1995121474

PROGRESS IN SIMULATING INDUSTRIAL FLOWS USING TWO-EQUATION MODELS: CAN MORE BE ACHIEVED WITH FURTHER RESEARCH?

N95-27895

Vahé Haroutunian Fluid Dynamics International, Inc. Evanston, Illinois

BACKGROUND AND OBJECTIVES

- ▶ Two-equation eddy-viscosity models (TEM's) are the most cost effective for the purposes of applied CFD. Give best accuracy vs. cost balance.
- There is a lot of confusion about true strengths and limitations of TEM's especially that of standard k-ε model.
- We have embarked on extensive study of TEM's over wide range of flows:
 ▷ Identify true strengths and limitations of standard k-ε model.
 - \triangleright Evaluate other TEM's.
 - ▷ Assess emerging models and novel modeling trends.
 - ▷ Identify key areas requiring further research.
- ► This talk provides brief review of TEM's from perspective of applied CFD.
 ▷ It provides objective assessment of both well-known and newer models.
 - > It compares model predictions from various TEM's with experiments.
 - ▷ It identifies sources of modeling error and gives historical perspective of their effects on model performance and assessment.
 - ▷ It recommends directions for future research on TEM's.

REMARK:

- Many reported poor predictions of TEM's are primarily due to combination of improper choice of near-wall model and over-diffuse numerics.
- ► TEM performance can be much improved form further research in:
 ▷ Length scale determining equation.
 - > Advanced (Anisotropic/Nonlinear) Eddy-viscosity models.

155

O About FDI

- ► Over 10 years in business.
- ▶ Primary product FIDAP (FluId Dynamics Analysis Package).

O About FIDAP

- ▶ First commercial general-purpose finite element CFD program.
- ► Models wide range of flows.
- ► Over 700 FIDAP licenses worldwide.

O FIDAP Turbulence Modeling Capabilities

- ► Based on two-equation eddy-viscosity models:
 - \triangleright Standard k- ε model (Launder and Spalding).
 - \triangleright Extended k- ε model (Chen and Kim).
 - ▷ RNG k-ɛ model (Yakhot, Orszag, Thangam, Gatski and Speziale).
- ► Low-Re near-wall modeling based on two-layer approach:
 - > Viscous sublayers spanned by single layer of specialized elements.
 - > van Driest's model used in viscous sublayers.
 - ▷ Interpolation functions based on universal flow profiles.
- Latest turbulence modeling enhancements (to appear soon):
 Anisotropic eddy-viscosity models.
 - \triangleright Wilcox's k- ω model.
 - \triangleright Anisotropic version of the standard k- ε model.

O Typical Industrial User

- ► Design engineer.
- > Trained in fluid mechanics and heat/mass transfer.
- ▶ Familiar with range of flows of interest to his/her organization.
- ▶ NOT CFD expert.
- ▶ Little or no background in turbulence modeling.
- **O** Turbulence Modeling Requirements of Applied CFD Codes
 - Optimal balance of cost and accuracy:
 - Turbulence modeling overhead of critical concern.
 - > Overall accuracy of ± 15% adequate for most cases.
 - ► Consistent performance over wide range of flows:
 - ⊳ Heat/mass transfer
 - ▷ 2-D and 3-D (Cartesian, axisymmetric)
 - ▷ Complex geometries
 - ▷ Transient flows
 - ► Adaptable to a wide range of complex flow physics:
 - ▷ Low-Re effects
 - Variable density/compressibility effects
 - ▷ Combustion
 - ▷ Two-phase
 - Minimum level of user input/intervention:
 - ▷ No fine tuning model coefficients and/or solution parameters.
 - ▷ No physical input other than boundary and/or initial conditions.
 - ► No geometry dependence:
 - \triangleright Distance to wall and/or y⁺ dependence.
 - ▶ Stable numerical characteristics.

O Key Modeling Issues

- 1- Accurate modeling of mechanisms governing $\rho \overline{u'_i u'_j}, \rho \overline{u'_i \partial'}, \rho \overline{u'_i c'_\alpha}$.
 - a) Pressure-scrambling
 - b) Body forces
 - c) Transport effects
 - d) Dissipation
- 2- Accurate modeling of characteristic turbulent length scales.
- 3- Accurate modeling of low-Re near-wall phenomena.
- O Optimal Level of Turbulence Model for Applied CFD
 - ► Second-Moment Closures (DSMC's) and (ASMC's)
 - (+) DSMC's ideally suited to modeling aspects 1-a,b,c above, however,
 - (-) DSMC's costly, especially in 3-D in presence of heat/mass transfer.
 - (-) Geometry dependence in current pressure-scrambling models.
 - (-) ASMC's perform erratically (1-c above not well modeled).
 - (-) ASMC's numerically less stable (stiff equations).
 - Two-Equation Eddy-Viscosity/Diffusivity Models (TEM's)
 - (+) Least costly.
 - (+) No geometry dependence (except some low-Re TEM's).
 - (+) Numerically more stable.
 - (-) Conventional TEM's not suitable for modeling effects 1-a,1-b,&1-c.
 - (+) Room for significant improvement in predicting effects of complex strain and anisotropy through the combined use of improved length scale equations and advanced eddy-viscosity models.
 - (-) Transport effects (1-c), however, cannot be directly predicted.

