
N96- 12925

Analysis of MMU FDIR Expert System

Dr. Christopher Landauer
Computer Science and Technology Subdivision

The Aerospace Corporation

4/: ,C

) /5--
1

April 30, 1990

Abstract

This paper describes the analysis of a rulebnse for fault diagnosis, isolation, and recovery for NASA's Manned Maneu-
vering Unit IMMU). The MMU is used by a human _stronaut to move &round a spacecraft in space. In order to provide
maneuverabdity, there are several thrustens oriented in various directions, and hand-controlled devices for useful groups
of them. The rulebnse describes some error detection procedures, and corrective actions that cam be applied in a few
¢__MJe$.

The approach taken in this paper is to treat ru]ehimes ns symbolic objects and compute correctness and "reJmoxmbleness"
criteria that _me the statistical di, tribution of various synt,_etic structures within the rulel_me. The criteria should

identify awkward situations, and otherwise =i_ anomalies that may be errors: The rul.ebnse analysis algorithins
are derived from mathematical and computstsonal criteria that implement certsJn principles developed for rulebase
evaltuLtion. The principles are ConsiJlency, Complelenese, If'red=nd=_e_, C0nnecli_t_, &nd finally, DiJtT'ib=iio_t.

Several errors were detected in the deliv_ed rulelt_se. Some of these errors were e=mily fixed. Some errors could not be
fixed with the available inform,_tion. A geometric mode] of the thruster Lrrsngement is needed to show how to correct
certain other distribution anomalies that are in fact errors.

The investigations reported here were partially supported by The Aerospace Corporation's Sporu, ored Resef,rch Prog_'_m,
The author would llke to thank the memb¢_ of the Vehicles Project at Aerospace for A continual stream of hard questions.
and Chris Ctdbert of NASA JSC for providing the rulel_ue and the challenge to Lnalyze it.

1 Introduction

This paper describes the analysis of an application rulebsse for fault diagnosis. The rulebase describes fault detection

procedures, experimental procedures to isolate the faults to particular components, and corrective actions that can be

applied in a few cases.

The rulebase analysis algorithms are derived from mathematical and computational criteria that implement certain
"correctness" principles developed for rulebsse evaluation. The principles are Consistency, Completeness, lrredun.

daney, Connectivity, and finally, Dzstribut|on. Several errors were detected in the delivered rulebase.

An alternative to the systematic analyses above is a model-based validation, which uses several explicit models of
system behavior to analyze the behavior of the rulebase that purports to describe the system. This technique is
complementary to the systematic criteria, and tends to find different kinds of errors. In fact, each different style of
analysis finds somewhat different errors, and it is the recommendation of this paper that many different V&V analyses
be performed on any critical rulebase. A geometric model of the thruster arrangement could be used to show how to
correct certain other distribution anomalies that are in fact errors.

1.1 Manned-Maneuvering Unit

The Manned Maneuvering Unit (MMU) is essentially a backpack unit for moving a human astronaut around a space-
craft in space. In order to provide maneuverability, there are several thrusters oriented in various directions, and Hand
Control Devices for useful groups of them. The thrusters use Nitrogen Dioxide (NO_) gas for motion.

The FDIR rulebase (see [LaMer,Williams]) is concerned with the problem of fault diagnosis, isolation, and recovery
(FDIIt) for the MMU. Its purpose is to determine whether the MMU has a fault, to isolate the fault to a particular

493



subsystem when possible, and to take corrective action when that is possible. The rulebase has 104 rules, written in
the expert system shell CLIPS (see [Culbert]), the C Language Interface to Pr_)duction Systems, developed at NASA's
Johnson Space Center. No external functions are called (CLIPS allows externally provided functions to be invoked
during hypothesis examination and conclusion generation), so the CLIPS code is self-contained. The MMU FDIR
rulebase was kindly provided to us by Chris Culbert of NASA JSC, as was CLIPS.

The rulebase was analyzed according to many of the criteria discussed in the next section. There was no automatic
version of any of the analyses, since the criteria are not yet implemented in programs. The criteria were applied
by hand, using editors, pattern searching programs, and other text manipulation programs generally available under
UNIX. For this rulebase, some extra semantic information is available, such as the symmetry between side a and side
b. This information was very useful in the analyses.

2 Principles of Rulebase Correctness

This sectiondescribesthe correctnessprinciplesused for the analysis(see [Landauer89], [Landauer90] formore dis-
cussion).The fiveprinciplesare accompanied by mathematical and computational criteriathat serveas specifications
of analysisalgorithms for rulebases. The Consistency criteriaaddress the logicalconsistencyof the rules,and can
rightlybe considered as "correctness"criteria.The Completeness and Irredundanc_/criteriapreclude oversightsin
specificationsand redundancy in the rules,and are more like"reasonability"criteriafor the terms in the rules.The

Connectivitycriteriaconcern the inferencesystem definedby the rules,and are likecompleteness and irredundancy
criteria for the inference system (see [Bellman,Walter], [Bellman] for arguments that redundancy in rulebases is dan-
gerous, not just wasteful). Finally, the Distribution criteria are "esthetic" criteria for the simplicity of the rules and
the distinctions they cause, and the distribution of the rules and the values implied by them.

The approach taken in this section is to treat rulebases as mathematical objects and develop criteria for acceptability,
both correctness criteria and "reasonableness" criteria. The criteria should identify inconsistent or awkward rule
combinations.

2.1 Rulebase Definitions

A rulebaseisa finitesetR of pairs

r = (hyp, conc)

of assertions (or formulas), to be interpreted as

if hypothesis h_p, then conclusion conc.

