
, N96- 12922

CLIPS: A Proposal for Improved Usability

Charles R. Patton

Computer Sciences Corporation
16511 Space Center Blvd.

Houston, TX 77058

This paper proposes the enhancement of the CLIPS user interface to improve the over-all usability
of the CLIPS development environment. It suggests some directions for the long term growth of
the user interface, and discusses some specific strengths and weaknesses of the current CLIPS PC
user interface.

Every user of CLIPS shares a common experience: their first interaction with the
with the system itself. As with any new language, between the process of installing
CLIPS on the appropriate computer and the completion of a large application, an
intensive learning process takes place. For those with extensive programming
knowledge and LISP backgrounds, this experience may have been mostly
interesting and pleasant. Being familiar with products that are similar to CLIPS in
many ways, these users enjoy a relatively short training period with the product.
Already familiar with many of the functions they wish to employ, experienced
users are free to focus on the capabilities of CLIPS that make it uniquely useful

within their working environment.

To those without the benefits of such a background, however, the first meeting with

CLIPS may have been more of a struggle than a triumph, Imagine the worst-case
scenario for the aspiring CLIPS programmer. The inexperienced user may know
little about rule based programming, so a fundamentally new programming style
must be learned. The EMACS editor must be understood before any CLIPS code
can be written. The nuances of the CLIPS language and its syntax must be mastered

before the simplest program will compile. Testing a rule based system can be
especially complex. A new operating system must be mastered. In short, the new
CLIPS programmer must complete a lot of learning in a very short time.

Experience has taught us that modifications to the user interface of a software
product can make that product both easier to learn and easier to use. A major goal
of any changes to the CLIPS user interface would be to reduce the time required to
learn the basics of the CLIPS development environment.

Additionally, enhancements to the CLIPS user interface could allow experienced
programmers to develop software faster and more easily. Advances in user
interface technology allow us to design interfaces specifically suited to multi-
dimensional activities like developing rule-based software. Few managers would

470

be opposed to improving the productivity of their programmers, provided the costs
of the enhancements are not excessive relative to their benefits.

Another goal of this paper is to promote an awareness of usability issues among
CLIPS users and developers. The purpose of these recommendations is to make the
CLIPS community aware of some possible user interface enhancements for their

development environment. The validity of the following usability
recommendations will be established or refuted by CLIPS users. Certainly there

are oflaer ideas that will come directly from the users themselves, due to their

extensive experience with the product. The user commtmity can then discuss any

possible enhancements with CLIPS developers, weighing matters such as costs,
benefits, and priorities.

The CLIPS development group is constantly improving its product. As any product
is made more powerful, however, it must also become more complex. Additional
attention should be paid to the user interface of a product as its capabilities grow,
because that product is making greater and greater demands upon the resources of
its users. There is more to learn, more to do, and more to remember than there was
before enhancements were made. For example, the object-oriented CLIPS system

will be more complex than the current releases of this product. Enhancements to its
user interface could reduce the amount of complexity presented to the user.

The development of the CLIPS window interface for the PC was a first step toward
improving the usability of this product. The application of relatively new interface
technologies such as the mouse pointing device and pull-down menus are distinct
improvements over the basic command line interface. The window interface
clearly saves typing time and reduces the cognitive load of the CLIPS user. While
these steps are applauded, there are still aspects of the CLIPS user interface that
demand improvement.

Proposed - A New CLIPS Development Environment

Certainly there can be no single CLIPS development environment. CLIPS is run on
a variety of platforms in a number of different ways to solve a multitude of
problems. Individuals have widely different programming styles that must be
accommodated.

The idea behind this new development environment is to create a flexible user

interface that can support the beginning user or be adapted to assist the experienced
CLIPS programmer. Since the interface supports several different processes

471

(editing, compiling, testing, etc.) a multi-window approach would be appropriate.
Wherever possible, interface functions would be devised to reduce the cognitive
load on the user.

Consider again the beginning CLIPS user. This person's primary activities are:

writing simple programs, compiling them, and testing their functionality. A multi-
window user interface can provide all of these capabilities at a glance, reducing the
number of things that the user must remember how to access. (See Figure 1.) The
user's CLIPS code would be available for editing in the window on the left.

Interaction with the compiler and real-time testing would occur in the upper right
window. A listing of the currently active facts (i.e. a "show facts" command) is

displayed in the window on the lower right.

Compiler Messages /
Run-time Input - Output

CLIPS Code

Facts List

Figure 1: Example of a basic CLIPS development environment.

