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Abstract

In a paper here last year, [2], an idea was put forward that much greater performance could

be obtained from an observer, relative to a Kalman filter, if more general performance indices were

adopted, and the full power spectra of all the noises were employed. Considerable progress since

then is reported here. Included are an extension of the theory to regulators, direct calculation of the

theory's fundamental quantities -- the noise effect integrals -- for several theoretical spectra, and

direct derivations of the Riccati equations of LQG and Kalman theory yielding new insights.

1 Notation

Uppercase bold roman letters are 2 dimensional arrays; e.g., F. Lowercase bold roman or greek letters

are column vectors; e.g., x. Lowercase greek subscripts are indices. Overdots signify time derivatives;

e.g., & = dx/dt. A T superscript denotes transpose. Overbars signify mean values; e.g., W. Underbars

denote random processes with the bias, if any, removed; e.g., w(t) = w(t) - W. Hats indicate estimates;

e.g., &. Sines and cosines are denoted by s and c respectively.

B = n x w process noise state distribution matrix

ct = state or estimation error settling time concern level

(3 = n x n matrix of white noise Lyapunov constraints

F = n × n plant matrix

g(u) = general controls distribution function

G = n × u controls distribution matrix

h(t) = impulse response function

H = z × n measurement partials matrix

_/= variational Hamiltonian

I = n × n identity matrix

J = overall performance index

Jt = settling time performance index

K = n × z observer feedback gain matrix

L = u x n regulator feedback gain matrix

m -= order of a Butterworth filter or noise source

M = n x n matrix used in the calculation of Px

n = number of elements in the state vector x(t)

N = solution of Lyapunov equation

Px = n × n covariance matrix of x(t)

P_ = n x n covariance matrix of _(t)

Q(w) = n x n combined noise matrix

Rw(0) = average power of w(t)

_(x) = real part of x

Sv(w) = v x v power spectral density of v(t)

Sw(w) = w x w power spectral density of w(t)

t -- time, or more generally, independent variable in state equations

ts = settling time of regulator or observer

Tr[P] = trace of P

u = number of elements in the control vector u(t)

u(t) = u element vector of controls

*President, Analytical Engineering Co., Boulder, CO, 303-530-9641

153



U = u × u controls weighting matrix
v = number of elements in measurement noise vector v(t)

v(t) -----v element measurement noise vector
V = z × v measurement noise distribution matrix

w = number of elements in the process noise vector w(t)

w(t) = w element process noise vector
W = z x w process noise cross distribution matrix

x(t) = n element state vector
X = n × n state weighting matrix

Y = n × w observer process noise effect matrix
z = number of elements in the measurement vector z(t)

z(t) = z element measurement vector
Z = n × n system matrix
0 = zero vector or matrix

r = z × z combined measurement noise matrix

$_ = Kronecker delta (=1 if j = k; =0 otherwise)

8(t) = z element measurement residuals vector

e(t) = n element estimation error vector
e = n × n combined weighting matrix

,_ = eigenvalue of Z
A = n x n matrix of Lagrange multipliers

Z = n x n estimate error weighting matrix

= n × n noise effect integral

w = angular frequency

_c = break frequency of noise spectrum

wh = half power frequency of noise spectrum

2 Regulator and Observer Structure
Throughout this paper, I'll be dealing with systems specified by an n element state vector x(t), obeying
a set of 1st order ordinary differential equations. I'll assume that, after some suitable linearization, these

may be written:
:_(t) = Fx(t) + g[u(t)] + Bw(t) (1)

Here, u(t) is a u element control vector, and w(t) is a w element process noise vector. Each element

wj(t) is regarded as stationary, and described by the power spectral density Swj(w), where w is angular
frequency. Also, F is the "plant" matrix, and W is the process noise distribution matrix, both regarded
as independent of time. While some wj(t) might affect more than 1 state equation, W is constructed

so that all the wj(t) are statistically independent. Finally, the possibly nonlinear g[u(t)] expresses the
effect of the controls on the state.