The firstcomponent (thehypothesis)ofa ruler iswrittenhlfp(r)and the second one (theconclusion)as conc(r)when
thereisneed to referto.them separately.Each of theseparts isconsideredto be a Boolean function.

The set V of variables in a rulebase R is finite. A sitlation is an instantiation of all of the variables, with the further
restriction that all the rules are true of all situations. Every variable is considered to be a feature of the situation,
with a possibly unknown value in the appropriate domain. The rest of this section will explain what this restriction
means.

Each variable v is considered to be a function applied to situations, so for a situation s, the expression v(s) denotes
the value of the variable v in situation s. More generally, for any expression e over a set W of variables contained in
V, e(s) denotes the value of the expression in situation s.

The set of situations is therefore a subset of the Cartesian product of all of the variable domains, but the particular
subset is not precisely known, since it is limited by the rulebase to only those elements of the Cartesian product that
satisfy the rules (i.e., the rules define the situations). There are connections between variables that allow some of them
to be computed from others. The Cartesian product will occasionally be called the situation space, to distinguish it
from the set of situations. An element of the situation space may be called a prospective situation until it is determined
whether it is actually a situation or not. So the syntactic restriction of having each variable, value in the appropriate
domain suffices to define the prospective situations, and the semantic restriction that all rules are satisfied defines
those prospective situations that are situations.

494



A rulebase is applied to a situation to compute some variable values (not to set the values, but to find out what the
values are), so that a situation has both provided variable values ("input _ variables) and derived variable values, some
of which are displayed ("outpuff variables). It is further assumed that the variable values not specified by the input
are defined but unknown, and that the rulebase is expected to compute the output variable values.

Rules are implicitly universally quantified over situations. A variable v in the rulebase is a fixed component selection
function v applied to a variable situation s. There are no explicit quantifiers, so all situation variables are free in the
expressions.

2.2 Analysis Tools

This section describes several derived combinatorial objects and other analytical tools that are useful for analyzing a
rulebase. They are primarily graph theoretical notions, including graphs and incidence matrices.

2.2.1 Incidence Matrices

The simplest incidence matrix of a rulebase is called simply the incidence matrix of the rulebase. It is indexed by
R x V, with entry 1 when variable v occurs in rule r (the occurrences must be free, which is easy now when there are
no quantifiers).

It is often .convenient to retain the number of occurrences of variables in rules. The counting incidence matrix RV of
a rulebase is a matrix indexed by R x V, with

RV(r, v) = number of occurrences of variable v in rule r,

so it may have counts greater than one.

The only non-trivial operation that can be performed on this matrix is multiplication. Since there is only one matrix
at present, it must be multiplied by itself. Since the coordinate index sets are not the same, either one of the matrix
factors must be transposed (giving actually two different products). The only remaining question is what the products
might mean. It turns out to be relatively easy to interpret both of them.

With this matrix RV, the (v, w) entry of the product, (RV t_ RV)(v, w), is the number of pairs of instances of variable
v and variable to contained in the same rule, and the (q,r) entry of the product, (RV Rgt_)(q, r), is the number of

pairs of instances of rule q and rule r containing the same variable.

The two matrix products above give rise to two undirected graphs, the first one with variables as vertices, and edges
for nonzero entries in the product (RV tr RV), and the second with rules as vertices, and edges for nonzero entries in

the product (RV RV*'). The first graph connects two variables if they appear together in a rule, and the second one
connects two rules if they have common variables. More detailed graphs will be studied later on, but all will use the
same basic construction.

There are several other incidence matrices that are useful for rule analyses, including a clause-variable incidence matrix
CV, and a rule-clanse incidence matrix RC, but they are analogous to the ruh-variable incidence matrix RV and are
not described in detail. For this purpose, a clause can be considered as a predicate expression, and C is the set of
clauses.

2.2.2 Clause Graphs

The inference C graph has vertices for all clauses c, and an edge from clause c to clause d whenever there is a rule
r with c E hlp(r) and d E conc(r). The inference R graph has vertices for all rules r, and an edge from rule q to
rule r whenever there is a clause c which is in both hip(r) and conc(q). These graphs are defined from the counting
incidence matrices to have labels according to the appropriate counts.

2.2.3 Association Matrices

An association matrix is a covariance.matrix computed from occurrence patterns across a set of possible locations.

The counting incidence matrix product (RI/)(RV t') counts variables in common to rules, measuring the occurrence

495



zPnatternofa ruleaccordingto thevariables it contains. Then the correlations can be computed from the covariances,
the usual way:

Corr(q,r) -" Covar(q,r)/(Stdev(q) • Staler(r)),

Stdev(q) -- _/Covar(q,q),

Co,,,,,.(q,,.) = (Rv Rv')(q,,.)/lVl - A,,g(q)• A,,g(,.),

Avg(q) = Z(variables v V) RV(q, v)/IVl.

Here, the q row of the counting incidence matrix RV is the occurrence pattern for rule q, so Avg(q) is the average
number of occurrences of each variable in rule q, and Stdev(q) is the standard deviation. There is no random variable
here, so there is no point in using the "sample standard deviation". The correlation is a measure of similarity between
rules, as measured by the variables in them. The correlation value is ] if and only if the two rules use exactly the same
variables with the same frequency of occurrence of each variable. It will be negative, for example, when the two rules
use disjoint sets of variables, and -1 in rare cases only (not likely in a rulebase).

