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ABSTRACT

We used a variational stress analysis and an energy release rate failure criterion to construct a master

plot analysis of matrix microcracking. In the master plot, the results for all laminates of a single material

are predicted to fall on a single line whose slope gives the microcracking toughness of the material.

Experimental results from 18 different layups of AS4/3501-6 laminates show that the master plot analysis

can explain all observations. In particular, it can explain the differences between microcracking of central

90 ° plies and of free-surface 90 ° plies. Experimental results from two different AS4/PEEK laminates tested

at different temperatures can be explained by a modified master plot that accounts for changes in the

residual thermal stresses. Finally, we constructed similar master plot analyses for previous literature

microcracking models. All microcracking theories that ignore the thickness dependence of the stresses gave
poor results.

INTRODUCTION

When the 90 ° plies are relatively less stiff than the supporting plies, the first form of damage in

[(S)/90n]s or [90n/(S)]s laminates (where (S) denotes any orthotropic sublaminate) is usually

microcracking or transverse cracking of the 90 ° ply groups [1-16]. When the 90 ° plies are in the middle

([(S)/90n]s laminates), those plies crack into an array of roughly periodic microcracks. When the 90 ° plies

are on the outside ([90n/(S)]s laminates), the 90 ° ply groups also crack into an array of roughly periodic

microcracks, but the two arrays are shifted from each other by half the average crack spacing [10, 17].
There are many reasons for studying microcracking. Microcracks not only change the thermal and

mechanical properties of laminates [10, 18], but also present pathways through which corrosive agents may

penetrate into the interior of the laminate [6]. Perhaps most importantly, microcracks act as nuclei for

further damage such as delamination [1, 9], longitudinal splitting [5, 6], and curved microcracks [15].

Because microcracks are precursors to the cascade of events that leads to laminate failure, we would have

little hope of understanding laminate failure or of predicting long-term durability if we did not first develop
a thorough understanding of the phenomenon of microcracking.

To predict microcracking results in [(S)/90n]s laminates under uniform axial loading of a0, Nairn et. al.

[16, 19] advocated an energy release rate failure criterion. In brief, the next microcrack is assumed to form

when the total energy release rate associated with the formation of that microcrack, Gin, equals or exceeds

the microcracking fracture toughness of the material, Gmc. From a thermoelastic, variational mechanics

stress state [16, 19-21], the total energy release rate due to microcracking is [16, 19-21]

Gm = a(_lo)2C3h Y(D) (1)

*Work supported, in part, by contract NAS1-18833 from NASA Langley Research Center and, in part, by gifts from E. l.
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where(73 is a constant defined in the appendix, tl is the semi-thickness of the 90 ° plies and a(_ ) is the

tensile stress in the 90 ° plies in the absence of microcracks: t

(2)

The terms k_ ) and k_ ) are the effective thermal and mechanical stiffnesses of the 90 ° plies. T is the

temperature difference between the specimen temperature and the stress free temperature and it is used to
define the level of residual thermal stresses in the specimen. By a simple one-dimensional, constant-strain

analysis the stiffness constants are

k_) F-_I)
Ec0 and k_l) Aa (3).... C---_-

Here E ° is the x-direction modulus of the laminate, E (1) is the x-direction modulus of the 90 ° plies,

Aa = c_(1) - _(2) is the difference between the x-direction thermal expansion coefficients of the 90 ° plies

and the (S) sublaminate, and C1 is a constant defined in the appendix.

To use Eq. (1), Y(D) is needed. Following Laws and Dvorak [22], Nairn et. al. [16, 19] evaluated Y(D)

for the discrete process of forming a new microcrack between two existing microcracks. The result is

Y(D) = X(Pk - 5) + X(5) - X(Pk) (4)

where X(P) is a function defined in the appendix, 2pk is the dimensionless distance between the existing

microcracks, and 25 is the dimensionless distance from the new microcrack to one of the existing

microcracks [16, 19]. Normally one does not know where the next microcrack will form and therefore does

not know Pk or 5. It is known, however, that [(S)/90n]s laminates tend to form roughly periodic

microcracks. We thus expect Pk _ (P) and 5 _ 2_. Liu and Nairn [16], however, point out that these

approximations are an oversimplification. From Eq. (1) it can be shown that the energy release rate is

higher when the microcrack forms in a large microcrack interval than it is when it forms in a small

microcrack interval. It is logical to assume that microcrack formation prefers the location that maximizes

energy release rate. Thus when there is a distribution in crack spacings, the next microcrack will prefer to

form in a crack interval that is larger than the average crack spacing. Liu and Nairn [16] introduced a

factor f, defined as the average ratio of the crack spacing where the new microcrack forms to the average

crack spacing. In this model, Y(D) is approximated by

Y(D) _ 2x(f(p)12) - x(f(P)) (5)

Using f values between 1.0 and 1.44, Liu and Nairn [16] get good fits to experimental results for a wide

variety of laminates. Fortunately, the value of f required to get the best fit does not influence the calculated

fracture toughness, Gmc. In this paper, we treat f as a layup independent factor that is approximately 1.2.