In a linear proportional regulator, where the intent is to hold x(t) close to zero, in spite of w(t), we take

g[u(t)] = Gu(t) (2)

for some fixed n x u matrix G; and then let

u(t) = -Lx(t)

for some fixed u × n matrix L. When these relations are substituted into (1) there follows:

_¢(t) = Zx(t) + Bw(t)

(3)

(4)

where
Z = F - GL (5)

I shall refer to the n x n matrix Z as the regulator system matrix. It will reappear in another guise

in observer theory below. The next section will deal with new methods for choosing the feedback gain
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matrixL, and how to calculate the performance. As a 1st application, Linear Quadratic Gaussian theory

(LQG) is derivable from this more general theory. A sketch of the proof is given in Section 5.

Turning now to observers, suppose a system is described by the state equations (1). We wish to determine

the current value of x(t) by the use of these, supported by some set of measurements z(t). Suppose further,

that after some suitable linearization, these measurements are described by the model

z(t) = ZB + Hx(t) + Vv(t) + Ww(t) (6)

a z element vector. The 1st term on the right is the assumed known bias in the measurements, partly due

to undesired offsets in the instrument, and partly from the linearization. Next, the assumed fixed z x n

matrix H comes from the linearization, and is known in estimation lingo as the "measurement partials".

The measurements are assumed to be contaminated by some set of v statistically stationary noises v(t).

Like the process noise w(t), a fixed z × v distribution matrix V is introduced to insure that all the vk(t)

are independent. As it sometimes happens that measurements are also contaminated by the process noise,

I have included such a term, with an appropriate distribution matrix W. It was required in [2]; however,

in most practical cases the term can be omitted; still, its presence leads to an interesting generalization.

An observer based on these plant and measurement models starts with an estimate f:(t) of x(t). This is

generated by a computer simulation of the deterministic parts of the plant equations (1), corrected as

follows by the measurements:

x(t) = F_(t) + g[u(t)] + BW + K_(t)

where what estimation types like to call the "residuals" are defined by:

6(t) = z(t) - zB - Hfc(t) - VV - WW

(7)

(s)

that is, the difference between the actual measurements z(t) and their reconstruction in the computer.

Here, the biases W and V in the noises are assumed known. The n x z feedback gain matrix K is named for

Kalman; but in the more general theory in Section 4, it's not derived with the Kalman filter assumptions.

= - x(t) (9)

On introducing the error in the estimate:

the residuals (8) may be rewritten as

6(t) = Vv(t) + Ww__(t) - H_(t) (10)

When this is substituted into (7), and the plant equations (1) are subtracted, there results:

_(t) = ZE(t)+ KVv(t)+ Y__w(t) (11)

in which

Z=F-KH ; Y=KW-B (12)

I will call the n x n matrix Z the observer system matrix, in order to stress the similarity of (11) to

the regulator behavior (4). Indeed, one may regard this observer as a regulator, whose intent is to force
the observation error c(t) close to zero, in spite of all the noises. Observer performance when subject to

arbitrary noise is discussed in Section 6; and the specialization to the now obsolete Kalman theory in
Section 7.

A few observations. In either of these systems, it must be possible to choose the feedback gain (L or

K) such that Z < 0 (negative definite). If this isn't possible, then either (4) or (11) will diverge, and
the system is said to be uncontrollable or unobservable. In what follows, I'll always assume that such a

choice is possible.

155



The theorypresentedheregotstartedabout5 yearsago,whenW. M. McEneaney,in unpublished
notes,demonstratedthattheterminalcovarianceof _(t)in a Kalmanfiltercouldbecalculateddirectly,
if everythingwasstationary,withoutintegratinganydifferentialequations.Theideawasextendedto
regulators,andto arbitrarynoisepowerspectra,in [1].Severalotherpapersonthesubjecthavebeen
written,culminatingin lastyear'spaperhere,[2]. A book[3],examiningthesubjectin muchgreater
depth,andcontainingalltheproofs,isnownearingcompletion.

3 Regulator Performance

In the above regulator, with statistically stationary noise, initial transients will die out, and the statistics

of x(t) will tend to asymptotic values. Of these, the mean and the covariance are the most important.
I'll sketch the results to date of the new theory; but page limits prevent my giving the proofs, or much

discussion. Following that, I'll discuss a more general performance index than is usually seen in regulator

design.

