
j/_ -,_/ N96- 12929

Prototyping User Displays Using CLIPS

Charles P. Kosta

Ross Miller

Center for Productivity Enhancement

University of Lowell

Lowell, MA

Dr. Patrick Krolak

Matt Vesty

Transportation Systems Center

Cambridge, MA

534

Abstract

CLIPS isbeingusedasan integralmoduleofa RapidPrato-
typingSystem.The ProtolypingSystemconsistsofa display
managerforobjectbrowsing,a graphprogramfordisplaying
lineand barcharts,and a communicationsserverforrouting

messages between modules. A CLIPS simulation of physical
model provides dynamic control of the user's display. Current.
ly, a project i$ well underway to prototype the Advanced
Automation System (ASS) for the Federal aviation administra.
tion.

A prototype, as defined by The American Heritage

Dictionary, is an original type, form, or instance

that serves as a model on which later stages are

based or judged.

LEVELS OF FUNCTIONALITY

The prototyping of user interfaces has evolved into

four distinguishable levels. The first level is the

"'straw man" stage, when a basic screen design is

developed that approximates how the interface should

look. The purpose of this phase is to work out aes-

thetics issues only; it does not give any indication of

the usability of the display. Using C or another script

-like language, the second level prototypes static

responses using limited scenarios. At this phase the

objects can react to user input, but the responses do

not deviate from an internal script. The third level

incorporates a dynamic response from the system.

During this phase the dynamic system attempts to

mimic the real system as closely as possible in such

areas as responding to user events and simulating (or

generating) user scenarios. While using this level

prototyping users should not be able to tell that they

are using a prototype and not the real system. The

highest level of prototyping contains everything in the

previous three levels plus the ability to capture and

report on usage metrics.

The function of prototyping is to demonstrate

whether or not a model serves a useful purpose. At

the first level, we are trying to find out if the screens

are discernible; do they portray right meaning. The

second level asks whether or not the prototype can

respond in an intuitive manner. The third level utilizes
scenarios that in turn simulate events to which the

user must react. The highest level uses metrics to

modify the behavior of the running system. It is

important to note that the first three levels also have

metrics, but they are not integrated into the prototype;

they are external: surveys, video taped sessions, sub-

jective comments of the user community.

USER DISPLAYS

Typically, static mock-up displays are the first proto-

types created for most applications. They help deter-

mine spatial and size constraints for various data mod-

els. Dynamic displays are later generated to allow

users to interact with the prototype.

Today's prototypes not only deal with data

models, but with user models as well. For example,

icons must somehow depict a similar meaning for all

users. Supporting this trend is the rapidly increasing

role that windowing systems are playing in today's

computing environments. Specifically, the method in
which information is distributed into windows and

icons is important for users who are trying to under-

stand the state of an active system.

New techniques are being developed daily that

strive to go beyond the borders of windows of infor-
mation into what have been termed widgets. Widgets

are typically some graphical representation, in the

form of an icon or window, that provide movements

and actuators upon some object. An example of this

type would be a sliding bar widget. In a similar man-

ner to the sliding bars used on stereo equipment, the

user can select the slide bar with the mouse and move

it along the axis to set or adjust some scalar value.

Widget complexity is limited only by the creator's

imagination, and they can be as simple as a small

radio knob dial or as complicated as the entire front

panel of a virtual computer. In general, prototyping

systems are becoming increasingly object oriented

with data items taking on object properties. These

535

properties can be linked to widget functionality on the

display and when an object value changes the corre-

sponding widget can be updated.

This paper will attempt to explain one particu-

lar system that was designed to elicit user require-

ments through the use of prototyping user interactions.

The project is called User Requirements Prototyping

System (URPS). URPS is positioned at the prototyp-

ing interactions (third) level on functionality. This

does not mean that the two lower levels (static and

responsive) arc excluded -- they are also available.

What we have not included as yet is a method to

obtain metrics from the running prototype.

OBJECT RENDERING

Information can be represented (rendered) in different

manners. A temperature can be rendered as a number,

a picture of a mercury thermometer that has more pix-

els filled as the temperature increases, or as a square

block that changes from blue to red. Any one of these

methods may be appropriate in a given situation. Any

object can be rendered in some manner, although the

method is usually based on object functionality as far

as the user interface is concerned.

Pop-up windows are interesting in that they can rep-

resent a user model that goes beyond the "desktop"

into models that are based on a virtual technical assis-

tant working with the user's "desktop." In particular,

current pop-up windows are used for displaying a

message about the system that you must deal with

immediately (like a high priority memo on your desk-

top); displaying a menu that represents either local or

global choices about the window below it; and dis-

playing pop-up windows that act like post-up notes

from the system.

DYNAMICS

Allowing dynamic changes to happen on the display is

useful. Most user design prototypes find it necessary

to know if the user can use and interact with the data

that is presented. Current techniques make use of C

language (object-code linkability), Sl_cially designed

scripting languages, or message passing constructs to

facilitate dynamics. URPS takes a combined approach

in the form of an expert system shell call CLIPS (C

Language Integrated Production System). Event mes-

sages travel between objects via a FACT construct.