There are tedious experimental techniques that can measure f and they show that it is usually about 1.2.

To predict microcracking results in [90n/(S)]s laminates, Nalrn and Hu [17] extended the variational

analysis of [(S)/90,_]s laminates to account for the development of staggered microcracks. The analysis is

more complicated due to the loss of symmetry resulting from staggered microcracks. Their results,

however, can be cast in a form similar to the [(S)/90n]8 laminate results. The total strain energy release

rate associated with an increase in microcracking damage is

(6)

_fNote thai Refs. [16, 17, 19-21] define a',t_ = klJ)cro or a.s the mechanical load in 90* plies of the ,mdamaged laminate. As
expressed in Eq. (2), we altered the definition of cr_t/ to also inchtde the initial thermal stresses.
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where C3a is a constant defined in the appendix and Ya(D) can be approximated by [17]

1
Ya(D) _ -_(3xa(f(p)/3) - xa(f(P))) (7)

Here, Xa(P), which is given in the appendix, is the antisymmetric damage state analog of X(P).

In this paper we describe the use of the above microcracking analyses to predict microcracking in 18

different layups of AS4/3501-6 laminates at room temperature and to predict the temperature dependence

of microcracking in two different layups of AS4/PEEK laminates. In brief, the variational analysis was

used to develop scaling laws that permit plotting the results from all laminates of a given material on a

single linear master plot. The accuracy with which the experimental data conforms to the linear master

plot predictions quickly reveals the adequacy of the analysis. Our findings were that the variational stress

analysis coupled with an energy release rate failure criterion can predict all experimental results. All

attempts at using simpler theories based on stress analyses that ignore the z dependence of the problem
gave poor results.

MATERIALS AND METHODS

Static tensile tests were run on Hercules AS4 carbon fiber/3501-6 epoxy matrix composites and on

Hercules AS4 carbon fiber/ICI Polyether ether ketone (PEEK) composites. AS4/3501-6 prepreg was

purchased from Hercules and cured in an autoclave at 177°C according to manufacturer's

recommendations. We made eight cross-ply layups with 90 ° plies in the middle---J0/90]8, [0/902]s, [0/904]s,

[02/90]8, [02/902]8, [02/904]8, [±15/902]s, and [4-30/902]8. We made 10 cross-ply layups with surface 90 °

plies--[90/O/90]T, [90/0]8, [90/02]s, [90/04]s, [902/0/902]T, [902/0]s, [902/02]s, [902/04]s, [902/+ 15]s, and

[902/4- 30]8. Two cross-ply layups of AS4/PEEK composites--[904/02]8 and [904/0]8--were supplied by

ICI Composites. Specimens, which were nominally 12 mm wide and 150 mm long with thicknesses

determined by the stacking sequences (about 0.125 mm per ply), were cut from the laminate plates. Tensile

tests were run in displacement control, at a rate of 0.005 mm/sec, on a Minnesota Testing Systems (MTS)

25 kN servohydraulic testing frame. While testing each specimen, the experiment was periodically stopped

and the specimen was examined by optical microscopy. For [(S)/90n]s laminates we calculated the crack

density by averaging the densities of the cracks visible on the two specimen edges. For [90n/(S)]8

laminates, microcracks could be seen on the edges and on the faces of the specimen. We calculated the

crack density by averaging the crack densities of the two 90 ° ply groups.

MASTER PLOT ANALYSIS

Assuming that microcracking occurs when Gm -- Gmc, solving Eq. (1) for a0, and multiplying the result

by-k_)/k}1 ) gives

/_) 1 _ arnc
'*thb(1)a° = --k}h----_ CztlY(D) _-T (8)

A similar treatment of Eq. (6) yields an identical result except that C3a and Ya(D) replace C3 and Y(D).

