
...... N96- 12926

J}

Satelllte Simulations Utilizing CLIPS

by

Barbara Pauls

Mark Sherman

Rockwell International

Satellite & Space Electronics Division

P.O. Box 3644

Seal Beach, CA 90740-7644

MS: SJ62

Simulations provide necessary testbeds for system designs.

Currently we are developing software whose main requirement

is to produce CLIPS executable simulation code of a user

prespecified system. This process minimizes the amount of

engineering effort required to specify a system thereby

reducing cost and providing the capability to quickly revise

system definitions. Modeling satellite systems is the

primary objective toward which testing has, and is, being

conducted using satellite specifications. Thls paper

describes the modeling software being developed, its

formatted input and the CLIPS system simulation it produces.

508

Introduction

The main purpose behind our current satellite simulation

efforts is to provide a testbed for autonomy research. The

method currently being developed is to produce realistlcand

dynamic behavioral models reflecting current-state satellite

systems. Future uses of the simulation method being

developed may include the testing of more advanced and fault

tolerant system designs.

The ability to easily add, delete, change and replace

satellite subsystem definitions is required to support

current research. Unfortunately, CLIPS, and expert system

languages in general, are not common knowledge to most

satellite engineers. To ensure efficiency, the approach used

allows the specifications to be written in a 'higher-level'

language. Such a modeling language has been defined and is

referred to as Satellite Modeling Language (SML). The SML

allows the user to specify the satellite system at any level

desired. The satellite model can be defined at the system

level, subsystem level or lower. Environmental affects on

the satellite can also be defined using SML.

To convert SML code to CLIPS executable simulation code, a

language translator was created. Consistent format of

outputted code is automatically provided by the translator.

The language converter can also implement necessary error

checking. Currently the amount and type of error checking

done by the SML translator is at a minimum. Future
translator versions will include increased error checking

capabilities of input modeling code. The language translator

itself was written in CLIPS code. Being basically a

sequential process difflculties arose forcing a language

compiler to perform as an event driven process. However the

experience of writing the translator in CLIPS provided

understanding of CLIPS requirements needed to output

simulation code.

By implementing the definition process in this manner, as

shown in Figure i, a basic structure evolved in each

simulation model. This basic structure provides a certain

degree of quality assurance, yet does not restrict the way in

which a user defines a system. The specifications can be

broken down into as many levels and/or modules as the

engineer desires.

EPS

TCS

ACS

NAV

. CCMVl
I

Subsystem

Delinitions

CLIPS
code

SatelliteSimulation

Model

 IT IAcslNAvl
Figure i. Simulation Definition Process

Satellite Modeling Language

SML consists of three main structures; templates, objects and

rules. A template contains a generic set of attributes. The

attributes are represented by simulation variables which

describe the object. An object is created from a defined

template and more than one object can be created from the

same template. Objects can be specified at the time the

template is defined or created separately. The SML rules

define the simulation laws which all objects function under.

Object Definitions

Template specification contains a template name, optional

object name(s), e list of attributes and their corresponding

values. The SML 'define' command specifies a template and

can create related objects. The syntax for the 'define'

command is as follows, where optional fields are surrounded

by square brackets []:

define template [obJectl object2 ... obJectN]

(attributel = valuel;

attrlbute2 = value2;

attributeN = valueN;)

510

Objects to be created with equivalent attributes are listed

after the template name or can be specified by the SML

'create' command after the template has been defined. The

syntax used to 'create' an object follows:

create template objectl [object2 ... obJectN]

([attributel = valuel;

attribute2 = value2;

attributeN = valueN;])

Attribute values assigned when the template was defined may

be changed for new objects. However, the 'create' command

can not refer to any new attributes not defined in the

corresponding template. If a template attribute is not

listed in the 'create' command it retains the original value

given in the template definition. The attribute value can be

of any data type.

A one-dimensional array of attributes may also be specified.

The array index is defined with square brackets and for every

array element there must be a corresponding value, separated

by commas. Examples of a template definition and object

creations are given in Figure 2.

define eps_template

(nominal_power
batteries enabled

batterles-[l, 2, 3]

main_bus_voltage

power_op_command
enable batteries command = off;

battery on command [I, 2, 3] = off,

battery_off_command [i, 2, 3] = off,

= 0;

= 0;

= off, off, off;

= 0;

= off;

off,

off,

off;

off;)

create eps_template EPS

(nominal_power = 18;
enable batteries command = on;)

Figure 2. SML Template and Object Examples

511

Rule Specifications

SML rules define and constrain simulation model behavior.

