
Logie & Kamil SAT

N96- 12939

Integration of Object-Oriented Knowledge

Representation with the CLIPS Rule Based System

David S. Logie and Hasan Kamil

Structural Analysis Technologies, Inc. (SAT)

4677 Old Ironsides Dr. Suite 250

Santa Clara, CA 95054

(408) 496-I 120

Abstract

The paper describes a portion of the work aimed at developing an

integrated, knowledge based environment for the development of

engineering=oriented applications. An Object Representation

Language (ORL) was implemented in C++ [2] which is used to build

and modify an object-oriented knowledge base. The ORL was

designed in such a way so as to be easily integrated with other

representation schemes that could effectively reason with the object

base. Specifically, the integration of the ORL with the rule based

system CLIPS [I], developed at the NASA Johnson Space Center, will

be discussed.

The object-oriented knowledge representation provides a natural

means of representing problem data as a collection of related objects.

Objects are comprised of descriptive properties and inter-

relationships. The object-oriented model promotes efficient handling

of the problem data by allowing knowledge to be encapsulated in

objects. Data is inherited through an object network via the

relationship links. Together, the two schemes complement each

other in that the object-oriented approach efficiently handles

problem data while the rule based knowledge is used to simulate the

reasoning process. Alone, the object based knowledge is little more

than an object-oriented data storage scheme; however, the CLIPS

inference engine adds the mechanism to directly and automatically

reason with that knowledge. In this hybrid scheme, the expert

system dynamically queries for data and can modify the object base

with complete access to all the functionality of the ORL from rules.

o42

Logie & Kamil SAT

I ntrod uction

This project was undertaken because of the need for a practical

environment for the development of large expert systems,

specifically, those involving engineering domains. In general, the

motivation for this work can be summarized in the following:

[] the limited expressiveness of rule-based knowledge

representation, especially in engineering domains,

[] the inability to build large, efficient, and comprehensive

expert systems consisting of thousands of rules,

D the need to effectively store knowledge (i.e. acquired from the

user, data bases, or inferred by a rule set) for later use, and

[] the desire to have a common environment that could link

expert systems with existing data bases and procedural

programs.

Even in the preliminary stages of the development of an expert

system for structural/mechanical design [3], we realized that a

system with a minimum of usefulness could be comprised of

thousands of rules. This fact introduced some concerns with respect

to hardware and software limitations and the practicality of

maintaining such an extensive knowledge base. One of the most

powerful uses of this enhancement is the ability to chain rule sets. A

large set of rules can be decomposed into smaller sets which reason

about specific subproblems. For example, a rule could state that if a

certain piece of knowledge is unknown then load another rule set

that will infer that data. The original rule set can put itself in queue

to return and continue processing, transparent to the user. Also,

previously autonomous expert systems can now share data through

common objects and communicate with each other through the ORL

queries. As illustrated in Figure I, a very large network of rule sets

can be developed giving the illusion of a large expert system when,

in fact, only a small set of rules are being processed at any one time.

This capability becomes especially important on a personal or

desktop computer platform. Developing, modifying, updating and

verifying knowledge bases for large applications is a less formidable

task when small rule sets can be edited and tested independent of

the entire application.

_43

Logie & Kamil SAT

Another advantage realized from this enhancement is that rule sets
shrink considerably. This is primarily because rules for handling
user queries and checking user responses are now handled by the
ORL. Rule sets need only contain rules for ORL queries, the actual
problem solving rules and those rules that report the results I An
existing set of rules can easily be modified to take advantage of the
ORL capabilities 2.

Disk storage of knowledge has proven to be very useful also. In our
scheme, a rule set is invoked in the context of a project. Objects are
first searched for in a project specific location and then in a global
storage area. In a run-time environment, modifications to the object
base are only specific to a particular project. This context sensitivity
allows the user to examine the effect of various responses on the
recommendations or findings of an expert system by simply
changing contexts. For example, in a medical diagnosis system the
context would be set to refer to a particular patient.

The ultimate intention of this effort is to develop a fully integrated
environment in which the same ORL query initiated from a rule can
not only query the user but also result in a query to an existing data
base or the invoking of a procedural program [4]. The details of

where the information should be retrieved would be specified as the

object b_.se is developed through the use of property metaslots

(discussed later). Optimally, this integration should be seamless to

the user and function efficiently in a networked environment. With

this capability, ORL/CLIPS applications could have limitless potential

for practical use.

For the remainder of the paper, the use of the ORL and the object-

oriented knowledge representation scheme to build practical expert

systems is discussed and demonstrated.

Use of the ORL

The ORL consists of a concise set of functions for building and

maintaining an object base. One of the main goals in the

IA generic reporting mechanism isbeing developed that may eliminate the

need for the lattertype of rule, thus, leaving only the rules specifically for

reasoning.