These results lead us to define a reduced stress and a reduced crack density as

k(1)
reduced stress: aR = --_-

_(1) 0"0

_th

Iv/ 1reduced crack density in [(S)/90n]8 laminates: DR - _(_, _ (9)
"fh

reduced crack density in [90n/(S)]8 laminates: DR _ _(_'1¢_
'*th
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Figure 1: A master curve analysis of a [902/02]j AS4/3501-6 laminate. The energy release rate is

calculated with a discrete energy derivative defined by Ya(D) in Eq. (7) using f = 1.2.

A plot of art vs. Drt defines a master plot for microcracking experiments. If the variational analysis and

energy release rate failure criterion are appropriate, a plot of art vs. Drt will be linear with slope Gv/-G_mcand

intercept T. Because Gmc and T are layup independent material properties, the results from all laminates

of a single material with the same processing conditions should fall on the same linear master plot.

A typical master curve analysis for a single [902/02]s, AS4/3501-6 laminate is shown in Fig. 1. The

master plot is linear except for a few points at the lowest crack density. The low crack density is believed

to be caused by processing flaws that are not specifically included in the microcracking analysis [16]. They

should be ignored when measuring Gmc. The straight line in Fig. 1 is the best linear fit that ignores the low

crack density data. The slope gives Gmc = 264 J/m 2 which agrees with results in other studies [16]. The

intercept gives T = -93°C. Note that a side benefit of the master curve analysis is that the value of T does

not have to be assumed or measured. It can, in effect, be measured by analysis of the microcracking data.

Figure 2 gives the master plot for the 18 AS4/3501-6 laminates tested in this study. We assumed that
f = 1.2 for all laminates and we ignored data with crack densities less than 0.3 mm-1. We claim Fig. 2

verifies both the validity of an energy release rate failure criterion and the accuracy of the variational

analysis calculation of Gm in Eqs. (1) and (6). There are three facts that support this claim. First, all

laminates fall on a single master curve plot within a relatively narrow scatter band. The next paragraph

discusses the scatter further. Second, the results for [(S)/90n]s laminates (open symbols) agree with the

results for [90n/(S)]s laminates (solid symbols). Thus a single unified analysis can account for both the

symmetric damage state in [(S)/90n]s laminates and the antisymmetric damage state in [90n/(S)]s

laminates. Third, the slop_ and the intercept of the global linear fit in Fig. 2 result in Grnc = 279 J/m 2 and

T = -93°C. Both of these results are reasonable measured values for these physical quantities.

There is an observable scatter band for the experimental points relative to the global, linear master

curve. This scatter band may represent deficiencies in the analysis that need further refinement.

Alternatively, we note that the scatter was caused more by a laminate to laminate variation in intercept

than by a laminate to laminate variation in slope. It is thus possible that the scatter is due to real

variations in T. Because all laminates were processed under identical conditions, T should be the same for

all laminates. T, however, can also be interpreted as the effective level of residual thermal stresses. By
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Figure 2: A master curve analysis of all AS4/3501-6 laminates. The energy release rate is calculated with
a discrete energy derivative defined by Y(D) or Y=(D) in Eqs. (5) and (7) using f = 1.2. Data for crack
densities less than 0.3 mm -1 are not included in this plot.

Eq. (2), when a0 = 0 the residual stress in the 90 ° plies is ,_(1) = k_)T. Although all laminates were
" xx_th

processed under identical conditions, the laminates had different thicknesses. If the different thicknesses

caused variations in thermal history, it is possible that the level of residual stresses was layup dependent. A

layup dependence in T would cause the type of scatter observed in Fig. 2.

We turn next to the AS4/PEEK experiments. We tested two layups ([904/0]s and [904/02],) at three

different temperatures (20°C, -10°C, and -50°C). Because we varied temperature, these results cannot be

plotted on a single master plot. Both Gmc and T may be temperature dependent and thus data from

different laminates would fall on lines with different slopes and intercepts. Some analyses of raw data,

however, using the procedures in Refs. [16, 19] indicated that Gmc is independent of temperature or only

weakly dependent on temperature in the range -50°C to 20°C. The major effect on the microcracking

properties therefore arises from changes in the residual thermal stresses or in T. The room temperature

experiments could be fit well with T = -230°C, which is similar to the T = -250°C used by Liu and Nairn
[16]. Assuming linear thermoelasticity from -50°C to 20°C, T at -10°C and -50°C should be -260°C and

-300°C, respectively. If we accept the previous values of T as reasonable measures of the residual thermal

stresses in these laminates, and we assume Gmc is independent of temperature, we can propose a residual
stress independent master plot. We redefine the reduced stress as

modified reduced stress: a_ = _ T
-- IAI) O'0 --

'_th
(10)

A plot of a_R vs. DR should be linear with a slope of Gv/-_-_mcand pass through the origin.