This display gives the programmer several interesting capabilities. It is possible to
see and change the written code as it is compiled, reducing the time required to re-
edit source code files. Program activities during testing can be traced back to the

source code, speeding up the debugging process. The facts list would provide a
constant display of the current facts that the system is using and generating. Here,
then, most of the information that a beginning CLIPS programmer needs to know is
available in one display. Less time is spent switching between modes and asking for

472

information because it is all currently available on the screen. The user has fewer

things to remember as the task is completed. The user can focus on the task at hand,
rather than focusing on the processes involved in completing the task.

For CLIPS experts, the interface proposed in figure 1 would not be powerful

enough to help them perform their tasks - in fact, it might even slow them down.
Advanced users would require additional functionality, like the display shown in

Figure 2. Notice that another window is available to display the source code from
another program that references CLIPS rules as it runs. The facts file would
support a initial list of facts to be used in testing a CLIPS module, while the current
facts are again displayed in a facts list window.

CLIPS Code

Compiler Messages /
Run-time Input - Output

Application Code

Facts File

Facts List

Figure 2: Example of an advanced CLIPS development environment.

Note" Please do not take figures I and 2 too literally. Window location and size
would be under the user's control. The given arrangement is for the purposes of

this discussion only.

Developing a generic user interface for CLIPS across its many platforms and
operating systems would be technically challenging. Hardware constraints and
portability requirements must certainly be considered. But as platforms become
more powerful and as operating systems and as user interface management systems
are standardized, ideas like this will become feasible.

473

Prooosed - Changes to the CLIPS Development Environment

The following topics are presented as areas where the current CLIPS PC user
interface might be improved upon. Specific recommendations and objective
justification will be provided in further discussion of each issue.

Improving the format and content of compiler outvut.

Understanding compiler output is a critical aspect of learning a new computer
language. No one really likes having their errors pointed out to them - especially
by a machine. So it is important that compiler statements to the user be clear,
accurate, and helpful.

a.

So

Compiling rule: grab-object-from-ladder
Missing function declaration for defrule <color highlight>

Compiling rule: drop-object-once-moved
An argument in a function call must be a constant, variable, or expression

ERROR:

(defrule drop-object-once-moved" "
?fl <-(goal-is-to-move ?obj ?place)
7t"2<-(monkey ?place ?on ?obj)
?f3 <-(object?obj ? ? light)

(printoutt"Monkey dropsthe " ?obj."

c. Compiling rule: hold-object-to-move+j+j+j÷j

Figure 3: Examples of clear CLIPS compiler messages.

Figure 3 contains examples of some good CLIPS compiler messages. Notice in
Example (a) that the system identifies the rule being compiled, and then follows the
message with a statement of the problem. In the version of CLIPS used for this test,
the error messages are printed in a separate color from the rest of the text. This is

good for the on-line user with a color monitor, but notice that the effect is lost on
the printout. The difference between the two types of statements could be further
displayed by the use of italics or by flagging the error message with asterisks (**).

474

In Example (b), the compiler has printed the rule in question, up to the point of the
error. This is a good practice, since it clarifies the position of the problem within
the rule.

In Example (c), the +j symbols indicate that the rule has been compiled successfully.
This allows the user concentrate on other rules that have syntactical problems.

1

o

Compiling rule: grab-object Function retract expected argument #1 to be of type
number or variable

Compiling Region...
Compiling rule: grab-obiect-from-ladder

gin new action

Expected ')' to finish rule or '(' to be

Error"

defrule grab-object-from-ladder ""

ds ?obj)

?f2 <- (object ?obj ?place ceiling light)...

?fl <-(goal-is-to han

3. Compiling rule: unlock-chest-to-hold-object +j +j +j

Expected left parenthesis to begin defrule or deffacts statement
Compiling rule: hold-chest-to-put-on floor +j +j +j +j

Found unrecognized construct...

Figure 4: Examples of unclear CLIPS compiler messages.

Figure 4 contains examples of compiler statements that are less clear, less readable,

or potentially misleading. In Example 1, the rule name and the error message are
not separated, making reading and interpreting the message more difficult.

Example 2 illustrates a very useful feature of the CLIPS compiler - the regional
(incremental) compile. A specific section of a CLIPS program can be highlighted
and compiled within the editor. This speeds up the compiling process, and allows
users to complete and compile "one rule at a time". Notice, however, how difficult
it is to distinguish between the error message and the display of the rule due to the
awkward spacing of the statements. Ideally, this message would be formatted much

like Example (b) in Figure 3.

475

Example 3 can be difficult for a novice CLIPS user to interpret. What the compiler

is trying to say is that 2 rules: unlock.chest-to-hold-object and hold-chest-to-put-
on-floor have compiled correctly, and that two rules (one afterunlock-chest and
one after hold-chest) have failed to compile. The rules are not named because they

were never recognized as rules by the compiler. While there are some cues in the

messages that rules were not compiled, they are not powerful ones. Redundant
cues would assist the novice user without distracting the experienced user.