Similarly, the counting incidence matrix product (RVt_)(RV) counts rules in common to variables, measuring the
occurrence pattern of a variable according to the rules containing it. Correlations are computed as before. Other
incidence matrices for variables in clauses and clauses in rules can also be used in this way.

The use of correlations is in detecting unusual ones. If clause b almost always occurs with c, then something should
be noted when they do not occur together. If variable v always occurs with w, then there may be a good reason for
combining the variables. There should also be some justification for unusual correlations or distinctions.

Two rules that use the same variables are not necessarily redundantl As an artifact of the balance criteria described
later, it will often be the case that there are sets of rules all using the same variables, giving the rulebase a natural
clustering into groups.

Since each covariance matrix above is symmetric and positive semi-definite (as are the corresponding correlation
matrices), one can consider computing eigenvectors to determine an "information space", as is done in associative
information retrieval systems (see [Landauer,Msh]). The genera] idea begins with an arbitrary rectangular matrix
B, indexed by R x C (these indexes are just rows and columns for this discussion; any of the incidence matrices or
their transposes can be considered). First the kssociation matrix A (indexed by R x R) is computed as the transpose

product (B Btr), then the eigenvectors of the resulting matrix A are found. The eigenvector computation is not too
hard, since A is symmetric and positive semi-definite.

This process of determining an abstract space in which to interpret some kind of measurement data is a special case
of Multidimensional Scaling, and the eigenvector computations are the same mathematical procedures used in factor
analysis and principal components analysis in statistics and pattern recognition (see [Gnanadesikan]).

It often turns out that the number of dimensions is too large to make eigenvector computation desirable. In those
cases, the similarity measurements contained in the correlation matrix can be used in a cluster analysis. Clusters are
cheap eigenvectors, and most simple clustering methods can give useful information (see [Sibson]). If the rows of B are
considered as vectors in an information space, then the dusters of rows are sets of row items using related information.

Correlations can be used to check for some variable or expression dependencies, and particularly, almost dependencies
(if a variable v almost always depends on a variable w, then something should be noted when it does not). If two
expressions are highly correlated, then their values are almost related by a linear expression. The converse is also true,
but correlations do not help directly with non-linear (i.e., almost all) relationships. However, if arbitrary functional
transformations of the expressions can be made before the correlations are computed, then the correlations will help
again. The problem becomes one of finding out whether or not there is a functional relationship, and finding its form
(at least approximately) if there is one. This process is related to dimensionaiity reduction methods, such as nonlinear
scaling or projection pursuit (see [Gnanadesikan], [Huber]), and is an important model construction method.

r

2.3 Criteria for Rulebase Correctness

This section describes some principles of rulebase correctness, and ways to test them for a particular rulebase. There
is no description of how to determine whether or not to test the principles, since that decision is rulebase dependent.
A principle of ru|ebase correctness is a condition on a set R of rules that is required for the ru]ebase to be reasonable
in some incompletely defined sense. Tiffs notion is not the same as a principle of modeling a process or a system by
rules (that step is hard). It is a notion of how rules fit together into a rulebase.

496



Thefiveprinciples so far identified are:

• Consistency (no conflict),

• Completeness (no oversight),

• Irredundancy (no superfluity),

• Connectivity (no isolation), and

• Distribution (no unevenness).

These principlesare implemented by many criteriafor rulebase correctness.The criteriaare separated into classes,

according to the principlesthey implement. The criteriaaddress logicalconsistencyof the rules,completeness of
specificationofthe rules,redundancy ofthe rules,connectivityof the ruleand inferencesystem, simplicityof the rules
and the distinctionsthey cause,and the distributionof the rulesand the valuesimplied by them.

The first three principles, Consistency, Completeness, and Irredundancy, are not discussed in detail in this paper,
since they are relatively easy to explain (see [Landauer89], [Landauerg0] for the full discussion). The Connectivity and
Distribution principles are discussed in detail in the next sections.

The Consistency principleleadsto criteriathat involvesome kind of lackofconflictamong rules.The ideaisthat the
situationsshould be well defined,as should allthe interestingvariablevalues.The criteriawillnot be listedhere,as
they correspond to easy syntacticchecks.

The Completeness principle leads to criteria that involve some kind of universal applicability of the rulebase. Defaults
are usually used to guarantee certain kinds of completeness. All detectable places where defaults will be used should
be signaled, since some of them may only indicate undesired incompleteness in a rulebase, instead of one expected to
be fixed by the use of defaults. These criteria will also not be listed here.

The Irredundancy principle leads to criteria that insist that everything in the rulebase is there for some good reason.
The variables make a difference, the rules make a difference, and there are no extraneous variables or rules.

2.3.1 Connectivity Criteria

These criteria collect rules together, involving either the entire dynamic process of inference, or the resulting graphs.

Criterion: recursion is dangerous

The inference R graph should have no cycles.

Similarly for the inference C graph.

Dangling hypotheses and conclusions can be found very easily by looking for vertices in the clause graph (the inference
C graph) that have no out-edges or no in-edges.

The rest of the criteria require the deduction graph to be nice in some sense. Disconnected components of the graph
have no interaction, so they can be analyzed separately. There is some evidence to the effect that they should be
described in different rulebases, instead of combining all the rules into one rulebase.

It is easy (though not necessarily fast) to check a finite directed graph for connectivity and for cycles.

The inference C graph has vertices for all clauses c E C, and an edge from clause c to clause d whenever there is a
rule r with c E hyp(r) and d E conc(r). A vertex with no out-edges is a clause c with no rule r having c E hyp(r)
and cone(r) _ _ (so c should involve only output variable values, or else it should not be in cone(q) for any rule q,
so that no inference chain can conclude that c holds). A vertex with no in-edges is a clause c with no rule r having
c E conc(r) and hyp(r) _ ¢ (so c should involve only input variable values, or else it should not be in hyp(q) for any
rule q, so that no inference chain can require that c holds).

