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Current day spacea'aft are complex ma-
chines and those on the drawing boards are
increasingly more sophisticated and
broader in scope. Gone are the days when a
singleengineer could fullygrasp the intri-
cacies of an entiresatellite.Note that the

recently launched Galileo spacecraft has
several processors on-board the vehicle [I].
This fact,coupled with the increasing

power of computing hardware and software
toots and techniques, has introduced the

possibiliW of realisticsimulations being
used for product definition,design,manu-
facture,and, even, performance analysis.

The StrategicDefense InitiativeOffice
{SDIO) isconvinced of simulation capabili=
ties since it has funded the National Test Bed
{NTB) facility to evaluate the performance
of all facets of the "Star Wars" concept.

Due to heated competition for the develop-
meat and delivery of satellites, there is an
increased reliance on simulation of compo-
nears, subsystems, systems, and entire
constellations of spacecraft. Given the wide

variety of configurations and purposes of
these satellites,flexibleand convenient

means for generating study and engineer-

ing data are necessary [2=4]. MonoLithic
simulations have become unwielOy and ex-

pensive to maintain. Configurable toolsthat
can be quickly and accurately constructed

are required. Rapid prototyping techniques
have become more accepted within the

aerospace industry for the production of
deliverable soItware and also as a means to

manage the =_ftware process [5].

We were motivated to define and build a so-
phisticated satellitesimulation capability
for the evaluation of a satelliteoperations
automated environment cattedIntelIiSTAR"

[6,7].This architecture,and associated
prototype,addresses the entire spacecraft

operations cycle including planning,
scheduling,task execution,and analysis. It

isaimed at increasingthe autonomous

capabilityof current and future spacecraft.
Itutilizesadvanced software techniques to
address incomplete and conflictingdata for

making decisions. It also encompasses
critical response time requirements, com-
plex relationships among multiple systems,
and dynamically changing objectives.
Given the extreme scope of activities that
are targeted, a sophisticated, flexible, and
dynamic simulation environment was re-
qub'ed to drive this prototype. In particular
the derived requirements for evaluating the
IntelliSTAR" prototype include:

• provide realistic and dynamic envi-
ronment

• easily reconfigurable
• multiple levelsof fidelity

The overriding need of InteIILSTAR" was a
means for providing a valid evaluation of
the concept (see Figure I ). This evaluation
was planned to be accomplished through
the injection of various scenarios describ-
ing mission and behavior types for the
spacecraft to be controtted. Given this
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stimulus,the IntelLiSTAR" prototype pro-

vides measures of the plan and itsstatusto

satisfy the objectives for the safe.re mis-
sion.

Annma 

The testbed approach to simulation has
risen to the top of the listof options due to

the following attributes:

• flexib/tity to easity configure based
on unique customer requirements

• modularity o[ the simulation com-

ponents to allow the testingof
portions ofthe overaLl system or
varying degrees of fidetityfor
portionswithin the same simula-
tion

• interoperabititythrough the use of
consistent user and integrator
interfacesfor reduced training.

Side benefits include the centralized storage

and accumulation o[ metrics and related in-
formation of the simulation capabilitiesand

past usage of the testbed.

Our approach to the development, utLtiza-
tion.and maintenance of a sophisticated
satellitesimulation teslbed isthe use of

rapid prototypLng and knowledge=based
techniques coordinated with the use of

existingsimulation and communication
resources. An architecturehas been de-

fined Lhat provides the following attrlbutes

for a spacecraft simulation that addresses
autonomy, survei_ance, and survivab_ty
capabilities (see Figure 2):

• integratingarchitecturethat sup-
ports the expansion of capabilities
and resources

• high=level user interfacefor speci-

1. T_ Si_II_ Ammm_ Aps/icmli°n Bvalulmm T'md_! MaximimmI1_ U"_°(F'xim:i_ md M_ T_b _
_n,v_ F_ md P.m]mm.

45'Z



fy/ng simulaUon requirements and
features in the form of a modeLLing

language
• automated translatorfrom the

modelling language to CLIPS code
which can be executed

• separability of generic spacecraft
features from specialized compo-
nears, subsystems, _md payloads

