooling. The governing equations for the evolution of the cross-flow

vortex are obtained and some special cases are discussed. One special case includes linear

theory where exact analytic e_pressions for the growth rate of the vortices are obtained.

Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral

waves to compressible flows. The viscous correction to the growth rate is derived and it is

shown how the unsteady nonlinear critical layer structure merges with that for a Haberman

type of viscous critical layer.



I. Introduction

The transition to turbulence of fluid flows has aroused considerable interest in recent

years and substantial progress has now been made towards understanding the early stages

of transition in many shear and planar boundary layer flows. The use of self-consistent

asymptotic analysis in conjunction with the correct description of the flow structure in

the limit of large Reynolds numbers, has given a remarkable insight into the delicate

balances and different processes operating in a transitional boundary layer. There are

many routes to transitionin a boundary layer.Carefully controlledexperiments with pre-

dominantly two-dimensional disturbances have highlighted the roleplayed by disturbance

three-dimensionality, Nishioka et al (1979), Klebanoff et al (1962), Kachanov & Levchenko

(1984), Corke & Mangano (1989). After an initial stage in which the two-dimensional

disturbances dominate, the onset of three-dimensionality leads rapidly to more complex

structures and nonlinear interactions leading ultimately to turbulence. Much of this initial

linearphase and some of the subsequent complicated nonlinear stage can now be described,

if not quantitatively at least in a convincing qualitativemanner using asymptotic theo-

ries,see for example the papers by Goldstein & Choi (1989,1990), Hall & Smith (1991),

Goldstein & Lee (1992), Wu et al (1993,1994), Smith, & Stewart (1987), Stewart & Smith

(1992), Smith & Bowles (1992), Hultgren (1992), Goldstein (1994).

Our concern here is with the stability of fully three-dimensional boundary layers rather

than two-dimensional boundary layer flows. One of the main differences between the

stability of two and three-dimensional incompressible boundary layers is the occurrence

of cross-flow instability in the latter. Whereas a typical two-dimensional incompressible

boundary layer is not subject to inviscid instability, a three-dimensional boundary layer

almost invariably is. The mechanism was first explained by Stuart in Gregory, Stuart

& Walker (1955) and he showed that in certain flow directions the velocity profile could

be inflexional and hence subject to Rayleigh instability. This instability is known as

cross-flow instability. A two-dimensional compressible boundary layer is also subject to

inviscid instability because of the generalized inflexion point, Lees & Lin (1946), Mack

(1984, 1986). However cross-flow instability is believed to be more important even for

compressible flows, especially at low Mach numbers, because of the much larger growth

rates. Cross-flow instability is the main cause of transition of several flows of aerodynamic

importance such as the flow past swept aircraft wings and the flow near the attachment

line. See for instance the reviews of three-dimensional boundary layer instability by Reed

& Saric (1989) and Arnal (1986). Despite its importance cross-flow instability has not

received as much theoretical attention as the planar case as it deserves.

Many experiments have been performed to study cross-flow instability. The flow over

a rotating disk has been widely used as a prototype of a fully three-dimensional bound-

ary layer flow and has been studied experimentally by Gregory, Stuart & Walker (1955),



Wilkinson & Malik (1983) amongst others. The most commonly observed manifestation

of cross-flow instabilityisthe formation of a pattern of equi-spaced co-rotating stationary

vortices. The stationary cross-flowinstabilityarisesfrom the amplification of zero fre-

quency waves in the boundary layer. A non-stationary_ or a travellingwave, pattern of

cross-flow vorticesisalso possible. In experiments on swept-wing flows Bippes& Nitchke-

Kowsky(1987), Muller & Bippes (1988), Kohama et al (1991), both types of instability

have been found to occur. Poll (1985) has also observed both types of instability in ex-

periments with swept cylinders. Muller & Bippes (1988) have also investigated nonlinear

effects and found that both the stationary and the non-stationary vortices reach a non-

linear equilibrium amplitude. In the experiments of Kohama et al (1991) an explosive

secondary instability was seen prior to the onset of transition to turbulence.

Theoretical investigations of the linear stability of cross-flow vortices have to date

been largely confined to incompressible flows. The stability properties of stationary cross-

flow vortices were first investigated by Gregory, Stuart & Walker (1955). Malik(1986) and

Balakumar & Malik(1990) have computed neutral and growth rate curves for both the

stationary and travelling wave disturbances for the rotating disk. Hall (1986) computed

the corrections to the neutral values for the stationary case in the inviscid limit and also

obtained the structure for the zero shear stress mode discovered by Malik (1986). Bassom

& Gajjar (1988) have looked at various linear and nonlinear aspects of the neutral stability

of non-stationary cross-flow vortices. There have been various studies based on numeri-

cal simulation of either the full Navicr-Stokes equations, Meyer & Kleiser (1988) or an

approximate form such as parabolised stability equations approach of Malik & Li(1992),

Malik it et al. (1994). The numerical simulations show the nonlinear saturation of cross-

flow vortices which is in qualitative agreement with the experiments of Muller & Bippes

(1988).

An objective of the present work isto study the nonlinear evolution of non-stationary

cross-flowvorticesin compressible boundary layersusing unsteady nonlinear criticallayer

theory. The latterhas been successfullyused in the studiesof the instabilityof many planar

boundary layer and shear flows, see for instance the papers cited earlier. Excellent reviews

of the early ideas on nonlinear critical layers are given in Stewartson (1981) and Maslowe

(1986), and more recent work is surveyed in Goldstein (1994) and Cowley & Wu (1994).