The inference R graph has vertices for all rules r E R, and an edge from rule q to rule r whenever there is a clause c
which is in both hyp(r) and conc(q). A vertex with no out-edges is a rule r with no clause in conc(r) and in h11p(q)

497



for anyruleq (so any clause in conc(r) should only involve output variables). A vertex with no in-edges is a rule r
with no clause in hyp(r) and in eonc(q) for any rule q (so any clause in hyp(r) should only involve input variables).

2.3.2 Distribution and Simplicity Criteria

This section describes some of the simplicity and distribution criteria that can be used to signal possible problems with
a rulebase. All of the criteria involve the way the rules divide up the set of situations. None of them is a mathematical
correctness criterion; only a kind of "esthetic" criterion.

Criterion: simple distinctions

For every rule r,

the set of situations satisfying hyp(r) is simple.

Each rule r provides a distinction in the set S of situations between those situations s for which r acts and those for
which it passes. When the boundary between those sets is too complicated, the expressions used in the hypothesis of
r are awkward (and vice versa). It is. sometimes necessary to use awkward phrases or distinctions in the rules, but
some justification should be provided. Note that some awkwardness can be removed by using more than one rule in
some cases.

Criterion: compact variable distribution

For every variable v,
the set of rules accessing v should be a small part of the entire rulebase.

This criterion affords a kind of modularity. The references to any one variable should be well-localized. A weaker
form of the criterion would only require localization for the variables that occur in rule hypotheses. In any case, some
variables (such as system health) must occur in many or all rules, but their wide distribution should be justified.

The other criteria describe various distributions as even. In this context, "even distribution" is less stringent than
uniform distribution, and it really only means "not very non-uniform'; it represents a kind of balance condition. Cases
of uneven distribution should be justified. It is clear that rulebases containing rare special cases will not satisfy these
criteria. Part of the purpose of these criteria is to call such cases to the attention of the rulebase designer. The
situations satisfying a given rule hypothesis should be evenly distributed in the variable domains. The rules accessing
a given variable should be evenly distributed among its possible values.

Finally, The set of rules should be evenly distributed among variables. This criterion would prevent a larger number
of rules from accessing (or just reading) one variable than for another. During rulebase development, some aspects
of situations are not fully implemented in the rules, so some variables have very few references. This criterion signals
those variables for further work (or justification).

The most blatantly non-uniform distributions are caused by unusual special cases. For example, if two variables always
occur together except in one rule, or if two variable values are always correlated except in one rule, then the exception
is an anomaly. In either case, some justification is required, either that there is a real difference for that one rule, or
that there is a reason to have two variables where one might suffice.

The criterion examines the distribution of the rules over V. For agiven variable v, the number of rules that access v
is the column sum in column v of the counting incidence matrix RV. The row sum of row r of RV counts the number
of variables mentioned in rule r. This count is related to the simplicity of hyp(r).

2.3.3 Distribution Checking

Distribution checking is not a well-established analysis technique. This section describes a test for each of the distri-
bution and simplicity criteria defined earlier.

Using prospective situations, simple distinctions means only that hyp(r) is simple in form. Without using the entire
rulebase to determine the set of situations, this is about the only thing one can check along these lines.

Compact variable distribution is easier to check. The column sums of the incidence matrix RV count tfow many rules
contain the column variable v. Then v has a compact distribution if the sums are small. Uniform variable distribution

498



alsouses column sums of RV, checking that the numbers for a given variable v are all about the same (it should be
noted that these criteria are more or less opposing, in that one wants all the values small and the other wants most of
the values zero).

The uses of association and correlation matrices are even less well established. The basic idea comes down to one
question (expressedhere only forvariables,but equallyapplicableto clausesor rulesor other constructions):

If v and w are highly correlated,
then why are they different?

Detecting unusual conditions requires some computational indication of what the usual conditions are. For any given
computational definition of the usual conditions, the cases not satisfying it can be determined (it is only after some
empirical examination that the usual conditions can be computed, and deviations from that can be deemed unusual).
For example, if variables v and w almost always determine expression e, then the usual case has the value of e for a
particular situation dependent on the value of the pair (v, w) for that situation. Then there is some function of the
pair (v,w) that should be nearly the same as the value of e, almost all the time. With the assumptions, it is now
sufficient to distinguish large differences from small ones. Of course, there is still the problem of distinguishing small
fluctuations (changes that do not indicate a new trend) in the usual values from the first signs of a real change in the
usual values.

2.3.4 Other Criteria

This section contains some analyses that should lead to some other criteria, though more work is needed on each of
them.

The various uses of correlation matrices to analyze rulebases are not so well established that they can be elevated to
rulebMe criteria. The simplest analysis considers only the pairs of items that have very high correlations (close to 1
or -1). Highly correlated variables, clauses, and rules might benefit from being rearranged to reflect the information
structure better. For example, if two variables are highly correlated (over their sets of instances in clauses or rules), it
might be better to express them both as deviations of some kind from a common variable. For another example, if two
clauses have a correlation of-l, then they occur in large disjoint sets of rules (or they contain disjoint sets of variables,
depending on which correlation matrix is used), so they are nearly mutual negations, and it might be better to replace
one of them with the negation of the other. In this case (and, indeed, in all cases of high or unusual correlations), the
correlation information is a derived feature of the rulebase, and may explain some facet of the system being modeled
that was not previously seen as significant (or even noticed). It might therefore be better to leave the rulebase as it is
until a sufficient explanation is found.