• interface to an existing survivabil-

ity simulation
• interface to an existing inteiligent

safe.re operations framework
• interface to a graphical user inter-

face

p.rchltecturo DescdDtion

We are using CLIPS as our basic program-
ruing language to create the modeLling
language, language translator, and simula-
tion itself. The modeUing language allows
an engineer to specify the behavior of s
system of subsystem in high-level terms
that could be directly derived from spec/fi-
cations. The translator takes the modeUing
language constructs, verifies their consis-
tency, and creates CLIPS knowledge bases
which can be executed. The simulation uses
the CLIPS forward-chainkng mechanism as
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the driving force behind a system that is
scalable to reaJ-t.ime events. Time can be

specifieddirectlyor used m relativeterms
to compress or expand Ume to meet user

requirements.

Satelllte Modelling Language (SML)

The model"rig language was created to

provide a higher levelinterfaceto the
identifiedend-user, a spacecraft design

engineer. This interfaceallows the engi-
neer to input requirements and features in
a format which isfamiliar.This promotes a

more rapid acceptance and utiJ_,ationof the
testbed resource resultingin increased

productivity and the exploration of a larger
number of engineering options.

SML provides context-relevant and English-
Likelanguage constructs to the spacecraft

engineer. Through these constructs,the
capab_ity to describe events and timing is
provided. This isaccomplished through the
use ofthree ma/n structuretypes:templates,

objects,and rules.Templates define con-
glomerations of objects,

objectsrelateto phys/cal
or functional entities,and

rules describe the behav-

iorof the objects for
various conditions.

The simulatinn itselfuses
CLIPS' forward-chaining

technique to createa
reactive and dynamic
model of a spacecraftin

its"orbiting environment.
Since spacecraft typically

operate in a data- and
situ atioc=driven environ -
merit, CLIPS is a perfect
match. Processes on a
satellite are usually in-
yoked on either a time or
event basis. The stimuJi
cascade through many de-
vices and components to
acl_ieve the necessary and

required states. Side effects of component
actions are relied upon heavily on space-
craft. These factors closely match the ad-

vantages of a system built with CLIPS.

Modelling language translator

The modelling language translatoraccepts
the simulation specificationfrom the engi-
neer and converts itintoCLIPS knowledge

bases which can be executed (referto Fig-

ure 3). This circumvents the need for the

spacecraft engineer to become familiar
with a new, and probably very different,
software language. Also, since the CLIPS
simulation code is atnomaLictJJy generated,
the proper syntax and semantics are main-
tained within the knowledge bases. CLIPS is

being applied in a manner much IAke an in-
formation compiler.

The translator accepts the SML constructs
and converts them into CLiPS-acceptable

syntax. Templates and objects are converted
to factswhile behavior rules translateinto
CLIPS rules. The CLIPS rules handle allthe
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bookkeeping involved with the behavior
such as retracting facts after they are no
longer required and asserting the pertinenl
facts.

The translator permits the incremental con-
struction of a complete simulation capabil-

ity. In practice, the modules are aligned
with the subsystem designs. For instance,
the Thermal Control Subsystem (TCS) tem-

plates, objects,and behavior rules are all
defined within a singlefile.The translator

maint_s a list of all possible constructs
and allows the linking of these in any man-
ner specifiedby the user. The linking pro-
cedure alsoadds the executive timing con-
trolto the executable simulation.

Satellite simulation

The satellite simulation generation method-

ology is represented in Figure 4. Two paral-
leldevelopment paths have been identified
for the creation of a realisticand dynamic
evaluation environment for the InteULS-

TAR" prototype. One path concentrates on

"Blackbox testingis not an al-

lernaU've to while box lech-

niques. Itis,rather, a comple-

mentary approach Ihatislikely
to unnover a different class of
errors than wl_t'tebox methods."

[8]

Behavioral models permit the descriptionof

the inputs and outputs of a function (or

process or subsystem or ..).These models
permit an empirical or high-level descrip-
tionof an entity.These models can be
constructed quickly with readily available
information and allow various levels of de-

tail.