LENGTH SCALE DETERMINING EQUATION

O THE STANDARD k-ε MODEL

$$\rho \frac{D\varepsilon}{Dt} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + c_1 \frac{\varepsilon}{k} G - c_2 \rho \frac{\varepsilon^2}{k}$$

where,

$$G = -\rho \overline{u_i' u_j'} \frac{\partial u_i}{\partial x_j} \approx \mu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j}$$

and,

 $c_{\mu} = 0.09, c_1 = 1.44, c_2 = 1.92, \sigma_k = 1.0, \sigma_{\epsilon} = 1.3$

Remarks on standard k-ε model:

- ▷ Use is made of Boussinesq's "isotropic" viscosity model.
- \triangleright Fine scale isotropy is assumed in modeling ε equation.
- ▷ Is high-Re model. Must be used with suitable near-wall sub-model.
- ▷ Many reported poor predictions are due to improper choice of near-wall model, mesh density, discretization scheme and boundary conditions.
- ▷ Model predicts much better than commonly believed, if used properly.
- It does however have its shortcomings in predicting difficult flows involving strong anisotropy and/or non-equilibrium effects - it tends to be over-diffuse. It predicts flatter flow profiles, shorter recirculating zones, and occasionally does not predict subtle separation bubbles.

 \bigcirc THE EXTENDED k- ε MODEL OF CHEN AND KIM

- \blacktriangleright Employs modified ε equation containing extra generation term.
- ► Rationale is that in addition to turbulence time scale k/ɛ, there is further time scale pk/G characterizing response of ɛ to mean strain.

$$\rho \frac{D\varepsilon}{Dt} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_i}{\sigma_e} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + c_1 \frac{\varepsilon}{k} G + c_3 \frac{G^2}{\rho k} - c_2 \rho \frac{\varepsilon^2}{k}$$

 $c_{\mu} = 0.09, c_1 = 1.15, c_2 = 1.9, c_3 = 0.25, \sigma_k = 0.75, \sigma_k = 1.15$

- Remarks on extended k- ε model of Chen and Kim:
 - ▷ Is high-Re turbulence model. Needs near-wall model.
 - > Gives similar predictions to standard model in equilibrium flows.
 - ▷ We find Chen and Kim's (1987) recommended model produce
 - predictions that are too under-diffuse in confined flows.
 - \triangleright We have tuned constants $c_1 = 1.35$ and $c_2 = 0.05$ to improve performance
 - Revised model gives better results for some well-known benchmark flows, but improved predictions over standard model are not realized consistently. More experience and possibly fine tuning is needed.

LENGTH SCALE DETERMINING EQUATION

O THE RNG k-ε MODEL

- ► RNG k-ε model has undergone two major revisions.
- ▶ Latest version due to Yakhot, Orszag, Thangam, Gatski, and Speziale

$$\rho \frac{D\varepsilon}{Dt} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + c_1 \frac{\varepsilon}{k} G - R - c_2 \rho \frac{\varepsilon^2}{k}$$

here
$$P_{\mu} = \left(\frac{\partial \mu_i}{\partial u_i} + \frac{\partial \mu_j}{\partial u_k'} \right) \frac{\partial \mu_k'}{\partial u_k'} = c_{\mu} \eta^3 (1 - \eta/\eta_0) \varepsilon^2$$

$$R = \mu \left(\frac{\partial x_i}{\partial x_j} + \frac{\partial y_i}{\partial x_i} \right) \frac{\partial x_i}{\partial x_j} \frac{\partial x_j}{\partial x_j} \approx \frac{1 + \beta \eta^3}{1 + \beta \eta^3} \frac{k}{k}$$

$$\eta \equiv s \frac{k}{\varepsilon}; \quad s = \sqrt{G / \mu_t}$$

and

W

$$c_{\mu} = 0.085, c_{1} = 1.42, c_{2} = 1.68, \sigma_{k} = \sigma_{\varepsilon} = 0.7179, \eta_{0} = 4.38, \beta = 0.015$$

- ► Above version is high-Re turbulence model. Needs near-wall model.
- ▶ Most testing of model has been done with simple near-wall model.
- ▶ Our testing of model with more accurate near-wall model indicates that RNG model is often under-diffusive in internal flows and can be very over-diffusive in some external flows.
- ► We have tuned model constants and obtained better overall predictions. $c_u = 0.0865, c_1 = 1.45, c_2 = 1.83, \sigma_k = 0.8, \sigma_e = 1.15, \eta_0 = 4.618, \beta = 0.17$
- ► Revised model gives better results for some well-known benchmark flows, but improved predictions over standard model are not realized consistently. More experience and possibly fine tuning is needed.