Each rule is assigned a rule name in the 'behave' field and

has a condition and an action section• The condition section

of a rule is broken into five fields; 'priority' 'from'

'to', 'condition start' and 'condition_end'. All five fields

are optional. The action section of a rule must exist. Once

the condition is met the action field is executed. The

syntax for a rule is as follows:

behave rule-name

[priority (priorlty-level)]

[from (start-time)]

[to (end-time)]

[condltion_start (conditionl
conditlon2

conditionN)]

[condition end (condition1
condition2

conditionN)]

action (action1;

actlon2;

actionN;)

The 'behave' field identifies the name of the rule and is

required• The 'priority' assigns a priority value which is

applied towards the order of rule execution and is restricted

by CLIPS salience values to range between 0 and 10,000. Both
the 'from' and 'to' fields are time oriented and have

simulation default values which are currently provided by the

interfacing process that uses the simulation as a testbed.

Future versions may provide the capability to allow the user

to specify default simulatlon times. When a time is

specified in the 'from' field the condition is true if the

current simulation time is greater than or equal to the

specified start time. When a time is specified in the 'to'

field the condition is true if the current simulation time is

less than or equal to the specified end time.

When a 'condition start' field exists and all conditions are

met the rules action is fired• When a 'condltlon_end' field

exists and all the corresponding conditions are true the

rules action is not fired even if all time and start

conditions are met.

512

The logical keywords 'and' and 'or' are used to connect rule

conditions. The logical keyword 'not' is used to negate a

condition. Legal SML comparison symbols are =, /=, <, <=, >

and >=.

The 'action' field of an SML rule must exist and is executed

when the corresponding conditions are met. Each action

assigns or modifies values of object attributes. Currently

SML input is constrained by the translators capabilities to

use prefix notation in the action fields. The envisioned

final translator version will allow infix notation in SML

input. The rule examples given in Figure 3 depict future

versions of SML input. Legal SML arithmetic operators are +,

- *, / and **. Currently only CLIPS functions are available

in the SML input. User defined functions can be added to

CLIPS and then used in SML input.

Comments may be inserted throughout SML code. Code between

an exclamation character, !, and an end-of-llne character is

interpreted as user comments.

behave EPS NOMINAL POWER
D

from (i0)

to (950)
condition start (eps.power_op_command = on)

action (eps.nominal_power = 18;

eps.power_op_command - off;)

behave RECORDER 1 COMMANDED ON

to (400)

condition start (comm.recorder_on_command.l = on)

action (comm.recorder_status.l - on;)

behave DECREASE AREA A TEMP !environmental affect

condition end [not [acs.gyro_heater = on))

action (tcs.area_a_temp - tcs.area_a_temp - .3;)

Figure 3. SML Rule Examples

513

Translator Description

The translator takes input files containing SML code and

generates output files containing CLIPS code and an

integrator symbol table. The translator requests names from

the user for the input, output and integrator symbol files.

Currently the translator converts three types of SML commands

into CLIPS code; behave, create and define.

The input file can contain one or more SML commands. Any

combination or order of SML commands is allowed. The output

file has CLIPS code translated from an input file containing

the SML commands. For each SML behave name there will be a

CLIPS rule with the same name. An example of an SML behave

command translated to a CLIPS rule is shown in Figure 4. The

integrator symbol file contains a list of SML behave names, a

llst of variables that have been defined, and a list of

variables not defined. The llst of variables not defined may

be defined in another input file that is yet to be

translated. It is the responsibility of the simulation

integrator program to report any undefined variables.

The translator was written in CLIPS to better understand the

requirements of translation into CLIPS code. The translator

is more of a sequential process than an event driven

process. Many challenges were presented when a sequential

process was coded in an event driven environment. Sequential

coding was accomplished by using control flags. The

translator was written to take advantage of event driven

processes as much as possible.

The CLIPS translator code is stored in eight different

files. The behave, create, and define files parse the SML

commands and build the related CLIPS code. The read, and

write files deal with input and output files. The index and

field files parse a line from the SML file. The main file of

the translator obtains user inputs, starts the translator and

terminates the translator.