Functional models require an extensive
evaluation of the theories and principles
behind the operation of an entity. These

models resultfrom the classicaldesign

phase of an engineering process. Func-
tionalmodels have typicallybeen developed
in a monolJth/c mode. Good examples of

functional model implementations are the
current Computational Fluid Dynamics (CFD)

codes being constructed.

!iiiii ..... .....
m •

• De_ and t_,ra_m_ _

the creation of behavioral models while the
other generates functional simulation
capabilities. Behavioral models take the
"black box" approach to testing. Funct,o._al
models are analogous to the "white box" ap-

proach. This approach isjustifiedby re-
marks such as the following:

The combination or these two simulation
methods allows the generation or realistic
environments quickly while not negating

the growth path to more robust and in=
depth simulation. In fact,the overaU evalu-
ation architecture permits the injectionof
models of varying fidelitylevelsintothe

same simulation. Behavioral and functional
model can co-existin the arcl_itecture.This

provides a flexiblemedium for testingof the
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IntelliSTAR" prototype. In addition,the
evaluation environment isnot strictlytai-

lored to that prototype,but alsopermits the

construction of any sateLLitemodels.

The testarchitectureencourages a modular

generation and management of itsconstitu-
ent parts. A conscious design decisionwas
made to make the generic satellitebus
characteristicsseparable from the special-

izedsubsystems or payloads that comprise a
spacecraft. By doing so,a generic capabil-

ityfor simulating spacecraftwas created.
This model willcontinue to evolve and the

available "library"of models willincrease
as this effort proceeds. In fact, a major
satelliteeffortat our divisioniscontemplat-

ing the use of thiscapabilitybecause of the
attractivenessof minim_ costto tailorthe

system for theirpurposes. Our research can
continue in para/lelwith thissafe.re ap-
plicationsince models can be interchanged
with littleeffort.

Interfaces

Three types of interfacescurrently existto
the simulation environment. These include
one to the InteULSTAR" prototype, one to an
existingsurvivab_ty simulation,and the
lastto a user interfacecapab_ty. The
mechanism used for allthree interfacesis
the same; the resultsof a generic,distrib-

uted process commumcations projectare
utilized.

The interfaceto the IntelLLSTAR= prototype

isimplemented to allow the evaluation of
thissatelliteoperations concept. The inter-
actionsbetween the prototype and the
simulation are of two types:continuous and

requested. The firsttype, continuous,con-
tains the telemetry stream content from the
spacecraft to the controlJing entity (i.e.,
InteULSTAR" ). The information flow is
handshaked between the two portions but
the interface is not truly synchronous.
IntelIJSTAR" provides an execution time
frame to the simulation and the simulation
responds for that amount of time or at some
smaller increment. The response time is

solelydetermined by the simulation with
only the upper bound specifiedby the

prototype.

The second type of interfaceto IntelESTAR"
is closerto being of the synchronous vari-

eW. A request ismade of the simulation for
information and the simulator responds

with the derived data The prototype may or

may not wait for the resultsc( it_query
before proceeding with itsprocessing.

An interfacewith an existingsurvivability
simulation (SADEM - Sate_te Attack and

Defense Engagement Model) was con-
structed. SADEM isconstructed in an object-
oriented and distributedenvironment.

SADEM schedules a communications event to

the spacecraftsimulation at eithera time or
based on some condition. Currently,this

interfaceisonly one-way due to a limitation
in the SADEM development environment.

The lastinterfaceis to the user interface

module. This interfaceallows the control
and execution monitoring of the simulation.
Individual measurements being generated

by the simulator may be presented with
user-spec/fiedlimits.Graphical representa-
tionsof the data are aUowed.

The simulation environment alJows the in-
tegration of several levels of fidelity and
the configuration of many diverse compo-
nents. The modeUing language translator

assures the consistentgeneration of syntac-

ticallyand semant/cally correct spacecraft
simulations. The "garbage in,garbage out"

syndrome of many simulationsisminimized
through the active applicationof knowl-
edge about spacecraft ingeneral. This
approach, and associated testbed develop-
meat, enables the creation of a sophisticated
and consistent satellite simulation environ-
meat used for the design, manufacture, and
analysis of satel_es and their related op-
erations environments.
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