Starting with the mean, if expectation is applied to (4), then after settling:

= -Z-1B_ (13)

where, since Z < 0, it's non-singular. Thus, x(t) has a bias if and only if w(t) has one.

As for the covariance, since (4) is linear, it has a solution for x(t) in terms of an integral over w(t). From
this, the outer product of x(t) with itself may be constructed as a double integral, and the expectation

applied, leading by and by to an expression for the terminal covariance Px of x(t), in terms of a double

integral over the autocovariance of w(t). On applying a Fourier transformation, the expression is con-

vetted to the frequency domain, and after working through another page of dense algebra, this general

result emerges:

FPx= [(Z + _2Z-')- 1N___(w)+ N(w) (Z T + _2z-T)-I] d_ (14)

where N(w) is the solution of the Lyapunov equation

ZN(w) + N(_)Z T = BS_S__(w)BT -_ Q_(w) (15)

Here, S_w(w ) is a diagonal matrix, whose non-zero element Swj j (o)) is the one sided power spectral density

of wj(t). Also, the normalization of the Fourier transform is such that the average power in wj(t) is

FR_j(0) = S__,j_(_,)e_ (16)

Thus, for a given gain L, Z is calculated from (5). Then N(w) is determined by by solving (15) for each

of a dense set of _o values; after which Px is obtained by the numerical integration of (14). Tedious, but

at least all the S___ojj(aJ) vanish above some finite a_, for any practical spectra.

This was the status of the theory in the earlier papers. Since then, a dramatic improvement in this

procedure has been found. By construction from (14) it is easy to show that Px obeys its own Lyapunov
equation:

where

Here, B) is the jth column of B, and

ZPx + PxZ T -_ M___+ M T (17)

M__= Z _jBjBT (18)
j=l

_0 °C{I_j ---- (Z + w2z-l)-Iswjj(cg)dcd (19)

I have calledthese quantitiesthe noise effectintegrals.The current progress in determining these for

severaltheoreticalspectraisgiven in Sections4 and 8. Note that,while numerical integrationmay still

be needed to findsome @j, thereisnow only one Lyapunov equation to solveto get P_.
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In moderncontroltheory,asappliedto regulators,it's commonto measureperformanceby a linear-
quadraticindexasfollows:

d = Tr [(X + LTUL)(Px + _T)] (20)

Here, X is a weighting matrix, intended to express dislike for each of the elements xj(t). In a practical
weighting scheme we require both X > 0, and that it be symmetric. In "Bryson weighting", X is diagonal,

and each Xjj is the inverse square of the level of xj (t) that would cause a given amount of pain. Similarly,

U is a weighting matrix, intended to express dislike for the use of controls. If it's obtained by Bryson

weighting, the diagonal element Ukk is the inverse square of the level of uk(t ) that would cause the same

amount of pain. Note that J is dimensionless, if it's constructed in this way. Overall, if you believe that

this d truly expresses your desires in the design of your regulator, then it only remains to find that value

of the gain L that yields minimum J. I'll not get into the derivation of (20), as it's given in most books
on the subject.

While most theoretical work tends to rely on some variation of (20), there are other issues the designer
must face. Perhaps most important is settling time; i.e., the time for the regulator to recover from

arbitrary initial conditions, or unmodeled disturbances. In the system (4), settling consists of the behavior
of n modes, each of which settles exponentially according to the eigenvalues of Z. More precisely, if some

eigenvalue is A = a + ip, then the settling time of the corresponding mode is -1/a (all a < 0); and the

overall settling time ts is the largest of these.

In the improved theory, concern for settling time is dealt with by adding some function of ts to J. I have

used ts/ct, where ct is the time that yields the same level of pain used in the state and control weightings.
However, a case could be made for using the square of this instead, or perhaps the sum of such terms for

each eigenvalue. In any case, the added term doesn't depend on the noise, only the choice of L.