The assumptions and scalings used here lead to a fully nonlinear partial differential system

for the evolution of the vortex as in Goldstein, Durbin & Lcib (1987), Goldstein & Leib

(1988), Goldstein & Hultgren (1988), Goldstein & Wundrow (1990), Gajjar (1994), and

not an integro-differential equation of the HickerneU (1984) type. The scalings adopted

are appropriate for low frequency long wavelength cross-flow vortices which have small

growth rates. For shorter waves the weakly nonlinear approach leading to a Hickerncll

type amplitude equation is more appropriate, Gajjar (1995). Gajjar (1994) has studied the



developmentof long wavelength oblique modes on two-dimensional compressible boundary

layers and the present work extends this to three-dimensional boundary layers. The bulk of

the analysis can be simplified through the introduction of appropriate Squire coordinates

and provided variations in the 'cross-Squire' directions are small the analysis is similar to

the two-dimensional case. The situation where the cross-Sqnire variations are not small

has been examined in Gajjar & Arebi (1995) for non-stationary vortices, and in Gajjar

(1995) for the stationary cross-flow vortex. In both cases the analysis lead to a novel

integro-differential equation for the vortex amplitude involving spanwise derivatives of the

amplitude in the kernal function as in Wu (1993).

For low frequency waves, for certain wave angles, there exists two critical layers in the

flow one located near the wall and the other in the main part of the boundary layer. The

flow structure and analysis are therefore very similar to Gajjar (1994) with modifications

for the additional critical layer which occurs in the three-dimensional case. Implicit in the

present analysis is that there is no region of locally supersonic flow near the wall, in the

terminology of Mack (1984). This places a certain restriction on the Mach number.

In section 2 below the problem is formulated for a compressible fluid satisfying the

perfect gas law, and in sections 3 through 5 the analysis leading to the equations governing

the evolution of the vortex is given. Finally we end with some discussion in section 6.

2 Formulation of the Instability Equations

Consider coordinates x t -- (zt,yt,z t) such that z t is directed along the wall, yt is

perpendicular to the wall and z t is in the spanwise direction and such that the corre-

sponding velocity components are given by u t - (ut,vt,wt), where a suffix _ denotes a

dimensional quantity. The Navier-Stokes equations are non-dimensionalised by taking L

to be a typical streamwise lengthscale and U t, a free stream velocity. Also a quantity

_ below denotes a local free stream value. The coordinates (zt,_/t,z t) are written as

(L ,Ly, the  eloaty as (vL,,,vL ,uLw), the pressurept is scaledon
p?U_p, the viscosity /_t is scaled on _#, the bulk viscosity At is scaled with respect

to #_A, the temperatute T t is scaled with respect to TiT, the density pt is scaled with

p_p, and finally the conductivity kt is scaled with k_k. The non-dimensional form of the

equations are:

+ . - 0, (2.1a)

(2.1c)



rM_v=pT, (2.1d)

Oul
eij = {

Ouj

In the above equations the Reynolds number R, Much number M_, and the Prandtl

number Pr are defined by

vLzp vg
R= u--ff_ ' M_-r-_-_ ' P"- -_i-_'

and % is the specific heat at constant pressure, P is the ratio of specific heats, and 7_ is

the gas constant. The Reynolds number is assumed to be large and the Prandtl number

to be constant.

The leading order three-dimensional basic boundary layer flow is taken to be of the

form

Us = (Us(z,Y,z),R-z/ZVs(z,Y,z), Ws(z,Y,z)), (2.2a)

p=ps(z,z), T= TB(z,Y,z), PB = ps(z,Y,z), (2.2b)

where y = R-½ Y defines the boundary layer coordinate Y.

The analysis is simplified through the introduction of Squire coordinates (_., _,), see

Figure 1, along and normal to the direction of propagation of the wave, as follows

_0 _0---, +ah20x flh ), (2.3a)0z

_0
-- .R½(flh ff-_ + _h2 _.-_ +rvh_z), (2.3b)Oz

L ¢9

--+ lrl½ h2(-ac + htr)_ (2.3c)Ot

where the quantities ¢, _. and X in (2.3) are defined by _ = R½h(az + flz - acht),

_. = R_h(az - _?z) and X = R}h2(az + _z). The wave is taken to grow on the slow

X scale. In equations (2.3) a and/9 are defined by a = cos 0,/9 = sin 8, where 0 is the

direction of propagation of the wave. Furthermore c denotes the phase speed of the wave

and a is a real quantity. The quantity h is a scale factor (h << 1) introduced such that

we are considering long waves (based upon the Rayleigh scalings) and the growth rates are

therefore O(h 2).

The cross-flow velocity field is defined by _ = au+flw, if, = -/gu + crw with respect to

the chosen Squire coordinates. With respect to these coordinates the basic flow velocities

are given by,

Os = _us +/gWB, r_S = -/gU_ + _Ws,
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in the _ and _ directions respectively.

The stability analysis depends crucially on the properties of the basic flow near the

wall and the upper critical level and it is assumed that

Crs_$1Y+$2Y 2+..- as Y--.0+,

PB

TB~

_~

_~

PB "_

Ts~

Ro + R1Y +... as Y.--* O+,

So+SlY+... as Y _ O+,

61Y+g2Y 2+... as Y--+0+,

_(r - Yv) + _;(Y - Yu) _+...

R; + R;(Y- Yv) + ... as

s; + s;(Y - Yv) +...

tyvs ,,__; + g;(Y - Yu) +... as

as

Y _ Yv,

Y _ Yu,

Y _ Yv,

Y ---_ Yu ,
(2.4)

where the upper critical level is defined by UB = 0 at Y = Yu. In addition at the outer

edge of the boundary layer we require that

grB .._ U_, WB "-_W=, pB ~ p_, TB "." T_, as Y _ _,

and these outer edge values may depend on z and z in general.

A typical cross-flow velocity profile is of the form as shown in Figure 1 so that A1 and

$_ are of opposite signs. Furthermore the combination Alc is positive.