2 Existing CLIPS rules will stillrun without modification.

Logie & Kamil SAT

development was to keep the use of the ORL as simple as possible so

that engineers or experts in other domains, without extensive

computer programming experience, could develop knowledge bases

and, furthermore, that non-experts could easily utilize the resulting

expert systems.

The type of commands available include those for file operations,

building and displaying classes and objects, querying and asserting

property values, editing the object base, and an interface to the usual
CLIPS command line. The file operations allow the user to set the

current project, save and load objects to and from disk, reset

memory resident object properties to unknown or to clear memory

completely. Note that when running a rule set, objects are

automatically loaded as needed but must be saved explicitly to

permanently store any changes made by the rules.

Command line functions for building and modifying the object base

include making classes and objects, making an instance of a class,

copying objects, or adding and removing properties and

relationships. Menu-oriented editors are available for specific

modifications such as changing the name or type of a property or

defining metaslots.

To access ORL commands from a rule the developer uses the "ORL"

function as the first item in the right hand side pattern. The

remainder of the pattern is precisely the ORL command line function

and arguments. For example, to save an object to disk from a rule,

one would write:

(ORL save < object name>).

Just as in CLIPS, several destructive functions are disallowed from

within a rule.

Classes and Objects

Classes and objects are the basic structures of the knowledge

representation scheme. They contain descriptive properties and

relationships to other classes and objects. When a property value is

required in a rule set, the class or object must be queried for that

specific property's value(s). Queries to classes and objects only differ

in that a query to a class results in all the instances of that class

being queried. In general, an ORL query from a rule takes the form:

645

Logie & "Kamil SAT

(ORL get <class/object name> <property name(s}>)

and results in asserted facts of the form:

(<object name> <property name> <value> { certainty} 3).

Qualifiers for the queries such as less-than, greater-than, or equal-to

need to be implemented for fully functional querying; however,

these types of tests are currently available in CLIPS which accounts

for their low priority in the development.

In the same way, permanent assertions to the object base take the
for m:

(ORL assert <object name> <property name> <value> {certainty})

and result in the a fact:

(<object name> <property name> <value> {certainty})

Other queries return the instances of a class or related parts of an

object. For example, to find out the instances of a class the query
would be:

(ORL getinstances <class name.>)

and would return facts as:

(<class name> instance <object name>)

which could be matched on the left hand side of a rule for deleting

instances of a class.

Properties and Metaslots

Properties (often called 'Attributes' in similar schemes} are the

mechanism by which classes and objects are described. They simply

hold one or more values as they are asserted. Currently, a property

may be of type integer, float, text, or boolean. Other specialized

property types are being developed such as filename, equation, data

3 For brevity, certainty factors will not be discussed, however, properties may

optionally have a certainty applied from 1-100%

Logie & Kamil SAT

base, and program. A property will automatically handle the

checking of user responses and build the appropriate CLIPS facts as

values are assigned.

Defining a metaslot for a property adds a considerable amount of

versatility. First, a metaslot can be used to put constraints on the

values that a property can hold by specifying a list of allowable

values or arange of numeric values. Other useful features include

assigning initial and default values for the property and defining the

prompt displayed to the the user.

Possibly, the most powerful feature of a metaslot is the ability to

define a search strategy with the "Order of Sources." The USER is the

default source for information when a property value is queried.

Alternatively, the knowledge base developer may wish the property

to assume the initial value when queried for the first time or the

default value if the user responds unknown to a query. Also, it may

be desirable to query an existing data base or invoke a procedural

program to generate data. 4 These facilities may lessen the need for

user interaction when the level of knowledge of user may be in

question or may make it easier to develop autonomous expert

systems for applications such as robotics.

Relationships

Relationships allow properties to be inherited by related classes and

objects. The most common types are the instance and instance_of

relationships between a class and its instance. When an instance of a

class is created, the relationships between them are automatically

created so that the new object can inherit properties in the class

hierarchy. Other types include is_a and subclass relationships

between classes (e.g., Jet is_an Airplane, Airplane has subclass Jet)

and part_of and subobject relationships between objects (e.g.,

wing-x is part_of airplane-y, airplane-y has subobject wing-x).

As mentioned earlier, the relationships come into play when the

classes and objects are queried. If a class is queried for a property

value, it will automatically pass the query on to its instances.

Similarly, if an object is queried for a property value which it doesn't

have, it may pass the query on to related objects according to the

4 These latter capabilities are currently under development.

647

Logie & Kamil SAT

current inheritance protocol. The relationship capability promotes

efficient handling of data by eliminating unnecessary redundancy.

Example

The example automotive diagnosis system that was distributed with

CLIPS will be used for the purpose of demonstration. First, compare

the rules for querying the user for the working state of the engine.

