
N96. 12937

,i
Integratin _ an Object System into CLIPS:

Language l-esign and Implementation Issues

Mark Auburn

Inference Corporation

5300 W. Century Blvd.

Los Angeles, CA 90045

Abstract

This paper describes the reasons why an object system

with integrated pattern-matching and object-oriented

programming facilities is desirable for CLIPS, and

how it is possible to integrate such a system into

CLIPS while maintaining the run-time performance

and the low memory usage for which CLIPS is known.

The requirements for an object system in CLIPS that

includes object-oriented programming and integrated

pattern-matching are discussed, and various

techniques for optimizing the object system and its

integrationwith the pattern-matcher are presented.

1. Introduction

As CLIPS, and CLIPS-like production systems, gain

widespread usage and acceptance,and as the number

of CLIPS applicationsincreases,the limitationsof the

main CLIPS data representation,the fact, become

more evident.Although facts,and the n-ary relations

they represent,are a powerful and flexiblemethod for

representingarbitraryrelationshipsbetween data, the

lack of explicitrelationshipsbetween individualfacts

and their lack of internal structure inhibit the

representationof large,complex knowledge bases.

Object representations, such as embodied in the

object-oriented programming languages of Smalltalk,
CLOS and C++, and in the experimental languages

I_d_-ONE, are a natural data extension to CLIPS's

facts. Object, oriented programming languages that

include the capability of pattern-matching on objects

represent a combination of two separate lines of

research: research on representing objects and

representing the actions associated with those objects,

and research on the most efficientgeneralmethods of

matching on data. It is apparent that both of these

lines have matured, in the form of efficient

commercial object-orientedprogramming languages

(e.g. Classic-Ada [8]) and efficient commercial

production systems.

In the first section, the specific advantages of an

object system will be discussed, followed by a

presentation of what requirements are necessary for

an object system that would maximally increase the

utility of CLIPS programming and the various tools

built around the basic production system component

of CLIPS.

These issues will be illustrated using the example of

ART-IM (Automated Reasoning Tool for Information

Management) [5], a tool from Inference Corporation

for development of expert systems, which shares a

common syntax and many implementation strategies

with CLIPS, and may be logically viewed as an

extension of CLIPS.

In the second section, issues of object system

iraplementation are examined, concentrating on the

integration into CLIPS's pattern and join net_vorks

necessary to achieve the desired efficiency of pattern-

matching. Although it is possible to match against an

object's slots and values just as is done for facts, the

nature of an object system allows for an additional

degree of optimization based on knowledge of the

object hierarchy and assumptions about the rate of

change of various parts of the hierarchy. Just as

assumptions about the frequency of working-memory

change lead the implementation of a fact pattern-

marcher to use the Rete algorithm, assumptions about

the usage of the object system lead to additional

optimization techniques. This paper discusses those

614



assumptions and several of the techniques used by the

ART-IM object system to reduce object system

overhead.

Finally, some future directions for object system
enhancement are sketched.

2. Language Design

2.1. Advantages of an Object System

Although fact-based data storage and retrieval,

including fact-based pattern matching, provides a

wide range of desirable functionality for the developer

of expert systems, there remain many expert system

applications whose data representation cannot be

adequately represented in facts. The working-memory

model, made popular by OPS5 [1] and implemented

as facts in CLIPS, implicitly subdivides and flattens

data down to a level comparable to a database record

or a record in a conventional programming language.

However, there are many problems such as

classification and diagnosis for which an inheritance

hierarchy is both closer to a natural understanding of

the domain and more economical in expressing data.

Although an inheritance hierarchy does not expand

the class of possible applications beyond that of the

working-memory model, in many eases it can provide
a more natural, economical and maintainable

representation. An object system offers the following

advantages over a working-memory model:

• An explicit hierarchy.

• Explicit inheritance (along with the ability

to override it).

• Explicit internal structure that can be

declaratively described.

• Easier to maintain, since it corresponds

betterto the user'smodel.

There are, of course, disadvantages. Typically object

systems, in exchange for these advantages, require

more memory and more processing time than an

equivalent fact representation. However, due to the
decreased maintenance cost of a more explicit

representation, the total software lifetime cost may be
Jower.

