1995121478

MODELING OF TURBULENT CHEMICAL REACTION

N95-27899

Modeling Turbulent Reacting Flows

Regimes of Turbulent Combustion

Turbulent Reactive Flows edited by P.A. Libby and F.A. Williams (1994)

Turbulent Reactive Flows edited by P.A. Libby and F.A. Williams (1994)

Regimes of Non-Premixed Turbulent Combustion

Turbuient Reactive Flows edited by P.A. Libby and F.A. Williams (1994)

Chemical Closure Models

(1) Laminar Chemistry

 $< \rho w_i >= \rho w_i(\overline{Y}_i, \overline{T})$

(2) Fast Chemistry

$$<\rho w_{i}>\approx -\frac{1}{2}\overline{\rho}\tilde{\chi}_{f}\frac{\partial^{2}Y^{e}(f)}{\partial^{2}f}$$

- (3) Flamelet model $< \rho w_i >= \iint \rho w_i(\eta, \chi_f) P_{f,\chi_f}(\eta, \varepsilon_f) d\eta d\varepsilon_f$
- (4) Assumed PDF: $< \rho w_i >= \int ... \int \rho w_i (\phi_i) \cdot P_{\phi} d\phi_1 d\phi_2 ... d\phi_n$ Assumed the shape of P_{ϕ} .
- (5) Scalar PDF method: Solve for P_{φ} directly.
- (6) Conditional Moment Closure (CMC) $< \rho w_i >= \int < \rho w_i |\eta > P_f(\eta) d\eta$

Flamelet library with one side being burned premixed flame =1.4

Vranos, et al. "Nitric Oxide Formation and Differential Diffusion in a Turbulent Methane-Hydrogen Diffusion Flame," 24th Symposium(International) on Combustion/The Combustion Institute, 1992/pp. 377-384

Vranos, et al. "Nitric Oxide Formation and Differential Diffusion in a Turbulent Methane-Hydrogen Diffusion Flame." 24th Symposium(International) on Combustion/The Combustion Institute, 1992/pp. 377-384

Vranos, et al "Nitric Oxide Formation and Differential Diffusion in a Turbulent Methane-Hydrogen Diffusion Flame," 24th Symposium(International) on Combustion/The Combustion Institute, 1992/pp. 377-384

Advanced Flamelet Approach

Conditional Moment Closure (CMC)

Definition:

$$\langle Y_{i} | \eta \rangle \equiv \langle Y_{i} (\overline{x}, t) | f(\overline{x}, t) = \eta \rangle$$

Equation:

$$<\rho|\eta>\frac{\partial <\mathbf{Y}_{i}|\eta>}{\partial t}+<\rho\tilde{u}|\eta>\cdot\nabla<\mathbf{Y}_{i}|\eta>+\frac{\nabla\cdot\{<\rho u'y'|\eta>P_{r}(\eta)\}}{P_{r}(\eta)}$$
$$= <\rho w_{i}|\eta>+<\rho D_{i}\nabla f\cdot\nabla f|\eta>\frac{\partial^{2}<\mathbf{Y}_{i}|\eta>}{\partial \eta^{2}}$$

Modeling:

$$< w_{i} | \eta > \approx w_{i} (< T | \eta >, < Y_{i} | \eta >, ...)$$

$$< \rho D_{i} \nabla f \cdot \nabla f | \eta > \approx < \rho D_{i} \nabla f \cdot \nabla f > \approx \frac{1}{2} \overline{\rho} \chi_{f}$$

$$< \rho \widetilde{u} | \eta > \approx \overline{\rho} \widetilde{u}$$

$$< \rho u' y' | \eta > \approx 0$$

$$< \rho | \eta > \approx \rho (< Y_{i} | \eta >, < T | \eta >)$$

Conditional Moment Closure (CMC)

NOx Emissions from Turbulent H2 Jet Flames

225

Conditional Moment Closure (CMC)

Applications:

- Incorporated into existing moment closure CFD codes for complex geometry flows
- Realistic Chemistry Detailed or reduced

Research issues:

