
-..... N96- 12932

A Neural Network Simulation Package in CLIPS

Himanshu Bhamagar, Patrick D. Krolak, Brenda J. McGee, John Coleman.

Center for Productivity Enhancement, University of Lowell, Lowell, Ma. 01853

ABSTRACT

The inmnsic similarity between the firing of a rule and the firing of a neuron has been captured, in this research, to

provide a neural network development system within an existing production system (CLIPS). A very important

by-product of this research has been the emergence of an integrated technique of using rule based systems in con-

junction with the neural networks to solve complex problems. The system provides a tool kit for an integrated use

of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, con-

nectionist networks, and even the pelri nets. This integrated technique can be very useful in solving complex AI
problems.

1. INTRODUCTION

Direct hardware implementation of Neural Networks is not always easy and hence there is a

need for simulating them through computer software. Early examples of software simulation

models can be found in [1] and I21. These and the other simulation models primarily simulate

the neural states, neural architectures and connection strengths, and implement the tools to ma-

nipulate them. Several learning techniques (rules) have been proposed in the Neural Network

literature, one of them being the generalized delta rule (or Back Propagation)[3]. Our first level

goal is to provide a more efficient package, in CLIPS, for simulating neural networks employ-

ing back propagation, together with expert systems.

CLIPS is an expert system shell developed by NASA 14], which provides a LISP like

interface and allows both forward and backward chaining. The production rules, under forward

chaining, have facts on the lhs and action commands on the rhs. When facts, in the facts data-

base, match the lhs of any rule that rule fires, possibly causing assertion of more facts and

hence firing of other rules. In a binary neural network, a neuron fires when its activation has

exceeded its threshold value. There is an inherent similarity in the way rules f'tre in an expert

system and the way neurons fire in a Neural Network, suggesting the modeling of one in terms

of the other, and hence CLIPS can prove to be a very effective simulation tool for Neural Net-

work modeling. We, at the Center for Fh'oductivity Enhancement, University of Lowell, have

developed a shell called Neural CLIPS, or N-CLIPS which allows Neural Network Simulations

to be built, tested and implemented along with regular expert systems. N-CLIPS provides a

common environment for development, implementation and operation of two competing and

radically different artificial intelligence techniques : the C Language Integrated Production Sys-

tem (CLIPS) for writing expert systems and a Neural Network system. These systems can either

operate independently to solve different classes of artificial intelligence problems or can co-

operate to help solve much bigger AI problems [9]. In [6] Rabelo has shown the usefulness of

combining the neural networks and the expert systems. Knowledge representation, acquisition

and manipulation, decision making and decision support are the major characteristics of these

techniques and hence when they are used together they can share knowledge and can share the

decision making process itself.

554

To further emphasize the importance of such a common platform we are using it to model

a traffic control system for mobile robots operating the Material Handling System of a Flexible

Manufacturing System based factory [7]. The (simulated) mobile robots have on-board neural

networks which work together with expert system modules to guide them through the factory

floor without collisions and with minimum delays. Since CLIPS provides an excellent interface

with C, these expert system rules can interact with other processes and also interact with dif-

ferent types of peripheral hardware [5].

The next section provides a brief description of the terms relevant to neural networks,

followed by a survey of the features common to currently available simulation packages. The

need for integrating AI techniques is discussed next followed by a description of N-CLIPS. The

last section gives a detailed explanation of the system developed.

2. ARTIFICIAL NEURAL NETWORKS

2.1 Definitions

For our purposes a neural network is a densely connected, possibly layered, network of simple

processing units (neurons). The connections, known as synapses, axe weighted links between

two such units where the weight of a link is modifiable, and determines what fraction of the

signal, between the two units, is actually passed. A negative weight usually signifies an inhibi-

tory link(synapse) which causes an inhibitory effect on the firing of a post-synaptic neuron. A

positive weight usually signifies a excitatory link which excites the neuron to which it is con-
nected.

Neurons, in the network may be classified into three types depending on the roles they play.