Figure 3 gives the master plot for the two AS4/PEEK laminates tested at each of the three test

temperatures. We assumed that f = 1.2 for all laminates and we included data at all crack densities. The

slope of the best fit line that is forced to pass through the origin gives Gmc = 1500 J/m 2. The experimental

results conform reasonably well to the master line and the results from the different temperatures fall on

the same line. Some of the scatter may be caused by temperature variations in Gmc, but we do not have

enough data to prove or disprove this possibility. A master plot that ignores the change in residual thermal
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Figure 3: A master curve analysis of all AS4/PEEK laminates tested at 20°C, -10°C, and -50°C. The
energy release rate is calculated with a discrete energy derivative defined by Y(D) or Y=(D) in Eqs. (5)

and (7) using f = 1.2.

stresses has two to three times the amount of scatter of the master plot in Fig. 3. These experiments thus

demonstrate the real effect that residual thermal stresses have on microcracking properties of laminates.

Finally, we note that previous attempts at studying microcracking in AS4/PEEK laminates used [(S)/90n]s

layups. The experiments showed only a few microcracks and yielded only a rough estimate of G,_c [17]. In

this study the 90 ° plies were on the free surface instead of in the middle. The free-surface plies crack easier

and we were thus able to get more experimental results and a more precise determination of Gmc- We

recommend using [90,.,/(S)]s laminates when studying microcracking in laminates with tough matrices.

OTHER MICROCRACKING THEORIES

Most previous microcracking theories are based on stress analyses that eliminate the z-dependence of

the stress state by making various assumptions about the z-direction stress or displacement. The common

assumptions are zero stress, zero average stress, or zero displacement. We classify any analysis using one of

these assumptions as a "one-dimensional" analysis. Examples can be found in Refs. [1, 2, 5, 11, 22-30]. We

note that some authors describe their analyses as "two-dimensional" analyses [25, 26, 29, 30]. In all cases,

however, the second dimension is the y-dimension whose inclusion is little more than a marginal correction

for Poisson's contraction. In this section we derive master plot methods from previous literature

microcracking theories and use them to analyze our AS4/3501-6 experimental results.

Garrett and Bailey [1] postulated that the next microcrack forms when the maximum stress in the 90 °

plies reaches the transverse strength of those plies. Using their one-dimensional, shear-lag analysis, this

model yields a linear master plot defined by

/_) 1 aT
(11)
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Figure 4: A master curve analysis of all AS4/3501-6 laminates using a maximum stress failure criterion
and a one-dimensional stress analysis. Data for crack densities less than 0.3 mm -z are not included in this

plot.

where aT is the transverse strength of the 90 ° plies and ¢ -- _ C1. Defining the reduced stress as in

Eq. (9) and the reduced crack density as

reduced crack density : DR --
1 1

(12)

and using a master curve analysis, Eq. (11) predicts that a plot of aR vs. DR should be linear with slope

aT and intercept T.

The result of a strength theory analysis applied to our AS4/3501-6 experimental results is in Fig. 4. The

master curve analysis shows the theory to be very poor. The results from individual laminates are

somewhat nonlinear and they do not overlap the results from other laminates. Furthermore, the results

from [(S)/90n]s (open symbols) and [90n/(S)]s (filled symbols) laminates segregate into two groups. This

segregation is a characteristic of all one-dimensional analyses. Any analysis that ignores the z-dependence

of the stress state will fail to make a distinction between inner and outer 90 ° ply groups. We therefore

conclude that no model based on a one-dimensional stress analysis can successfully predict results for both

[(S)/90n]s and [90n/(S)]8 laminates. If we draw a least-squares linear fit through the data in Fig. 4, the

slope and intercept give aT -- 15.2 MPa and T = +192°C. These results are unreasonable because the

transverse tensile strength of AS4/3501-6 laminates is higher than 15.2 MPa and T must be below zero for

laminates that were cooled after processing.