- Modeling of conditional statistics
- Preferential diffusion
- Parallel computing algorithms

Probability Density Function (PDF)

Applications:

- NO_X from methane jet flames with reduced chemistry
- Sooting flames
- 2-D flows

Research Topics:

- Mixing model
- Extension to droplet spray & particle laden flows
- Preferential diffusion
- Efficient stochastic algorithm
- Construction of chemical tables
- Parallel computing 3D Flows or 2D flows with complex chemistry

Temperature (K)

Departures From Chemical Equilibrium

- Modified Curl's Model (stochastic)

$$-\frac{k}{\alpha=\mathbf{i},\beta=1}\frac{\partial^{2}}{\partial\psi_{\alpha}\partial\psi_{\beta}}\left\{\left\langle\epsilon_{\alpha\beta}|\overline{\phi}=\overline{\psi}\right\rangle\tilde{P}_{\phi}(\overline{\psi},t)\right\}=$$
$$\frac{1}{\tau_{mix}}\left\{\iint_{\psi'\psi''}\left[\frac{\tilde{P}_{\phi}(\psi',t)\tilde{P}_{\phi}(\psi'',t)H(\psi',\psi''|\overline{\psi})-\tilde{P}_{\phi}(\overline{\psi},t)\right]d\psi'd\psi''\right\}$$

- IEM (Interaction-by-Exchange-with-the-Mean) Model (deterministic)

$$-\frac{k}{\alpha=1,\beta=1}\frac{\partial^{2}}{\partial\psi_{\alpha}\partial\psi_{\beta}}\left\{\left\langle\epsilon_{\alpha\beta}|\overline{\phi}=\overline{\psi}\right\rangle\overline{P}_{\phi}(\overline{\psi},t)\right\}=\frac{C_{\phi}}{2\tau_{mix}}\frac{\partial}{\partial\psi_{\alpha}}\left[(\overline{\psi}-\overline{\phi})\overline{P}_{\phi}(\overline{\psi},t)\right]$$

Mixing Frequency: $\omega_{mix}=\frac{1}{\tau}\tau_{mix}$

PaSR: H2/NOx Detailed Chemistry $\phi = 1 \tau = 1 \text{ ms}$

[&]quot;Differential Molecular Diffusion in Reacting and Nonreacting Turbulent Jets of H2/CO2 mixing with Air," L.L.Smith Ph.D. Thesis, University of California at Berkeley (1994)

Computation of Turbulent Reacting Flows

· ____

INTRODUCTION TO TURBULENCE SUBPROGRAM

T.-H. Shih and J. Zhu Institute for Computational Mechanics in Propulsion and Center for Modeling of Turbulence and Transition NASA Lewis Research Center Cleveland, Ohio

OBJECTIVES

- A means for CMOTT to interact with industry
- A vehicle for technology transfer to industry

CONCEPT OF TURBULENCE MODULE

• Exact CFD equations:

$$\frac{D\rho U_i}{Dt} = \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} - \frac{2}{3} \frac{\partial U_k}{\partial x_k} \delta_{ij} \right) - \rho \overline{u_i u_j} \right] - \frac{\partial P}{\partial x_i}$$

• Reynolds stresses will be recasted as:

• CFD equations become:

$$\frac{D\rho U_i}{Dt} = \frac{\partial}{\partial x_j} [(\mu + \mu_T)(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} - \frac{2}{3}\frac{\partial U_k}{\partial x_k}\delta_{ij})] + \frac{\partial T_{ij}}{\partial x_j} - \frac{\partial P}{\partial x_i}$$

• The task of turbulence module: Provide μ_T and T_{ij}

- Turbulence Module:
 - \diamond Input: U_i , ρ and μ ... from the mean flow solver
 - \diamond Output:

$$\mu_T = C_\mu \ \frac{k^2}{\varepsilon} \quad \left[\frac{Dk}{Dt} = \dots, \qquad \frac{D\varepsilon}{Dt} = \dots\right]$$
$$T_{ij} = -\rho \overline{u_i u_j} - \mu_T \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} - \frac{2}{3} \frac{\partial U_k}{\partial x_k} \delta_{ij}\right)$$

