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INTRODUCTION

THE COMPOSITION JOINT PDF METHOD HAS
BEEN USED TO MODEL A WIDE CLASS OF
GASEOUS TURBULENT REACTIVE FLOWS.
(S.B. POPE)

NONLINEAR CHEMICAL REACTION RATES
COULD BE EVALUATED WITHOUT ANY
APPROXIMATION.

AN EXTENSION OF THE PDF METHOD TO THE
MODELING OF SPRAY FLAMES.

EVALUATE THE LIMITATIONS AND
CAPABILITIES OF THIS METHOD .IN THE
MODELING OF GAS- TURBINE COMBUSTOR
FLOWS.

Composition Joint Pdf Transport Equation

{Mean convection} {Chemical reaetions}

,, 1jo _-[,_ < '-'i I_¢> ,_]_,- [,_< p ,..,,I -,,t,> ,_].,.

{Turbulent convection} {Molecular mizing }

-[_ < Ls=I __> ,)].,.
p

{Liquid - phase ezehange }

/5 = Density-weighted joint tSdf.
Wo = chemical source term for the a-th

composition variable.
< u'_'[ 7/, > = conditional average of Favre velocity

fluctuations.

< Xjo I ¢ > = conditional average of scalar dissipation.p i,zi
I

< ;so [ _¢ > = conditional average of liquid-phase source

term for the a-th composition variable.
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Modeling Aspects of the Pdf Transport Equation

• < u_ I _ > is modeled using a gradient-diffusion model.

• < Z J= [ _b > is modeled using a variant of Curl's model.

• The new term < Z I _ > involving the conditional average
p_a

of liquid-phase source term is modeled based on the average
values of species and enthalpy:

1 1
< -_ 1¢ >= _ _k,_(_ - _=)

for @_,= ],_,,a = 1,2 ..... s = o'- 1

1 1

for _, = h.

MODELING ASPECTS

THE MODELED PDF TRANSPORT EQUATION
PROVIDES THE SOLUTION FOR THE SPECIES
AND TEMPERATURE FIELDS WITH THE MEAN
VELOCITY AND THE TURBULENT
DIFFUSlVITY AND FREQUENCY PROVIDED AS
INPUTS FROM THE CFD SOLVER AND THE
SPRAY SOURCE TERMS FROM THE
LIQUID-PHASE SOLVER.

THE MEAN FLOW AND TURBULENCE
EQUATIONS ARE SOLVED BY A
CONVENTIONAL CFD SOLVER WITH THE
MEAN SPECIES AND TEMPERATURE FIELDS
PROVIDED AS INPUTS FROM THE PDF
SOLVER AND THE SPRAY SOURCE TERMS
FROM THE LIQUID-PHASE SOLVER.

THE LIQUID-PHASE EQUATIONS ARE
FORMULATED IN LAGRANGIAN
COORDINATES WITH APPROPRIATE
CONSIDERATION TAKEN INTO ACCOUNT OF
THE EXCHANGES OF MASS, MOMENTUM,
AND ENERGY BETWEEN THE TWO PHASES.
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NUMERICAL METHOD

• Mean-Flow and Turbulence Equations

- Axisymmetric, Unsteady.

- Incompressible Navier-Stokes (Variable-Density).

- A Standard Two-Equation k-E Turbulence Model.

- A Pressure-Based CFD Solver Based on the

SIMPLE Algorithm of Patankar and Spalding.

• Liquid-phase Equations

- The Spray Model (Raju and Sirignano).

- Dilute Spray Assumption.

- The ODE's for the Particle Size, Velocity, and
Location are Solved Using a R-K Method.

- The PDE's for the Internal Droplet Distribution

(Vortex Model) are Solved by an Implicit Method.

- Droplet Regression Rate is Based on Either a

Gas-Phase Boundary Layer-Analysis or
Low-Reynolds Correlation.

NUMERICAL METHOD

• The PDF Transport Equation

- A Fractional Step Monte-Carlo Method (Pope).

- Spatial Transport, Molecular Mixing, Liquid-Phase
Source Terms, and Chemical Kinetics are

advanced in a Series of Sequential Steps.

- Vectorization

• Interaction Between the Two Phases

Interpolation of the Gas-Phase Properties at the

Particle Location Using an Area-Weighted

Averaging.

The Source Terms Evaluated at the Particle

Location are redistributed among the surrounding

Computational Nodes Using an Area-Weighted

Averaging.
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CHEMICAL KINETICS MODEL

• IT IS BASED ON A SINGLE STEP GLOBAL
MECHANISM OF WESTBROOK AND DRYER

FOR N-DECANE/OXYGEN COMBUSTION.

• THIS GLOBAL COMBUSTION MECHANISM
WAS SHOWN TO PROVIDE ADEQUATE

REPRESENTATION OF TEMPERATURE

HISTORIES IN FLOWS NOT DOMINATED BY

LONG IGNITION DELAY TIMES.

J

--._,,.__ __L

2140 MM

Geometry of the combustion chamber.
(El Banhawy and Whitelaw)
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EXPERIMENTAL DETAILS

• The experimental data corresponds to
the following inflow conditions:

inflow temperature = 310 K,

air mass flow rate = 355 kg/h,
air/fuel ratio =20.17,

swirl vane angle = 45 deg,
swirl number =0.721.

• The reported error in the

measurements is about 10 to 15 % for

the temperature and about 15% for the

velocity.

Details of Fuel Injection

• A fuel nozzle of swirl-atomization type was used.

• The [iquid fuel injection is simulated by injecting

a discretized parcel of liquid mass at the end of

each Ati.jc_i_

• The droplet-size distribution is given by:

3"se-_6.98 (_-2)°"dn 4.21 106 [ D ] dD
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22

2O

111

16

_4

_2

IO

4

2

|

/_ -- _aber i J

/\--.... ,

iiii Ill

"=_==!=_:__ _ _ .
Droplet dlAmeLer, mlcrons

DropletsizeDlstribution

1.0

._ oc
i

.7

.6

.4

.3

.2

.1

e

The initial droplet injection velocity corresponds

to: u_ = 11.0 m/s, wk = 6.1, and v_ = 0.5 - 2.5.
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PARAMETER SELECTIONS

• The computations were performed on
a grid with a mesh size of 60x60.

• The PDF solution is obtained by
making use of 250 particles per cell.

• Dtg = Dtinjectio n = 1.5 ms, Dt k =

0.0375 ms, and DtMonte_Carl ° =
0.015 ms.

• Two CPU seconds on a CRAY Y-MP

per one Dtg and about 2 to 3 CPU

hours - 4000 time steps - for the

solution to reach steady state.

, VJzc#yvectormL

Temperature contours and droplel locations.
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Photograph of swirl-stabilized, spray flame.
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CONCLUDING REMARKS

The comparisons show that the general features of
the flowfield are correctly predicted by the present
solution procedure.

The present solution appears to provide a better
representation of the temperature field, particularly, in
the reverse-velocity zone•

The overpredictions in the centerline velocity could be
attributed to the following reasons:

The use of k-8 turbulence model is known to be less
precise in highly swirling flows.

The swirl number used here is reported to be
estimated rather than measured,
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