4 White, Colored, Butterworth Noise

In this section I'll begin the analysis of the noise effect integrals q_, treating those cases where S(w)

doesn't vanish above some finite w. The simplest of these is "white" noise, for which S(w) = S. Note

that, by this definition, white noise can't have a bias, as this would imply an infinite spike at w = 0. Some
readers may have heard me fuhninate against this stuff before; here I'll confine my antipathy to pointing

out that any such process would have to contain infinite power, for which our universe lacks the resources.

Still, the assumption that all noises are white has led to the enormous practical simplifications of LQG

and Kalman theory, to where white noise has acquired a sort of mystical reality. It's my hope that papers

such as this will convince readers that the promise of better performance outweighs mathematical and

numerical simplicity.

Enough fulmination. An involved argument based on an eigensystem decomposition of Z leads to a set
of scalar arctangent integrals. Reconstruction then yields

¢ = -(_/2)SI (21)

where I is the n x n identity matrix. Observe that this result appears to be independent of Z, a property

not possessed by any other S(w) I've looked at. This is the root cause of the simplifications of LQG

and Kalman theory. Not quite independent -- the analysis depends critically on Z < 0. For the reader

interested in verifying this result, caution: of the half dozen or so references on my shelf listing arctangent

expansions, none were completely correct.

Next, colored noise. Some in the field regard any non-white noise as colored; but most accept the

definition of a colored noise u(t) as obeying

_(t) = wc[w(t) - u(t)] (22)

where w(t) is white, and wc is the "break" frequency. The power spectrum of such a process may be
shown to be

S(w)- 2R(0)wc
+ (23)
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where R(0) is the average power. Physically, u(t) is the result of passing white noise through a 1st order

linear filter, whose break frequency is _c. I've never seen such a spectrum, and I doubt that you have; its

utility comes from a well known technique, in which (22) is appended to the plant equations, when the
white noise source is included in either the process or measurement noises, as needed. As the new ideas

don't require this artifice, I'll not discuss it further. Properties of colored noise are that S(_) --- S(0)/2,

and that half of the total power is in the "tail", i.e., in the region wc < w < oc.

If (23) is substituted into (19), a sort of partial fractions expansion causes the white noise integral above

to surface, leading to
cI, = R(0) (Z - wcI) -1 (24)

So long as Z < 0, the matrix on the right is non-singular, and this formula is a big improvement over

infinite numerical integration.

Since real noises generally roll off much faster than colored noise, I have introduced a generalization I've
called "Butterworth" noise. It is the result of passing white noise through an rn pole low pass Butterworth

filter. The power spectrum of such a process may be shown to be:

sm(_) = --s R(0) 1 + -- (25)

Since (25) reduces to (23) for m = l, colored noise might be referred to as 1 pole Butterworth noise.

The property S(wc) = S(0)/2 continues to hold for all m; but the fraction of the total power in the
tail drops rapidly with increasing m; e.g., 0.21945 for m = 2, and .098931 for m = 4. As a practical

matter, instruments troubled by broad band noise frequently have Butterworth circuits added prior to

digitization, to avoid "aliasing z'. The resulting spectrum tends to look rather like (25), with we chosen

well below the sampling frequency. If this sounds like your situation, then m = 4 is what you are most

likely to encounter, as it has a straightforward implementation by a circuit comprising 2 operational

amplifiers.

If (25) is substituted into (19), the same technique used for colored noise works, yielding an analytic

solution good for all m:

= _c s _ R(0)[w_mI+(-1)mZ2m] -'

(-1)_,22JZ 2j-_ csc _r(2m - 2j + 1) _I (26)

It's not hard to show that this reduces to the colored noise effect integral (24) for m = 1. As for more

poles, I'll tabulate the next few:

_2 = R(0)(Z 3- _Z- x/2_3I)(Z 4 + w_I) -1 (27)

where

¢Ia3 1R(0) (2Z 5 2 3 2_,4Z _.,,_I) -z_I) -1= - wcz + + (Z s

3 2
= R(O)(Z2-2o.,cZ+_wcI)(Z-_cI)-'(Z2-_cZ + a:_I) -1 (28)

,1,4=R(o)[z - + (z +

/-

kx = v_- 1 = 0.4142135624 ; k2 = 2_2- v_= 1.5307337295

Additional results for m < 8 will appear in [3].