Once an object representation is in place, it is also

possible to enhance the inheritance hierarchy with

procedural attributes to achieve object-oriented

programming. Although rules can be used to duplicate

any procedural activity, it is often simpler, in cases

where the control flow is predefined, to write

procedural code. Procedural code will typically be

faster than an equivalent rule version, since the

overhead for control flow determination implicit in a

rule implementation lacks. Object-oriented

programming can be used to achievesome of the same

goals of rule-based programming, in that by

increasing the locality between data and the

operations on that data the ease of maintenance is

increased.

An object data representationalso offers a finer

granularityof update recalculationover the working-

memory model in that a data change can be

performed, and pattern-matching updated, on a

change to an object'sslotvalue,rather than only on

the assertionor retractionof an entirefact.In large

applicationsthis can have a significantimpact on

performance.

2.2. Requirements for an Object System in
CLIPS

The utility of an object system for CLIPS depends

directly on the degree of integration with CLIPS, and

its subsidiary features, achieved by the object system.

The main requirement, of course, is that it integrates

with the pattern-matcher. Object patterns must be

provided that offer the same sophisticated pattern-

matching available to fact patterns.

The object patterns need to be able to:

• Test for the existence of an object.

• Test the classmembership of an object.

• Test for the existence of a specific

attribute on an object.

• Test for the values of a specificattribute

on an object.

Binding variables to various attributesand values,

and comparing thosevariablesto other attributesand

values in the same object, and to other variables

615



bound in other object and fact patterns, is also an

important consideration.

The object system needs to be completely dynamic,

as with facts, and to enjoy a full procedural interface

for changes during execution. Object-oriented

programming, while perhaps not a necessity given the

availability of the powerful rules of CLIPS, is

certainly desirable. Essential to the programming ease

of the object system is full integration into all

debugging features and into all programming utilities,
such as those for verification and validation, truth

maintenance and explanation generators.

ART-IM, as an example CLIPS extension, provides

an integrated object system with inheritance and

three types of links: subclass, class member and user-
defined relations. The attributes of the objects are

defined using the object system itself, and they and
their values are inherited by children nodes. Object-

oriented programming is also provided and consists of

attaching methods to atttributes of the appropriate

object. The ART-IM object system is also integrated

with ART-IM's explanation-generation subsystem and

with its justification-based truth-maintenance system.

3. Implementation

Although the features provided by an object system

are desirable, it is clear that in a production system

designed for speed and low memory usage like CLIPS
an inefficient implementation of the object system

features would severely restrict the usage of the object

system. In particular, without the deep integration

between the object hierarchy and the pattern-

marcher, such as exists between the fact database and

the pattern-marcher, the efficiency of rules that

matched on objects would be much less than that of
those rules that matched on facts, and therefore of

little use in a real-world CLIPS application.

ART-IM incorporates a variety of implementation

techniques to increase the efficiency of the object

system, and some of these techniques are discussed
below. It is possible, in some cases, for the efficiency

of matching on objects to exceed the efficiency of

matching on equivalent facts, using these

implementation techniques.

In particular, three techniques for optimization are

discussed below:

• Representing class

use of bit vectors.

membership with the

. Canonicalizing attribute order.

• Precomputing valid object patterns for a

particular segment of the object hierarchy.

The second technique, although useful for reducing

the storage requirements of a large and mult,ila)'ered

object base, is crucialto ensuring the successof the

thirdand isprimarily usefulin that context.

This paper will not touch on the various techniques

for optimizing method selection on objects in object-

oriented programming. In general, since pattern-

matching is the most important constraint in most
CLIPS applications and in most production systems,

the integration with pattern-matching is viewed as the

most important efficiency topic.

3.1. Representing Inheritance Information

Since the test for class membership is performed

often in an object system (and replaces the fact

equivalent of testing for a particular value in a

particular position on a fact), optimizing this test
would appear to yield significant benefits.

There are at least two commonly used methods for

deciding which classes an object belongs to:

• Explicitly passing class information down
from each class to all of its children.