The association matrices to be considered are computed from the rule-clause incidence matrix RC, the clause-variable
incidence matrix CV, and the rule-variable incidence matrix RV "- RC * CV.

The main intent of these considerations is to find goodness criteria that can be evaluated using these association
matrices. Until such time as they can be properly formulated, however, there are still some interesting questions, t'or
example, what does it mean for all the eigenvalues to be the same size? What does it mean for one eigenvalue to be
much larger than the rest? The hardest problem is not computational, but interpretational: to explain the dimensions
in the information space (the principal components). There is still some controversy in whether or not there is any
meaning in these inferred axes; even though (or perhaps because) the technique has been used in statistical analyses
for many years.

3 MMU Analyses

Many analyses were performed that are implementations of the criteria discussed in the previous sections. There was
no automatic version of any of the analyses, since the criteria are not yet implemented. The criteria were applied by
hand, using editors, pattern searching programs, and other text manipulation programs available under UNIX. For this
rulebase, some extra semantic information is available, such as the symmetry between sides a and b. This information
was very useful in the analyses.

499



1 thruster
40 thrusters

Figurel: SomeTermFrequencies

no-xfeed-fuei-reading-test-side-a-gr t
no-xfeed-fuel-reading-test-side-a-lss
no-xfeed- fuel-reading-tesbside-b-gr t

Figure 2: Some Rulena_me Frequencies

3.1 Preliminary Analyses: Uninterpreted CLIPS

The first analysis used a simple editor script, with (almost) no CLIPS knowledge beyond what can be found by looking
at a CLIPS rulebase (which looks vaguely like LISP, with terms grouped together using parentheses). From the original
rulebase file, all strings were mapped to "..." to avoid any reliance on word meanings. The names were selected from
the text (here is where the CLIPS knowledge was used, in that the minus sign "-" can be part of a name instead of a
delimiter). The left parenthesis "(" was also kept to separate function names from other names. Then the names were
extracted, sorted, and counted to make a reference file.

This simple form of analysis found the first two errors. Among the name frequencies are the lines in Figure 1. The
isolated instance is a mistake. In rule _xfeed-fuel-reading-test-general", there is a clause error. The delivered rulebase
has

(checking thruster),

but it should have

(checking thrusters)

instead.

The second error is an incorrect rule name. The second instance of rule name "_ao-xfeed-fuel-reading-test-side-b-grt"
is wrong. It should be "no-xl'eed-fuel-reading-tesbside-b-lss". This error was found as a side (a,b) asymmetry in the
name frequencies shown in Figure 2.

Another anomaly found in the frequencies is not an error. The frequencies shown in Figure 3 might indicate an
inconsistent use of the terms _cea-s-b" and _ces-coupled" that should be the same term. However, the two terms do
mean something different in the rulebase, so the anomaly is not an error.

3.2 Detailed Analyses: Partially Interpreted CLIPS

A more systematic analysis based on the existing criteria was also conducted by hand. it differed from the preliminary
analysis primarily in the degree of knowledge of CLIPS that was used in the editing process. Using this knowledge
is equivalent to interpreting some of the symbols found in the rulebase, for example, in order to distinguish CLIPS
commands from MMU terms.

4 c_m,-&

2 cea-a-b
4 cea-b
2 cea-coupled

Figure 3: More Term Frequencies

500



vda a bl off)(vda a b4 off)(vda a ?n&_ bl&,-., b2&,.-, b3&,-., b4 on)vda a bl off)(vda a b4 off)(vda a ?n&~ bl&-,-b4 on)

vda a hl off/(vda a f2 :if/ (vda a ?n&"- bl&'-, f'2 on/vda a bl off (vda a tB (vda a ?n&~ bl&,-- f3 on

Figure 4: Some Lines from "vda" clause file

Some rulebase properties were found to be useful in this analysis that were not described in the previous section,
and had not been considered as criteria for rulebase analyses (see [Landauer89]). The new criteria found during the

analysis involve symmetry between side a and side b of the MMU, and, more generally, the symmetry among the
replicated thrusters. The question to be asked in this case is, Do the multiple versions of a replicated object occur the
same number of times in the rulebase, and if not, then why not? These criteria are associated with the distribution
principle, and they simply say that any problem symmetries should be reflected in the rulebase, so that they appear
in the distribution summaries.

Another kind of symmetry question,which not only concerns replicatedobjects,asks how to use geometric models
in a "good" way. For the MMU, the thrustergeometry isimportant in checking that the combinatlons of thrusters
specifiedby the rulesforcorrectingattitudeand positionerrorscorrespond properly to the motions requiredto correct
those errors.Because thisgeometric model was not provided with the rulebase,that analysiswas not done.

3.2.1 Analysis Preparation

This analysis began with a revised rulebase, in which the two errors found earlier were corrected. They are clearly
syntactic errors, and were fixed without further analysis. The new rulebMe file was edited, using a knowledge of CLIPS
syntax to identify terms and clauses, and to separate hypotheses of rules from conclusions. Many different syntactic
items were separated: rule names, strings, functions, terms, and clauses were all placed into separate files of code
numbers (to remove traces of semantic information derivable from the names). Editor scripts were made to translate
items to code numbers, then several versions of the rulebase were made by partial translation.