The main purpose of the analysis below is to determine the wavenumber and the linear

and nonlinear growth rate of the vortex for a presribed mean flow and given frequency w.

The wave-angle 8 is taken to be a parameter and for a fixed value of 0 the position Yu is

also fixed.

3 Stability analysis outside critical layers.

We carry out a perturbation analysis by introducing small disturbances of size 6 and

considering expansions for the perturbed flow quantities. If we ignore the upper critical

layer the bulk of the expansions below follow from those given in Gajjar (1994). The

disturbance size 6 will be fixed subsequently to be of O(h s) such that nonlinear effects first

alter the linear growth rate. For clarity however, and since the flow structure outside the

critical layer is largely dictated by linear dynamics, we work with 6 for the time being. We

first consider the main part of the boundary layer flow for which Y = O(1) and expand

the various flow quantities as

= r_B+ 6(_ + ha, +...), (3.1a)

v=_(h_l+h2_2+...), (3.1b)
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= rV_ + 6(_1 + h_2 +...),

p = pe + _(@1 + h_, +...),

p = pB + 6(A + h_2+...),

(and the perturbed quantities are taken to be independent of _ to this order).

(3.1c)

(3.1z)

(3.10

These expansions (3.1) are substituted into the governing equations (2.1) yielding the

following solutions at leading order

(3.2a, b)

P1 = P1, Pl -- ffioPBy, ff_l = fio¢IYVBy (3.2c, d,e)

where 40 is given by ¢i0= 2(X)exp (i'r¢)+ :.:. _-d ._ = P,_(X) exp(i_) +_.:. and "ris
the wavenumber of the cross-flow vortex.

At next order the analysis yields

P2 = P2 - OBPB_ledY, (3.3a)

ff_2 = ._.Ox I;VBr IYVBr ( dY (3.3c)
i_ p_v_ i_ r_-_Y)"

The constant Y0 is chosen to be such that Y0 > Yu. It can be seen that the integrals in

equation (3.3bc) are singular at the locations where U'B = 0 and this occurs at Y = 0 and

Y = Yu (see Figure 2). Additional expansions must be introduced in order to obtain valid

expressions for the flow quantities near Y = 0 and Y = Yu. In the neighbourhood of the

lower critical layer situated near the wall we introduce regions I+ of thickness O(h) and in

the vicinity of Yu (the upper critical level situated in the m_in part of the boundary layer

flow) regions IY:h are introduced (again of thickness O(h)). Hence the Y = O(1) region

is divided into two regions IId= due to the presence of the upper critical layer Yu in the

main part of the boundary layer, see Figure 2. Moreover we define the unknown functions

A_ in equation (3.3b) such that A_" relates to region II- and A1+ relates to region II+

where fi._ (and h) are functions of _ and X.

Considering first the re_ons I± of thickness O(h) close to the wall we introduce a

coordinate :Y such that Y = hY and the above solutions therefore imply

= hA1Y + h2),2Y _ +... + g(fil + h_ +...), (3.4a)



v --6(h2_1 + h3_2 + ...), (3.4b)

p =pB+ 6(h_1+ h2_,+ .... ), (3.4c)

p = Ro + hR_Y + h2R2I "2 + _(_ + hp2 +...), (3.4d)

=6o+ h_l? +... +S(_I + h_2 + ...). (3.4e)

Substituting into the governing equations we obtain at leading order the solutions

_1 = Pl e_(i_i), Zl, =

--Pl, .Ao, (._l _" -- ac), (3.5a, b)

(_?_ _c), _¢= (_?_ _)- (3.5c, d)

We note the density function has a pole singularity at YL = ac/._l (as indeed does the _1

fluctuation). The requirement that vl --* 0 as Y ---, 0 gives

P1 "-" 2 _c)hR0. (3.6)

At the next order we find

acfio¢ R1 2,_2

_2 = _(_,x), (3.70

where ¢_ are terms arising from the continuation across the lower critical layer at _? = 0,

(where _/= _l :Y - ac) and _ is an tmkaowa function of _ and X.

We now consider the Regions IV:i= near to the upper critical layer situated at Y = Yu

and write Y = Yv + bY*.

From the solutions in region II the flow quantities are expanded as

= h._Y ° + h_Y ._ + ,_(u_ + hu_ + ...),

= _(h_; + h_; + ...),

=_ + _(hp_+ h_ + .... ),

p = R; + hR_Y* + h_R;Y "_ + ,_(p_ + hp_ +...),

(3.8a)

(3.8b)

(3.8c)

(3.8d)

8



= 6_ + h6_Y* + ... + 6(w_ + hw_ + ...),

and substituting into the governing equations (2.1) yields at leading order

• P_c
_1 = /o,(_;Y" -_c),

P; = (/'1" exp(i7¢) + c.c).

At next order

1 2),_acp;_ R;acp;_

a;-j__oLO_ _ p_( { A_aR;2A_ R;;q2 1 /_;_;q2

p; = p;((,x),

(3.8e)

(3.9a)

(3.9b)

(3.10a)

(3.10b)

where r/a = :X_Y* - ac and the ¢_ terms axe from the continuation across the upper critical

layer at ql = 0,/'1" is an unknown function of X and p_ is an unknown function of ( and

X.

The boundary layer flow must also match with the core flow outside of the boundary

layer region hence we consider a far field region (region III Figure 2) where Y = Y/h and

expand in the following manner

= U_o + 6(h12a + h2722 + .... ), (3.11a)

v = g(h_l + h_3_ + .... ),

p = p= + S(hA + .... ),

p = pB + 6(hh + h2_2 +...).