• Requiring the system to search upward
from an object to its immediate parents.

repeating the search until all of the paren_
classes have been discovered.

The processing time for such class membcmhip
dctermination is conserved in the first, while s_orage

space is conserved in the second. Due to multiple
inheritance and deep inheritance hierarchies, the first

method can become prohibitively expensive in terms

of space when implemented by representing class

membership by attribute values. On the other r,and,

searching upward from an object to all of its classes
can consume large amounts of processing time,

especially if the results of the search are not cached

616



for future use.

A technique used in ART-IM to reduce the space

consumption of the first method while preserving its

fast class comparison test is that of encoding
inheritance chains into bit vectors. Encoding the class

structure of each object into a binary vector has two

desirable properties: it consumes little space (in ART-

I'M, one byte per ancestor link), and the test of

whether or not an object belongs to a specific class is

reduced to the quick test of whether or not a binary

value is contained as a prefix in the vector of the

object.

Of course, the encoding of inheritance values costs

processing time, but the cost of the processing is on
the same order as that of directly passing class

information as attribute values down to the object's

children, and the space consumption is approximately

an order of magnitude less. The membership test itself

is again only slightly more complex than the search

for a particular attribute value.

3.2. Canonicalization of Attribute

Combinations

A typical implementation for a fully dynamic object

system (one that allows tile creation and destruction
of all classes, subclasses and class members, along

with the creation and destruction of object attributes,

during execution) of the attributes of objects is a_ a
linked list. As attributes are added to an object, or

deleted, they are inserted into or removed from the

object's attribute list. In order to add or substract
values from an attribute, it is necessary to search the

list looking for the attribute, and then insert the
value into the value list of that particular attribute.

The advantages of this representation are:

• The implementation is straightforward.

• Dynamic addition and deletion of

attributes is a simple list operation.

The disadvantages are:

• Inserting or deleting a value requires a full
search of the attribute linked list.

• Each attribute requires at least two words

of memory, no matter how static the

inherit,ance hierarchy is.

The linked list representation is certainly the most

efficient implementation when attributes are

dynamically added and deleted to objects with a high

frequency. However, as the frequency of attribute

changes decreases, the most efficient representation

converges on an implementation which is the analog

of a structure (or record) in a conventional

programming language: a contiguous segment of

memory with implicit positioning of attributes.

In order to allocate contiguous segments of memory

(erasing the need for the 5nk field and the attribute

name per attribute), and still allow for dynamic

changes, it is necessary to create a parallel data

structure which represents the attribute combinations

present in the object system. By creating a canonical

ordering for all attributes in the system, the space

consumed by this parallel structure can be reduced.

As objects are created, their attributesare sorted

intocanonicalordering.The attributesare then stored

in an array that does not includeeithera link fieldor

the name of the attributeitself.In order to determine

which element of the array belongsto which attribute,

a pointer isattached to the object which points at a

parallelattribute-combination hierarchy. Each node

in this hierarchy contains a specificcombination of

attributes,and the growth of the hierarchy is

dependent on the canonical order of the attributes

contained in each node. This hierarchy is more

efficientthan representingthe attributesdirectlyin

the objects because many objectswill share specific

attributecombinations, but requiressome additional

time for attribute lookup. However, the time for

attribute lookup can also be less than the list

implementation, depending on the hardware, as an

array lookup is often implemented in hardware,"

whereas a listlookup isnot.

This canonical ordering of slots is also an essential

prerequisite to the pattern precompilation technique
discussed in the following sections, which further

reduces the cost of matching the attributes of an

object to the attributes required by a particular

pattern.

617



3.3. Pattern Matching Technology" for Record

Data Types

Production systems, the software tools that have

refined the technology of pattern-matching the

farthest, have traditionally used either simple

variables or records as their data representation.

Data types called "working memory elements", which
are similar to the records of data bases or traditional

programming languages, have been used most

frequently in systems such as OPS5. Efficient

algorithms for pattern-matching on these working

memory elements have been developed, including

Rete[2] and TREAT[6]. Variants on these

algorithms, m particular for parallel machines [3] [4],

have been designed, and comparisons have been

performed [7]. These algorithms, however, have

typically only been tested and designed for the

working-memory model.