(29)
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5 LQG Theory

While I have railed against white noise above, it is the foundation of the popular Linear-Quadratic-

Gaussian method of designing some kinds of control systems. For a regulator, the assumptions are that

all the noise is white and has a Gaussian probability density, and that we wish to choose the feedback gain

L to minimize the performance index (20). I'll show how the main results of LQG theory for regulators

may be derived from the new theory. As will be seen, no use is made of the Gaussian assumption, showing

that it's irrelevant in this context.

To begin, if the noise is all white, then _Q(w) is independent of w in (15); so this must also be true of

N(w). Thus, (14) is reduced to a pair of terms involving the white noise effect integral (21), from which

P:: -- -TrlNl; and on substituting this back into (15) we have:

C -- ZPx + DzZ T + 7rQ = 0 (30)

This set of constraints must be enforced while minimizing J. To do this I'll introduce the variational

Hamiltonian

7-/(Px, L, A) -- Tr [OPx + AC] (31)

where A is a symmetrical matrix of Lagrange nmltipliers, and tile last term is really the sum over the

direct product of A and C. Also

O - X + LTUL (32)

and, from (13), the _ term has disappeared, because white noise by definition has no bias.

When formulated ill this way, the necessary conditions for a minimum are that %/(Px, L, A) be stationary,

relative to variations in Px and L. It's not hard to show that the 1st set of conditions leads to another

Lyapunov relation

O + AZ + ZTA 0 (33)

from which it may be shown that A > 0, and is thus non-singular. The other nece._sary condition leads
to

L = U-1GTA (34)

and we see why it was important to make U non-singular. It only remains to expand O and Z in (33),

and eliminate L with (34). After cancelling terins, we are left with

AGU-1GTA ----AF + FTA + X (35)

This is the central result in LQG theory for regulators. After solving this matrix Riccati equation for A,

(34) yields the optimal L; and Px may be obtained by solving the Lyapunov equation (30). If desired,

J may then be found from (20). In other treatments I've seen of this problem, A is introduced by quite

different routes. Its interpretation as a matrix of Lagrange multipliers is, I think, new.

6 Observer Performance

In contrast to the regulator, the inclusion of the known biases in the observer (7) and (8), and the

measurement model (6), mean that the estimate error e(t) is free of bias, as may be seen from (11). The

procedure for determining the covariance P_ of E(t) follows the same plan as that of P_ in the regulator,

leading to the same result (14), with Pe replacing Px- Again, N__(w) obeys a Lyapunov equation:

ZN__(w) + N(_)Z T = KVS_(w)VTK T + y_s_(w)y T - _Q(_o) (36)

There is an important difference from regulator theory -- this time Q__(w) depends on the feedback gain

K -- but the direct evaluation of Pe is pretty much the same. The improved procedure (17) also works

here, with P_ replacing P_; but this time

M_M_= @_[KVlj[KV] T + _ 'I'kYkY_
j:l k=l

(37)
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and as before, [KV]j is the jth column of KV, and Yk is the kth column of Y. Also, @j is again the
noise effect integral (19); while @k is similar, but depending on the measurement noise spectrum Svkk(w).

If observers measured performance in the same way as regulators, then from (20), and the discussion

following it, we would measure observer performance by:

J = Tr [-_P_] + Jt (38)

where _ is a symmetric weighting matrix, expressing our concern for the errors _(t); and Jt penalizes

observer settling time, and is constructed from the eigenvalues of the observer system matrix Z. A

straightforward way to get _, is Bryson weighting, as discussed in Section 3. In contrast with (20), the

bias term is missing because E(t) is unbiased; and the control weighting term is missing, because Pe doesn't

depend on u(t), and control usage isn't a concern of the observer designer. This is the performance index

employed in the new theory; but it's not seen today, largely because Kalman theory (see next section) is

based on a different, and quite inferior idea.

