
N96- i2923

HyperCLIPS:
Interface

A HyperCard
to CLIPS

Brad Pickering

Randall W. Hill, Jr

Jet Propulsion Laboratory

4800 Oak Grove Drive MS 125-123

Pasadena, CA. 91109

Introduction:

HyperCLIPS combines the intuitive,interactiveuser interfaceofthe Apple Macintosh@*

with the powerfulsymboliccomputationofan expertsystem interpreter.HyperCard® is
an excellentenvironment forquicklydevelopingthe frontend ofan applicationwith

buttons,dialogs,and pictures,whilethe CLIPS interpreterprovidesa powerfulinference

engine for complex problem solvingand analysis.By integratingHyperCard and CLIPS
the advantages and usesofboth packages are made availablefora wide range ofuses:

rapid prototypingofknowledge-based expertsystems,interactivesimulationsofphysical

systems,and intelligentcontrolofhypertextprocesses,toname a few.

InterfacingHyperCard and CLIPS isnatural. HyperCard was designedto be extended

through theuse ofexternalcommands (XCMDs), and CLIPS was designedtobe embedded

through the use ofthe I/0 routerfacilitiesand callableinterfaceroutines.With the

exceptionofsome technicaldifficultieswhich willbe discussedlater,HyperCLIPS

implements thisinterfacein a straightforward manner, using the facilitiesprovided.An
XCMD called"ClipsX"was added toHyperCard togiveaccesstothe CLIPS routines:clear,

load,reset,and run. And an I/0routerwas added toCLIPS tohandle the communication
ofdata between CLIPS and HyperCard.

ProEr-,-mi-_ inHyperCLIPS:

Programming HyperCLIPS is only slightly more difficult than programming HyperCard
and CLIPS separately. The three extra issues that one needs to understand are: how to use
the "ClipsX" XCMD; how to use the I/0 commands from CLIPS to get information to and
from HyperCard; and when and how to pass control of the Macintosh between the CLIPS
and HyperCard. The following examples should clarify these issues.

The ClipsX XCMD:

* Apple, Macintosh, and HyperCard are registered trademarks of Apple Computer, Inc.

"-" 479



Example 1: The use of clear.

-- in a HyperCard script
CllpsX "clear"

get the result
if char I to 3 of it is not "V4." then

-- this is probably an error
-- so handle the error and then exit

end if

-- continue setting up CLIPS program

The "Clips)[" command handles four sub-commands as specified by the firstparameter.

The firstof these commands is"clear". Itis used to clear the CLIPS environment. This

should be the firstCLIPS command called from a HyperCLIPS application stack, so that

any other CLIPS program in the interpreterwillbe excised. Ifthe CLIPS interpreterhas not

been loaded then itwillbe loaded at this time. Many things can go wrong while loading the

CLIPS interpreter:memory may become full;the filecontaining the interpreter may not be

found; or an incompatible version of the interpretermay be loaded. So itisimportant to

check for these errors. Any data from CLIPS may be retrieved using the HyperTalk

function "the result". Ifeverything executes as itshould then the firstline ofthe data

return will be the version information. This example checks that version four has been
loaded.

Example 2: The load and reset commands.

-- in a HyperCard script

-- assumes card field "program" contains
-- the following CLIPS program
-- (defrule start

-- (initlal-fact)

-- (fprintout t "Hello world." crlf))

ClipsX "load",card field "program"

ClipsX "reset"

-- continue setting up CLIPS program

The second command typicallyused is"load". Ittakes a second parameter which isthe

text of the CLIPS program to load. The next command is"reset"which setsup the initial

facts and activations in the CLIPS environment. Because ofhow the IO router system isset

up, these routines return may return information about which rules were compiled, which

facts were asserted, and which rules were activated. But this information isnot usually of

interest in a HyperCLIPS application so this example does not make use ofthe data return

through "the result". Itsimply loads a program and makes itready to run, assuming no

errors will occur.

Example 3: The run command.

-- in a HyperCard script
-- assumes the CLIPS program from the previous example

-- has been loaded and is ready to run.