These algorithms make several assumptions:

• That the set of patterns to match on is

constant.

• That the knowledge base (the collection of

working memory elements) is large.

• That the change in the knowledge base
over the interval of time between each

match is small.

The goal of these algorithms is to reduce the time

required for deriving the matches by storing partial

results for the matches, and updating the partial

results a.s the knowledge base changes. Otherwise, the

N times M comparison necessary for full derivation of

the matches of a set of patterns,where N is the

number of knowledge base items and M isthe number

of patterns, is far too computationally expensive to

obtain whenever the matches are desired.

In a pattern that consists of references to several

working memory elements, for example, the Rete

algorithm will store two types of data for all matches:

pointers to all working memory elements that match
an individual reference in the pattern (a condition),

and partial matches for successive subsets of the
conditions in the entire pattern. As changes in the

knowledge base occur, they are percolated down to a

network created by the Rete algorithm which

determines how to update the stored partial results

based on the changes Since the time required for

obtaining the matches is dependent only on the

number of changes in the knowledge base since the

last pattern-matching point and the number of

patterns which are affected by those changes, and not
on the total number of patterns or knowledge base

objects, it typically reduces the pattern-matching time

by a significant factor

As the form of data representation has migrated

from records, in the form of working memory

elements, to objects as the representationof choice,

due to their economy of representation (from

inheritance)and flexibility,the Ret.e and TREAT

algorithms were adapted in a straightforward manner

to match on objects.Objects and theirattributesand

values were transformed into object-attribute-value

triplets,and these tripletshandled exactlylikesimple

working memory elements. As objects changed,

modified tripletswere sent to the pattern-matcher for

updates. Although this method for object integration

is straightforward and allows for the reuse of code

developed for fact pattern-matching, it does not

exploit the wide range of optimization possibilitie._.

inherentlypresentin an object system. The following

two sectionsdiscusssome of the featuresavailablefor

optimization in the object system, and one technique

forexploitingsome of these features.

However, since comparing bound variables across

various objects allows for the same implementation a.s

the identical compari_n in the fact pattern-matcher,

that comparison will not be discussed in this paper.

Object systems do not present additional problems or

opportunities in the inter-condition comparison, as

opposed to the intra-condition case

3.4. Object System Features Relevant for

Pattern Matching

As in the case of knowledge bases constructed using

working memory elements, it is possible to construct a

set of assumptions about object-based knowledge

bases in addition to the assumptions stated above:

• That each object may have a large set of

differentattributes.

• That each pattern may referto a limited

group of attributesof an object.

618



• That the inheritance hierarchy changes

slowly, if at all.

,,That many objects will be instances of

classes, as opposed to representations of

subclasses.

Like all assumptions, these may be violated in any

particular application, but should hold in general.

Based on those assumptions, it _'ould seem desirable

to implement pattern-matching on an object system

such that:

• Matching on an instance of a class is

highly efficient, even if the set of instances
and their values change relatively rapidly.

Each pattern need only inspect those

attributes of an object that are used in the

match.

Inheritance and class information is

incorporated as much as possible, given

that patterns may refer to that

information and that it changes slowly.

cost of examining each pattern for applicability can

reduce tile processing time required for pattern-

matching considerably

Once the parallel attribute-combination hierarchy

described in an earlier section has been created for an

object system, each pattern is attached to exactly one
node in that attribute-combination hierarchy. Each

pattern is attached to that attribute-combination
node which contains exactly those attributes used in

the pattern. As objects are created, then, in addition

to the cost of searching for the appropriate attribute-

combination node, pattern-matching information is

attached to the object, derived from the nodes in the

attribute-combination hierarchy thnt the object

traverses. The pattern-matching information will

apply to that class and to its subc}asses. Attaching

pattern-matching information to the object hierarchy,

and updating it as the hierarchy and the objects

contained it change, does impose overhead on changes

to the object system. Based on the assumptions above,

the relative infrequency of changes to the object

hierarchy will compensate for the expense of those

changes.