(3.11c)

(3.11d)

Substitution into the governing equations yields at leading order the Prandtl-Glauert equa-

tion for/31 with solution

_1 = (P_e_(--_n_)e_p(i_() + _._), (3.12)

where

and

2 2

U_ML (3.13)
ff = 1 T¢¢ '

,_ = ,,_o_,_p(-TmY)exp(/7(), (3.14a)

9



iPnn
Vlo = pooUoo" (3.14b)

Real quantities axe assumed and 1512 is an unknown function of X. At the next order

the e i'Y¢ component of/32, say iv21, satisfies

(3.15a)

The solution is given by

1521= P2_exp(-Tnl _) exp (i7_), (3.15b)

where

P21 = P21- _c(1- a2)7_llr'_:" + mP11_ ?, (3.15c)
ftUoo

and/521 (X) is a constant of integration. We note that higher harmonics are also present

in 152. The e i'r¢ component of the second order normal velocity disturbance *32 can then be

determined such that

*32 = 'v2oexp(-Tfl?)exp( i7_ ), (3.163)

where

czc7151-----!+ 7aP21. (3.16b)
ip°°TU°°v20 -- Uoo_

4 Derivation of the Amplitude Equation

The amplitude equation governing the evolution of the mode is obtained from match-

ing the expressions obtained for the pressure function and the normal velocity across the

various regions of the flow.

It is convenient to denotethe e i_c componentsof/52,192,A_,A05#, - :l:A0 q_2 by t522,/551

AII,A$11-±" ± ,A$_, respectively. The matching of pressure components across regions H+

and III (equations (3.2c), (3.33), (3.12) and (3.15)) yields at leading order

]512 =/511, (4.1)

and at next order matching gives

]5,-i= 1551- A_211, (4.2)

where

/;11 = (pBO_ - OooVL)dY. (4.3)

In addition from the matching of the leading order normal velocity components in regions

II + and III we obtain

fl]511 = AU_Tpoo. (4.4)

10



Matching the pressures between I + and II- shows that

/511 =Pl

and hence combining (3.6), (4.4) gives the dispersion relation

7p_cU_ = Al_Roac. (4.5)

Next matching the normal velocity components in regions II + and III at higher order

gives using (3.16b),

-A+x Uoo -t- 1)12- "),a /521 , (4.6)
iTU_p_

where

and I_ is a finite quantity given by

po ULdY. (4.7)

Matching the pressure terms (equations (3.2c), (3.3a), ( 3.5c ) and (3. ?b )) across regions

I+ and//-- gives

/511 = P11, (4.8a)

and at next order

/521 -- i_21, (4.8b)

Matching the normal velocity components across these two regions (equations (3.2a),

(3.3b),(3.5b)and y elds

where

D2 =
2iTAzac

1 ./t_ 2>,_. 1 Y,, 1÷ Ro)_Yo ÷(-_o+-'_'1)_inIYo-Y,, I Ro X21nIY°I(

and

I(o) 1 1 1'-- * *2
/zo)u (y _ y.)_ /_,_y2

1 .R_ 2X;. 1 (R1
_- R;A;2( Y - Y,,)(-_o + -_ ) + RoA_Y Ro

2X2

+ 5Z)] dY.

11



Further on applying the boundary condition at the wall (namely that the normal

velocity component at the wall is zero) (3.7a) implies that

-iv7-4 - 2(xcAx
- iTa2c 2 2A2 Rx _ iTRxa2c 2

iTP2z + ( + -_o )(¢11 + In [ezc])A] + ._ = O. (4.8d)

We now consider matching the normal velocity components (equations (3.2a), (3.3b),

(3.9a) and (3.10a)) across regions II and IV. This shows that

"'1 _'"0 _i
(4.9)

Then on elimination of Ax-1 and A+I between (4.6),(4.8c), (4.8d) and (4.9) leads to

the amplitude equation

DsA - 2acf4x i')'Aa2c2 /2A2 RI _ +

+ { + -

where D3 is a purely imaginary constant defined by

7U_opoo n
D3 -- _ _1- i7 tr +

(4.10)

Equation (4.10) shows that the amplitude of the cross-flow vortex is dependent on the

jumps (¢+1 - ¢_-_) and (¢+1 - ¢_1) across the lower and upper critical layers. We consider

next the details of the critical layers.

5 CrRical layer Analysis

By increasing the size of 6 it is found that when 6 is of order O(h 3) nonlinearity

significantly alters the linear growth rate. This is the same as in Gajjar (1994) where

some further justification and a balancing argument may be found. It is interesting to

note that in this long wavelength limit nonlinearity gives rise to an unsteady nonlinear

partial differential equation system governing the evolution of the disturbances, in contrast

to shorter waves where nonlinearity leads to a single Hickernell (1984) type of integro-

differential equation.

We first consider the lower critical layer region (of thickness 0(h2)) and write Y =

h _ + h2_. The flow quantities axe expanded in the following manner
Ax

)t20t2C 2

12



P = ps + h4P_ + hsP[ +..., (5.1c)

p = Ro + hRlac_---7-+ h_n_+"" (5.12)

= h 51ac_
_--7-+ h_rv;+ .... (5.1e)

On substitution into the governing equations (2.1) we obtain (at the first non-triviai order)

L(_)= o, (5.2)

L(q_)- R_ ' (5.3)

where L is the operator defined by

_'-=_ o o _.o, (5.4)

and

_0. = P_*¢
RoAx ' qL = U_.