Because of the problems with all strength analyses, numerous authors have suggested energy failure

criteria for predicting microcracking [3, 5, 13, 14, 16, 17, 19, ?, 27, 28, 30]. Caslini et. al. [14] used a

one-dimensional stress analysis that assumes parabolic displacements in the 90 ° plies [23, 24] to express the

structural modulus as a function of crack density. They treated crack area, A = 2tlWLD, as a continuous

variable and differentiated the modulus expression to find energy release rate. Because they take an

analytical derivative as a function of crack area, we refer to this approach as the "analytical derivative

approach." By treating Eq. (1) as a definition of Y(D), the Caslini et. al. [14] result for Gm can be
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Figure 5: A master curve analysis of all AS4/3501-6 laminates using an analytical derivative energy
release rate failure criterion and a one-dimensional stress analysis. Data for crack densities less than
0.3 mm -1 are not included in this plot.

expressed using

C1 (tanh @p - _pseeh2¢p) (13)YZD,,(D) = C3-----¢

where subscript "ID, a" denotes one-dimensional stress analysis and an analytical derivative approach, and

,/3:,(1) ,,-,@ = V _rxz tJl" Hart et. al. [27, 28] describe a similar analysis based on crack closure that gives the same
Gin. Their approach is thus also an analytical derivative model.

By replacing Y(D) and Ya(D) with YID,a(D) we can evaluate the microcracking models in Refs.

[14, 27, 28]. The results of such an analysis applied to our AS4/3501-6 experimental results are in Fig. 5.
This master curve analysis was the worst of any model we evaluated. The results from individual laminates

are fairly linear but they give slopes and intercepts corresponding to toughnesses as high as 1012 J/m 2 and
T's that imply specimen temperatures well below absolute zero. These are clearly unreasonable results.

The least-squares linear fit through the data in Fig. 5 gives Gmc = 2 J/m 2 and T = +323°C, both of which
are unrealistic.

In the Master Plot Analysis section, we argued that microcracking should be analyzed using energy

release rate methods. We are left with explaining why the analytical derivative approach is a complete

failure. Our first attempt was to use the variational mechanics stress analysis and calculate Grn by a

similar analytical derivative approach. This made slight improvements in the master curve but the overall

quality and the fitting constants were still unsatisfactory. We suggest instead that the analytical derivative

approach is non-physical and therefore YZD,a(D) gives the wrong energy release rate. The analytical

derivative energy release rate at a given crack density corresponds to the unlikely fracture event whereby

all cracks close and then reopen again as periodic cracks with a slightly higher crack density. In real

microcracking, one microcrack forms between two existing microcracks. Apparently the energy release rate

for this process is dramatically different from the one calculated with an analytical derivative.

Laws and Dvorak [22] were the first to suggest modelling the actual fracture process. They calculated

the change in energy associated with the formation of a new microcrack between two existing microcracks.

Because they model a discrete process, we call their approach the "discrete derivative approach." We can
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Figure 6: A master curve analysis of all AS4/3501-6 laminates using a discrete derivative energy release
rate failure criterion and a one-dimensional stress analysis. Data for crack densities less than 0.3 mm-1
are not included in this plot.

cast Laws and Dvorak's [22] result in the form of the variational analysis by redefining Y(D) to be

C1 (2 tanh f_p/2 - tanh f#pp) (14)
Y1D,d(D) =

where subscript "ID, d" denotes one-dimensional stress analysis and a discrete derivative approach, and f

is the factor introduced earlier to account for the tendency of microcracks to prefer larger than average

microcrack intervals. Following Reifsnider [2], Laws and Dvorak [22] used a shear-lag analysis that assumes

an interlayer of unknown thickness and stiffness between the (S) sublaminate and the 90 ° plies. Their

can be expressed as

¢ = ,_ (15)V r0
where G is the shear modulus of the interlayer and to is its thickness.

By replacing Y(D) and Ya(D) with YID,d(D) we can evaluate the Laws and Dvorak [22] microcracking
model. A drawback of their analysis is that the effective stiffness of the interlayer is an unknown

parameter. Laws and Dvorak [22] suggested a circular scheme in which G/to is determined by prior

knowledge of Gmc and the stress required to form the first microcrack. Because of our concern about the

sensitivity of low crack density results to laminate processing flaws, we instead used the high crack density

results from the single laminate in Fig. 1 to determine G/to. We varied G/to until the slope of the Laws
and Dvorak [22] analysis master curve gave Grnc equal to the variational analysis result of 280 J/m 2. This

exercise yielded G/to = 4000 N/mm, a linear master curve, and an intercept of T = -73°C. These initial

results were promising. The results of a master plot analysis applied to our AS4/3501-6 experimental

results using Y1D,d(D), G/t0 = 4000 N/mm, and f _ 1.2 are in Fig. 6. This master curve analysis is the

most satisfactory of all previous literature models but it still has serious problems. Most importantly, the

results from individual lamina do not overlap each other. As is characteristic of one-dimensional analyses,

the results from [(S)/90n]s and [90n/(S)]s laminates segregate into two groups. The least-squares linear fit

through the data in Fig. 6 gives Gmc = 44 J/m 2 and T = +124°C, both of which are unrealistic.
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We believe the only problem with the Laws and Dvorak [22] analysis is its use of an oversimplified,

one-dimensional stress analysis. If their failure criterion is implemented with the variational mechanics

stress analysis, the result is equivalent to the analysis first presented by Nairn [19]. As shown in the Master

Plot Analysis section, such an analysis give s a good master plot (see Fig. 2).

