1995121445

## THE APPLICABILITY OF TURBULENCE MODELS TO AERODYNAMIC AND PROPULSION FLOWFIELDS AT McDONNELL DOUGLAS AEROSPACE

### N95-27886

Linda D. Kral, John A. Ladd, and Mori Mani McDonnell Douglas Aerospace St. Louis, Missouri

#### Objective

• Evaluate turbulence models for integrated aircraft components such as the forebody, wing, inlet, diffuser, nozzle, and afterbody

#### Approach

- Integrate turbulence models into existing Navier–Stokes program maintaining zonal philosophy
- Introduce corrections to baseline turbulence models to account for additional affects such as compressibility or separation
- Develop algorithmic improvements for better numerical stability and robustness
- Compare the strengths and weaknesses of turbulence models
- Determine applicability of algebraic, one equation, and two-equation turbulence models for typical complex flows and geometries

## **Turbulence Modeling Capabilities**

- Algebraic Models
  - Cebeci–Smith boundary layer model
  - Baldwin–Lomax boundary layer model
  - P. D. Thomas shear layer model
- One-Equation Models
  - Baldwin-Barth
  - Spalart-Allmaras
- Two-Equation Models
  - High Reynolds number  $k-\epsilon$
  - Low Reynolds number  $k-\epsilon$  (Jones–Launder, Speziale, Chien, Lam–Bremhorst, So, and Huang–Coakley)
  - Wilcox  $k \omega$
  - Menter baseline and shear–stress transport blended  $k-\omega/k-\epsilon$

## Navier–Stokes Time–Dependent Algorithm NASTD

- Euler/Navier-Stokes Equations
  - Laminar or Turbulent
  - Ideal Gas, Thermally Perfect Air, Equilibrium or Nonequilibrium Chemistry
- Finite Volume Formulation
  - Roe and Coakley Flux Difference Split Schemes, Optional TVD Schemes
- Solution Update Procedure
  - Approximate Factorization
  - Runge-Kutta Time Stepping
  - Iterative Space Marching (PNS)
- Geometric Capabilities/Generalizations
  - Zonal Capabilities and Flexible Boundary Conditions
  - Grid Sequencing
  - Overlapping Grids
- Turbulence Models
  - Cebeci-Smith, Baldwin-Lomax and P. D. Thomas Algebraic Models
  - Baldwin-Barth and Spalart Allmaras One-Equation Models
  - Six Low Reynolds Number  $k \epsilon$  Models
  - $k = \omega$  and Menter blended  $k = \omega/k = \epsilon$  Models

### Selected Applications

- Transonic Supercritical Airfoil
- Three-Element High-Lift System
- Single Slot 2–D Ejector Nozzle
- Confluent Mixer
- Highly Offset 3-D Diffuser

## Modifications to Production Term

Default calculation of production:

$$P_{k} = \frac{\bar{\mu}_{t}}{Re} \left[ \frac{1}{2} \left( \frac{\partial \tilde{u}_{i}}{\partial x_{j}} + \frac{\partial \tilde{u}_{j}}{\partial x_{i}} \right)^{2} - \frac{2}{3} \left( \frac{\partial \tilde{u}_{k}}{\partial x_{k}} \right)^{2} \right] - \frac{2}{3} \bar{\rho} \, k \, \frac{\partial \tilde{u}_{k}}{\partial x_{k}}$$

Vorticity used in production:

$$P_k^* = \frac{\bar{\mu}_t}{Re} |\omega|^2$$

Production limiter used:

$$P_k^* = \min(P_k, 20D_k) = \min(P_k, 20 c_2 \rho k Re)$$

## Effect of Production Limiter for the Chien $k-\epsilon$ Model

RAE Airfoil Analysis, Turbulent Viscosity Contours Mach = 0.725,  $\alpha$  = 2.55 deg., Re = 6.5 Million

-----





**RAE Airfoil Analysis**  $M_{\infty} = 0.725, \ \alpha = 2.55^{\circ}, \ Re = 6.5$  Million Effect of Freestream Turbulence Level on Surface Pressure Chien  $k - \epsilon$  Turbulence Model





RAE Airfoil Analysis, Turbulent Viscosity Contours Mach = 0.725,  $\alpha$  =2.55 deg., Re = 6.5 Million



RAE Airfoil Analysis, Mach Contours Mach = 0.725,  $\alpha$  =2.55 deg., Re = 6.5 Million



**RAE Airfoil Analysis**  $M_{\infty} = 0.725, \ \alpha = 2.55^{\circ}, \ Re = 6.5$  Million Effect of Turbulence Model on Surface Pressure