The upper critical layer, at Yu, is considered next and we write Y = Yu + h_ + h2_lx

and the flow quantities there expand as

=h_c+ h_ _;#_+ _---7. + a_; + a_; +'"' (5.5a)

. = h_" + h_¢;+ h_" + .... , (5.5b)

p = ps + h_._;+ hsP; + ..., (5.5c)

p =P,-; +
hR;ac

+ h2¢_ + .... (5.5d)

Substitution into the compressible Navier-Stokes equations yields

L_(#z) =0, (5.6)

Ll(qu) - R_ 2
(5.7)

13



where L1 is the operator given by

={a + _iLI +

and

) o o _.o__SR + + (5.8°),q2 _-_ o 0_i'

The solutions in the lower critical layer region must be matched with the solutions

in regions I ± (of thickness O(h)) just outside of the critical layer so as to determine the

behaviour of QL and IlL as @ _ 4-oo. Matching using (3.5) and (3:7) yields

qL_2A26+ @ _-_-i W Re(iexp(iT())+""
_ _ ±_o, (5.9)

and
2Rlac - .

II, ~ R16+ _ Re(Aexp(rr())+... as #--. :t:oo. (5.i0)

Similarly from matching the upper critical layer with regions IV ± , equations (3.9)

and (3.10) yields,

(5.ii)

and

as

2R_ nero A1 Re(A exp (iv()) +..., (5.12)

@i -_ -l-oo.

The solutions of (5.2), (5.3), (5.6) and (5.7) together with the amplitude equation, (4.10),

govern the evolution of the vortex. We may rewrite the jump conditions in the form

(5.13a)

and

qu exp (-iV() d@_ d( - 2wacA_/% { 2A_vn;_; _--_-+ i(¢_+- ¢7), (5.13b)

with f* denoting a finite part integral. This enables us to rewrite the amplitude equation

as

14



D3A- 2acAz £72acfo_-/*_.:27rA1 qL exp (--iT( )d#d( =

21rA_ ,Io qu exp (-iT()d#ld(,

where the Ds term gives a correction to the wavenumber.

(5.14)

A more standard form of the equations is obtained by re-normalising using the fol-

lowing scalings:
_k2Gt2C 2

_ 0_2C 2 . *

A_0_+ h----f- + _ = Ald_ZI'

H1 = Rld_H, _1 = R_d_¢,

x- _c 2-20, 7i=C+i0,
A17d_

2 = a;A e_ (-i<0),

d_QL "qL = , qU = d3Qu,

(where X'o and _o are chosen so as to match with upstream conditions).

(5.3), (5.2), (5.7) and (5.6) respectively are rescaled as

The equations

__ 2OQ LOQL +
oJc o_. Re(iA exp (i¢*)) = JRe(iAexp(i_*)) 0--_'

(5.15a)

. OII
or[ + 2 oH R_(iAexp(ii ))-_ =0,O-"-A 0_'---:-

. , OQv O_
A OQU +210Qv Re(iAexp(i¢ ))-_t=J1Re(iAexp(i_*))021o---f oC

. 0¢

A O_ + Z1 0_____ Re(iAexp(i( ))_ =0,ox o(.

and the amplitude equation (5.14) is transformed to

(5._5b)

(5.15c)

(5.15d)

A X - iEl fo2= /;_QL exp (-i_*)d_* dZ-_r

-- Qv exp (-iC)dC d2_ + D3 A
7r

(5.15e)
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where

J __

R_x
Ro

The constants d_, A,J_I,E2 are given by

, Jl =
R_

(5.16a, b)

OL2C2

d_ - 2A_ ' Ds = 2A17d_Ds

A (--_)_ ),I= ,s_(_), W+ ), _=( _-_+-_,_-_

Equations (5.15) must be solved subject to the following boundary conditions

qn ~ (1- s)2 +
Re(Ae_ (_C))

2 "* -4-00, (5.17a)

Re(Aexp(i_*)) Z --_ 4-oo, (5.17b)
n~2+ 2 '

Re(Aew (_¢')) 21 -_ +oo, (5.17,)
qu ~ (1- Ji)21+ 21 '

Re(Aexp(i(')) Z1 _ ::koo, (5.17d)
• ~21+ 21 '

The normalized linear growth rate is _,(de_ed bdow)so that Re(A x/A)_,_,, as R_-oo.

We note that the equations are now of a similar form to the evolution equations

obtained by Goldstein and Wundrow (1990), and Gajjar (1994). The equations (5.15)

are a generalization of those of Gajjar (1994) for flows with multiple critical layers. In

our analysis however viscous effects have been ignored (such effects come into play when

h = O(R)-x/_4), see Gajjar (1994). The equations are then modified to

£,QL - 7_QL$z = JRe(iA exp(i_*))IIz + 7*II zi_' (5.1Sa)

(5.1s_)

(5.1sc)

(5.18d)
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where the operators f,/:u and the constants in (5.18) are given by

0 0 0
E- =+2 "

So_,(So)R-}h-' "r,/P,, (5.19)7c = *s _ 7d =
, Axdx 7

7,=TdJ_ __ 1), 7: - _(So)n;_;a:?7o,

P_u'(s;) 1).
-r; = -r"/ P_, _: = _; J1( 2z;_(s; )

Here Iz(TB) is the viscosity law (So is defined in (2.4)), and because of the assumptions

made in section 2, 7c,7_ take opposite signs.

The equations (5.18), with boundary conditions (5.17) govern the nonlinear evolution

of the cross-flow vortex. Note that for a given basic flow the constants J, J1 are fixed and

the only free parameters are 7c and the wave-angle 0. For the inviscid case 7c is zero.