7 Kalrnan Theory

Like LQG theory, Kalman theory for observers can be deduced directly from the more general results in
the last section. A "Kalman filter" is an observer with the structure given in Section 2, but burdened

with 2 rather unfortunate assumptions. One is that all the process and measurement noises are white

and Gaussian, which I have already excoriated in Section 4. The other is that observer performance

be measured by the residuals (8), rather than the estimation errors _(t). Penalizing residuals has some

statistical justification, but fails to consider what designers want to achieve.

In present practice, almost every observer has been constructed from some extension of Kalman theory.

Today's practical filters have been built from a set of improvements introduced by very competent people,

many of whom I have known and respect. However, nearly all of them are essentially applied mathemati-
cians, more concerned with rigor than physical reality and the needs of the designer. Rigor is fine; but it

ain't everything.

I'll begin with the performance index. This is tricky, because, in Kalman theory, the residuals are weighted

by the inverse covariance of the measurement errors, which for white noise is zero. This is usually side

stepped by some flummery involving a Dirac delta function, eventually leading to a performance index of

the form (38), but without the Jt ternl. However, by starting from (10), we can prove without flummery

that the Kalman assumption leads to

J = Tr [HTF-1HP_] = Tr fOPs] (39)

where

r --  (vs v T + ws w T) (40)

Unlike LQG theory, this O doesn't depend on the gains. The 1st term in r corresponds to what's usually
seen in Kalman theory, but the latter comes from including the process noise in the measurement model,

a modest generalization. It should be clear that r will be non-singular, provided some noise contaminates

every measurement.

The next step follows LQG theory. If all the noises are white, then Pe = -nN_... and the Lyapunov relation

becomes
C ----ZPe + PcZ T + nQ__= 0 (41)

We again need to minimize J, relative to K, and subject to the constraints (41). As in Section 5, we may

use a variational Hamiltonian:

7-/(P,, K, A) = Tr fOP, + AC] (42)

and the necessary conditions for a minimum are that it's stationary with respect to variations in PE and

K.

For the 1st set of conditions, the dependence of 7"/(Pe, K, A) on Pe is the same as the earlier 7-/(Pz, L, A)

on Px; so we are again led to (33). This time, the relation only serves to establish that A > 0, and is

therefore non-singular.
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In workingout the 2nd set of necessary conditions, observe that, unlike LQG theory, O doesn't depend
on L, but Q__does. On expanding Z and Y with (12), it can be rewritten as

7rQ = KrK T - K_ T _ _K T + A (43)

where

A - nBSwB T ; @ -- nBSw WT (44)

Differentiation of the Hamiltonian with respect to K is now possible, eventually leading to

K = (P_H T + @) F-' (45)

I'll note that the non-singularity of A and r are both needed in proving (45). Actually, we have already

seen that r can be singular only if some measurement is uncontaminated. If there is no noise, then

= 0, and from (ll), _(t) --* 0; so that Pc = 0, when any K could be chosen, so long as Z < 0. You
can work out intermediate cases yourself.

When (45) is substituted back into (41), an algebraic Riccati equation in Pc emerges:

PcOPc + (q,r- 1H - F)Pc + Pc(HTF-I_ T - F T) A- @r-l@ T - A = 0 (46)

As the only unknown here is Pc, it may be solved for numerically, when (45) immediately yields the
optimal (choke) K. This looks pretty complicated; but if process noise wasn't included in the measurement
model, then _ = 0, and (46) and (45) reduce to well known Kalman results.

As a final note, I'll point out that no use was made of the usual assumption that the noises are Gaussian;
so that assumption is unnecessary. That it was required in Kalman theory may be traced to the need to

equate minimum error covariance to the notion of achieving the maximum likelihood that you've got it
right, a statistical finesse not essential to the theory.

8 Bounded Polynomial Noises

It's often true that measurement noise can be studied in the laboratory, and accurate power spectra

determined. Unexpected bumps in the spectrum may then be used to uncover problems that can be

alleviated by design improvements. By contrast, process noises are hard to measure; and even if known,
have little application in current design practice. Since the new theory demands this information, what

do we do if we can't get it? Well, as a general rule, the better our information, the better our ultimate

performance should be. If our information on some spectrum is poor, any existing measurements should

be combined with physical reasoning to estimate the average power and shape of the spectrum.