They are either input neurons (input layer), output neurons (output layer) or hidden neuron

(hidden layer) depending on whether they accept input from outside world, provide an output to

the outside world or receive input from units within the system and generate output for the units

within the system. Processing within a neuron may be divided into three stages : a) determina-

tion of net input to the neuron ; b) determination of neural state (an activation function associ-
ated with a neuron determines the state); and c) determination of the neural output (an output

function determines the final output value).

2.2 Learning

The two major learning paradigms available currently arc: generalized delta rule (GDR) or back

propagation [3] and its variations for both feed forward and recurrent networks[16], and heb-

bian learning, with its sophisticated variants (by which we mean to include methods employed
in Bi-directional Associative memories and other associative memory models) [10][171[18][19]

[20].

2.3 Generalized Delta Rule

In the initial phase of our work we have focused on the GDR as applied to feed forward net-

works. In this approach a set of patterns is repeatedly presented at the input layer of a multi-

layered network. The output pattern generated is compared with a target pattern. The difference

is propagated back and is reflected as a change in the weights of the links, all the while mini-

mizing a global energy function (mean squared error function). The difference or the delta is

555

used to modify the weights of links between neurons. This process is repeated till the actual pat-

tern is within a close range of the target pattern, for a particular input pattern. This is done for

each input pattern.

3. EXISTING SIMULATION PACKAGES

A brief survey of most of the commercial neural network simulation and development packages

reveals the following characteristics :

* A strong user-interface : Pop-up menus within a windowing environment, a file system and

interface with major database systems for I/O.

* Types of Learning Paradigms supported : All major learning paradigms along with their vari-

ations.

* Capability for Customizing and designing user-specified Neural Nets : Ranges from just set-

ting up of network parameters to script based design of neural networks.

* Debugging & Interaction tools : On-line graphical editing of a neural network; pausing, re-

starting and saving snap shots of neural nets during different states of their operation: display-

ing weight change, delta change, noise and a host of other features.

The different information processing paradigms are particularly well suited for the problem do-

main in which they evolved. However, when addressing classes of problems that span more

than one domain an integrated approach seems attractive. This approach involves several differ-

ent AI techniques. The inter-relationships of these techniques is still not well understood and

there is a need to study their interaction with each other. None of the systems available today

have the capability of providing a common platform to investigate these 'inter-relationships'. In

N-CLIPS we provide a common playing ground for at least two of these, with the capability of
extensions to accommodate others.

4. WHY CLIPS ?

By extending CLIPS to accommodate neural networks, semantic networks, connectionist net-

works and other knowledge representation techniques, we, will have a tool to understand their

complex inter-relationships and the mapping of one technique into another. In real life systems

we need the precision of expert systems, the localized representation of semantic networks and

the flexibility of neural networks all encompassed into one. This is so because each of these

techniques have strengths which compliment the weaknesses of the other. The brittleness of ex-

pert systems can be supplemented with the plasticity of neural networks on one hand and the

lack of precision of neural networks can be substituted by precise rules and facts. Adding new

knowledge to an expen system is quick (as a new rule) but its interaction with the existing rules

can be of a conflicting nature. On the other hand adding a new pattern to a neural network takes

a long time but can be made to interfere minimally with the old patterns. On a factory floor,

new situations can be quickly learned by plugging in temporary rules. However, over a period

of time, these rules get to be unmanageable and redundant and have to be trimmed. They can be

collectively mapped into a neural network which could iron out the conflicting rules, and once

trained it can be mapped back to a more parsimonious set of rules. To illustrate this further,

assume a set of rules which do not trigger each other. The combinatorial arrangement of the

556

union of facts on the lhs of these rules and the actions on the rhs can be translated to the input

and the output patterns of a back propagation neural network (BPNN). Out of the available out-

put patterns the ones actually needed can be selected without difficulty. Then by applying the

inverse mapping technique proposed by Williams [11] where the input values tat the input

layer) instead of the weights are modified via back propagation of error, the neural network can

be converted back into an expert systems. Of course, a major problem to be considered in this

process is that of knowledge representation since patterns must be translated into facts. In addi-

tion there may be many-to-one mappings that are dependent upon initial states of the system.