Linear CrRieal Layer

The linear theory may be recovered from the above equations by first writing

Qz = (1- J)2 + Re(O.r.e_¢" ), Qv = (1- J1)21+ l_e(C_ve_C ),

n = 2 + R_(fWc'), ¢ = 21 + R_(_ _c ),

and then linearising the equations to give

QLx +i2(;L- 7_QL_ =ia + 7,Ii_,

The solution of these equations may be obtained by utilising the Fourier Transform tech-

nique of Hickernell (1984). This gives

_t = ia(2 + _)e"*'_/_H(-ssg_(_'d))sgn(_','),

_* = iACX + As)e "t:''/aH(-s sgn(7_)) sgn(7_),

3-r, (1_ e_p('r_- _o _))}H(__ sgn(.ro))sw(_),
_'_=e_o°_/_a(_c+_){1 (___o) 3 (_20_-a)
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[Td";--7*_(l-exP(-c) _ ss)) H(-ssgn(7:))sgn(7_),
_b e_'_ s3/3 {A(2

f

= + As)t1

where the Fourier Transforms are defined by

f; 1 fL u, exp(isZ)as 'vt(s) = v ew(-i_z) az, v(z)=
oo

with Z being 2, or Za as appropriate. Also in (5.20) H(z) denotes the Heaviside unit

step function. The above solutions agree with those given in Leib (1991) for similar linear

equations. The solutions (5.20) show that

lf2"/': 1/0''/::- QLe -_¢" dC d2 = iTrsgn(Tc), - Que -_¢" dC d2, = iTrsgn(7:).
7f 7r

6. Additional Comments and Discussion

We may use the results in the previous section, or alternatively (5.13), (5.14) with

the appropriate linear jumps, to obtain an expression for the linear growth rate of the

cross-flow vortex. The scaled linear growth rate ,_, is thus given by

RoAaVcrcosO[ 1 .2A2 R,, 1 .2A]_,= _. [-T_0(_-+.glsgn(_,)+ _;r_R;(-_-+ )sgn(_)]. (6.1/

The expression (6.1) may also be expressed as

//0_17,c¢os 0 D(,,_DCrB)sgn(D0_)], (6.2)
J

rlts

where the summation is taken over all critical levels and the expressions inside the sum-
8

mation are evaluated at the critical levels, and D - _-.

As in Gajjar (1994) the unsealed wavenumber, frequency and growth rate terms are:

1
wavenumber //}7. =//½(7 h + ...), frequency //,w. = R}(Th_ccosO + ...),

growthrate //½_. = R½(n,.h _ +...).

Using (3.13),(4.5) the leading term in the expansion for the wavenumber is given by

7.__ _1//°_*(1 - uIM__)½.
vl

The result (6.2) shows that for neutral waves we require

D(psDU'B )
sgn(D[IB)) = 0, , (6.3)

el's
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which is a generalization of the result that D(pBDUB) = 0 for flows with a single critical

level.

Unlike the planar case the result (6.1) shows a more complex dependence of the

growth rate on the wave-augle 8 since A1, A_, A2, A_ depend on 0 through (2.5), (2.6). For

the neutral case the condition that Us - 0 together with (6.3) fixes the position of the

critical level as well as e.

The second important observation stemming from (6.1 / is as follows. For a two-

dimensional insulated, flat plate boundary layer with zero pressure gradient, the growth

rate _ is zero, Gajjar (1994). For a fully three-dimensional boundary layer this is no

longer true because of the presence of the last two terms in (6.1). This shows that for the

stability problem with cross-flow effects present, there is no real distinction between the

insulated and non-insulated cases as the growth rates are of the same order in both cases.

The analysis used to derive (6.1) was based mostly on an inviscid analysis with viscous

effects confined to the critical layers. The Stokes wall layer also contributes to the growth

rate and as Appendix A shows this contribution can be written as

R½ ,= + ...+ R ,h ( ,(S0) )cose\RoTc  ose
+..., (6.4)

where the last term in (6.4) arises from the viscous wall layer. For e not close to _ and

h >> R-_ the Stokes layer contribution in (6.4) is much smaller than the inviscid con-

tribution. As h decreases however the two terms become comparable when h = O(.R-_).

This implies an effective wavenumber of O(R_) and growth rates of O(R_ ). This is pre-

cisely the scaling for the upper-branch of a two-dimensional accelerating boundary layer

in incompressible flow considered by Smith &: Bodonyi (1982), and extended to the three-

dimensional boundary layer case by Bassom & Gajjar (1988). In this limit it is noted

from (5.19) that 7c,7_ are large parameters and as Appendix B shows, for [7cl >> 1 the

unsteady analysis remains largely intact but with the critical layers becoming strongly

viscous critical layers of the Haberman (1972) type. Additional diffusion layers at the

outer edges of the critical layers are necessary to reduce the large mean vorticity jump

produced by the critical layers back to zero outside in the main part of the boundary layer.

When h = O(R-_=), from (5.19) it can be seen that 7c = O(R_). From Appendix B the

thickness of the critical layer is then of O(R-½h27_) = O(R-_) which is the same as in

Smith & Bodonyi (1982). The diffusion layers at the outer edge of the critical layer have

 h ,yg) =thickness O(R -_ _ ts
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Hence in the formal limit when h becomes of O(R- _ ) the linear growth rate is given

by

\ --

+ 2v lclcosa \R01cl-r osa/ / + ....
(6.5)

The condition for neutral waves is obtained by setting the expression given in (6.5) to zero

and it can be seen that a special case of this result agrees with that obtained by Bassom &

Gajjar (1988) for incompressible flow. (The incompressible results are retrieved by setting

ps to be constant).

When h = O(R-_) results for the unsteady nonlinear evolution of the cross-flow

vortex may be similarly deduced. The appropriate expression for the leading term of the

growth rate is then,

t

_"_1 (/_(So))2) ....RI( 7Ald_[ElIm(iCL)+,_c  2Im(iCu)]+ 2v lclcos0 \ lcl-rcos0 + (6.6)

where the nonlinear jumps eL, CU at the lower and upper critical layers respectively, ate

obtained from

- e -if" Qz dZ de', ACu = - e -_¢" Qu-d2 d¢*,
7r JO d-oo 7r

(6.7)

and QL, Qu satisfy the steady versions of (5.19), (see also appendix B). Some results for

eL for the single critical layer version of (5.19) and_with the Chapman viscosity law are

presented in Gajjar & Cole (1989). For nonlinear neutral waves the expression in (6.6) is

set to zero and this again extends the Bassom & Gajjar (1988) results to the compressible

case.