Programmability is available at both runtime via

CLIPS rules and link time via C code though CLIPS.

WInDOWInG

It is important to consider the user model as a guide to

object rendering. Current windowing systems allow

the designer to choose different techniques for win-

dow (or object) managerr_nt. The three main types are

tiled, overlapping, and pop-up windows. _led win-

dows are those that split up the screen into smaller

tiles -- no window ever covering up another -- and

is based upon the user's ability m deal strictly with

base spatial concepts. Overlapping windows allow for

the possibility of dam being covered up and are usual-

ly equipped with the ability to resize, move, and place
one window over another. In user models terms, over-

lapping windows represent the "deskiop" paradigm.

CURRENT SYSTEMS

There are many systems currently available for proto-

typing user displays. Two will be discussed briefly.
The first is a low cost solution available

through COSMIC called TAE+ (Transportable Appli-

cations Environment Plus). TAE was developed by

NASA Goddard as a tool for building consistent,

portable user interfaces in an interactive alphanumeric
terminal environment. TAE also supports rapid proto-

typing of user interface screens and interactions, and
allows the direct reuse of those screens in the final

applications. TAE+ now supports X Window and

MOTIF widgets.

536

VAPS (Virtual Application Prototyping Sys-

tem) is a much more elaborate, commercially avail-

able package that runs on silicon graphic worksta-

tions. The user can build prototypes by interactively

laying out the display

and then attaching scripts

to each object. The

scripts are C functions

that are modifiable by

the user. VAPS supports

a wide range of input

devices, and a designer

can first prototype a con-

trol panel using just

graphics and a mouse.

Later, a touch sensitive

screen can be added.

VAPS, a sophisticated

product that can proto-

type very realistic

sci'eens, is a product of

Virtual Prototypes.

DISPLAY MODELS

Rendering Models are

lo T
[

1

Objec_ Views

I

File Viewer

(Help File)

along with the speed of the system, can support inter-

esting pictorial effects. But one can always choose to

tackle the graphic modes (using or buying a package).

The biggest problem here is in choosing what level of

PCLIPS Disp_

Floor !

Log Winclows Floor Plans

Bar Charts

anti Graphs

Figure I. PCLIPS Display Model

basedon thedisplaydevicesavailable.These devices

range from very low capabilitydisplaysand veryhigh

leveldisplays.To examine a few of thesedifferences,

threeexamples willbc discussedhere:theANSI ter-

minal,theIBM PC and theX Windowing System.

Using inverted text and special symbols

whenever possible,the standardANSI terminalcan

provide many rcndenng possibilities,although tiled

windows seem to bc thefavoriteon thesesystems. It

is,however, possibleto write,or use,a package can

provideboth overlappingand pop-up styles.Pictorial-

ly,widgetstendtobc squareand numbers arc usually

depictedwithnumerals.Artisticallyspeakingitispos-

sibletohave iconsthatarcintuitive.

The next stepup from the ANSI terminalthe

IBM PC. The extended ANSI capabilitiesof thePC,

graphics to support. Bit image

graphics on the PC can pro-

vide a good medium for wid-

gets; however, screen manage-

ment is usually still up the

programmer.

Lastly, the X Window-

ing System (and other win-

dowing systems) provide win-

dow management features and

widget management as well.

A detailed explanation of the

X Windowing System can be

found in other places - it is

referenced here to show that

display models can vary great-

ly with device availability.

PROTOTYPInG THE ISSS

The original work in this area

was done to support the rapid

prototyping of the maintenance and control consoles
for the Federal Aviation Administration's 0::AA) new

air traffic control system, the" Advanced Automation

System (AAS). The purpose Of the project is to devel-

op a rapid prototyping system for a man-machine sub-

team to use in identifying user requirements in terms

of the graphical interface. This information could then

become the basis for a requirements document for the

user interface.

The user displays were separated into func-

tional groups where corresponding object structures

and icons were created to represent the various

objects. Functionally, the objects represented hard-

ware and software objects that were in some state of

usability. Widgets were built using the "traffic light"

concept. Green means the object is functioning fine;

537

yellow means there is a degradation of the object; and

red means that the object is dead. Blue is used to rep-

resent available but nonallocated resources.

CLIPS is being used as an event-based system.

CLIPS is well qualified for this role due in part to the 1

features of the production system model. It addition to

events, CLIPS facts are being used to recreate the dis-

play model in the form of a fact base (knowledge

base). These facts hold the object oriented system data

about the actual objects and all the corresponding wid-

get functionality. CLIPS rules function as receptacles

for events that occur both by the simulation system

and user's (display-based) events. See Figure 1.

PCLIPS is a parallel version of CLIPS that

allows multiple CLIPS experts to communicate via a

broadcasting function called remote assert (rassert).

By using this method any number of CLIPS experts

can be initiated. URPS presently has two: one that

serves as a simulation of the prototyped system and

another that maps simulation events to the user's

screen. A display manager controls usage of the user's

screen. Widgets communicate with the display manag-

er in order to gain access to the display space and to

update the dam. =>
EVENT-BflSED FUnCTIOnALITY

)

There are two major types of widgets: an icon class :

made up of bit-image graphics and the other, an icon- ;

which is surrounded by a colored box; both represent ;

the state of the objecL The box type is our GENERIC ;

class. For this demonstration we have only one icon

class; it is called TERMINAL.