Sometimes, at a higher level of design the localized representation of a problem can be done

through semantic networks and the rest as expert systems and neural networks. For example

the higher level path planning of mobile robots on a factory floor can be done using semantic

networks, while the low level path planning and traffic control can be done by expert systems

which in turn depend on neural networks for decision support. As can be seen all three models
will need to communicate with each other. CLIPS allows that via rules and facts, moreso be-

cause all of these techniques shall have rules and facts as their building blocks.

Another example would be the cooperative use of multiple neural networks for mortgage

underwriting and industrial parts Inspections 11311141115]. In [13] the system is a collection of

nine coupled sub-networks have three sub-networks acting as 'experts' and their cooperative ef-

fect helps in validating the confidence level of the decisions made by the whole system.

The major functions which were added to the existing CLIPS code have been briefly ex-

plained in Appendix A. The engine for neural networks manipulates its own data structure.but

eventually uses clips' agenda and fact lists to let the clips execute the neural network. The func-

tions listed in the appendix are driver, nassert, add nfact, ncompare, ndrive, nretract. PCLIPS

[8], a distributed version of CLIPS has also been developed at the university.

5. N-CLIPS

This shell provides an object oriented approach to problem solving in the neural network and

fuzzy logic domain and at the same time maintains the integrity of the CLIPS production sys-

tem. The expert systems and sub-systems can be written as rules and facts while a neural net-

work is represented as a collection of objects and a set of actions to be performed on them. It

provides well known neu_l network learning paradigms as objects which the user can use to

map their problems onto or use them as subsystems of more complex user-designed neural net-
works. Users can also build their own variations of the existing paradigms and can also create

their own learning rules and models within the given environment. A library of functions for

creating and editing neural network objects like neurons, synapses, activation functions and lay-
ers is made available to the user. The ntrain and nrun functions are a collection of rules linked

with facts which can be invoked to train a neural network or execute it. The rules and facts

making up the expert systems are written in the same way as in regular CLIPS. At the lowest

level of expert system-neural network communication the two systems interact via rules and

facts. However, at a higher level, complex but abstract interaction is possible. For example the

neural network actions, composite and primitive, can be written as a set of rules linked with

facts while an expert system can spawn off a neural network to extract useful information from

available fuzzy or smudged knowledge. This system can also be used as a first level tutor for

557

I1 N-CLIPS

RULES

Expert System

OBJECTS Neural Network ACTIONS

_mm_l_t_oDo_mommIOmm_l

PRIMITIVE o...... Objects

• Artificial

Neuron

• Artificial

Synapse

• Error
Criteria

• Activation

functions

• Output

functions

(SYSTEM)I 10.JSERIDEFINED)

• Layers

• BPNN

• Thresholds

• Momentum

• Delta functions

• Learning rate

.!

iPRIMITIVE

(USER
DEFINED)

' Primitive Actions

• Create

• Edit

• Delete

Neuron,

Synapse _oM_os_ico_s_I (USER

(SYS'rEM)I DEFINED)

.... Co rn.posite Actions

• Create

• Edit

• Delete

Groups of Neurons,
Synapse, layers,Networks

• Train

• Run

• Freeze

• Show Ready

• Save, Load.

fig I : N-CLIPS : A hierarchical description
558

understanding basic existing models. CLIPSs' capability to interface with other languages viz.

C, Ada is exploited for a graphical (X-Windows and/or Motif) user-interface and a file-system

interface for saving snap shots and networks themselves. In this system the following graphics

user-interface is available :

* Neural Network interconnection diagram.

* CLIPS rules interconnection diagram for seeing which rules fire which other rules and on

what basis.

* Mouse interface with the Neural Network diagram.

* 'Click-on-connection-for-weight-change' graphical facility.

* Change of color if a node fires.
* X-Windows link editor.

* X-Windows weight editor.

The file system interface allows saving and loading of neural networks via save_nn0 and

load_nn0 functions, at any instance.