The translator relies on CLIPS being case sensitive. By

converting the SML code into upper case and using lower case

for the translator varlables, duplicate fact names are

reduced. The only exception to this rule is when a CLIPS

function is used by an SML command thus requiring conversion

to lower case.

514

behave tcs nominal_power_on

priority (-- 2)

from (0)

to (250)

condition start (tcs.power_op_command = on)

condition-end (tcs.power = off)

action ((tcs.nominal_power = 5);

(tcs.power_op_command = off);)

SML

(deffacts TCS NOMINAL POWER ON-tlme

(TCS NOMINAL POWER--ON-from-time 0)

(TCS--NOMINAL--POWER--ON-to-time 250))

CLIPS

(defrule TCS NOMINAL POWER_ON
(declare [salience 2))

?a toc <- toc TCS_NOMINAL_POWER ON)

(time ?time)

(TCS_NOMINAL POWER ON-from-time ?from-tlme)

(TCS_NOMINAL--POWER--ON-to-time__ ?to-time)

(TCS.POWER ?TCS.POWER)
?a TCS.POWER OP COMMAND <- (variable-data

--TCS.POWER OP COMMAND ?TCS.POWER OP COMMAND)

?a TCS.NOMINAL VOWER <- (variable-data

--TCS.NOMINAL--POWER ?TCS.NOMINAL POWER)

-_>

(retract ?a toc)

(if (and

(>- ?from-time ?time)

(<= ?to-time ?time)

(eq ?TCS.POWER_OP_COMMAND ON)

(not

(eq ?TCS.POWER OFF)

)) then

(retract ?a TCS.NOMINAL POWER)

(retract ?a--TCS.POWER OP COMMAND)

(assert (varlable-data TCS.NOMINAL POWER 5))

(assert (variable-data TCS.POWER OP COMMAND OFF)

Figure 4. Sample SML Behave Translation

515

Translation of SML Define and Create Commands

Figure 5 shows the translation of the SML define and create

commands into CLIPS code. Each part of the define and create

command is broken up into individual pieces (i.e. template,

object, attributes) during the reading of the command. Each

piece is tagged with the template name for latter use in

generating CLIPS code. The generation of CLIPS code from the

define command is delayed until after all the create command

CLIPS code has been generated. This is because the create

and define command can come in any order and the create

translation needs the pieces of the define command. After

all the create commands have generated their CLIPS code, the

define command can then generate CLIPS code. Once the define

command has generated the CLIPS code all the pieces related

to the define command can be deleted.

define tcs_template

(power_op_command = on;

power = off;

nominal_power = 5;)

create tcs_template tcs

(power_op_command = on;)

SML

(deffacts TCS TEMPLATE

(variable-data TCS.POWER OP COMMAND OFF)

(variable-data TCS.POWER OFF)

(varlable-data TCS.NOMINAL POWER 5))

(deffacts TCS

(variable-data TCS.POWER OP COMMAND ON)

(variable-data TCS.POWER OFF)

(variable-data TCS.NOMINAL_POWER 5))

CLIPS

Figure 5. Sample SML Define and Create Translation

516

Translation of SML Behave Command

Figure 4 shows the translation of the SML behave command.

For every SML behave command the translator produces a
maximum of one CLIPS deffacts statement and one CLIPS

simulation rule. If any time conditions are specified in the

SML rule 'from' and 'to' fields, a deffacts statement is

created which asserts minimum and/or maximum time values

specifically corresponding to the simulation rule. These are

then tested in the CLIPS rule against the simulation time.

In order to assure that all CLIPS rules are executed once per

simulation second, the left hand side (LHS) conditions of the

CLIPS rule must always be true. Therefore only necessary

facts are referenced on the LHS using binding variables

whenever possible. The SML specified conditions are then

tested on the right hand side (RHS) of the CLIPS rule using

an 'if...then' structure.

Each SML behave command consists of six specific parts. The

'priority' part translates to a declaration of rule
salience. The 'from' and 'to' parts define a check on the

simulation time facts done on the RHS of the CLIPS rule. The

'condition start' and 'condition end' part also define the

'if...then T check done on the RHS of the rule. The SML

'action' part translates to retract and assert statements in

CLIPS code.

Simulation Integration

The integrator program accepts input from the integrator

symbol table. The integrator symbol table is created by the

translator program. The integrator symbol table, see Figure

6, contains a list of all SML rule names, a list of SML

variable names, and a list of undefined SML variable names.