- \diamond Models for $\rho \overline{u_i u_j}$
 - One- and two-equation eddy viscosity models
 - Reynolds stress algebraic equation models
 - Reynolds stress transport equation models

Module with CMOTT research code (incompressible)

• CFD equations in CMOTT research code:

$$\frac{D\rho U_i}{Dt} = \frac{\partial}{\partial x_j} [(\mu + \mu_T)(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i})] + \frac{\partial}{\partial x_j} T_{ij} - \frac{\partial P}{\partial x_i}$$

- Turbulence module: provide μ_T and T_{ij}
 - \diamond Built-in models without wall function:
 - Launder-Sharma and Chien $k \varepsilon$ models
 - CMOTT $k \epsilon$ model
 - \diamond Built-in models with wall function:
 - $k \omega$ model, standard $k \varepsilon$ model
 - CMOTT $k \varepsilon$ model
 - CMOTT Reynolds stress algebraic equation model

Module with NPARC code

• CFD equations in NPARC code:

$$\frac{D\rho U_i}{Dt} = \frac{\partial}{\partial x_j} \left[(\mu + \mu_T) \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} - \frac{2}{3} \frac{\partial U_k}{\partial x_k} \delta_{ij} \right) \right] - \frac{\partial P}{\partial x_i}$$

- Turbulence module (present time): provide isotropic μ_T
 - $\diamond~$ Build-in models without wall function:
 - Baldwin-Lomax model and Chien $k \varepsilon$ model
 - CMOTT $k \varepsilon$ model
 - \diamond Further development:
 - Models with wall function
 - Reynolds stress algebraic equation models
 - Reynolds stress transport equation models

Joint Program with Industry on Turbulence Module

- For those who want to use the available modules:
 - $\diamond~$ Need interface program for particular industry codes
 - Grid informations, Boundary treatment, ...
- For those who want a module for their own codes:
 - \diamond Need modules exclusively for particular industry codes
- Maintain and update the turbulence modules along with model development.

DESCRIPTION OF TURBULENCE SUB-PROGRAM

J. Zhu Institute for Computational Mechanics in Propulsion NASA Lewis Research Center Cleveland, Ohio

General Transport Equations

$$\frac{\partial}{\partial t}(rJ^{-1}\rho\phi) + \frac{\partial}{\partial\xi_i}(C_i\phi - D_{i\phi}) = rJ^{-1}S_\phi$$

- Non-dimensional form $(\mu, \ \mu_t \ \Leftrightarrow \ \mu/Re, \ \mu_t/Re)$
- Conservative form
- Cartesian velocity components
 - 1. Easy to transform (chain rule)
 - 2. No curvature terms

Discretization

- Finite-volume method
- Source term

 $S_{\phi}=S_1+S_2\phi, \quad S_1\geq 0 \text{ and } S_2\leq 0$

- Transient term
 - 1. 1st-order fully implicit scheme
 - 2. 2nd-order three-level fully implicit scheme

Diffusion term

Standard central differencing scheme

 Convection term: HLPA scheme (Hybrid Linear/Parabolic Approximation)

 $\phi_w = \phi_W + \gamma (\phi_C - \phi_W) \hat{\phi}_W, \quad \hat{\phi}_W = \frac{\phi_W - \phi_W W}{\phi_C - \phi_W W}$

$$\gamma = \begin{cases} 1 & \text{if } |\hat{\phi}_W - 0.5| < 0.5 \\ 0 & \text{otherwise} \end{cases}$$
- Second-order accurate
- Bounded (non-oscillatory)

Example 2

Solution Procedure

- Non-delta form Positiveness ($\phi \ge 0$ but $\Delta \phi$ may < 0) Simple linearization
- Algebraic equations $A_C\phi_C = A_W\phi_W + A_E\phi_E + A_S\phi_S + A_N\phi_N + S$ A's, $S \ge 0$
- Decoupled solution
- Alternating direction TDMA solver