6. SYSTEM DESCRIPTION

6.1 OBJECTS (Primitive)

6.1.1 Artificial Neuron

An artificial neuron is basically of three types i.e. Input, Output and Hidden. Its major charac-

teristics (for back propagation) are an identifying number, layer number, an activation and out-

put function, threshold value and its type. These parameters could be either passed to a C func-

tion call or through a template invoked from the CLIPS interpreter. After the

parameters of a neuron are accepted from the user they are encoded as a special rule in

a string which is then compiled and loaded into the network. These parameters could be edited

and a complete neuron deleted at any given instance. Internally in CLIPS the specifications of a

neuron are also stored within a data structure (see fig. 2). Any modification of a neuron's

specifications are automatically reflected in the data structures and the associated rule. A de-

leted neuron will also result in deletion of all the connected links.

The composition of the special rule (for back propagation only) is as follows :

(defrule artneu#

? neu <- (neuron # layer # ready to fire)

=>

(nretract ? neu)

(propagate layer #)

(calculate_delta layer #)

(change_weights from layer # to layer #)

)

On the rhs the function propagate(), propagates the output signal to the next layer neurons after

duly multiplying it by the strength of the connection of the links. The next function calcu-

late_delta(), calculates the deltas based on the error signal propagated by the succeeding layer

and stores them in the data smactures. Finally, the change_weights0 function changes weights

based on the calculated deltas. These functions manipulate the network data structure (fig. 2)

559

Neuron Array

i
Link (Synapses) Lists

Neuron Array

Lay_ i+l

I

l

I

i

D_lta function

Activation function

Output function

fig. 2 : A sample Data structure for storing a Neural Network

in N-CLIPS
560

for performing the above mentioned functions. This neuron is specifically suited for represent-

ing the hidden layers of a feed forward neural network. The rules for input and output layer

neurons are slightly different. These special rules can be modified via functions provided in the

system to represent any other kind of neural network model. A more generalized model of a

neuron is in design.

6.1.2 Artificial Synapse

These are the links between neurons, and are mainly characterized by the following parameters:

'from' and 'to' neuron # and layer #, the type (in or out link), weight. They are stored in a spe-

cial data structure (see fig. 2) and can also be stored as facts; as in the case of the outgoing links

from the output layer neurons. They can be created/edited and deleted as individual links or as

a group (from one layer to another). Individual links can be created as C functions or from

within CLIPS interpreter (a template possibly from within a windowing system) and group

links can be created through a X windows graphics link map editor (explained later). This way

fractional (percentage of total neurons) connectivity between layers can be represented very

easily.

6.1.3 Activation functions

A library of different existing activation functions is provided to which a user can add a func-

tion or modify or delete a function. These functions can be selectively applied to individual

neurons or to a group of neurons.

6.1.4 Input�Output functions

Different input/output functions, for neurons in the input/output layers, which are currently

popular are provided in a library. The user can add, modify or delete a function from the library.

The user can select a function from this library to apply to a single neuron or to a group of

them. The input function is usually a linear function, nevertheless a different input function can

also be provided. Also for single layer feature maps [10] the input functions could be much

more complex. In N-CLIPS this complexity can as well be mapped directly in a neuron rule.

6.1.5 Threshold types

A high pass threshold is the most general type used, where if a neuron's activation is above a

certain threshold it f'tres. A low pass threshold type is characterized by its ability to allow a neu-

ron to f'tre only if its activation is below a certain threshold. The band pass (and the multiple

band pass) threshold types [12] are applied when a neuron fires if its activation is within a sin-

gle range of values or several ranges. These are available as choices when the user is describing

a neuron and can be applied to a solitary neuron or a collection of them.

6.1.6 Constants of the Equations

The constants applied in the various equations can be changed during the network training ses-

sions via the user interface provided by the system. Momentum factor, and Learning rates are

two such constants which are applicable to the back propagation _aeural networks. Different mo-

mentum factors and learning rates can be applied to different parts of the network.

6.1,7 Delta functions

Delta functions, as prescribed in [3], are available in this system. Users can also add customized

561

delta functions to the library.

6.1.8 Error Criteria

While the mean squared error is the most generally used error function, and is the one currently

supported, future extensions will provide for other error criteria (e.g. entropy).