The list of SML defined and undefined variable names have

been provided for future enhancements. The output of the

integrator program is the dynamic CLIPS code, see Figure 7.

The dynamic CLIPS code file contains any simulation control

code needed to run the simulation model.

517

*** NEW ***

TCS NOMINAL POWER ON

*** NEW ***

NAV PAYLOAD ELECTRONICS SDTBY

INPUT

TCS NOMINAL POWER ON

NAV PAYLOAD ELECTRONICS SDTBY

OUTPUT

Figure 6. Sample Integration Symbol Table

(defrule tic

(not (tic-done))

?a tic <- (tic)

?a time <- (time ?time)

(tlme-max ?time-max)
_>

(retract ?a tic)

(bind ?num (÷ ?time I))

(if (<= ?hum ?time-max) then

(retract ?a time)

(assert (time ?num))

(assert (toc TCS_NOMINAL_POWER_ON))

(assert (toc NAV_PAYLOAD_ELECTRONICS_SDTBY))
else

(assert (tlc-done))

(assert (get-tlc))

)

Figure 7. Dynamic CLIPS code

518

Simulation Model

All simulation code output from the SML translator is CLIPS

executable. For every SML file input to the translator one

corresponding CLIPS file is output. To execute the

simulation all the translator outputted files and two other

input files, one static and one dynamic file, are loaded into

the CLIPS environment. The simulation static file contains

the simulation time control rules and any other CLIPS rules

needed that are not subsystem dependent. This additional

code provided in the static file is user specified simulation

requirements not supplied by the SML input. The dynamic file
contains time rules which control simulation rule execution.

This file is generated by the integrator program previously

described. The remaining files contain SML translated

commands. In our simulation model each subsystem was

described in one SML input file and after translation each

subsystems simulation code was contained in a unique output

file.

As previous examples have shown, satellite simulations have

been defined on the subsystem level using command and

measurement attributes to describe each subsystem. Once

these object attributes have been defined and created a time

clock is introduced by the translator produced static file to

control the simulation processing. The implementation of

time restricts rule execution by allowing each CLIPS rule to

fire only once per simulation second. Start and end times of

the simulation clock are currently defined by a higher level

process interfacing with the satellite model. The simulation

can be defined as a stand-alone process if the start and end

times are hard coded in the static file.

Xn order to simulate time the translator produces a

predefined set of time rules which are based on a 'tic toc'

process. A 'tic' fact serves as a timer interrupt and in our

current simulatlons is produced by the higher level process

interfacing with the satellite model. This interrupt could

be produced by the CLIPS simulation model itself if it were

to execute stand-alone. The CLIPS simulation always

processes the timer interrupt using one rule. This rule

retracts the 'tic' fact when it exists, valldates that the

current time is less than the maximum simulation time,

increments time and asserts a 'toc' fact for every translated
SML rule. Each 'toc' fact is retracted when its

corresponding simulation rule is executed. When all 'toc'

519

facts have been retracted the simulation model is hung until

another timer interrupt, a 'tic' fact, is asserted.

Currently no user interface exists to run a stand-alone CLIPS

simulation model. Any information to be displayed during

runtime must be added to the CLIPS simulation code and no

operator interrupt capability has been provided. However our

current uses do not require a stand-alone interface.

Summary

The method which evolved from the basic satellite simulation

approach provides the tools needed to minimize development

effort and allow the subsystem engineers to quickly revise

system definltions. The input and output requirements for

any simulation are independent and in our approach we left

such requirements to be implemented by the simulation
coordinator. The simulation interface can be coded in CLIPS

and put into the static file so as not to complicate

subsystem engineer development. When a function is needed

which is not provided by either SML or CLIPS it can be easily
defined in CLIPS and then referenced in the SML descriptions.

Utilizing the CLIPS expert system language as the simulation

code was quite advantageous. Coding the SML translator in

CLIPS was a challenge, however, this approach did provide

insight to CLIPS capabilities and functionality. For the

satellite modeling effort CLIPS provided a more than suitable
event driven simulation environment. Other advantages to

utilizing CLIPS included low cost, high portability and easy

integration with external systems. We believe the approach
described allows the definition of a wide range of satellite

architectures, satellite behaviors and environmental

influences with minimal effort.

520