ClipsX "run",empty

get the result

-- process the results returned from CLIPS

get llne 1 of it
answer it with "OK"

480



The lastofthe four sub-commands to "ClipaX"is"run".This isthe most oftenused

command because itpassesdataand controltoCLIPS. Ittakesa secondparameter which

isthe textofthe datayou wish tomake availabletothe running CLIPS program. This

example passes"empty" as itssecondparameter because the program thatisloaded does

not need any extradatatodo itscomputation.The "run"command startsthe CLIPS

intepreterwhich doesnotreturnuntilan erroroccursor itruns out ofrulestofire.In this

casethe interpreterwillfirejustthe one ruleand then returncontrolback toHyperCard.

Because oftheway the IO routerissetup, the message "Helloworld."willbe returned as
the firstlineofthe data returned through "theresult".Processingthe resultsusually

involvesparsingthe data and presentingitinan appropriatefashiontothe user. This

example displaysthe message ina dialogbox. The lastlineofthe data passed back from
CLIPS should say how many ruleswere fired.This informationmay be usefulfor

debugging purposesbut isoflittleuse inthe finalversionofan application.

The I/O router:

Example 1: Sending data back to HyperCard.

: in a CLIPS program

(defrule start

(initial -fact )
=>

(fprintout t "Hello world." crlf) )

This isthe example thatwas used above and you probablyalreadyunderstand what

happens, but itwillnow be explainedingreaterdetail.The I/OrouterfacilitiesofCLIPS
allowthe redirectionofI/Ofrom one physicallocationtoanother. In standard CLIPS, any

data writtento any ofthe logicalnames "stdout","werror",or "wdisplay"willprobably be
writtentothe terminal.Whereas in a windowing versionofCLIPS the data willprobably

be writtentothreedifferentwindows. This ismanaged by routingdata sentto theselogical

names todifferentlocationsin each case. The HyperCLIPS I/O routerhandles data

writtento allofthe standardlogicalnames by collectingand bufferingitand then passing

itback toHyperCard as "theresult"when the CLIPS interpreterreturns.This means that

inthe example above the fprintoutstatement,which writesa message to"stdout",will

make the message "Helloworld."availableto HyperCard when the run command

completes.

Example 2: Receiving data from HyperCard

; in a CLIPS program
; assumes a HyperCard call such as ClipsX "run","broken"
: also assumes that this rule is on the activation list so
; that it will be fired when the run command is called

(defrule get_engine_state
?fact <- (get_state)
=>

(retract ?fact)

(bind ?state (read))

(assert (engine_state ?state) ) )

Receiving data from HyperCard is also handled through the I/O router system. The
standard version of CLIPS normally reads data from the terminal. The HyperCLIPS I/O
router reroutes reads from the "stdin" logical name (the default read location) to get
characters from a memory buffer instead of the terminal. When the "ClipsX" "run"

481



command iscalledthe second parameter isused to fillin thisbuffer.This example will
read the word "broken"from the bufferand then assertthe fact"engine_statebroken".

Passing control between CLIPS and HyperCard:

Example 0: Passing controlto CLIPS

-- no example needed

HyperCard and CLIPS do not executeconcurrently.Controlmust be explicitlypassed

between the two whenever eitherofthem needs thefunctionalityofthe other.Controlis

usuallypassed toCLIPS when HyperCard needs a computation performed. This isdone
with the "run"command. The CLIPS program, though,must be ready to acceptcontrol.

This means thatthereare ruleson the activationlistready tofire.Initiallyrulesare put

on the activationlistby the "reset"command, but thereisanothermethod togetCLIPS

ready to acceptcontrolwhich willbe explainednext.