6.2 OBJECTS (Composite)

6.2.1 Layers

This system provides both layered and non-layered neural networks. Neural layering allows for

grouping of neurons wherein information is passed between a group of (layer) and its two

'nearest neighbours (layers)'. Information flow between neurons of the same layer (horizontal

connectivity) is also permitted. The layers can be created, edited or deleted by the user through

the system provided functions. The parameters are accepted via a template provided to the

user, after which the parameters are encoded and saved in the network data structure

(fig. 2).

6.2.2 BPNN

A multi-layer feed forward neural network which follows the generalized delta learning rule is

provided with modifiable parameters. The user can specify in the BPNN template the number

neurons/layer, the number of hidden layers, the bias (threshold) values, the input/output and ac-

tivation function, layer specific learning rates and momentum factors and other parameters from

a list default and optional parameters provided by the system. The user can also update the links

between neurons by the link map editor.

6.3 ACTIONS (Primitive)

6.3.1 Create, Edit & Delete Neurons, Synapses

The user shall be given a library of functions for creating and modifying the above mentioned

objects. The create_neuron function can be called from within a C program or from the CLIPS

interpreter just like defrule. In CLIPS> the user can enter the parameters of a neuron from the

template provided. The template will carry default parameters and also provide help on differ-

ent options available for each parameter. The parameters have to be passed to the cre-

ate_neuron function if called within a C program. The function will encode the parameters into

a special rule and shall also update the network data structure (fig. 2). The function for creating

a synapse is called create_synapse and it also is C and CLIPS callable. The synapse informa-

tion though is only stored in the network data structure. Other functions like edit_neuron and

edit_synapse, are basically invoked in the CLIPS interpreter. They let the user modify the

values of the neuron/synapse parameters. The delete_neuron functions simply take the neuron

and layer numbers and delete the neurons and the links from/to them. The delete_synapse re-

quires the 'from' neuron and layer numbers and the 'to' neuron and layer numbers. The net-

work data structures and clips data structures are updated accordingly.

6.4 ACTIONS (Composite)

6.4.1 Create, Edit & Delete Neurons, Synapses

When a group of neurons or synapses have similar characteristics they can be created, edited

and deleted by a single function call. Functions to create, delete and edit a group of neurons and

562

layer i

1

2

3

4

5

6

7

8

Layer j

1 2 4 5 6 7 8 9 10 11

No connection

[===--'] Feed Forward

[-"-] Both

I Feed Back

fig 3a. X Windows Link Map Editor : Modifying links_ an example.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

Layer i

4

5

6

7

8

Feed Back

Feed Fwd

Note :

The weights can
be entered from

keyboard

Layer j

fig 3b. X Windows Weight Editor : Modifying wei2hts, an example.
563

synapses are provided in the function library. As in the case of primitives, these functions (for

the actions) can also be accessed both, from within a C program and from the CLIPS inter-

preter. The template invoked from the interpreter, however would request additional informa-

tion from the user apropos the number of neurons, synapses or the layers under consideration,

their topological relationship etc. The group is treated as a composite object in the system

which stores it as a collection of possibly inter-connected primitive neurons and synapses.

These groups can be connected to other groups, though it is a very difficult task to determine
the actual neuron to neuron connection as it could be a one-to-one, one-to-many or a many-to-

many from one group to another. Also, the connection from one group to another can be a

higher level, logical (or abstract) connection. Besides these there can be a neighborhood effect

[10] which can be programmed into the group as a rule. The creation and editing of groups of

synapses is carried out with an X-Windows link map editor explained next (fig. 3a). The

weights of the links can be changed through a similar graphical editor.

6.4.2 X-Windows link map editor

It is a two dimensional link map where the rows represent the 'from' neurons on a layer and the

columns represent the 'to' neurons in another (defaulted to next). It has a mouse interface to

switch between four types of connections, namely the feed-forward (black color), feed-

back(white color), none at all.(B&W pattern 1), both (B & W pattern 2). After the user has cre-

ated or modified the links between two layers and has saved them, the map will return a matrix

with the values (-1,0,1,2) for feed-back, 'none', feed-forward or 'both' connections between

neurons. The user could then either use that matrix to create his/her own link specs in a C pro-

gram or can let the library function create and modify the data structures. The map has default

link connection specifications to create the links automatically.