CONCLUSIONS

All analyses of composite failure can be divided into at least two separate parts. First, failure analyses

must solve for the stresses in the presence of damage. These stress analyses will normally involve some

simplifying assumptions. Second, to predict failure, it is necessary to assume some sort of failure criterion.

The master plot analysis of microcracking shows that both the stress analysis and the failure criterion must
be appropriate to be able to predict experimental results.

We considered first the stress analysis part of a failure model. Our master plot analyses in Figs. 2-3 used a

two-dimensional, variational mechanics stress analysis. Such a stress analysis appears adequate for

explaining microcracking. We tried numerous master plot analyses using one-dimensional stress analyses

and all of them, regardless of failure criterion, gave poor results. We thus suggest that future attempts at

predicting composite cracking abandon use of one-dimensional analyses and treat the variational analysis
as a base-line stress analysis.

If one plots the stresses calculated by a one-dimensional analysis and those calculated by a variational

analysis, the differences are marked, but hardly dramatic. We were thus initially surprised by the dramatic

differences between the predictions based on the two analyses. A qualitative interpretation of the

differences can follow from realizing that fracture is an instability event. When calculating instability

processes, minor differences in input stresses can lead to dramatic differences in predictions. In other words,

the increased accuracy in the stresses attributed to the variational analysis was crucial to the predictions of

microcracking. In contrast, non-instability properties, such as plate stiffness or in-plane displacements, are

much easier to predict. Researchers have been mislead into believing that one-dimensional analyses are

reasonably accurate due to their ability to predict such non-instability properties.

Next, we considered the failure criterion. There is a disturbing tendency of composite failure analyses to

concentrate on sophisticated stress analysis or involved finite element analysis and to give too little thought
to choosing the most appropriate failure criterion. As a result, one often finds complex failure models that

are based on simplistic failure criteria such as maximum stress, maximum strain, average stress, point

stress, or quadratic stress functions. We found that all such simplistic failure criteria gave very poor results

when used to predict composite microcracking. To get a successful master plot analysis we had to use a

failure criterion based on energy release rate. We further had to find the energy release rate for the actual

fracture process (the discrete derivative approach). Pseudo-energy release rates, such as the analytical

derivative approach, that are not derived from a realistic fracture model, give the wrong energy release
rate, and, not surprisingly, gave poor master plot results.

We claim that microcracking, in being controlled by energy release rate, is not a unique composite

failure mechanism. Instead, energy release rate is a powerful technique that should be applicable to all

composite failure mechanisms. We further suggest that because energy release rate is the fundamental
failure criterion, that composite failure models couched in stress-based failure criteria are doomed to

inadequacy unless it can be demonstrated mathematically that the stress failure criterion is equivalent to

an energy release rate criterion. A similar situation exists in the fracture of isotropic, homogeneous materials

where a stress criterion or critical stress intensity factor can predict failure because it is exactly related to

energy release rate. No one would consider using maximum stress, maximum strain, average stress, point

stress, or quadratic stress functions to predict failure in cracked isotropic, homogeneous materials.

Likewise, no one should consider using such failure criteria in composite materials.

566



REFERENCES

1. Garrett, K. W.; and Bailey, J. E.: Multiple Transverse Fracture in 90 ° Cross-Ply Laminates of a Glass

Fibre-Reinforced Polyester. J. Mat. Sci., vol. 12, 1977, pp. 157-168.

2. Reifsnider, K. L.: Some Fundamental Aspects of the Fatigue and Fracture Response of Composite

Materials. Proc. l$th Annual Meeting of SES, Lehigh, PA, November, 1977, pp. 373-383.

3. Parvizi, A.; Garrett, K. W.; and Bailey, J. E.: Constrained Cracking in Glass Fiber-Reinforced Epoxy

Cross-Ply Laminates. J. Mat. Sci., vol. 13, 1978, pp. 195-201.