Boundary Conditions

- Inflow: ϕ specified
- Outflow: Fully-developed condition
- Symmetry: $\partial \phi / \partial n = 0$
- Wall:
 - 1. Low-Reynolds number turbulence models
 - 2. Standard wall-function approach

Sub-Programs

- NPARC2D version
 Plane or axisymmetric, without swirling
 Compressible
 Non-vectorized
- FAST2D version
 Plane or axisymmetric, with or without swirling
 Incompressible
 Vectorized

NPARC2D Version

Grid arrangement
 Control volume centers
 Boundary nodes
 Embedded bodies

K-Patches

- Input from the main code
 - 1. Geometric quantities: $x, y, \xi_x, \xi_y, \eta_x, \eta_y, J$
 - 2. Flow variables: μ , $J^{-1}\rho$, $J^{-1}\rho U$, $J^{-1}\rho V$, $J^{-1}E$
 - 3. Patch control: 5×2 parameters
 - 4. Boundary conditions: 7×2 parameters
- Output
 - 1. To the main code: μ_t
 - 2. For post-processing: $K, \epsilon, y^+, y_n, f_{\mu}$

FAST2D Version

• Vectorization Single-index: ii=i+(j-1)ni $\phi(i,j)=\phi(ii)$ $\phi(i+1,j)=\phi(ii+1)$ $\phi(i,j-1)=\phi(ii-ni)$ Control parameter:

 $\mathsf{KBLK} = \begin{cases} 1 & \text{for computational nodes} \\ 0 & \text{otherwise} \end{cases}$

 $\phi = \mathsf{KBLK} \cdot \phi_c + (1 - \mathsf{KBLK}) \phi_b$

- Input from the main code
 - 1. Geometric quantities: $x, y, x_{\xi}, x_{\eta}, y_{\xi}, y_{\eta}, J$
 - 2. Flow variables: μ , ρ , U, V, W, C_w , C_s
 - 3. Vectorization parameters
 - 4. Boundary parameters

Output

- 1. To the main code: μ_t , T_{ij}
- 2. For post-processing: $K, \epsilon, y^+, y_n, f_\mu$

OVERVIEW OF PROBABILITY DENSITY FUNCTION (PDF) MODELING AT LERC

D.R. Reddy Internal Fluid Mechanics Division NASA Lewis Research Center Cleveland, Ohio

OBJECTIVE

Accurately model the effect of turbulence on chemical reactions in a fluid flow

APPROACH

Use Probability Density Function (PDF) model -Express dependent variables as functions representing statistically realizable events

POSSIBLE MODELING STRATEGIES

2. Assumed PDF - function prescribed Limited range of applicability reaction time << or >> turbulence time scale

PRECEDING PAGE BLANK NOT FILMED

CURRENT APPROACH

- Develop evolution PDF model for compressible reacting flows & extend to spray combustion
- Solve for joint PDF for species and energy using Monte-Carlo technique
- Couple with conventional CFD codes

AREAS OF IMPACT

- NOx Prediction HSCT and AST application
- Spray combustion swirling turb. reacting flows
- Scramjet flow path analysis
- Ignition kinetics prediction of blow-off, etc.
- Combustion instability studies

CODE FEATURES

- Modular can be coupled with any CFD code
- Applicable for compressible flows with discontinuities
- Monte-Carlo solver for generalized curvilinear coordinate system
- Easily adaptable for parallel computation (currently under progress)

CURRENT STATUS

- 2-D and axisymmetric version released (default H2-air chemistry - 5 species)
 - parallel version to be released
- 3-D version demonstrated for supersonic combustion (jet in cross flow)
 - validation planned for HSCT-type configurations
- General chemistry (CHEMKIN)
 - Hydrocarbon spray combustion case currently under study
- CFD codes used RPLUS, ALLSPD, & SIMPLE-type

FUTURE PLANS

- Further application/validation of 3-D model
- Improved closure models mixing and turbulence (use available DNS data)
- Parallel processing workstation clusters
- Unsteady applications long-term
- Extend scope of impact