The full unsteady nonlinear problem governed by (5.17), (5.19) involving the solution

of four coupled unsteady nonlinear critical layer equations poses a formidable numerical

task and is not pursued here. The problem is being tackled using the methods, described

in Gajjat (1994), for the single critical level case.
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Summary

In conclusion we have obtained the nonlinear equations governing the evolution of

a long wavelength cross-flow vortex'in a three-dimensional compressible boundary layer.

These equations remain to be solved but the solution properties are of some interest espe-

dally in relation to the question of whether the cross-flow vortices attain an equilibrium

amplitude or not. The one major simplifying assumption used in the present work is that

the cross-Squire variations are small and negligible. The relaxation of this assumption

requires further study but it is expected that as the _ variations gradually increase the

first major non-trivial influence will be felt in the critical layers. The question of shorter

waves is addressed in Gajjar (1995) for the stationary cross-flow vortex where a novel

integro-differential amplitude equation for the vortex has been obtained, and in Gajjar &

Arebi (1995) for the non-stationary case.

Although it has not been done here, it would be interesting to compare the predic-

tions for the linear growth rate as given by (6.1-6.5) with full numerical solution of the

compressible linear stability equations. Comparisons for the single critical layer case are

shown in Gajjar (1994) and good agreement was found particularly for the insulated wall

case. A special case of (6.3),(6.4) includes that for a two-dimensional boundary layer and

it would be interesting to see how the viscous correction to the growth rate compares with

the equivalent 'Orr-Sommeffeld' type or linear stability calculation for the first mode. The

results (6.3),(6.4) obtained here are particularly useful as they provide an alternative route

for investigating the effects of different parameters such as Mach number, wall heating, etc

on the stability properties. Unlike the numerical solution of the linear stability equations,

the analytic results given here may be used in a much more systematic and easier manner

for investigating these different effects.

Finally we have shown how the unsteady critical layer analysis may be linked to the

properties of the steady Haberman type of critical layer. In the limit that the Haberman

parameter (7c as used in this work) becomes large, the major modification required in

the unsteady critical layer structure is the inclusion of appropriate diffusion layers at the

outer edges of the critical layers. The analysis in Appendix B apply equally to other flows

including the accelerating boundary layer and channel flow as considered for example by

Gajjar & Smith (1985). An application of such ideas to channel flow with compliant

boundaries is presented in Gajjar & Sibanda (1995).
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Appendix A

In this appendix we derive the correction to the inviscid growth rate arising from the

Stokes wall layer. For the sake of clarity only the important details are given.

We first note that the thickness of the Stokes layer is given by

y= R-_h-l_, or Y = R-¼h-2_, (A1)

from a balance of the viscous and inertial terms in the Navier-Stokes equations. For the

layer to be thin we require that h > > R-i. Expansions for the flow quantities are readily

written down using (3.4),(3.5) and in particular we have

_t = R-¼h-1)_l_+ 6_tl +...,

v = _R-¼_I +...,

ff_ = gl R- ¼h- l _l + ,£R- ¼h- _ ffh +..., (A2)

p = PB +,5h@1 +...,

p = _ -t-6J:Z-¼h2pl "4- ....

Substitution into the Navier-Stokes equations yields the usual equations for the Stokes

wall layer. These are easily solved and the finite part of the normal velocity component 751

as _ _ c_, say vlf, is calculated to be

Vl.f- macro m '

where

m

t

.(so) ]
This shows that the expansion for the nomal velocity in zone I± is of the form

v = 6(h:_z + hS_2 +...+R ,_,_ +...), (A4)

where we require

=0) (AS)

To find the effect of the displacement (A3) on the growth rate it is necessary to

introduce an additional multiple-scale coordinate X2 defined by
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-- R½(Zh + Zh2 - + ) + "+1Oz

where v is a constant to be found. We now regard A0 as a function of X2 also so that

Ao = (A(X, X2)e,w(i_) + c.c).

The expansions in the various regions axe also modified so that, for example, in the

Y = O(1) region we have

= Us + 6(£1 + h_2 + ... + R-¼h_'£,_ +...),

v = 6(h_1 + h2_2 + ... + R-¼hV+lvai +...),

(A6)

and in region I± we have

= hAlF +... + _(_1 +... +R-ih"_s_ +...),

___
v = 6h2(_1 + ... +R ",vo_ +...,)

t 7 =PB + 6(h_1 + ... + R-¼h-l_,i + ...)

(A7)

For the solutions to match we require v = -2. Substitiution of (A6),(A7), and similar

expansions in the other regions, into the Navier-Stokes equations leads to a sequence of

linear equations for the 'si' quantities which are easily solved. For example

and so on. Solving for each of the 'si' components in turn and matching then leads to

V 2poovB,i oo

Hence setting _- = 0 in (A8) and using (A4),(A5),(4.4),(4.5) shows that

i_a7 A0.
Aox, -- 2cma

This gives the correction to the growth rate as stated in (6.4).
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Appendix B

In this appendix we consider the solution of the system (5.18) with boundary condi-

tions (5.16) in the limit as I%1 becomes large. Without loss of generality we will take 7c to

be positive and write % = el"_c, where el is a constant. It is sufficient to consider just the

lower critical layer as the analysis for the upper critical layer follows analogously. Hence

the governing equations (with some of the suffices dropped) are

oQ oQ . .. oq °_Q - JR_(iAexp(iC))On O'H-='+Z-- -
OX O_* Re(zA exp(,< ))-_ 7_ OZ 2 -_ + e17c OZ 2 ,(Bla)