These assumptions form the basis for the next section,

which describes a particular method for utilizing these

apparent features. However, it is important to note
that there exist many different methods for exploiting

these assumptions, just as with working-memory

element pattern-marchers, and that the one described

below is only one of several possibilities.

3.6. An Inheritance Hierarchy for Pattern

Matching Correlations

Once the pattern and join networks (or alpha and
beta nodes, to use the terminology of [2]) for a set of

fact patterns have been created, the process of

matching a new fact to the existing patterns is
described by testing the fact against the entire set of

application patterns, and producing matches for those

patterns which the fact successfully matched against.

Using the features of the object system described in

a previous section, it is possible to reduce the size of

the set of patterns considered in the matching process.

By using structural characteristics of the patterns

(such as which classes they address or the attributes

they contain), it is possible to substantially reduce the

set of patterns considered, which depending on the

When pattern-matchingoccurs,preselectionof those

objectsthat are relevantto a patternhas already been

accomplished, so that patterns that couldn't fulfilla

particularobject(e.g.,they belong to a differentclass

or do not contain the attributes required by the

pattern) are not considered in the pattern-matching

process. For classinstances,in particular,this can

bring a substantialperformance improvement, as they

need only use the pattern-matching information of

their classin deriving the appropriate patterns.The

repetitiveclass membership tests and the attribute

presencetests required in patterns can be performed

once, for the class,and amortized over the entireset

of classinstances.

4. Conclusions

This paper has presented several reasons for

integrating an object system into CLIPS, as well as
some techniques for optimizing that integration. The

optimization techniques, although implemented for a

production system, are applicable to other object-

based processing methodologies that use pattern-

matching.

619



There are other ideas that have not been

implemented but deserve active consideration.

It would be quite desirable to introduce the

capabilityto partitionthe knowledge base,and indeed

individual attributes on objects, into items

appropriate for pattern-matching and items upon

which pattern-matching will not be performed. Since

pattern-matching imposes an overhead on objectsand

theirattributes,reducing thisoverhead by confiningit

to specified areas could greatly improve efficiency, in

addition, developing protocols for passing information

between a pattern-marcher and an object system that

are independent on the object used, or indeed on the

implementation of the pattern-marcher,would be of
interest.This would allow the creation of object-

oriented data bases with integratedpattern-matching,

with the advantage of efficientstorage of large

number of objectson disk.

Taking such a protocol and enhancing it for

distributed communications would present the

interestingpossibilityof distributedexpert systems

communicating through a general object

metaprotocol, as well as allowing for a flexible,

transparent external data interface that would

communicate with data from such diversesources a.s

databases,windowing interfacesand processmonitors.

Allowing type and value restrictionson object

attributevalues,and being able to specifyan internal

structureforthosevalues,isalsoa desirableaddition.

5. Inference Corporation. AtVT-IM/MS-DOS 1.5

Re]erence lVlanual. Inference Corporation, 1988.

6. Miranker, D.P. TREAT: A New and Efficient

Algorithm for A1 Production Systems. Phd thesis,

Columbia University, 1987.

7. Schor, M.I., Daly, T.P., Lee, H.S., Tibbitts, B.R.

Advances in Rete Pattern Matching. Proceedings of

the National Conference on Artificial Intelligence,

AAAI, 1986.

8. Software Productivity Solutions, Inc. Classic-Ada

User Manual. Software Productivity Solutions, lnc,

1988.

References

I. Brownston, L.,Farrell,R., Kant, E., Martin, N..

Programming Ezpert Systems in 0t:_5: An
Introduction to Rule-based 1_ograrnming. Addison-

Wesley, 1985.

2. Forgy, C.L. "RETE: A Fast Algorithm for the

Many Pattern / Many Object Pattern Match
Problem'. Artificial Intelligence I9 (1982}.

3. Gupta, A.. Parallelism in Production Systems.

Pitman Publishing, 1987.

4. Gupta A. et. al. Results of Parallel

ImpLementation of OPS5 on the Encore

Multiproccssor. CMU-CS-87-146, Carnegie-Mellon

University, Department of Computer Science, August,

1987.

620