With CLIPS alone, the rule was:

(de frule determine-engine-state

?rem <- (query phase)

(not (working-state engine ?))
->

(retract ?rem)

(printout t "What is the working state of the engine:" t)

(printout t " (normal/unsatisfactory/does-not-start)? ")

(bind ?response (read))

(assert (working-state engine ?response))

The user must type the complete response, correctly. Using the ORL,

an object, engine, is created with the property, working-state, having

a metaslot that defines the allowable values and prompt as above.

The new rule is:

(de frule determine-engine-state
?rem <- (query phase)

(retract ?rem)

(ORL get engine working-state)
)

The new query to the user is:

What is the working state of the engine?
I. normal

2. unsatisfactory
3. does not start

4. unknown or other

Selection:

Even this small rule set was reduced by two pages of text and

several rules. Note that the original rule set made no provision for

incorrectly typed responses or any other error checking. In the

second case, the user cznno! make a typing error and provisions

648

Logie & Kamil SAT

were made for unknown responses. It was found that rules

modified to employ ORL objects and functions tend to read more

naturally so that they can be more easily debugged or updated.

To fully utilize the ORL in building a useful automotive diagnosis

system, a developer would define a class, auto, with related parts

such as the engine or doors and then have the rule set instantiate

these classes for a specific case. Also, the expert system could be

divided into modules for specific problem areas such as the engine or

transmission containing the expertise of specialized mechanics.

Modularity makes an expert system more easily extendable. This

approach is being used in-house at SAT in the development of rule

sets for designing structural/mechanical components. With this

approach, it was possible to develop rule modules containing basic

knowledge ourselves and then consult experts in specialized areas to

extend the capabilities of the knowledge based system or tailor it to

a specific engineering problem.

Conclusions

The salient features of the ORL were discussed, including typical

functions employed in the development and use of this object-

oriented/rule-based knowledge representation scheme. The object-

oriented paradigm is especially expressive in representing static,

structured knowledge. The simple example of the automotive

diagnosis system showed that the size of a CLIPS rule set can be

significantly reduced using the ORL. Accompanying the reduction in

size is improved efficiency and built-in error handling. Context

sensitivity and permanent (data base like) disk storage promote

flexibility in developing knowledge bases. The ultimate aim of this

work will result in an integrated environment able to access data in

distributed data bases and invoke procedural programs through a

common user interface or from expert systems. With these

capabilities there is no limit to the size of knowledge bases that can

be built or the range of applicable domains to which such an

integrated system could be applied.

649

Logie & Kamil SAT

References

I. CLIPS User's Manual, Version 4.3, Artificial Intelligence Section,

Johnson Space Center, NASA, 1989.

2. Stroustrup, Bjarne, The C++ Programming Language, 1987.

3. Kamil, H., Vaish, A. K., and Berke, L., "An Expert System for

Integrated Design of Aerospace Structures," Fourth International

Conference on Application of Artificial Intelligence in Engineering

(AIENG89), Cambridge, England, July, 1989.

4. Kamil, H. and Logie, D.S., "Toward an Integrated, Knowledge Based

Engineering Environment," International Symposium on Artificial

Intelligence, Robotics and Automation in Space (I-SAIRAS), Kobe,

Japan, November, 1990.

650

Logie & Kamil SAT

i

iiiiiil

el-

)@))))),]'="))))))
)))))4)l)))))(',))i>.o.i>)(>))))i,
),0,,0,,0,)4)0))))), / ,,0,,0,),0"))4)l)))i_
),0,,0,,0,)4 i'@))))@(,))@@@@4)))))i_

)))4>0'()4),i)))4'(I .)i>li>4>i>_
)))i,@_l),i)))),o,('))@@@@(

-_)i,)))i,o,(/ .)),)ll)4
f.o / / "-'---'_ >'i'i'i=l i

/ _ ,i,))¢1
i_" \ / / " ')@)I

\ / - _1
f -- --/-- --/--/- 7." --

X Z / / ,)),o,,o,,o,)))4
\- I ,o,i_,),, . I ,)),),),o.)))(

4L))i _(l ,)))0_))))4

),',i,,_,,q,v_ I _))! _)(, I ,))i,)i,)))(
,0,(#,0,,0,,0, I lill_ LII- "0''0"; _)"_ i _))(I)'0"@(_'0"_)'0''0"@(
_@))))) I _ it)i;J u _ _)(. I '@@))))@@(

1,4,))))) , _ _' (t,),)-i=i=i"t_),,(. , I,i,))))))4,,(,
I0)@))0 I -- I.l.,l ,0,))@)0)@(/ I
)@i)))) "-

:_1 m/ _1
Ol u')/ _1

<1°1
I I =

_ , -._, }

I.l.I

U")

I

!,
,e,

_v

651