= OH . . . OHon + z_(:- Re(,ae_(,_ )IT5
OX Pr cgZ 2

with boundary conditions

- 0. (Blb)

Re(A e_p(iC))
Q --,(1 - J)Z + Z +... Z ---*±cx_, (B2a)

n ,,, Z + Re(Aexp(i_')) + ... Z ..-+ 4-oo. (B2b)
Z

For % > > 1 there axe two distinct regions which occur, see Figure 4. A balance of

ZQ¢. term with the viscous term shows that Z = O(7_). This region, which we will denote

by CL1, comprises the main part of the critical layer in which the solution properties are

similar to those for a Haberman type of steady (or equilibrium) critical layer. A balance of

the Qg term with the viscous term shows that Z = O(7_ ), mad we will denote this region

by the label D1. One of the important properties of the Haberman critical layer in region

CL1 is that it generates a mean vorticity jump, see for instance Stewartson (1981). The

main function of the region D1 here, or diffusion layer to use a more familiar terminology,

is to restore the mean velocity jump to zero outside the critical layer as required by (B2).

Thus in region CL1 we set Z = _,_ Zz, A = _'_ A and we have the expansions

Q=Qo+..., H=fro+ ....

Substitution into (B1),(B2) then shows that at leading order Q0, fI0 satisfy

* OTI° 021_° (B3a)z_°O'° Re(i_p(i(*))°0° 050° = sR_(_e_p(i( ))b-_ + ez az_a(. _ az_ '

o_0 Re(i2exp(iC))0_° 02_0
z_ o_. _; oz_ -- 0. (B3b)
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These are just the compressible version of the Haberman equations, see Gajjar & Cole

(1989), and they have the property that

Re(i(.¢) exp(_C))
Q0 "_ (1 - J)Z1 + H±(X) + Z1 +... Za _ -4-oo, (B4a)

Re(i(_)exp(_C)) + ... Zl -_ +oo. (S4b)rio -_ z_ + zx:_(R) + z_

The quantity (H + - H-) is the mean vorticity jump produced by the critical layer. Note

that in (B3),(B4), fi,,H ±, A ± are all dependent on X, but since X appears only as a

parameter these equations are solved exactly as in the steady case.

It is convenient to treat the diffusion layers above and below the critical layers si-
x

Hence in region D1 +, see Figure 3, we set Z = 7_r] and (B4) imply themultaneously.

expansions
2, _2, _2 _$

Q = 7g qo + qx + 3'= "q2 + 7_ * q_ q- 7c _ q4 + -.-,

H = 7_I1o +Ill +7c 2+3'_ 'II3 +7_"_II_ + ....

Substitution into (B1) then fields a sequence of equations given by

r/IIo¢. = 0, yqo¢.= 0, (B6ab)

rlIIl¢. -" O, rlqa ¢. - O,

rlII2c - Re(i._.e iC )l'Io n = O, _q2¢" - Re(iAe i¢" )qo. = JRe(i -_ei¢" )l-Io,r,

rflIs(" + Hey c - Re(i.Ae i¢" )Hln 1- _rHo.. = 0,

_qs¢. + %_ - -_e(iie _c)ql, - qo_ = .TRe(iie_c )U_ + e_o_,,,
1

r]H4(* "}- HIT - Re(iffte IC )H2,7 - _rIIl.,7 = O,

rlq,¢. + q_Yc- Re( liege" )q2.7- qx,, = JRe(iie _c )II,, + e_II_,,.

These equations may be solved in series. First (B6),(B9) show that

(B7ab)

(BS_b)

(Bgab)

(B10ab)

Iio = ,7, qo = (1 - J)n. (Bll)

The solution of (B7) gives

rh = the(X,,7), ql = q,,_(-¢,,_). (B12)

The solution of (BS) yields

_ae(ie_C)
II2 -- Re('A'eiC) + H2M(X,r/), q2 = + q_M(.f(,rl).

,7 rl
(B_)
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If we substitute for II0, q0, II_, ql, II2, q2 into (B10) and use (Bll-B13), then after averaging

(B10) over a period in _" gives

O]'I'IM 02II1M OqlM 02 qlM O2II1M

02 0r/--------5_-- 0, 02 0,/_ -- el 0r/2 (B14a, b)

To match with region CL1 we require that

nlM(2,+0) = _(_¢), q1_(2,+0) = H±(2), (B14c, d).

The problem (B14a,c) is identical to that solved by Smith et a/.(1993) in their investiga-

tion of vortex wave interactions. The solution of (B14) may be obtained using Fourier

transforms and it can be shown that the solutions which decay to zero at ,7 = -4-00 are

given by

I_lV_ f__ "-_"

IfPr=lthen

[_ Inl H_(_)e_P(-_ )
q_M = J-oo 2---Vq ---r'-"TX ds(X - s)i

- e_ 1'71 _ 0

and if Pr # 1 then

e_Z_(_)fF; e_(-_) d_.
(Pr- 1) (X- s)]

The _ refers to the solutions in the regions D ± above and below the regions CL1 respec-

tively.
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Figure 1.--4J B, W B, 0 B are as in the text. Yu is the location of the

upper critical layer. (a) A sketch showing the coordinate system

with the Squire coordinates _ and z- (b) A sketch of typical

velocity profiles for a three-dimensional boundary layer.
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Figure 2.--A schematic diagram showing the various regions of the flow including the critical layers.
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Figure 3.mA sketch of the diffusion layers DL+, and the inner critical layer region CL1.
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