6.4.3 X-Windows weight editor

It is the same as the link map editor in appearance and functionality with the exception that the

user can enter the weights or modify them manually for each type of synapse at the time of

creation or at any point during training, even during the execution (fig. 3b).

6.4.4 Create, Edit & Delete Layers

These can be created via direct function calls to create layers, or can be built incremently by

first creating the other sub-components of the layers. The layers can be of basically three types

input, output and hidden, though feature maps usually have only one layer. The system provides

fun(_tions to create a standard layer or a group of them. These can be edited as individual layers

or a group of (hidden) layers. Once all the neurons on a layer are deleted, the layer automati-

cally collapses. Deleting a layer would result in all connecting synapses being purged too. If a

hidden layer is deleted resulting in partition of the network the user shall be prompted with

available options which would include destruction of the network and default connections.

6.4.5 Create, Edit & Delete Networks

A user can create, modify and even delete complete neural networks. In this system the user

will have the capability of creating his/her own networks by either modifying the system de-

fined neural networks (BPNN, currently, is the only available Neural network) or by customiz-

ing one of his/her own.

564

6.4.6 Ntrain

This function is a set of expert system rules (in CLIPS) which is system defined for feed for-

ward type networks. But the user can write his own training function, if desired. The system

defined training function first reads the input pattern and then systematically triggers each layer.

To write ones own training function the user will have to write an expert sub system which will

then override the previously defined training function. It could be possible to have different

training functions if the network consists of different learning algorithms as sub networks.

Since there can be more than one network active at any given time, the training functions

should be classified by the network number to which they pertain.

6.4.7 Nrun

The neural networks or sub networks can be run from a CLIPS interpreter, a C program, or can

be spawned off from CLIPS rules. Since there can be more than one network active at any

given time, hence this function also needs to be passed a network identifying number.

6.4.8 Freeze

This function pauses the execution of the network after which the save function can be called to

save the snap shot of the system for later analysis.

6.4.9 Show_ready

If the user wants to know, at any given instance, which set of neurons is ready to fire, he can

invoke the show_ready function. This function provides a display, either in the form of a list of

neurons or as a change of neuron color in a graphical representation of the neural network inter-

connections. The function can be invoked via a mouse.

6.4.10 Save, Load

A neural network can be saved at any given time in the disk files via the save_nn0 and

load_nn0 functions. The save function saves all the rules in appropriate files and also the data
structure associated with that network. The load function reads the same files and builds the

neural network representation within the system.

7. CONCLUSIONS

N-CLIPS has turned out to be a very useful tool for solving real life technical problems for

which a single knowledge representation or AI technique does not suffice. The building-in of a
neural network simulator within CLIPS (the expert system shell) made it easy for the two to

communicate with each other, share a common fact (data) base and utilize the other's strengths

to overcome its weaknesses (e.g. expert systems brittleness versus the neural networks associa-

tive capabilities). The problem of mapping one system into another is a very difficult research

topic to be addressed in future extensions of N-CLIPS. As far as the neural network paradigms

are concerned, we plan to add all known learning paradigms as stand alone objects. The user-

interface, can be enhanced to a complete windowing environment (e.g pop-up menus, mouse

selectable options list, graphic templates, etc). The most important enhancement to the system

would be the incorporating of semantic networks, searching algorithms, more general connec-

tionist networks, frame based systems, and even petri nets.

565

8. REFERENCES

[1] Hoskins J. and Jones W. "Back Propagation", BYTE, Oct 87.

[2] D'Autrechy C.L., Reggia, J.A. "MIRRORS/II, Connectionist Simulation", First Annual

INNS Meeting, Boston, 1988.

[3] Rumelhart et al, "Parallel Distributed Processing", vol I., 1987, MIT Press,Cambridge,Mass.

[4] CLIPS User's Guide, Artficial Intelligence Section, Johnson Space Center, June 1989.

[5] McGee B., Miller M., Krolak P., and Ban" S., "Interfacing PCLIPS into the Factory of the

Future", "The First CLIPS Users Group Conference", NASA J.S.C., Houston, Texas, Aug.