The CLIPS Editing Environment

Experienced programmers and computer users generally have their favorites
among the wide variety of editors and word processors that are currently available.
CLIPS currently allows the user to choose any standard text editor for preparing
code, which permits an individual to select the preferred editing environment.

Many programmers are particularly fond of the EMACS editor, while others do
not like it at all. For beginners in the CLIPS environment, EMACS is a poor choice
since it requires the user to learn and remember a specific set of commands as they
try to learn and remember CLIPS syntax. Doing both of these things at once is a
particularly heavy load for the new CLIPS programmer. If a more modem, direct
manipulation style editor were offered as an option for beginners, their training
time could be reduced. Also, a custom CLIPS editor could have built-in functions

that relate specifically to programming in CLIPS, significantly speeding up the
typing / coding process. Specific examples of these custom functions will be
discussed later.

A Command Storage Buffer and Function Key

One of the most common errors committed by CLIPS users occurs when a

relatively long command is typed on the command line. If a typographical error
occurs early in the command, and it is not detected immediately, the user is forced
to delete the entire line and type the entire command over. This can be quite

frustrating, particularly when a long command is in error only because the initial

parenthesis is missing.

It would be feasible to store the contents typed on the command line in a buffer
associated with a PF key. Essentially, this would permit the user to "edit" and

"paste" the contents of the buffer onto the command line. It would also be useful to
store a stack of recent commands, allowing users to retain several frequently used

476

commands. These commands could then be pasted on the command line and

executed with two keystrokes whenever the user desired. Similar features are
available on the DOS command line using the PF3 key.

¢Parenthetically Speaking)

On a randomly selected page containing seven CLIPS rules there are 61 sets of

parentheses. These represent 122 characters, 244 keystrokes, and about 8% of the
characters on this particular page.

Since the CLIPS programmer may spend as much as 10% of his typing time

addressing parentheses, some specialized functions to assist in this area might prove
quite useful. The "action" menu in the CLIPS PC window is an excellent example
of such a function. It will automatically format an "assert" or "retract" command

for the user. This is a particularly useful function that would benefit even the

experienced CLIPS programmer.

A similar function available in a CLIPS editor would be very useful, reducing the

emphasis on typing parentheses and other symbols. An editor function that would
place parentheses around a selected block of text would be helpful, too. This idea is
closely related to the Command Storage Buffer and Editing issues addressed earlier.

Qn-line Help.

A strength of the CLIPS PC window user interface is the existence of its on-line
help system. One feature of the help system that improves usability is its multi-level
nature. Separate help is provided for the PC Window interface, CLIPS, and the
help system itself. Since users ask questions at several different levels, this system is
more likely to meet the user's needs in many situations.

The help system is well organized for letting the user "browse" through the
information provided. This is a strategy that many users employ when learning a
new system. By definition, however, a browsable help system generally does not
respond well to ad-hoc requests. For example, the CLIPS user who desired
information about the "retract" command would have to know (or find out) that this
information resides under the menu items "using CLIPS" and "additional
commands". A cross-referenced help system could provide help for both user

strategies. Ideally, the browsable format would be retained and the system could

also provide ad-hoc information in response to a command such as (help retract).

477

Remember that users often turn to on-line help for a quick answer to a specific

question. By the time the CLIPS on-line help system is loaded and the user has
mastered its tree structure, the original question may well have been forgotten. It is

possible that the user may give up on the help system and turn to another source for
assistance.

Dynamic Pull-down Menus and Mouse.

Application of a mouse and menu interface for CLIPS PC was a bold stride toward
increasing the usability of the product. Selection by pointing and clicking with the
mouse is almost always easier for the novice user. As users become more expert
with a system, they tend to learn the keyboard equivalents for commands and spend

less time using the menus and mouse.

The implementation of menus and mouse for CLIPS PC is based on the earliest level
of technology. Compared to current products, the CLIPS window process is
awkward and slow. Windows must be deliberately opened and closed, and
selections are an active, very deliberate process. While errors may be less frequent
under such conditions, user speed is drastically reduced. Professional

programmers tend to prefer the potential for speed in their user interface as
opposed to restrictive efforts intended to prevent errors. This would lead the
CLIPS PC interface in the direction of the more dynamic mouse and menu

technologies available today.

This paper has reviewed the usability of the CLIPS PC window system, pointing out
some of its strengths and weaknesses and making some recommendations for

possible improvements. It has suggested that the user interface in general move in
the direction of a multi-window display. More important than any specific
recommendation, however, is the suggestion that the CLIPS user interface be
enhanced as its user community directs.

It should be. pointed out that CLIPS platforms other than personal computers have
had little or no attention paid to the attributes of their user interfaces. This paper
has described some basic usability problems and solutions for one platform in an

effort to promote the discussion of usability issues for all CLIPS implementations.

478