O Additional Remarks on RNG k-ε Model:

- Interesting development though no major breakthrough.
- Most model constants are predicted from RNG theory.
- In applying RNG theory it is assumed that turbulence field has very wide spectrum and that <u>inertial sub-range is isotropic</u>.
- ► Values of model constants predicted by RNG theory are approximate owing to simplifying assumptions made in applying RNG method.
- ▶ Model predictions critically dependent on additional term R.
- ► The R term reflects proposed contributions from fine scale anisotropy.
- ▶ The R term is not derived and modeled using RNG theory.
- The R term has essential similarities with extra term in ε eq'n of extended k-ε model of Chen and Kim.
- Latest model does not predict von Karman constant.
- ▶ The most notable fact about the RNG k-ɛ model of YOTGS is that it challenges the notion of fine scale isotropy of turbulence

 - ▷ It is interesting to note that the assumption of fine scale anisotropy used in modeling R conflicts with notion of a wide and isotropic turbulent spectrum used in applying RNG theory to rest of model.
 - ▷ It is more likely that the turbulent length scale is influenced strongly by large scale anisotropy as characterized by the anisotropy tensor a_#
 - \triangleright Anisotropic eddy-viscosity models can provide estimates of a_{ij} which can be used to design improved length scale determining eqn's.

ADVANCED EDDY-VISCOSITY MODELS (Beyond Boussinesq)

O Anisotropic Eddy Viscosity Models (AEVM's)

- ▶ There has been renewed emphasis in developing AEVM's.
- Lead to better approximations of the normal and shear stresses and therefore turbulence anisotropy effects.
- ▶ In addition to more accurate modeling of $\rho \overline{\mu_i \mu_j}$, AEVM's could potentially be used to improve modeling of:
 - ▷ Length scale determining eq'n.
 - ▷ Generation rate of turbulence energy.
- Examples of AEVM's are:
 - ▷ Lumely (1970)
 - ▷ Speziale (1987)
 - ⊳ Yoshizawa (1984), DIA
 - Rubinstein and Baron (1990), RNG
 - ▷ Taulbee (1992) and Speziale (1993), derived from DSMC's
 - ▷ Launder (1993)

► Remarks:

- Potential of models have been demonstrated using simple tests.
- ▷ Improvements in accuracy often of second-order in magnitude.
- > Not been extensively tested especially for swirling flows.
- > Anisotropic models not yet extended to turbulent heat/mass fluxes.
- ▷ We are presently investigating AEVM's of Speziale (1987) and Launder (1993).

O Wall Function Models

- Produce over-diffuse solutions in off-equilibrium boundary layers.
 Often fail to predict separation or vortex shedding.
- ► Unfortunately still in extensive use in applied CFD codes.

O Specialized Finite Element Model (FIDAP)

- ► Is essentially two-layer model.
- ► Avoids fine near-wall mesh via use of one layer of specialized elements.
- Employs van Driest's low-Re mixing-length model in near-wall layer.
 Combines low cost of wall function models with accuracy of two-layer
- models.
- \triangleright y⁺ dependence confined to single layer and transparent to user.

Remarks:

- Most of historical testing and verification of TEM's has been done using wall functions. The excess diffusion has lead to much confusion in assessing TEM's.
- ▶ Proper assessment of TEM's requires at least two-layer models.
- ▶ Wall function approach is simply unacceptable for applied CFD.

IMPACT OF DISCRETIZATION ERROR

O Sources of Discretization Error:

- ► Grid refinement (grid convergence).
- ► Location of computational boundaries (e.g., outlet, inlet, entrainment).
- ► Choice of discretization scheme in space and time.

Remarks:

- Effect of discretization error has received less attention in turbulence model development and testing.
- Most serious source of error results from discretization of advection terms (i.e., the upwinding scheme).
- ► Common but dangerous upwinding strategy is used in many CFD codes:
 - ▷ Use <u>accurate</u> unbounded scheme in <u>mean flow equations</u>.
 - ▷ Use inaccurate numerically diffuse scheme in turbulence equations.
 - > Overall scheme is stable but often highly diffusive.
 - Most of development and testing of turbulence models has been done using above upwinding strategy.
 - In our computations we employ the accurate streamline upwind (SU) scheme in both mean and turbulence equations.
 - Even more accurate schemes are available which are based on Petrov-Galerkin finite element formulations.
- ▶ Accurate schemes must be used in both mean flow and turbulence eq's.