Example 1: Passing controlto HyperCard

; in a CLIPS program

(defrule get_data

?f < - (phase get_data)
=>

(retract ?f)

(fprintout t "need data" crlf)

(assert (get_data_continue))
(halt))

(defrule get_data continue

?f <- (get_data_continue)
=>

(retract ?f)

(bind ?data (read))

(assert (data ?data)))

Controlisusuallypassedback toHyperCard forone oftwo reasons:the computation is
finished;or more data isneeded tocompletethe computation. Ifthe computation isfinished

then passingcontrolback toHyperCard istrivial:therewillbe no more rulestofireso

CLIPS willreturnautomatically.The caseofneeding more data,though, ismore

complex. This example.shows how togivecontrolback toHyperCard whilemaking sure

thatthe rulethatreads thedata willbe ready tofirewhen HyperCard eventuallyreturns

controlback to CLIPS. "TheimportantCLIPS functionis"halt".Itcausesan errorwithin
CLIPS sothatthe interpreterwillreturntoHyperCard, but itdoesnotalterthe activationlist

so thatany rulethatwas ready tofirebeforethe "halt"command willstillbe ready tofire
afterthe "halt"command. In thisway the CLIPS program isready toacceptcontrolwhen

HyperCard callsthe "run"command with the data needed tocontinuethe computation.

Tec_h-le-!difficulties implementing HyperCLIPS

Although HyperCard and CLIPS seem easily integrated through the use of their built in
hooks for such reasons, there are some technical problems which make this task more

difficult that it would appear. The problem is on the HyperCard side. HyperCard allows
the addition of functionality in the form of XCMDs, but XCMDs have severe limitations:
an XCMD cannot be larger than 32K bytes, and an XCMD cannot have global data. CLIPS
breaks both of these rules and cannot, therefore, be implemented as a normal XMCD.

482



Both oftheselimitationsare theresultofthe architectureoftheMacintosh. A Macintosh

applicationusesregisterA5 oftheMotorola68000 topointtothearea ofmemory that

containsthe globalvariablesand thejump table.The jump tableisused tosupportintra-

segment callswhich are necessarybecause segments are limitedto32K and any

applicationlargerthan thismust be dividedintomultiplesegments. Segments are limited

insizeby the longestpossiblebranch instruction,which on the68000 is+/-32K Jump
instructionscouldbe used toallowfartherbranches and largersegments,but thiswould

make the code non-relocatablewhich iscontrarytothe Macintosh memory management

strategy.While HyperCard isin control,registerA5 pointstoHyperCard's globaldata

and jump table.XCMDs cannotuse thisjump tableorglobaldataarea,thisleadstothe
limitationsmentioned above.

The way togetaround the two limitationsmentioned above isobviousbut trickyto

implement: lettheXCMD have itsown jump tableand globalsarea and make A5 pointto
thisareawhilethe XCMD isrunning. The difficultyin thisisin settingup thejump table.

This processisusuallyhandled by the Segment Loader facilityin the Macintosh Operating

System. Itinterpretsthe informationinCODE resource0 ofthe applicationtoform the

jump tableand globalsarea and then startsthe program by jumping tothe firstentryin the

jump table.

The implementationofHyperCLIPS isdividedintotwo parts:an XCMD thatduplicatesthe

functionalityofthe Segment Loader and takescareofsettingup the A5 registerbefore

callingthe CLIPS interpreter;and a modifiedCLIPS interpreterstoredinthe format ofan
applicationfilewhere theXCMD can findit.The onlymodificationstoCLIPS are the code
tohandle the functiondispatchingand the I/O routertohandlethe communication ofdata.

Conclusion:

We have used HyperCLIPS to developprototypesfordevicesimulationand knowledge

based trainingsystems. In our experiencewe have found development time tobe veryfast.
The CLIPS sideofan applicationcan be developedand debugged inthe usual CLIPS
environment and laterbe integratedwith a HyperCard user interface.This finalstageof

integrationisa littleawkward because ofthe lackoftoolsformodifyingCLIPS programs

from withinHyperCard, but we are adoptingmethodologiestomake thisstepeasier.

Because HyperCard and CLIPS are interpretedlanguages,executiontime forHyperCLIPS

applicationsisratherslow.Inthe caseofCLIPS, theresultsmay be worth thewait,but
HyperCard may need to replacedby a more efficientuserinterfaceengine in production

qualityapplications.Ifa fasterinterfacebecomes necessarythough, the substitution
shouldbe transparenttotheCLIPS sideofthe application.Our futureplansinclude

lookingforsuch an interfaceengine,possiblyon a more powerful workstation.

483