{deffacts DisplayPanager "Base 0=jeer Classes lor Display ._aaqer"

; te'_:ate: taa_!con ¢wicqet-class> cwic_t-s:ate> ¢.ico_fi_.era_>l

: tea. late: (msp-_-. state <wia_t-:lass> <wta_t-s_ate> Oox-.coio:.)

{r.ap_a_._icon termina up "iX:i termir.al oX")

{=ap_ckr,icon t.ermiaal down "Ik:J_termina:_err')

(map__.,_icon terminal ue9raded "ik:i_ter_,tnaI_warn')

(_ap a_.,_:,con terminal s;ancLby "ik:i,te:_.._naI_standDy'}

{map_(_ 1con terminal spare "_k:l termlna'._spare')

Im.m_,_4m ,It'.ml'b _D_|P tt_ I"_'L'TII,It

(map c_ stare gener:: down RED)

(_p_c__staze generic spare WHITE)

lmap_Otn_sta=e generic standby BLbE}

Imap__._staze generlc degraoed YELLOW)

NOTE: The generic_display_update and icon_dis-

play_update use facts sent from CLIPS to the Display

Manager to control widgets, ask..for_something

receives events from the Display Manager.

(Ocfruleqener-z.display__:_te "C_,ch a:: Genera= Status Z.'a._._"

(status ?type ?object ?state)

(dm ob3ect ?ob3ec_ ?)

(map_d_,_state generic ?state ?signal)

(rasser dm turncolor ?ob3ect ?s_qnal)

)

(de,ruleicm_:isplay_upCa:e "C.aC:_ oaly ._.%_IINALS:atus Cba_es"

(status -"-" ?objec_ ?state)

(ckn_o_jec_ ?ob)ect icon)

(map_CT__con terml.-.a- ?s_aze ?_name)

(asset; am chg-icor. ?ob]e:z ?fnan_)

(Selec_ . .) facts are remotely asserted by the

Display Manager when the user does something These

are much like user events.

: Currently, the default action is to open up a

; mabv.t_w. If _he object SELECTed does not have a

; lubvie_, %lle_ it dOeS not have a **map_rim windcacs"

; fact eAt.her. Another rule wlth a lower salience

; catches loft User Events in case there is no sub

; Vl_.

(defrule ask :or some=._Ang =,_a_ch User Events"

?r I<- l_elect ?obj)

{(_n winOow ?c_ ?w ?h S?Window Stu._f)

{._ap-d_indow ?ob_ ?x ?y}

{_asRr_ _m oven-w_n_ ?o_i ?x ?v ?w ?h $?Windo_ S_uH

538

DISPLAY MODEL FUNCTIONALITY

Functionally, the display is separated into views.

These views consist of collections of such widgets as

object views, monitor logs, bar charts, and pop-up

menus. Object views are windows controlled via

remote asserts (rasserts) to the Display Manager

Screen control, and pop-up windows are also con-

trolled by Display Manager requests. Log windows,

bar charts, and the floor plan are separately running

programs that join the PCLIPS session upon start-up.

IMPLEMENTATION ISSUES

The Commodore Amiga was chosen as a platform for

the following reasons: Low cost, useful resolution

(640 X 400), choice of bitplanes, dynamically load-

able icons, commercially available image-based tools,

and multiprocessing capabilities. The fn'st challenge

was porting Clips 4.3 over to the Amiga -- no problem

--justa 5 week delay! The next challengewas in

designingthe actualdisplayfunctions.Following this

came the PCLIPS functionality;being able to allow

multiple CLIPS experts tojoin togetherto form a

PCLIPS Environment.This was accomplishedviathe

recodingof a PCLIPS serverwhich runs in theback-

ground.The servermanages incoming requeststojoin

a PCLIPS sessionand distributesremote assertstoall

currentlylistedCLIPS processes.Once wc had tools

working we were then able to attackthe problem of

rapidprototypingtheISSS.

ment of new user interfaces. Widget technology is

important for encapsulation of data and needs further

study. Object Oriented approaches were definitely the

way to go in our prototyping system. These approach-

es were used to determine the level of granularity for

the prototype and also to specify functionality of

object classes -- no one object was coded better or

worse than another in the same class. Image based

view facilitated the involvement of an-types who felt

they had much more feedom with paint programs than

when they were asked to layout displays based on

geometrical (graphical) shapes.

Additionally, an interactive configuration tool

was created to help in the layout of widgets within

views, allowing objects to be positioned over bit-

images (pictures). This is pan of a far more interest-

ing problem: whether to deal with image based objects

or grahpical based (lines, cubes, geometry . . .)

objects. One interesting group discussion led to the

idea of rendering graphical objects on top of bit image

backdrops.

concLusions

After weeks of designs and redesigns, we have found

widgets, object oriented programming and image

based icons to be important concepts in the develop-