NUMERICAL RESULTS

- **O Free Jets**
 - ► Round jet
 - ► Plane jet

O Internal Flows with Separation

- ▶ Flow past backward facing step (Kim et. al)
- ► Flow past step in channel with diffuser wall (Driver and Seegmiller)
- ► Flow in pipe expansion (Szszepura)

O Transient Flow (Vortex Shedding)

- ► Flow past square prism (Lyn)
- O 3-D Flow
 - ▶ Flow past passenger car models

REMARKS:

- ► Five sets of model predictions are presented:
 - \triangleright Standard k- ε model
 - ▷ Extended k-ɛ model (original)
 - \triangleright Extended k- ε model (revised)
 - ▷ RNG k-ɛ model with (original)
 - \triangleright RNG k- ε model with (revised)

FREE JETS

The Submerged Plane and Round Jets

	Plane Jet		Round Jet	
	dδ/dx	% error	d\dx	% error
Experiment	=0.105		=0.095	
Standard k-& model	0.104	-1	0.112	18
Extended k-& model (original)	0.10	-5	0.10	5
Extended $k \in \text{model}$ (revised)	0.102	3	0.104	9.5
RNG $k - \varepsilon$ model (original)	0.131	25	0.157	65
RNG $k - \varepsilon$ model (revised)	0.101	-4	0.113	19

TURBULENT FLOW OVER BACKWARD FACING STEP

Kim et al Test Case: Re = 45000

	X _R	% error
Experiment	7.0 ±0.5	
Standard k - ε model	6.5	-7.1
Extended k-& model (original)	8.4	20.0
Extended k-& model (revised)	7.1	1.4
RNG k-& model (original)	7.5	7.1
RNG k-& model (revised)	7.46	6.6

TURBULENT FLOW OVER STEP IN CHANNEL WITH DIFFUSER WALL

Driver and Seegmiller Test Case: Re = 36000

	Angle			
	0 degrees		6 degrees	
	XR	% error	X _R	% error
Experiment	6.2		8.1	
Standard k-E model	5.3	-14.5	6.6	-18.5
Extended k-& model (original)	6.6	6.5	9.55	17.9
Extended $k \in model$ (revised)	5.76	-7.1	7.4	-8.6
RNG k-e model (original)	6.17	-0.5	8.33	2.8
RNG k-e model (revised)	6.11	-1.5	8.33	2.8

TURBULENT FLOW IN PIPE EXPANSION

Szczepura Test Case: Re = 890,000

	X _R	% error
Experiment	9.51	
Standard k - ε model	9.59	0.9
Extended k-& model (original)	12.44	30.8
Extended k-& model (revised)	10.6	11.5
RNG k-& model (original)	11.35	19.5
RNG $k \in \text{model}$ (revised)	11.39	20

TURBULENT FLOW PAST SQUARE PRISM

Lyn's Test Case: Re = 21400

	Strouhal No.	Cd	C ₁
Experiment	0.132 ± 0.035	= 2.0	N.A.
Standard k-E model	0.128	1.68	0
Extended k-& model (original)	0.131	2.56	-0.07
Extended k - ε model (revised)	0.135	2.014	0
RNG k-E model (original)	0.133	2.38	-0.07
RNG k-E model (revised)	0.133	1.9	0

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

- ▶ For applied CFD, TEM's strike balance between accuracy and efficiency.
- ▶ The use of inadequate near-wall models and over-diffuse numerical schemes obscures true performance characteristics of TEM's. And this has lead to much confusion in evaluation of TEM's.
- Consequences of using better near-wall model and accurate numerics are:
 Standard k-ε model performs much better than commonly believed.
 - Extended k-E model with original set of model constants produces under-diffuse predictions.
 - ▷ RNG k-ɛ model with original set of model constants gives predictions that can be both under-diffusive or over-diffusive depending on flow.
 - ▷ The extended and RNG models with revised set of model constants perform better than with original set of model constants.
- Newer models are quite promising, but do not yet perform consistently better than standard k-ɛ model.
- Significant advances in TEM capabilities may potentially result from further research in two key areas:
 - Advanced constitutive-type laws for the Reynolds stresses:
 AEVM's appear to be best candidates.
 - >Improved length scale determining equation:
 - Better modeling of off-equilibrium effects.
 - Better modeling of large-scale anisotropy effects.

-