1990.

[6] Rabelo L.C. and Alpteking S., "Synergy of Neural Networks and Expert Systems",

Proceedings of the Third TIMS/ORSA Conference on FMS, MIT, Cambridge, MA.,

Aug. 1989.

[7] Bhatnagar H., Krolak P., and McGee B. "A Traffic Controller for Material Handling Sys-

tems", submitted to SOAR Conference, Albuquerque, New Mexico. June 26-28, 1990.

[8] Miller R., Korlak P. "PCLIPS : A Distributed Expert System". "The First CLIPS Users

Group Conference",NASA J.S.C., Houston, Texas, Aug. 1990.

[9] Coleman J. "Evolutionary Telerobotics: An Approach to the Designing of Telerobotics Sys-

tem", #CPE-NERV-90-5, Center for Productivity Enhancement, University of Lowell,

Lowell, Ma. 01854.

[10] Kohenen T. "Self Organizing and Associative Memory. " Springer-Verlag, New York.
1989.

[11] Williams R. J. "Inverting Connectionist network mapping by back prop error." Proc. 8th

Ann. Conf. Cog. Sci. Soc. 1986.

[12] Gelband P. "Neural Selective Processing and Learning, " Proc. of the. First Ann. INNS

Meeting, Boston, 1988.

[13] Collins E., Ghosh S. and Scofield C. "An application of a Multiple Neural Network Learn-

ing System to Emulation of Mortgage Underwriting Judgements, " Nestor inc., 1 Rich-

mond Sq, Providence ILl 02906.

[14] Reilly D., Scofield C., Elbaum C., and Cooper L.N. "Learning System Architectures com-

posed of Multiple I,earning Modules".

[15] Reily D. et al., "An application of a Multiple Neural Network Learning System to Indus-

trial Part Inspection," ISA, 1988, Houston, Texas.

[16] Pineda F.J., "Generalization of Back-propagation to Recurrent Neural Networks, "Physi-

cal Review Letters, Nov. 1987, pp 2229-2232.

[17] Hopfield J., and Tank D.W. "Computing with Neural Circuits," Science 233, 625-633

(1986).

566

8. REFERENCES Contd.

[181

[19]

[20]

Kirpatrick S., Gelan C.D., and Vecchi M.P., "Optimization by Simulated Annealing,"

Science 220, 671-680 (1983).

Grossberg S., Carpenter G.A. "A Massively Parallel Architecture for a Self-Organizing

Neural Pattern Recognition Machine," Chapter 5., Neural Networks and Natural Intelli-

gence, MIT Press, Cambridghe, Massachusetts, 1988.

Kosko B. "Bi-Directional Associative Memories, ". IEEE Trans. on systems, Man &

Cybernetics, vol 18, pp 49-60, 1988.

'--- 567

APPENDIX

Driver pointer]

rule name

add-nfact _ nc°mpare [

/ [binds

/i _basis

1
ladd nactiv-

ation

fig. 4- A data flow diac,'rnm of the changes made to CLIPS for N-CLIPS

Driver

This function goes through an array of neurons (a layer) and for each neuron that is ready to fire

it calls fred_rule to set up a global variable pointer which points to the current neuron rule. This

is followed by a call to nassert to assert the following fact : (neuron # layer # ready to fire).

Nassert

It calls add_nfact0 with the above fact after making sure it has not been asserted already.

Add nfaet

It adds the above fact to the fact list and calls ncompare to filter through the special neuron rule.

Ncompare

It make s the var list (binds), the joins and gets the rule pointer from the global variable and

then calls ndrive to drive the fact through the network patterns for that rule.

Ndrlve

its task is to put the input parameters in proper data structures and calls add_nactivation to add

the rule to the agenda.

An important feature of the above functions has been that only one rule and one fact is in pic-

ture. this is done since we know both the fact and the rule which its assertion will trigger. How-

ever in case of output neurons other facts are asserted which could trigger an expert system.

Nretract

It retracts the ready to fire fact from the fact list after the neuron has fired.

668