If the estimated spectrum shape is analytically simple, it may be possible to evaluate the noise effect

integral (19), for a given Z, without direct numerical integration. This has already been done for several

spectra in Section 4. Here, the general class of shapes characterized by bounded polynomials is examined;

and a few are completely worked out, along with a general procedure for extending the list.

The general problem is solvable provided we can evaluate the class of integrals defined by:

k, t) : fot(Z + w2Z-1)-'wkd._ (47)F(Z,

It can be shown that these integrals are all given by:

It k/2 (-1)J t2j_lzl_2j JF(Z, k, t)= (-l)k/2Z k an-l(tZ-l)+Z2j-1
j=l

(k even) (48)

1 (k-1)/2 (_l)Jt2jz__j ] (k odd)F(Z'k't)=(-1)(k-U/2Zk ln(I+t2Z-2)+ j_l= _ J
(49)
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Fortheseformulasto behelpful,it's necessaryto havea clearunderstandingof what'smeantby the
arctangentandthelogarithmofamatrix.Withconsiderablecareabouttheregionsofconvergence,these
matrixfunctionsmaybedefinedbypowerseriesgeneralizedfromknownscalarseries;althoughI must
againcautionthereaderthat all thestandardreferencesI've seengetat leastthe arctangentwrong.
Anyway,it maybeshownthat,withthesefunctionssodefined,theymaybeevaluatedbytheserelations:

f'tan-l(A) = (A-1 + z2A)-ldx (50)

/'ln0 + A) = (A-1 + _i)-_dy (51)

In both eases, since the integration interval is fixed, evaluation by the Gaussian technique will yield any

required accuracy, without much calculation. Both these formulas run into numerical trouble for large
A; methods for modifying them to remove the difficulties will be given in [3].

For the simplest application of this machinery, consider the flat bounded spectrum; i.e., white noise that
has somehow been cut off sharply. For this, S(co) = R(O)/coc for 0 _< co _< coc, and zero otherwise. On

applying the above relations we find

• -- R(0)cocoF °(z + co2z- 1)-ldco = R(0)F(Z'coc 0, coc)= R(0--)) tan- l(cocz-1)wc (52)

While there is no practical way to generate a process with this spectrum, it may be considered as the

limit of Butterworth noise, with the same R(0) and coc, as m --* oc. I'm not sure how to prove this; but

I've tested it numerically at m = 8, with good agreement.

The next order of complexity is the linear spectrum. It has a peak value at w = 0, drops linearly to zero,

and terminates. More precisely,

S(co) = --R(O)w_(1 - 2-_) (0<co <2coo) (53)

and zero otherwise. On applying the above theory, the corresponding noise effect integral becomes

_ = R(O'---)-)[tan-l(2cocz-1) - l--1-zln(I + 4co2cz-_) ]coc4w_ (54)

Onward. The cubic power spectrum is initially flat, then falls off according to a cubic polynomial,

flattening again and terminating when it reaches zero. The spectrum may be shown to be:

co 2 _ z R(O) 1 coS(w)- n(0) 1-3 +2 -- - 1+ (55)
COC COc

for 0 < co < 2we and zero otherwise. This looks superficially like colored noise; but only 3/16 of the

power is in the tail, compared to half for colored noise; and the frequency within which half of the total

power is found is 0.53277coc, compared to coc for colored noise. This time the noise effect integral turns
out to be

@= R(0__)) i + A___Z2_ tan_, (2co,Z_,) _ Z31n (I + 4w2Z-2) _ _._c
w_ 4coc ]

This spectrum was employed in [2] to describe satellite drag variations, for which very little flight data
exists. However, most of the numerical work was based on a more or less equivalent colored noise

spectrum, as the noise effect integral theory had not yet been implemented.

All these spectra (not including white noise) might be called 2 parameter spectra, as they are completely

prescribed by R(0) and we. There are other possibilities for 2 parameter spectra, and a considerable

range of choices for 3 parameters, none of which have been looked at. Moreover, I believe that most

spectra we're likely to encounter could be reasonably approximated by some combination of bounded

polynomials. Further afield, there are several theoretical spectra, such as that for thermal noise, for

which we might be able to calculate q' analytically.