The "separated rule file" was made by combining all hypotheses in each rule into one line, and all conclusions in each
rule into one line. A file was made from the separated rule file to show clauses appearing in rule hypotheses, and
a large number of different "(or " clauses was noted, files were made to show clauses appearing in rule conclusions,
(except "(printout " clauses, which were omitted from the analysis, since the proper spelling and explanations for
detected faults were not part of this analysis), and clauses appearing in each rule. These were used for the matrix and
graph analyses.

3.2.2 Amplifiers

By far the biggest number of different clauses occurs for the clauses having function "(vda ", which concern the valve
drive amplifiers (VDAs), each of which is used to control a thruster. Many of these clauses are collected in triples with
"(or ". A file was made that contains the "(or " expressions with "(vda" clauses. Some lines of the file are shown
in Figure 4 (the first column is a frequency count). The question marks in these clauses indicate variable names. For
example, in the last line above, the third clause means that some side a thruster other than "bl" or _'3 _ is on.

The thruster names were selected as thruster names by context, manually. Every one occurs in a "(vda " clause, and

it appears that every name that occurs as the third entry in a "(vda _ clause is a thruster name. The spellings of the
thruster names determine the original grouping, as shown in Figure 5.

The arrangement of thrusters and their relationship to roll, pitch, and yaw, and to rotation and translation will have
to come from a geometric model of their locations and directions. Such a model is necessary for validation of the
thruster commands.

Examining the "vda" clause file leads to the first thruster anomaly. Some clauses have all four "f" or "b" thruster
names, and some do not. It turns out that the clauses with all four thruster names also have both sides on, and the
clauses without all four have only one side on if the same thruster group is used (e.g., both "f" or both "b" ), and both
sides if different thruster groups are used. Since a model of the thrusters was not available, this anomaly cannot be
resolved (an anomaly is not necessarily an error, remember, just something strange in the rulebase).

501



bl, b2, b3, b4
fl, f2, f3, f4
11, 13
r2, r4
u3, u4
dl, d2

Figure 5: Thruster Name Grouping

bl, b4
b2, b3
fl, f4
f2, f3

Figure 6: Thruster Name Co-Occurrences

A filewas made from the "vda" clausefiletoshow which thrustersin the above groups are associatedwith each other

in the same "(or " combination of "(vda " clauses(the same linein the "vda" clausefile).The _f_ and %" groups
subdivide, as shown in Figure 6. For example, %1" and %2" do not occur together in an assertionunlessitasserts
that some thrusterdifferentfrom both ison inthe thirddisjunctof an "(or" combination.

A file was made from the "vda" clause file to show which thrusters can be associated with which sides (the side is the
second "(vda " clause entry, and the thruster name is the third). This association leads to side assignments for the
thruster subgroups above, as shown in Figure 7. The "1", W', "u', and "d" thrusters can appear with either side, but
the "f" and "b" ones cannot (e.g., %2" never appears with side a). Each of these files was also checked for side a, b
symmetry, and no anomalies were found.

The MMU FDIR report says (only indirectly) that there are 24 thrusters, which was originally interpreted to mean
that there are six places (the labels "b', _P', "1", _r', "u", "d" are interpreted to mean "back", "front', "left", "right",
"up", "down"), with four thrusters in each place; however, not all names occur in the rulebase, so there is a possible
symmetry error in allowing "11" and "13" for both side a and side b instead of just for one of them, with "12" and "14_
for the other. Similarly, "rl', "r3", "ul", "u2", "d3", "d4" do not appear, and yet are probably required to make 24
thruster names in all.

3.2.3 Hand Controllers and other Clause Notes

Another large group of clauses are the a(rhc " and "(thc" clauses, which deal with rotational and translational hand
controllers. A file was made from the separated rule file to contain all those clauses. The complete file is shown in
Figure 8 (the numbers on the left are frequencies). It turns out that every "(rhc" clause is paired with a "(thc" clause,
and vice versa (this property was found by observation, but it could have been found by examining the correlations
between occurrence patterns of these clauses). These counts also demonstrate the symmetry among roll, pitch, and
yaw on the one hand, and x, y, and z on the other.

There are two styles of motion: rotation and translation. The rotations can be roll, pitch, or yaw, representing (it is
assumed) the usual notions of vehicle attitude. The translations can be x, y, or z, representing (it is assumed) some

side a
bl, b4
f2, f3

sideb

b2, b3
fl,f4

Figure 7: Thruster Name-Side Associations

502



4 (rhc roll neg pitch none yaw none_ (thc x none y none z none /
4 (rhc roll none pitch neg yaw none) (thc x none y none z none)

4 (rhc roll none pitch none yaw neg) (thc x none y none z none /
4 (rhc roll none pitch none yaw none) (the x neg y none z none)

4 (rhc roll none pitch none yaw none l (thc x none y neg z none)
4 (rhc roll none pitch none yaw none_ (thc x none y none z neg)
25 (rhc rollnone pitchnone yaw none) (thcx none y none z none)

4 (rhc roll none pitch none yaw none / (thc x none y none z pos /
4 (rhc roll none pitch none yaw none) (thc x none y pos z none)
4 (rhc roll none pitchnone yaw none) (thcx posy none z none)

4 (rhc roll none pitch none yaw Post (thc x none y none z none /
4 (rhc rollnone pitchpos yaw none) (thcx none y none z none)
4 (rhc rollpos pitchnone yaw none) (thc x none y none z none)

Figure 8: Hand Controller Clauses

24
24
43

side a off) (side b on)
side a on) (side b off)
side a on) (side b on)

Figure 9: Side Clause Combinations

unspecified Cartesian coordinate system. The hypotheses of a single rule have changes in at most one component of
at most one style of motion, and the changes occur symmetrically among the components. The relationship between
the component being corrected and the combination of thrusters used to correct it cannot be checked, because no
geometric model is available. An internally consistent relationship could be derived from the rules, but would not
necessarily be correct.