4. Parvizi, A.; and Bailey, J. E.: On Multiple Transverse Cracking in Glass-Fiber Epoxy Cross-Ply

Laminates. J. Mat. Sci., vol. 13, 1978, pp. 2131-2136.

5. Bailey, J. E.; Curtis, P. T.; and Parvizi, A.: On the Trans. Cracking and Long. Splitting Behavior of

Glass and Carbon Fibre Epoxy X-Ply Laminates and the Effect of Poisson and Thermally Generated

Strains. Proc. R. Soc. Lond. A, vol. 366, 1979, pp. 599-623.

6. Bader, M. G.; Bailey. J. E.; Curtis, P. T.; and Parvizi, A.: The Mechanisms of Initiation and

Development of Damage in Multi-Axial Fibre-Reinforced Plastics Laminates. Proc. 3 rd Int'l Conf. on

Mechanical Behavior of Materials, vol. 3, 1979, pp. 227-239.

7. Stinchcomb, W. W.; Reifsnider, K. L.; Yeung, P.; and Masters, J.: Effect of Ply Constraint on Fatigue

Damage Development in Composite Material Laminates. ASTM STP, vol. 723, 1981, pp. 64-84.

8. Flaggs, D. L.; and Kural, M. H.: Experimental Determination of the In Situ Transverse Lamina

Strength in Graphite/Epoxy Laminates. J. Comp. Mat., vol. 16, 1982, pp. 103-115.

9. Crossman, F. W.; and Wang, A. S. D.: The Dependence of Transverse Cracking and Delamination on

Ply Thickness in Graphite/Epoxy Laminates. ASTM STP, vol. 775, 1982, pp. 118-139.

10. Highsmith, A. L.; and Reifsnider, K. L.: Stiffness-Reduction Mechanisms in Composite Laminates.
ASTM STP, vol. 775, 1982, pp. 103-117.

11. Manders, P. W.; Chou, T, W,; Jones, F. R.; and Rock, J. W.: Statistical Analysis of Multiple Fracture

in [0/90/0] Glass fiber/epoxy resin laminates. J. Mat. Sci., vol. 19, 1983, pp. 2876-2889.

12. Peters, P.W.M.: The Strength Distribution of 90 ° Plies in 0/90/0 Graphite-Epoxy Laminates. J.

Comp. Mat., vol. 18, 1984, pp. 545-556.

13. Wang, A. S. D.; Kishore, N. N.; and Li, C. A.: Crack Development in Graphite-Epoxy Cross-Ply

Laminates under Uniaxial Tension. Comp. Sci. _ Tech., vol. 24, 1985, pp. 1-31.

14. Caslini, M.; Zanotti, C.; and O'Brien, T. K.: Fracture Mechanics of Matrix Cracking and Delamination

in Glass/Epoxy Laminates. J. Comp. Tech 8_ Research, col. Winter, 1987, pp. 121-132. (Also appeared

as NASA TM89007, 1986).

15. Groves, S. E.; Harris, C. E. ; Highsmith, A. L.; and Norvell, R. G.: An Experimental and Analytical

Treatment of Matrix Cracking in Cross-Ply Laminates. Experimental Mechanics, vol. March, 1987, pp.
73-79.

16. Liu, S.; and Nairn, J. A.: The Formation and Propagation of Matrix Microcracks in Cross-Ply

Laminates During Static Loading. J. Reinf. Plast. _ Comp., vol. 11, 1992, pp. 158-178.

17. Nairn, J. A.; and Hu, S.: The Formation and Effect of Outer-Ply Microcracks in Cross-Ply Laminates:

A Variational Approach. Eng. Fract. Mech., vol. 41, 1992, pp. 203-221.

18. Bowles, D. E.: Effect of Microcracks on the Thermal Expansion of Composite Laminates. J. Comp.

Mat., vol. 17, 1984, pp. 173-187.

19. Nairn, J. A.: The Strain Energy Release Rate of Composite Microcracking: A Variational Approach. J.

Comp. Mat., vol. 23, 1989, pp. 1106-1129. (See errata: J. Comp. Mat., vol. 24, 1990, pp. 233-234).

20. Hashin, Z.: Analysis of Cracked Laminates: A Variational Approach. Mech. of Mat., vol. 4, 1985, pp.
121-136.

21. Hashin, Z.: Analysis of Stiffness Reduction of Cracked Cross-Ply Laminates. Eng. Fbact. Mech., vol. 25,

1986, pp. 771-778.

567



22. Laws, N.; and Dvorak, G. J.: Progressive Transverse Cracking in Composite Laminates. J. Comp.
Mat., vol. 22, 1988, pp. 900-916.