162



9 Low g_ High Frequency Noises

For theoretical purposes, it's interesting to see what happens if a particular noise spectrum S(w) is

concentrated in a band well below the system dynamics; i.e., wc is much closer to the imaginary axis than

any of the eigenvalues of Z. To do this, we carl let wc --* 0 in each of the above noise effect integrals, while

holding R(0) fixed. Except for white noise, where the idea is meaningless, the results for all spectra are

lira 4 = R(0)Z -1 (57)
OJc --_0

We may conclude that the shape of the spectrum doesn't much matter, if the bulk of the power is well

below the system dynamics. This also serves as a valuable check on the formulas for each 4.

In the converse situation, where wc is well above the system dynamics, i.e., where wc is much further

from the imaginary axis than any eigenvalue of Z, we get a rather different result. This time, since we

expect only the low frequency power to have much effect, we hold S(0) constant, while letting wc ---* oc,

rather than fixing R(0). This time, for every spectrum above,

77

_lim_ 4=- _ S(0)I (58)

As Z doesn't appear in the result, we now find that everything looks like white noise, and the dynamics

make little difference, if they are slow compared to _c- And we have another valuable check on the 4
formulas.

10 What's Next?

The new approach to optimal estimation and control, advanced in this paper, is barely a beginning. If

the history of the development of LQG and Kalman theory is any guide, it will be several years before

the theory will be developed to the point where it sees regular use in design, and begins to enter the

engineering curriculum. After the next few months, my crystal ball gets pretty nmrky; but here is my
vision, for what it's worth.

To begin, I plan to be able to fill orders for [3] before the end of this year. At around 200 pages, it will

greatly amplify on the present paper, including material on noise statistics, power spectra, and matrix

manipulation that's difficult (occasionally impossible) to find elsewhere. Also planned for that book are

an extension of the present theory to cover the practical situation where an observer is used as the source

of information for a regulator; so that both sets of optimal feedback gains need to be found. Fhrther

additions should include a beginning in understanding the transient behavior of the state and estimation

error covariances; and several examples of the application of the theory, showing the improvements that

may be expected relative to LQG or Kalman theory.

Further afield, I see the next major extension is in the area of sampled and quantized measurements,

and discrete updates both in controls and observation. The present theory might be regarded as the

oversampling limit of a fully digital implementation, with unlimited computational resources. This causes

3 new issues to surface. 1st, better performance costs money -- terms could be added to our performance

index penalizing increased digital precision, and more rapid sampling and updates. 2nd, even in the

absence of noise, an exact model of the measurements is no longer possible. That is, all the available

information (the complete set of past measurements and current and prior state estimates) is insufficient

for an exact reconstruction of the current measurement. This is true whether "sample" means a true

point measurement, or an average over the sampling interval. 3rd, settling times may be affected by these

digital details. These issues have all been examined in the context of current practice, but will need to

be revisited within the new performance philosophy.

Another matter of great practical importance will be to deal with non-stationary systems; i.e., those in

which the plant and measurement parameters, and the noise properties, may vary with time. In present

practice, such problems are treated by something amounting to a continuous integration of a matrix

Riccati equation, causing the covariances and feedback gains to evolve in time. Unfortunately, at this

writing, I have no clear view of how these methods might be generalized to encompass arbitrary noise

power spectra. Indeed, even the notion of a quasi-stationary spectrum will need a careful definition.
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There are several other obvious shortcomings. All the noise and measurement biases are here assumed

known and invariant. The techniques of bias estimation and integral control are well known; and it should

be possible to bring them into the new theory, without much difficulty. Another issue is robustness; i.e.,
how to deal with errors in the knowledge of the system parameters. I expect that this will require lots of

work.

Another issue swept under the rug at the beginning of the paper was linearization -- where did all those
fixed matrices come from? While this has long given us pain, and matters are far from settled in current

practice, I doubt that the new theory will be any worse in this respect. And then there are your insights.

Overall, I welcome anyone who wants to contribute to this newborn field. Talk to me.
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