Another large group of clauses is the "(side " clauses; a "side" clause file was made to contain them. They always
occur in pairs, one for side a and one for side b, The pairs are shown in Figure 9. The few rules that do not have these
clauses in their hypotheses are mostly in the rulebase to control other groups of rules, or to print out the problem
statements (the rulebase has five predefined scenarios; special rules print the corresponding problems and solutions).
There are no clause combinations for the case in which side a and side b are both off.

Other coverage notes were found by examining other kinds of symmetry. The "(aah " clauses, involving the Automatic
Attitude Hold (AAH) process, and the "(gyro" clauses, involving the gyroscopes, form another potential source of error,
since they split the attitude control information in two ways. The statistics of these danses and their cooccurrences
were computed, and are shown in Figure I0 and Figure II. First, some simple anomalies are obvious at this point.
There is no clause "(gyro off)" in any rule. There is no applicable rule if "(gyro off) and (aah on)".

Finally, another anomaly that is certainly an error was found by trying to infer from the above tables how these clauses
combine in threes. It can be explained more easily, however, by noting that there is no combination of clauses "(aah
on)" and "(gyro movement roll pos)". In fact, examining the four rules containing U(gyro movement roll pos)" shows

53 (aah off)

20 (aah on)
49 (gyro movement none none)

4 Igyro movement pitch neg /
4 Igyro movement pitchpos)
4 (gyro movement roll neg)

4 /gyro movement roll pos)
4 tgyro movement yaw neg)

4 /gyro movement yaw pos)
73 tgyro on)

Figure 10: Clause Counts for Attitude Clauses

503



4

534

4 (aah

4
4 aah

20 aah

49 (gyro

4 /gyro
4 tgyro

4 /gyro
4 tgyro

4 /gyro
4 /gyro

off) (gyro movement none none)
off) (gyro movement roll pos)
off)(gyroon)
on) (gyro movement pitchneg)
on) (gyro movement pitchpos)

on) (gyro movement rollneg)
on) _gyro movement yaw neg)
on) _,gyromovement yaw pos)
on) (_ro on)
movement none none) (gyro on)

movement pitch neg 1/gyro on /
movement pitch pos) tgyro on /

movement roll neg / tgyro on /
movement roll pos) (gyro on !

movement yaw neg / /gyro on)
movement yaw pos] (gyro on )

Figure II: Pair Counts for Attitude Clauses

that the clause "(aah off)"isused instead.The same erroralsoappears in the count for "(aah on) (gyro on)",which
is20 insteadof 24, and inthe count for "(aah off)(gyro on)", which is53 insteadof 49. The numbers 49 and 24 are
much more consistentwith the hand controllercounts than 53 and 20 are.

3.2.4 Clause and Rule Associations

In order to compute associations, several files were made for incidence matrices and counts. The incidence matrix for
clauses vs. rule hypotheses is sparse, with an entry for each rule that consists of a list of the clauses in the rule's
hypothesis. The clause count vector has an entry for each clause that contains the number of occurrences of the clause
m rule hypotheses. The co-occurrence matrix for clauses is also sparse, with an entry for each pair of clauses that occur
together in a rule hypothesis. The entry is the number of rule hypotheses in which the two clauses occur together. The
clause pair count vector has an entry for each clause that counts the number of clause pairs in which it occurs. These
two count vectors are different, with the second one always larger. If a clause c occurs in exactly one rule hypothesis h,
then the corresponding entry in the clause count vector will be one, and if that rule hypothesis h has four clauses, then
the entry in the clause pair count vector for c will be three (one for each of the other clauses in the rule hypothesis).

Files were made for the clause count vector, the clause co-occurrence matrix, and the clause pair count vector.

The data files were converted, by editing them systematically, into two programs to compute correlations. For each
clause, the first program (_frac.c") computes and prints the fraction of its co-occurrences with each other clause (when
they do occur together). Fo.r each pair of co-occurring clauses, the second program ("corr.c") prints the correlations.

Suppose that each clause c has frequency f(c, r) - 0 or 1 in each rule r. Suppose also that there are ne rules and nc
clauses. The rules are considered as samples, so each clause is considered as having some kind of clause distribution
over the rules (not necessarily a random distribution), and various statistical measures can be computed. The clause
count for clause c is s(c) - __,, f(c, r), so its average frequency across the rules (the fraction of rules it is in) is
avg(c) = s(c)/nr and its variance is

_a,'(c)= s(c)(nr--*(c))
nr2

(sincef(r,c)2 = f(r,c)).The clausepairfrequency forclausesc and d is

re(c,a) = _/(c, _)/(d,,)

and the clausepaircount is

p(c) = _ m(c,d)
d#c

=
v

5O4



--
d#c

_ f(c, r)(hCr)- 1)
f

for all clauses c, where h(r) is the number of clauses in rule r. The correlation is computed in the usual way:

_n(c,d)/n_- a_g(c)_w(d)
corr(c,d) =

for all clauses c, d, which can be simplified to

s_(c) = _/s(c) (n_- s(c))

corr(c,d) =
By(c)sv(d)

for all clauses c, d.