NASTD Solutionof MDA Three-Element High-Lift System



**RAE Airfoil Analysis**  $M_{\infty} = 0.725, \ \alpha = 2.55^{\circ}, \ Re = 6.5$  Million Effect of Turbulence Model on Surface Pressure







#### More Accurate Solutions Have Been Obtained With One-Equation Spalart-Allmaras Turbulence Model

Skin Friction Coefficients on the upper Surfaces

12 March 10 March 10



# Four-Zone Grid for an Ejector Nozzle



Single Slot Ejector Analysis NPR=14., Pts/Ptp=.34 Mach Number Contours from Several Turbulence Models





Single-Slot Ejector Nozzle Analysis  $NPR = 14, P_{t_s}/P_{t_p} = 0.34$   $\mu_t/\mu_l \simeq 100$ Comparison of Predicted Ejector Flow Rates

| Model                        | $W_s/W_p$ | % Error |
|------------------------------|-----------|---------|
| Experiment                   | 0.1010    | _       |
| Thomas/Baldwin-Lomax         | 0.1108    | +9.7    |
| Baldwin-Barth                | 0.1129    | +11.8   |
| Spalart-Allmaras             | 0.1146    | +13.5   |
| Chien $k - \epsilon$         | 0.1168    | +15.6   |
| Jones-Launder $k - \epsilon$ | 0.1126    | +11.5   |
| Speziale $k - \epsilon$      | 0.1127    | +11.6   |
| So $k - \epsilon$            | 0.1148    | +13.7   |
| Huang-Coakley $k - \epsilon$ | 0.1112    | +10.1   |

### Single Slot Ejector Nozzle Surface Static Pressure Comparison with Experimental Data $NPR = 14.0, P_{t_p}/P_{t_p} = 0.34$



Offset Diffuser Analysis Ae/At=1.6, L/D=4.5, Design Pressure Ratio Surface Pressure and Computational Mesh



## Offset Diffuser Analysis Ae/At=1.6, L/D=4.5, Design Pressure Ratio

Comparison of Engine Face Total Pressures



Baldwin-Lomax



Baldwin-Barth



Pt/Pto

.95

Spalart-Alimaras

Offset Diffuser Analysis Ae/At=1.6, L/D=4.5, Design Pressure Ratio Comparison of Engine Face Total Pressures





Offset Diffuser Analysis Upper Centerline Surface Static Pressure  $A_e/A_t = 1.6, L/D = 4.5$ , Design Pressure Ratio



# Three-Dimensional Highly Offset Diffuser

| Model                        | $P_{t_{avg}}/P_{t_{\infty}}$ | $P_{t_{min}}/P_{t_{\infty}}$ | $\frac{P_{t_{max}} - P_{t_{min}}}{P_{t_{avg}}}$ |
|------------------------------|------------------------------|------------------------------|-------------------------------------------------|
| Experiment                   | 0.958                        | 0.890                        | 0.114                                           |
| Baldwin-Lomax                | 0.936                        | 0.708                        | 0.292                                           |
| Baldwin-Barth                | 0.944                        | 0.735                        | 0.265                                           |
| Spalart-Allmaras             | 0.955                        | 0.860                        | 0.140                                           |
| Chien $k - \epsilon$         | 0.970                        | 0.894                        | 0.106                                           |
| Jones-Launder $k - \epsilon$ | 0.966                        | 0.896                        | 0.104                                           |
| So $k - \epsilon$            | 0.975                        | 0.888                        | 0.112                                           |

 $A_e/A_t = 1.6, L/D = 4.5$ , Design Pressure Ratio Comparison of Engine Face Parameters











----

GE Slot Cooled Nozzle, Confluent Mixer Surface Temperature Distributions,  $TGX = (T_I - T_{I_{cold}})/(T_{I_{hot}} - T_{I_{cold}})$ 







#### Summary of Turbulence Modeling at McDonnell Dougalas Aerospace

- The one-equation models have replaced the algebraic models as the baseline turbulence models.
- The Spalart-Allmaras one-equation model consistently performs better than the Baldwin-Barth model, particularly in the log-layer and free shear layers. Also, the Spalart-Allmaras model in not grid dependent like the Baldwin-Barth model.
- No general turbulence model exists for all engineering applications.
- The Spalart-Allmaras one-equation model and the Chien  $k \epsilon$  models are the preferred turbulence models.
- Although the two-equation models often better predict the flowfield, they may take from two to five times the CPU time.
- Future directions are in further benchmarking the Menter blended  $k \omega/k \epsilon$  and algorithmic improvements to reduce CPU time of two-equation model.