23. Ogin, S. L.; Smith, P. A.; and Beaumont, P. W. R.: Matrix Cracking and Stiffness Reduction during

the Fatigue of a (0/90)s GFRP Laminate. Comp. Sci. _ Tech., vol. 22, 1985, pp. 23-31.

24. Ogin, S. L.; Smith, P. A.; and Beaumont, P. W. R.: A Stress Intensity Approach to the Fatigue

Growth of Transverse Ply Cracks. Comp. Sci. _ Tech, vol. 24, 1985, pp. 47-59.

25. Flaggs, D. L.: Prediction of Tensile Matrix Failure in Composite Laminates. J. Comp. Mat., vol. 19,

1985, pp. 29-50.

26. Fukunaga, H.; Chou, T. W.; Peters, P. W. M.; and Schulte, K.: Probabilistic Failure Strength Analysis

of Graphite/Epoxy Cross-Ply Laminates. J. Comp. Mat., vol. 18, 1984, pp. 339-356.

27. Hart, Y. M.; Hahn, H. T.; and Croman, R. B.: A Simplified Analysis of Transverse Ply Cracking in

Cross-Ply Laminates. Proc. Amer. Soc. of Comp., 2 nd Tech. Conf., 1987, pp. 503-514.

28. Han, Y. M.; Hahn, H. T.; and Croman, R. B.: A Simplified Analysis of Transverse Ply Cracking in

Cross-Ply Laminates. Comp. Sci. _ Tech., vol. 31, 1988, pp. 165-177.

29. Nuismer, R. J.; and Tan, S. C.: Constitutive Relations of a Cracked Composite Lamina. J. Comp.

Mat., vol. 22, 1988, pp. 306-321.

30. Tan, S. C.; and Nuismer, R. J.: A Theory for Progressive Matrix Cracking in Composite Laminates. J.

Comp. Mat., vol. 23, 1989, pp. 1029-1047.

APPENDIX

In the variational mechanics analysis of [(S)/90n]s laminates [16, 19-21] we define the following
constants:

1 1

c, - E2 / + 7

= + )

c3- 60E ,l
1 A

C4 = --+--
3G(2) 3G(=_

A 3

20E (2)

(16)

(17)

(18)

(19)

where E(zi) and E(_i) are the x- and z-direction moduli of ply group i, a(_ ) is the x - z plane shear modulus

of ply group i, and A = tl/t2. Superscripts (1) and (2) denote properties of the 90° plies and the (S)

sublaminate, respectively, tl and t2 are the ply thicknesses of the 90 ° and 0° ply groups. Defining

P = _c._ and q = e._ there are two forms for the function X(P). When 4q/p 2 > 1

cosh 2ap - cos 2_p
X(P) = 2a_3(a 2 + _32)_ sinh 2ap: _si-_p (20)

where

When 4q/p 2 < 1

= lv/2 _V / p and j3 = _ + p (21)

a2. tanh ap tanh _p
X(P) = a_(fl 2 - )_ta-_:-_ap (22)
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where

= -_+ -q and j3= -_- -q

In the variational mechanics analysis of [90n/(S)]8 laminates [17] we define some new constants:

(23)

C2a - 3E (1) + E--_ 1 +

_ 1 A (8A_+ 20A + 15)
C3a 20Ez(1) + 60E(2------7

1 (1+ 2_)"c_ - +
E=(1) AaE (2)

C; - 3E(1 )_(') + E--_(2)[(i+2A)(2+A)]3A

1 A (2A2+7A+8)c_ - 2OEP/ + _oz?----7
1 I+A+A 2

C_ - +
3G (1) 3AG (2)

(24)

(25)

(26)

(27)

(2s)

(29)

The function Xa(P) is expressed in terms of X(P) and X*(P) as

x_(p) - 2_(_)
(30)

c__ Defining p* c.,*-c__and q -- . - c_where X(P) is defined above except that we must redefine p = Caa C,_.

and q* = , the new function X*(P) has two forms. When 4q*/p .2 > 1

cosh 2a*p + cos 2fl*p
X*(P) = 2a*/3" (a .2 ÷ fl,2) 13*sinh2a*p-a*sin2_*p (31)

When 4q*/p .2 < 1

1 (32)x'(p) =_*_* (_*_- _'_) X_*tanh a*p - c_*tanh _*p

In the previous four equations, c_* and fl* are given by Eq. (21) and (23) with p and q replaced by p* and q*.
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