The program "frac.c" is made from the clause co-occurrence matrix file and the clause pair count file to print co-
occurrence fractions. Lines of the form

cO00 9

in the clause pair count file become lines of the form

double cO00 - 9;

in the program "frac.c'. Lines of the form

1 c000 c022

in the clause co-occurrence file become lines of the form

printf("c000,c022 = %.4f_n',l/c000);

in the program Ufrac.c'. The progr_n then simply prints out the computed fractions.

The program "corr.c" is made from the clause co-occurrence matrix file and the clause count vector file to print
correlations. Lines of the form

1 cO00

in the clause count vector file become lines of the form

double cO00 = 1.0, stdc000 = sqrt(1.0 * (nr - 1.0));

in the program "corr.c'. Lines of the form

1 cO00 c022

in the clause co-occurrence matrix file become lines of the form

printf('c000,c022 = %.4i_n',(l*nr-c000*c022)/(stdc000*stdc022));

505



in theprogram"corr.c'. The program then simply prints out the computed correlations.

Then a file was made that contains all correlations above 0.7, sorted in decreasing order by correlation. Many clause
pairs had a correlation of 1.0; almost all-of the clauses in those pairs occurred exactly once in the rulebase, a few
occurred twice, and one pair occurred six times each, all in the same rules. No anomalies were detected.

The largest correlation less than one is 0.9259, between the clauses "(ash off)" and "(gyro movement none none)",
since only 4 of the 53 instances for the former clause do not occur with the latter clause. This is an anomaly, and
in fact, it is the same error as the one described above. The next highest correlation is between a clause "(failure
?)", which only occurs in the combination "(not (failure ?))" (meaning that there is no asserted failure), and the two
clauses "(xfeed-a closed)" and "(xfeed-b closed)" (separately). Only one rule contains the former clause without the
latter clauses, which always occur together; these are the two mentioned above that occur in six rules. The extra rule
containing the failure clause is a control rule that begins the tank and thruster test (most of the rules concern the
electronics and not the propulsion system). This anomaly is not an error.

3.3 Discussion

The inference path analyses were not performed on this ruhbase, due to their large computational requirements. It is
expected that after the rulebase anomalies are corrected, an inference graph analysis will be performed.

It should be noted that many of the tests did not identify any anomalies. This situation is not a problem; because the
theory is to apply as many tests as practical, there will often be tests that do not find errors. Moreover, in the rare
cases of a correct rulebase, none of the tests will find any errors.

Special purpose tests, using special purpose criteria, will always be useful in analyzing a complex rulebase. The
important point here is to make the special test usefully special, instead of making it the most general test possible.
Some criteria can be made more widely applicable, and some will remain special purpose.

In the case of the MMU analysis, the symmetry criteria can be applied ingeneral to systems with replicated components,
but the choice of symmetries for the thrusters is specific to the MMU. The unmodeled geometric relationships among
the thrusters was a missing aspect of the MMU definition that would have greatly assisted the analysis. A geometric
model would allow validation of the rules that relate the VDA effects with the thrusters that cause them, and the rules
that group thrusters together.

Perhaps the most interesting result of this analysis is that the tests that discovered errors did not do so automatically. In
some cases, it was not at all obvious that the data represented errors. Some thought about the data and interpretation
of results was required. It is not likely that a completely automatic system will find all errors in a rulebase (even aside
from the undecideability barrier). A certain care will also be necessary.

However, these analyses and tools to implement them make the proccm of discovering some kinds of errors much easier,
and should thereby make the design process much more effectively free of such errors.

4 References

[Bellman]

Kirstie L. Bellman, "The Modeling Issues Inherent in Testing and Evaluating Knowledge-based Systems",
Ezpert S_/stems and Applications, Pergamon Press (to appear, 1990)

[Bellman,Wal ter]

Kirstie L. Bellman and Donald O. Walter, UAnalyzing and Correcting Knowledge-Based Systems Requires
Explicit Models _, Proc. AAAI 1988 Workshop on Verification and Validation of Knowledge-based Systems,
AAAI (1988)

[Culbert]

50e



Chris Culbert, "CLIPS Reference Manual" (Version 4.2), NASA Johnson Space Center (April 1988)

[Gnanadesikan]

R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate Observations, Wiley (1977)

[ttuber]

Peter J. Huber, "Projection Pursuit" (with discussion), The Annals of Statistics, Vol.

435-529 (1985)

13 No. 2, pp.

[Landauer89]

Christopher Landauer, "Principles of Rulebase Correctness", in Kirstie L. Bellman (ed.), Proc. IJCAI
89 Workshop on Verification, Validation, and Testing of Knowledge-Based Systems, Detroit, Michigan, 19
August 1989, AAAI (to appear, 1990)

[Landauerg0]

Christopher Landauer, "Principles of Rulebase Correctness", Expert Systems and Applications, Pergamon
Press (to appear, 1990)

[Landauer,Mah]

Christopher Landauer, Clinton Mah, "Message Extraction Through Estimation of Relevance", Chapter 8
in R. N. Oddy, S. E. Robertson, C. J. van Pdjsbergen, P. Williams (eds.), Information Retrieval Research,
"Proc. of the Joint ACM and BCS Syrup. on Research and Development in Information Retrieval",
Cambridge University, June, 1980, Butterworths, London (1981)

[Lawler,Williams]

Dennis G. Lawler, Linda J. F. Williams, "MMU FDIR Automation Task", Final Report, Contract NAS9-
17650, Task Order EC87044, McDonnell-Douglas Astronautics Co. (3 February 1988)

[Sibson]

R. Sibson, "SLINK: An optimally efficient algorithm for the single link cluster method", Computer Journal,

Vol. 16, pp. 30-34 (1973)

5O7


